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Abstract. Garbled RAM (GRAM) is a powerful technique introduced
by Lu and Ostrovsky that equips Garbled Circuit (GC) with a sublinear
cost RAM without adding rounds of interaction. While multiple GRAM
constructions are known, none are suitable for practice, due to costs that
have high constants and poor scaling.

We present the first GRAM suitable for practice. For computational
security parameter κ and for a size-n RAM that stores blocks of size
w = Ω(log2 n) bits, our GRAM incurs amortized O(w · log2 n · κ) com-
munication and computation per access. We evaluate the concrete cost
of our GRAM; our approach outperforms trivial linear-scan-based RAM
for as few as 512 128-bit elements.

Keywords: MPC, Garbled Circuits, Oblivious RAM, Garbled RAM

1 Introduction

Secure multiparty computation (MPC) allows mutually untrusting parties to
compute functions of their combined inputs while revealing nothing but the
outputs. MPC protocols traditionally consider functions encoded as circuits.
While this does not limit expressivity, it does limit efficiency: many interesting
computations are best expressed as RAM programs, not as circuits, and the
reduction from RAM programs to circuits is expensive.

Fortunately, we can combine MPC with oblivious RAM (ORAM). ORAM is
a technology that allows a client to outsource an encrypted database to a server;
the client can then access the database while both (1) incurring only sublin-
ear overhead and (2) hiding the access pattern from the server. By running an
ORAM client inside MPC, we can augment circuits with random access memory.
This powerful combination allows us to run RAM programs inside MPC.

Garbled Circuit (GC) is a foundational and powerful MPC technique that
allows two parties to achieve secure computation while consuming only constant
rounds of interaction. One party, the GC generator G, “encrypts” the circuit
and sends it to the other party, the GC evaluator E. E is given an encryption of
each party’s input and steps through the circuit gate-by-gate under encryption.
At each gate, E propagates encryptions of input wire values to encryptions of
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output wire values. Once E finishes, E and G can jointly decrypt the output
wire values, revealing the circuit output.

It is natural to consider adding RAM to GC while preserving GC’s constant
rounds. However, the constant round requirement means that adding RAM to
GC is seemingly more difficult than adding RAM to interactive protocols. Nev-
ertheless, it is possible to run an ORAM client inside the GC and to let E play
an ORAM server. This technique is called Garbled RAM (GRAM) [LO13].

While GRAM constructions are known [LO13,GHL+14,GLOS15,GLO15],
none are suitable for practice: existing constructions simply cost too much. All
existing GRAMs suffer from at least two of the following problems:

– Use of non-black-box cryptography. [LO13] showed that GRAM can be
achieved by evaluating a PRF inside GC in a non-black-box way. Unfortu-
nately, this non-black-box cryptography is extremely expensive, and on each
access the construction must evaluate the PRF repeatedly. [LO13] requires a
circular-security assumption on GC and PRFs. Follow-up works removed this
circularity by replacing the PRF with even more expensive non-black-box
techniques [GHL+14,GLOS15].

– Factor-κ blowup. Let κ denote the computational security parameter. In
practical GC, we generally assume that we will incur factor κ overhead due
to the need to represent each bit as a length-κ encoding (i.e. a GC label).
However, existing GRAMs suffer from yet another factor κ. This overhead
follows from the need to represent GC labels (which have length κ) inside the
GC such that we can manipulate them with Boolean operations. The GC
labels that encode a GC label together have length κ2. In practice, where
we generally use κ = 128, this overhead is intolerable.

– High factor scaling. Existing GRAMs operate as follows. First, they give
an array construction that leaks access patterns to E. This leaky array al-
ready has high cost. Then, they compile this array access into GRAM using
off-the-shelf ORAM. This compilation is problematic: off-the-shelf ORAMs
require that, on each access, E access the leaky array a polylogarithmic (or
more) number of times. Thus, existing GRAMs incur multiplicative overhead
from the composition of the leaky array with the ORAM construction.

Prior GRAM works do not attempt to calculate their concrete or even asymp-
totic cost, other than to claim cost sublinear or polylogarithmic in n. In Sup-
plementary Material A, we estimate the cost of prior GRAM. For a GRAM
that stores 128-bit blocks, we conservatively estimate that the best prior GRAM
breaks even with trivial linear-scan based GRAM when the RAM size reaches
≈ 220 elements. Hence, our conservative estimate indicates that by the time it
is worthwhile to use existing GRAM, each and every access requires a 4GB GC.

1.1 Contribution

We present the first practical garbled RAM. Our GRAM, which we call Epi-
GRAM, uses only O(w · log2 n · κ) computation and communication per access.
EpiGRAM circumvents all three of the above problems:
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– No use of non-black-box cryptography. Our approach routes array ele-
ments using novel, yet simple, techniques. These techniques are light-weight,
and non-black-box cryptography is not required.

– No factor-κ blowup. While we, like previous GRAMs, represent GC labels
inside the GC itself, we give a novel generalization of existing GC gates that
eliminates the additional factor κ overhead.

– Low polylogarithmic scaling. Like previous GRAMs, we present a leaky
construction that reveals access patterns to E. However, we do not compile
this into GRAM using off-the-shelf ORAM. Instead, we construct a custom
ORAM designed with GC in mind. Our GRAM minimizes use of our leaky
construction. The result is a highly efficient technique.

In the remainder of this paper we:

– Informally and formally describe the first practical GRAM. For an array
with n elements each of size w such that w = Ω(log2 n), the construction
incurs amortized O(w ·log2 n·κ) communication and computation per access.

– Prove our GRAM secure by incorporating it in a garbling scheme [BHR12].
Our scheme handles arbitrary computations consisting of AND gates, XOR
gates, and array accesses. Our scheme is secure under a typical GC assump-
tion: a circular correlation robust hash function [CKKZ12].

– Analyze EpiGRAM’s concrete cost. Our analysis shows that EpiGRAM
outperforms trivial linear-scan based RAM for as few as 512 128-bit elements.

2 Technical Overview

In this section, we explain our construction informally but with sufficient detail
to understand our approach. This overview covers four topics:

– First, we explain a problem central to GRAM: language translation.
– Second, we informally explain our lazy permutation network, which is a con-

struction that efficiently solves the language translation problem.
– Third, as a stepping stone to our full construction, we explain how to con-

struct leaky arrays from the lazy permutation network. This informal con-
struction securely implements an array with the caveat that we let E learn
the array access pattern.

– Fourth, we upgrade the leaky array to full-fledged GRAM: the presented
construction hides the access pattern from E.

2.1 The language translation problem

For each GC wire xi the evaluator E holds one of two κ-bit strings: either Xi,
which encodes a logical zero, or Xi⊕∆, which encodes one. Meanwhile, G holds
each such Xi and the global secret ∆. We refer to the wire-specific value Xi as
the language of that wire, and to the pair 〈Xi, Xi ⊕ xi∆〉 jointly held by G and
E as the GC encoding, or the garbling, of xi. We present this notation formally
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in Section 4.4. To produce a garbled gate that takes as input a particular wire
value xi, G must know the corresponding language Xi. Normally this is not a
problem: the structure of the circuit is decided statically, and G can easily track
which languages go to which gates.

However, consider representing an array as a collection of such garbled labels.
That is, there are n values xi where E holds Xi⊕xi∆. Suppose that at runtime
the GC requests access to a particular index α. We could use a static circuit
to select xα, but this would require an expensive linear-cost circuit. A different
method is required to achieve the desired sublinear access costs.

Instead, suppose we disclose α to E in cleartext – we later add mechanisms
that hide RAM indices from E. Since she knows α, E can jump directly to the
αth wire and retrieve the value Xα ⊕ xα∆. Recall, to use a wire as input to
a gate, G and E must agree on that wire’s language. Unfortunately, it is not
possible for G to predict the language Xα: α is computed during GC evaluation
and, due to the constant round requirement, E cannot send messages to G.

Therefore, we instead allow G to select a fresh uniform language Y . If we can
convey to E the value Y ⊕xα∆, then G will be able to garble gates that take the
accessed RAM value as input, and we can successfully continue the computation.

Thus, our new goal is to translate the language Xα to the language Y . Me-
chanically, this translation involves giving to E the value Xα⊕Y . Given this, E
simply XORs the translation value with her label and obtains Y ⊕xα∆. Keeping
the circuit metaphor, providing such translation values to E allows her to take
two wires – the wire out of the RAM and the wire into the next gate – and
to solder these wires together at runtime. However, the problem of efficiently
conveying these translation values remains.

In Supplementary Material B, we discuss natural attempts at solving the lan-
guage translation problem. Translation can be achieved by a linear-sized gadget
(suggesting dynamic conversion is possible), or by a non-black box PRF [LO13]
(suggesting the ability to manipulate languages inside the GC). Our lazy per-
mutation network (discussed next) achieves dynamic language translation more
cheaply, but its underpinnings are the same: the network carefully manipulates
languages inside the GC.

2.2 Lazy Permutations

Recall that our current goal is to translate GC languages. Suppose that the
GC issues n accesses over its runtime. Further suppose that the GC accesses
a distinct location on each access – in the end we reduce general RAM to a
memory with this restriction. To handle the n accesses, we wish to convey to E
n translation values Xi⊕Yj where Yj is G’s selected language for the jth access.

What we need then is essentially a permutation on n elements that routes
between RAM locations (with language Xi) and accesses (with language Yj).
However, a simple permutation network will not suffice, since at the time of
RAM access j, the location of each subsequent access will, in general, not yet
be known. Therefore, we need a lazy permutation whereby we can decide and
apply the routing of the permutation one input at a time. We remind the reader
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Fig. 1. An internal node of our lazy permutation network. We depict the fourth access
to this node. The encoded input uses language B3. We interpret the first encoded input
bit as a flag that indicates to proceed left or right. Our objective is to forward the
remaining input to either the left or right node. Each node stores two oblivious stacks
that hold encodings of the unused languages of the two children. We conditionally pop
both stacks. In this case, the left stack is unchanged whereas the right stack yields
D1, the next language for the target child. Due to the pop, the remaining elements
in the right stack move up one slot. By XORing these values with an encoding of the
input language, then opening the resulting value to E, we convert the message to the
language of the target child, allowing E to solder a wire to the child.

that we assume that E knows each value α. I.e., we need only achieve a lazy
permutation where E learns the permutation.

Given this problem, it may now be believable that algorithms and data struc-
tures exist such that the total cost is O(κ · n · polylog(n)), and hence only
amortized O(κ · polylog(n)) per access. Indeed we present such a construction.
However, our solution requires that we apply this lazy permutation to the GC
languages themselves, not to bits stored in the RAM. Thus, we need a logic in
which we can encode GC languages: E must obliviously and authentically ma-
nipulate GC languages. GC gives us these properties, so we can encode languages
bit-by-bit inside the GC. I.e., for a language of length w, we would add w GC
wires, each of which would hold a single bit of the language.

Unfortunately, this bit-by-bit encoding of the languages leads to a highly
objectionable factor κ blowup in the size of the GC: the encoding of a length-w
language has length w ·κ. We later show that the factor κ blowup is unnecessary.
Under particular conditions, existing GC gates can be generalized such that we
can represent a length-w language using an encoding of only length w. These
special and highly efficient GC gates suffice to build the gadgetry we need. We
formalize the needed gate in Section 5.1.

The ability to encode languages inside the GC is powerful. Notice that since
we can dynamically solder GC wires, and since wires can hold languages needed
to solder other wires, we can arrange for E to repeatedly and dynamically lay
down new wiring in nearly arbitrary ways.



6 David Heath, Vladimir Kolesnikov, and Rafail Ostrovsky

With this high level intuition, we now informally describe our lazy permu-
tation network. Let n be a power of two. Our objective is to route between the
languages of n array accesses and the languages of n array elements.

G first lays out a full binary branching tree with n leaves. Each node in
this tree is a GC with static structure. However, the inputs and outputs to
these circuits are loose wires, ready to be soldered at runtime by E. At runtime,
seeking to read array element xα with language Xα into a wire with language
Y , E begins at the root of the tree, which holds a GC encoding of the target
language Y . (Note, G knows the target language Y of the j-th access, and can
accordingly program the tree root.) Based on the GC encoding of the first bit
of α, E is able to dynamically decrypt a translation value to either the left
or the right child node. Now, E can solder wires to this child, allowing her to
send to the child circuit both the encoding of Y and the remaining bits of α.
E repeatedly applies this strategy until she reaches the αth leaf node. This leaf
node is a special circuit that computes C(x) = x ⊕ Xα and then reveals the
output to E.4 Since we have pushed the encoding of Y all the way to this leaf,
E obtains Y ⊕Xα, the translation value that she needs to read xα.

In yet more detail, each internal node on level k of the tree is a static cir-
cuit with 2logn−k loose sets of input wires. Each node maintains two oblivious
stacks [ZE13]. The first stack stores encodings of the languages for the 2logn−k−1

loose input wires of the left child, and the second stack similarly stores languages
for the right child (see Figure 1). On the j-th access and seeking to compute
Yj ⊕Xα, E dynamically traverses the tree to leaf α (recall, we assume E knows
α in cleartext), forwarding an encoding of Yj all the way to the αth leaf. At
each internal node, she uses a bit of the encoding of α to conditionally pop the
two stacks, yielding an encoding of the language of the correct child. The static
circuit uses this encoding to compute a translation value to the appropriate child.

By repeatedly routing inputs over the course of n accesses, we achieve a lazy
permutation. Crucially, the routing between nodes is not decided until runtime.

This construction is affordable. Essentially the only cost comes from the
oblivious stacks. For a stack that stores languages of length w, each pop costs
only O(w · log n) communication and computation (Section 5.2). Thus, the full
lazy permutation costs only O(w · n · log2 n) communication, which amortizes
to sublinear cost per access. We describe our lazy permutation network in full
formal detail in Section 5.3.

Our lazy permutation networks route the language of each RAM slot to
the access where it is needed, albeit in a setting where E views the routing
in cleartext. Crucially, the lazy permutation network avoids factor κ additional
overhead that is common in GRAM approaches. To construct a secure GRAM,
we build on this primitive and hide the RAM access pattern.

4 Our actual leaf circuit is more detailed. See Sections 2.4 and 5.3.
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2.3 Pattern-Leaking (Leaky) Arrays

As a stepping stone to full GRAM, we informally present an intermediate ar-
ray which leaks access patterns. For brevity, we refer to it as leaky array. This
construction handles arbitrary array accesses in a setting where E is allowed to
learn the access pattern. We demonstrate a reduction from this problem to our
lazy permutation network.

We never formally present the resulting construction. Rather, we explain the
construction now for expository reasons: we decouple our explanation of cor-
rectness from our explanation of obliviousness. I.e., this section builds a correct
GRAM that leaks the access pattern to E. The ideas for this leaky construction
carry to our secure GRAM (Section 2.4).

Suppose the GC wishes to read index α. Recall that our lazy permutation
network is a mechanism that can help translate GC languages: E can dynam-
ically look up an encoding of the language Xα. However, because the network
implements a permutation, it alone does not solve our problem: an array should
allow multiple accesses to the same index, but the permutation can route each
index to only one access. To complete the reduction, more machinery is needed.

To start, we simplify the problem: consider an array that handles at most
n accesses. We describe an array that works in this restricted setting and later
upgrade it to handle arbitrary numbers of accesses.

Logical indices → one-time indices. The key idea is to introduce a level of
indirection. While the GC issues queries via logical indices α, our array stores
its content according to a different indexing system: the content for each logical
index α is stored at a particular one-time index p. As the name suggests, each
one-time index may be written to and read at most once. This limitation ensures
compatibility with a lazy permutation: since each one-time index is read only
once, a permutation suffices to describe the read pattern.

Each one-time index can be read only once, yet each logical index can be
read multiple times. Thus, over the course of n accesses, a given logical index
might correspond to multiple one-time indices.

Neither party can a priori know the mapping between logical indices and one-
time indices. However, to complete an access the GC must compute the relevant
one-time index. Thus, we implement the mapping as a recursively instantiated
index map.5 The index map is itself a leaky array where each index α holds the
corresponding one-time index p. We are careful that the index map is strictly
smaller than the array itself, so the recursion terminates; when the next needed
index map is small enough, we instantiate it via simple linear scans.

A leaky array with n elements each of size w and that handles at most n
accesses is built from three pieces:

1. A block of 2n GC encodings each of size w called the one-time array. We
index into the one-time array using one-time indices.

5 Recursive index/position maps are typical in ORAM constructions, see e.g. [SvS+13].
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2. A size-2n lazy permutation π̃ where each leaf i stores the language for one-
time array slot i.

3. The recursively instantiated index map.

Let ⦃xi⦄ denote the GC encoding of bitstring xi where G holds Xi and E holds
Xi ⊕ xi∆ (see also Section 4.4). Suppose the parties start with a collection of
n encodings ⦃x0⦄, ..., ⦃xn−1⦄ which they would like to use as the array content.
The parties begin by sequentially storing each value ⦃xi⦄ in the corresponding
one-time index i. The initial mapping from logical indices to one-time indices
is thus statically decided: each logical index i maps to one-time index i. The
parties recursively instantiate the index map with content ⦃0⦄, ..., ⦃n− 1⦄.

When the GC performs its j-th access to logical index ⦃α⦄, we perform the
following steps:

1. The parties recursively query the index map using input ⦃α⦄. The result is
a one-time index ⦃p⦄. The parties simultaneously write back into the index
map ⦃n+ j⦄, indicating that α will next correspond to one-time index n+ j.

2. The GC reveals p to E in cleartext. This allows E to use the lazy permutation
network π̃ to find a translation value for the pth slot of the one-time array.

3. E jumps to the pth slot of the array and translates its language, soldering
the value to the GC and completing the read. Note that the GC may need
to access index α again, so the parties perform the next step:

4. The parties write back to the (n + j)-th slot of the one-time array. If the
access is a read, they write back the just-read value. Otherwise, they write
the written value.

In this way, the parties can efficiently handle n accesses to a leaky array.

Handling more than n accesses. If the parties need more than n accesses,
a reset step is needed. Notice that after n accesses, we have written to each of
the 2n one-time indices (n during initialization and one per access), but we have
only read from n one-time indices. Further notice that on an access to index α,
we write back a new one-time index for α; hence, it must be the case that the n
remaining unread one-time array slots hold the current array content.

Going beyond n accesses is simple. First, we one-by-one read the n array
values in the sequential logical order (i.e. with α = 0, 1, .., n − 1), flushing the
array content into a block ⦃x0⦄, ..., ⦃xn−1⦄. Second, we initialize a new leaky
array data structure, using the flushed block as its initial content. This new
data structure can handle n more accesses. By repeating this process every n
accesses, we can handle arbitrary numbers of accesses.

Summarizing the leaky array. Thus, we can construct an efficient garbled
array, which leaks access patterns. Each access to the leaky array costs amortized
O(w · log2 n · κ) bits of communication, due to the lazy permutation network.
We emphasize the key ideas that carry over to our secure GRAM:
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– We store the array data according to one-time indices, not according to log-
ical indices. This ensures compatibility with our lazy permutation network.

– We recursively instantiate an index map that stores the mapping from logical
indices to one-time indices.

– We store the GC languages of the underlying data structure in a lazy per-
mutation network such that E can dynamically access slots.

– Every n accesses, we flush the current array and instantiate a fresh one.

2.4 Garbled RAM

In Section 2.3 we demonstrated that we can reduce random access arrays to our
lazy permutation network, so long as E is allowed to learn the access pattern.
In this section we strengthen that construction by hiding the access patterns,
therefore achieving secure GRAM.

Note that this strengthening is clearly possible, because we can simply employ
off-the-shelf ORAM. In ORAM, the server learns a physical access pattern, but
the ORAM protocol ensures that these physical accesses together convey no
information about the logical access pattern. Thus, we can use our leaky array
to implement physical ORAM storage, implement the ORAM client inside the
GC, and the problem is solved.

We are not content with this solution. The problem is that our leaky ar-
ray already consumes O(log2 n) overhead, due to lazy permutations. In ORAM,
each logical access is instantiated by at least a logarithmic number of physical
reads/writes. Thus, compiling our leaky array with off-the-shelf ORAM incurs
at least an additional O(log n) multiplicative factor. In short, this off-the-shelf
composition is expensive.

We instead directly improve the leaky array construction (Section 2.3) and re-
move its leakage. This modification incurs only additive overhead, so our GRAM
has the same asymptotic cost as the leaky array: O(w · log2 n ·κ) bits per access.

The key idea of our full GRAM is as follows: In regular ORAM, we assume
that the client is significantly weaker than the server. In our case, too, the GC –
which plays the client – is much weaker than E – who plays the server. However,
we have a distinct advantage: the GC generator G can act as a powerful advisor
to the GC, directly informing most of its decisions.

More concretely, our GRAM carefully arranges that the locations of almost
all of the physical6 reads and writes are decided statically and are independent
of the logical access pattern. Thus, G can a priori track the static schedule and
prepare for each of the static accesses. Our GRAM incurs O(log2 n) physical
reads/writes per logical access. However, only a constant number7 of these reads
cannot be predicted by G, as we will soon show.

6 I.e. reads and writes to the lowest level underlying data structure, where access
patterns are visible to E.

7 To be pedantic, if we account for recursively instantiated index maps, each map
incurs this constant number of unpredictable reads, so there are total a logarithmic
number of unpredictable reads.
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Each physical read/write requires that G and E agree on the GC language
of the accessed element. For each statically decided read/write, this agreement
is reached trivially. Therefore, we only need our lazy permutation network for
reads that G cannot predict. There are only a constant number of these, so we
only need a constant number of calls to the lazy permutation network.

Upgrading the leaky array. We now informally describe our GRAM. Our
description is made by comparison to the leaky array described in Section 2.3.

In the leaky array, we stored all 2n one-time indices in a single block. In
our GRAM, we instead store the 2n one-time indices across O(log n) levels of
exponentially increasing size: each level i holds 2i+1 elements, though some levels
are vacant. As we will describe later, data items are written to the smallest level
and then slowly move from small levels to large levels. Each populated level of
the GRAM holds 2i one-time-indexed data items and 2i dummies. Dummies are
merely encodings of zero. Each level of the GRAM is stored shuffled. The order
of items on each level is unknown to E but, crucially, is known to G. This means
that at all times G knows which one-time index is stored where and knows which
elements are dummies.

In the leaky array, E was pointed directly to the appropriate one-time index.
In our GRAM, we need to hide the identity of the level that holds the appropriate
index. Otherwise, since elements slowly move to larger levels, E will learn an
approximation of the time at which the accessed element was written. Hence we
arrange that E will read from each level on each access. However, all except one
of these accesses will be to a dummy, and the indices of the accessed dummies
are statically scheduled by G. More precisely, G a priori chooses one dummy on
each populated level and enters their addresses as input to the GC. The GC
then conditionally replaces one dummy address by the real address, then reveals
each address to E. (Note that G does not know which dummy goes unaccessed
– we discuss this later.)

In the leaky array and when accessing logical index α, we used the index map
to find corresponding one-time index p. p was then revealed to E. In our GRAM,
it is not secure for E to learn one-time indices corresponding to accesses. Thus,
we introduce a new uniform permutation π of size 2n that is held by G and
secret from E. Our index map now maps each index ⦃α⦄ to the corresponding
permuted one-time index ⦃π(p)⦄. We can safely reveal π(p) to E – the sequence
of such revelations is indistinguishable from a uniform permutation.

In the leaky array, we used the lazy permutation network π̃ to map each
one-time index p to a corresponding GC language. Here, we need two changes:

1. Instead of routing p to the metadata corresponding to p, we instead route
π(p) to the metadata corresponding to p. G can arrange for this by simply
initializing the content of the lazy permutation in permuted order.

2. We slowly move one-time indexed array elements from small levels to large
levels (we have not yet presented how this works). Thus, each one-time index
no longer corresponds to a single GC language. Instead, each one-time index
now corresponds to a collection of physical addresses. Moreover, each time
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we move a one-time index to a new physical address, it is crucial to security
that we encode the data with a different GC language. Fortunately, we ensure
that G knows the entire history of each one-time index. Thus, he can garble
a circuit that takes as input the number of accesses so far and outputs the
current physical address and GC language. We place these per-one-time-
index circuits at the leaves of a lazy permutation network.

Remark 1 (Indices). Our GRAM features three kinds of indices:

– Logical indices α refer to simple array indices. The purpose of the GRAM is
to map logical indices to values.

– Each time we access a logical index, we write back a corresponding value to a
fresh one-time index p. Thus, each logical index may correspond to multiple
one-time indices. The mapping from logical indices to one-time indices is
implemented by the recursively instantiated index map.

– One-time indices are not stored sequentially, but rather are stored permuted
such that we hide access patterns from E. A physical address @ refers to the
place where a one-time index p is currently held. Because we repeatedly move
and permute one-time indices, each one-time index corresponds to multiple
physical addresses. The mapping from one-time indices to physical addresses
is known to G and is stored in a lazy permutation network.

In the leaky array and on access j, we write back an element to one-time
index n + j. In our GRAM, we similarly perform this write. We initially store
this one-time index in the smallest level. Additionally, the parties store a fresh
dummy in the smallest level. After each write, the parties permute a subset
of the levels of RAM using a traditional permutation network. The schedule
of permutations – see next – is carefully chosen such that the access pattern
is hidden but cost is low. Over the course of n accesses, the n permutations
together consume only O(n · log2 n) overhead.

The permutation schedule. Recall that we arrange the RAM content into
O(log n) levels of exponentially increasing size. After each access, G applies a
permutation to a subset of these levels. These permutations prevent E from
learning the access pattern.

Recall that on each access, E is instructed to read from each populated level.
All except one of these reads is to a dummy. Further recall that after being
accessed once, a one-time index is never used again. Thus, it is important that
each dummy is similarly accessed at most once. Otherwise, E will notice that
doubly-accessed addresses must hold dummies.

Since we store only 2i dummies on level i, level i can only support 2i ac-
cesses: after 2i accesses it is plausible that all dummies have been exhausted. To
continue processing, G therefore re-permutes the level, mixing the dummies and
real elements such that the dummies can be safely reused. More precisely, on
access j we collect those levels i such that 2i divides j. Let k denote the largest
such i. We concatenate each level i ≤ k together into a block of size 2k+1 and
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permute its contents into level k+ 1 (this level is guaranteed to be vacant). This
leaves each level i ≤ k vacant and ready for new data to flow up. Now that the
data has been permuted, it is safe to once again use the shuffled dummies, since
they are shuffled and each is given a new GC language.

As a security argument, consider E’s view of a particular level i over all 2i

accesses between permutations. Each such access could be to a dummy or to a
real element, but these elements are uniformly shuffled. Hence, E’s view can be
simulated by uniformly sampling, without replacement, a sequence of 2i indices.

Remark 2 (Permutations). Our RAM features three kinds of permutations:

– π̃ is a lazy permutation whose routing is revealed to E over the course of n
accesses. The lazy permutation allows E to efficiently look up the physical
address and language for the target one-time index.

– π is a uniform permutation chosen by G whose sole purpose is to ensure that
π̃ does not leak one-time indices to E. Let π′ denote the actual routing from
RAM accesses to one-time indices. E does not learn π′, but rather learns
π̃ = π′ ◦ π. Since π is uniform, π̃ is also uniform.

– π0, ..., πn−1 is a sequence of permutations chosen by G and applied to levels
of GRAM. These ensure that the physical access pattern leaks nothing to E.

Accounting for the last dummy per access. One small detail remains.
Recall that on each access, G statically chooses a dummy on each of the O(log n)
levels. E will be pointed to each of these dummies, save one: E will not read the
dummy on the same level as the real element. The identity of the real element
is dynamically chosen, so G cannot know which dummy is not read. The parties
must somehow account for the GC language of the unread dummy to allow E
to proceed with evaluation. (We expand on this need in a moment.)

This accounting is easily handled by a simple circuit Chide . Chide takes as
input an encoding of the real physical address and outputs an encoding of the
language of the unaccessed dummy.

We now provide more detail (which can be skipped at the first reading) ex-
plaining why E must recover an encoding of the language of the unaccessed
dummy. Suppose the real element is on level j. G selects O(log n) dummy lan-
guages Di for this access, and E reads one label in each language Di 6=j , and
reads the real value. To proceed, G and E must obtain the real value in some
agreed language, and this language must depend on all languages Di (since G
cannot know which dummy was not read). Therefore, Dj must be obtained and
used by E as well. In even more detail, in the mind of G, the “output” lan-
guage includes the languages Di XORed together; to match this, in addition to
XORing all labels she already obtained, E XORs in the encoding of the missing
dummy language. The validity of this step relies heavily on Free XOR [KS08].

The high level procedure. To conclude our overview, we enumerate the steps
of the RAM. Consider an arbitrary access to logical index α.
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1. E first looks up α’s current one-time index p by consulting the index map.
The index map returns an encoding of π(p) where π is a uniform permutation
that hides one-time indices from E.

2. The GC reveals π(p) to E in cleartext such that she can route the lazy
permutation π̃. E uses π̃ to route the current RAM time to a leaf circuit
that computes encodings of the appropriate physical address @ and GC
language. Let ` denote the RAM level that holds address @.

3. A per-access circuit Chide is used to compute (1) encodings of physical ad-
dresses of dummies on each populated level i 6= ` and (2) the GC language
of the dummy that would have been accessed on level `, had the real element
been on some other level.

4. The GC reveals addresses to E and E reads each address. E XORs the
results together. (Recall, dummies are garblings of zero.) Each read value is
a GC label with a distinct language. To continue, G and E must agree on
the language of the resulting GC label. G can trivially account for the GC
language of each dummy except for the unaccessed dummy. E XORs on the
encoded language for the accessed element and the encoded language for the
unaccessed dummy. This allows E to solder the RAM output to the GC such
that computation can continue.

5. Parties write back an encoding either of the just-accessed-element (for a
read) or of the written element (for a write). This element is written to the
smallest level. Parties also write a fresh dummy to the smallest level.

6. G applies a permutation to appropriate RAM levels.
7. After the nth access, E flushes the RAM by reading each index without

writing anything back, then initializes a new RAM with the flushed values.

We formalize our GRAM in Section 5.4.

3 Related Work

Garbled RAM. [LO13] were the first to achieve sublinear random access in
GC. As already mentioned, their GRAM evaluates a PRF inside the GC and
also requires a circular-security assumption.

This circularity opened the door to further improvements. [GHL+14] gave two
constructions, one that assumes identity-based-encryption and a second that as-
sumes only one-way functions, but that incurs super-polylogarithmic overhead.
[GLOS15] improved on this by constructing a GRAM that simultaneously as-
sumes only one-way functions and that achieves polylog overhead. Both of these
works avoid the [LO13] circularity assumption, but are expensive because they
repeatedly evaluate cryptographic primitives inside the GC.

[GLO15] were the first to achieve a GRAM that makes only black-box use
of crypto-primitives. Our lazy permutation network is inspired by [GLO15]: the
authors describe a network of GCs, each of which can pass the program control
flow to one of several other circuits. In this way they translate between GC
languages. Our approach improves over the [GLO15] approach in several ways:
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– The [GLO15] GRAM incurs factor κ blowup when passing messages through
their network of GCs. Our lazy permutation network avoids this blowup.

– [GLO15] uses a costly probabilistic argument. Each node of their network is
connected to a number of other nodes; this number scales with the statistical
security parameter. The authors show that the necessary routing can be
achieved at runtime with overwhelming probability.8 This approach uses a
network that is significantly larger than is needed for any particular routing,
and most nodes are ultimately wasted. In contrast, our lazy permutation
network is direct. Each node connects to exactly two other nodes, and all
connections are fully utilized over n accesses.

– [GLO15] compile their GRAM using off-the-shelf ORAM, incurring multi-
plicative overhead between their network of GCs and the ORAM. We build
a custom RAM that makes minimal use of our lazy permutation network.

In this work, we focus on RAM access in the standard GC setting. A number
of other works have explored other dimensions of GRAM, such as parallel RAM
access, adaptivity, and succinctness [CCHR16,CH16,LO17,GOS18].

Practical GC and ORAM. Due to space, we defer discussion of works in the
areas of practical GC and ORAM to Supplementary Material C.

4 Preliminaries, Notation, and Assumptions

4.1 Common Notation

– G is the circuit generator. We refer to G as he/him.
– E is the circuit evaluator. We refer to E as she/her.
– We denote by 〈x, y〉 a pair of values where G holds x and E holds y.
– κ is the computational security parameter (e.g. 128).
– We write x , y to denote that x is defined to be y.
–

c
= is the computational indistinguishability relation.

– x← y denotes that variable x is assigned to value y; x can later be reassigned.
– We generally use n to denote the number of elements and w to denote the

bit-width of those elements.
– [x] denotes the natural numbers 0, ..., x− 1.

Our construction is a garbling scheme [BHR12], not a protocol. I.e., our con-
struction is merely a tuple of procedures that can be plugged into GC protocols.
However, it is often easier to think of G and E as participating in a semi-honest
protocol. Thus, we often write that the parties “send messages”. We make two
notes about this phrasing:

– We will never write that E sends a message to G: all information flows from
G to E. In this way, we preserve the constant round nature of GC.

– ‘G sends x to E’ formally means that (1) our garbling procedure appends x
to the GC and (2) our evaluation procedure extracts x from the GC.

8 The [GLO15] probabilistic argument requires that indices be accessed randomly. I.e.,
the [GLO15] leaky array cannot be used except by plugging it into ORAM.
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4.2 Cryptographic Assumptions

We use the Free XOR technique [KS08], so we assume a circular correlation
robust hash function H [CKKZ12,ZRE15]. In practice, we instantiate H using
fixed-key AES [GKWY20].

4.3 Garbling Schemes

A garbling scheme [BHR12] is a method for securely computing a class of circuits
in constant rounds. A garbling scheme is not a protocol; rather, it is a tuple of
procedures that can be plugged into a variety of protocols.

Definition 1 (Garbling Scheme). A garbling scheme for a class of circuits
C is a tuple of procedures:

(Gb,En,Ev ,De)

where (1) Gb maps a circuit C ∈ C to a garbled circuit C̃, an input encoding
string e, and an output decoding string d; (2) En maps an input encoding string
e and a cleartext bitstring x to an encoded input; (3) Ev maps a circuit C, a
garbled circuit C̃, and an encoded input to an encoded output; and (4) De maps
an output decoding string d and encoded output to a cleartext output string.

A garbling scheme must be correct and may satisfy any combination of obliv-
iousness, privacy, and authenticity [BHR12]. We include formal definitions of
these properties in Supplementary Material F. Our scheme satisfies each defini-
tion and hence can be plugged into GC protocols.

4.4 Garblings and Sharings

We work with two kinds of encodings of logical values: ‘garblings’ and simple
XOR shares. Garblings correspond to the traditional notion of garbled labels;
i.e., a garbling is a length-κ value held by each party.

Recall from Section 2 that we manipulate languages inside the GC. This is
why we work also with simple XOR sharings: we use XOR sharings to encode
and move languages inside the GC. We define notation for both types of shares,
and we emphasize the compatibility of garblings and sharings.

Garblings are Free XOR-style garbled circuit labels [KS08]. G samples a
uniform value ∆ ∈ {0, 1}κ−11. I.e., ∆ is uniform except that the least significant
bit is one. ∆ is global to the entire computation. A garbling of x ∈ {0, 1} is
a tuple 〈X,X ⊕ x∆〉, where the first element (here, X) is held by G, and the
second by E.

Definition 2 (Garbling). Let x ∈ {0, 1} be a bit. Let X ∈ {0, 1}κ be a bit-
string held by G. We say that the pair 〈X,X ⊕ x∆〉 is a garbling of x over
(usually implicit) ∆ ∈ {0, 1}κ−11. We denote a garbling of x by writing ⦃x⦄:

⦃x⦄ , 〈X,X ⊕ x∆〉
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Definition 3 (Sharing). Let x,X ∈ {0, 1} be two bits. We say that the pair
〈X,X ⊕ x〉 is a sharing of x. We denote a sharing of x by writing JxK:

JxK , 〈X,X ⊕ x〉

We refer to G’s share X as the language of the garbling (resp. sharing).
Except in specific circumstances, we use uniformly random languages both for
garblings and for sharings.

Note, XOR is homomorphic over garblings [KS08] and sharings:

⦃a⦄⊕ ⦃b⦄ = ⦃a⊕ b⦄ JaK⊕ JbK = Ja⊕ bK

We extend our garbling and sharing notation to vectors of values. That is, a
garbling (resp. sharing) of a vector is a vector of garblings (resp. sharings):

⦃a0, ..., an−1⦄ , (⦃a0⦄, ..., ⦃an−1⦄) Ja0, ..., an−1K , (Ja0K, ..., Jan−1K)

Remark 3 (Length of garblings/sharings). Garblings are longer than sharings.
I.e., let x ∈ {0, 1} be a bit. Then ⦃x⦄ is a pair of length-κ strings held by G and
E. Meanwhile, JxK is a pair of bits held by G and E.

Remark 4 (Sharings contain garblings). Notice that the space of sharings con-
tains the space of garblings. Indeed, this will be important later: we will in
certain instances reinterpret a garbling ⦃x⦄ as a sharing Jx∆K. This will allow
us to operate on the garbling as if it is a sharing.

We frequently deal with values that are known to a particular party. We write
xG (resp. xE) to denote that x is a value known to G (resp. to E) in cleartext.
E.g., ⦃xE ⦄ indicates a garbling of x where E knows x.

Operations on Sharings/Garblings.

– ⦃x⦄ 7→ JxK. Recall that G ensures that the least significant bit of ∆ is one.
Suppose each party takes the least significant bit of his/her part of ⦃x⦄:

lsb(⦃x⦄) = lsb(〈X,X ⊕ x∆〉) , 〈lsb(X), lsb(X ⊕ x∆)〉
= 〈lsb(X), lsb(X)⊕ x · lsb(∆)〉 = 〈lsb(X), lsb(X)⊕ x〉 = JxK

That is, if both parties compute lsb on their parts of a garbling, the result
is a valid sharing of the garbled value. This idea was first used to implement
the classic point and permute technique.

– JxK 7→ xE and ⦃x⦄ 7→ xE . G can open the cleartext value of a sharing by
sending his share to E. Similarly, we can open a garbling by first computing
lsb (see above) and then opening the resulting share.

– xG 7→ JxK and xG 7→ ⦃x⦄. G can easily introduce fresh inputs. Specifically,
let x be a bit chosen by G and unknown to E. The parties can construct
〈x, 0〉 = JxK. Similarly, the parties can construct 〈x∆, 0〉 = ⦃x⦄.

– ⦃x⦄ · ⦃y⦄ 7→ ⦃x · y⦄. Garblings support AND gates. This operation can be
implemented using two ciphertexts [ZRE15] (or 1.5 ciphertexts [RR21]).
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– Input:
• G inputs a permutation on n elements π.
• A garbled array ⦃x0, ..., xn−1⦄ where xi ∈ {0, 1}w.

– Output:
• The permuted array ⦃π(x0, ..., xn−1)⦄.

Fig. 2. Interface to the procedure G-permute which permutes n values using a permu-
tation π chosen by G. For power of two n, permuting n garbled values each of length w
costs w · (n logn−n+1) ·κ bits of communication via a permutation network [Wak68].

– xG · ⦃y⦄ 7→ ⦃x · y⦄. It is possible to instantiate a cheaper AND gate if G
knows in cleartext one of the arguments. This operation can be implemented
using one ciphertext [ZRE15].

– ⦃xE ⦄ · JyK 7→ Jx · yK. This novel operation scales a vector of sharings by a
garbling whose cleartext value is known to E. Section 5.1 gives the procedure.

– ⦃x⦄ · yG 7→ Jx · yK. This operation follows simply from the above scaling
procedure. See Section 5.1.

4.5 Oblivious Permutation

We permute garbled arrays using permutations chosen by G. A permutation on
n = 2k width-w elements can be implemented using w(n log n − n + 1) AND
gates via a classic construction [Wak68]. Since G chooses the permutation, we
can use single ciphertext AND gates and implement the permutation for only
w · (n log n− n+ 1) · κ bits. Figure 2 lists the interface to this procedure.

5 Approach

In this section we formalize the approach described in Section 2. Our formalism
covers four topics:

– Section 5.1 formalizes our generalized GC gates. These gates allow us to
avoid the factor-κ blowup that is common to prior GRAMs.

– Section 5.2 uses these new gates to modify an existing pop-only stack con-
struction [ZE13]. Our modified pop-only stacks leak their access pattern to
E but can efficiently store GC languages.

– Section 5.3 uses pop-only stacks to formalize our lazy permutation network.
– Section 5.4 builds on the lazy permutation network to formalize our GRAM.

We package the algorithms and definitions in this section into a garbling
scheme [BHR12] that we call EpiGRAM. EpiGRAM handles arbitrary circuits
with AND gates, XOR gates, and array accesses, and is defined as follows:

Construction 1 (EpiGRAM). EpiGRAM is a garbling scheme (Definition 1)
that handles circuits with four kinds of gates:

– XOR gates take as input two bits and output the XOR of the two inputs.
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– AND gates take as input two bits and output the AND of the two inputs.
– ARRAY gates are parameterized over power of two n and positive integer
w. The gate outputs a zero-initialized array of n elements each of width w.

– ACCESS gates take as input (1) an array A, (2) a (log n)-bit index α, (3) a
w-bit value y to store in the case of a write, and (4) a bit r that indicates if
this is a read or write. The gate outputs A[α]. As a side effect, A is mutated:

A[α]←

{
y if r = 0

A[α] otherwise

The garbling scheme procedures are defined as follows:

– En and De are standard; formally, our scheme is projective [BHR12], which
allows us to implement En and De as simple maps between cleartext and
encoded values. We formalize En and De in Supplementary Material E.

– Ev and Gb each proceed gate-by-gate through the circuit. For each XOR gate,
each procedure XORs the inputs [KS08]. For each AND gate, the procedures
compute the half-gates approach [ZRE15]. For each ARRAY gate, Gb (resp.
Ev) invokes G’s (resp. E’s) part of the array initialization procedure (Fig-
ure 9). For each ACCESS gate, Gb (resp. Ev) invokes G’s (resp. E’s) part
of the array access procedure (Figure 10).

In Supplementary Material F and G, we prove lemmas and theorems that
together imply the following result:

Theorem 1 (Main Theorem). If H is a circular correlation robust hash func-
tion, then EpiGRAM is a correct, oblivious, private, and authentic garbling
scheme. For each ACCESS gate applied to an array of n elements each of size
w = Ω(log2 n), Gb outputs a GC of amortized size O(w · log2 n · κ) and both Gb
and Ev consume amortized O(w · log2 n · κ) computation.

5.1 Avoiding Factor κ Blowup

Recall from Section 2 that we avoid the factor-κ overhead that is typical in
GRAMs. We now give the crucial operation that enables this improvement.

Our operation scales a vector of κ sharings by a garbled bit whose value is
known to E. The scaled vector remains hidden from E. The operation computes
⦃xE ⦄ · JyK 7→ Jx · yK for y ∈ {0, 1}κ (see Figure 3). Crucially, the operation only
requires that G send to E κ total bits. While this presentation is novel, the
procedure in Figure 3 is a simple generalization of techniques given in [ZRE15].
This generalization allows us to scale an encoded GC language of length w (when
w = c · κ for some c) for only w bits. This is how we avoid factor-κ blowup.

Formally, we have a vector space where the vectors are sharings and the
scalars are garblings whose value is known to E. Vector space operations cannot
compute arbitrary functions of sharings, but they can arbitrarily move sharings
around. These data movements suffice to build our lazy permutation network.

Given Figure 3, we can also compute ⦃x⦄ · yG 7→ Jx · yK for y ∈ {0, 1}κ:
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– Input:
• A garbled bit known to E: ⦃xE ⦄.
• A shared vector JyK for y ∈ {0, 1}κ.

– Output:
• A sharing of the scaled vector Jx · yK.

– Procedure ⦃xE ⦄ · JyK:
• Parties agree on a gate-specific nonce i.
• Let 〈X,X ⊕ x∆〉 = ⦃xE ⦄.
• Let 〈Y, Y ⊕ y〉 = JyK.
• G computes and sends to E row , H(X ⊕∆, i)⊕H(X, i)⊕ Y .
• E computes the following:

H(X ⊕ x∆, i)⊕ x · (row ⊕ (Y ⊕ y))

= H(X ⊕ x∆, i)⊕

{
row ⊕ (Y ⊕ y) if x = 1

0 otherwise

=

{
H(X ⊕∆, i)⊕ (H(X ⊕∆, i)⊕H(X, i)⊕ Y )⊕ Y ⊕ y if x = 1

H(X, i) otherwise

= H(X, i)⊕ x · y

• Parties output (respective shares of) 〈H(X, i), H(X, i)⊕ x · y〉 = Jx · yK.

Fig. 3. Scaling a shared κ-bit vector by a garbling where E knows in cleartext the
scalar. Scaling a κ-bit sharing requires that G send to E κ bits. We prove the construc-
tion secure when G’s share of the vector JyK is either (1) a uniform bitstring Y or (2) a
bitstring z∆ for z ∈ {0, 1}. The latter case arises when G introduces a garbled input.

– Procedure ⦃x⦄ · yG:
• Parties compute JxK = lsb(⦃x⦄). Let 〈X,X ⊕ x〉 = JxK.
• G introduces inputs ⦃X⦄, JyK and JX · yK.
• Parties compute ⦃X⦄⊕ ⦃x⦄ = ⦃X ⊕ x⦄. Note that E knows X ⊕ x.
• Parties compute (using Figure 3) and output:

⦃X ⊕ x⦄ · JyK⊕ JX · yK = J(X ⊕ x) · yK⊕ JX · yK = Jx · yK

This procedure is useful in our lazy permutation network and in the Chide circuit.

5.2 Pop-only Oblivious Stacks

Our lazy permutation network uses pop-only oblivious stacks [ZE13], a data
structure with a single pop operation controlled by a garbled bit. If the bit is
one, then the stack indeed pops. Otherwise, the stack returns an encoded zero
and is left unchanged. Typically, both the data stored in the stack and the access
pattern are hidden. For our purposes, we only need a stack where the stored data
is hidden from E, but where E learns the access pattern.

[ZE13] gave an efficient circuit-based stack construction that incurs only
O(log n) overhead per pop. This construction stores the data across O(log n)
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– Input:
• A block of n elements Jx0, ..., xn−1K where xi ∈ {0, 1}w.

– Output:
• A capacity n stack Stack(x0, ..., xn−1).

– Input:
• A size n stack Stack(x0, ..., xn−1).
• A garbled bit known to E ⦃pE ⦄ that indicates whether or not to pop.

– Output:
• The popped value Jp · x0K.
• The updated stack:{

Stack(x1, ..., xn−1, 0
w) if p = 1

Stack(x0, ..., xn−1) otherwise

Fig. 4. Interface to stack procedures stack -init (top) and pop (bottom). For a stack of
size n with width-w entries, parties locally initialize using O(w · n) computation; each
pop costs amortized O(w · logn) communication and computation.

levels of exponentially increasing size; larger levels are touched exponentially
less often than smaller levels, yielding low logarithmic overhead.

If E is allowed to learn the access pattern, we can implement the [ZE13]
construction where the stack holds arbitrary sharings, not just garblings. This is
done by replacing AND gates – which move data towards the top of the stack –
with our scaling gate (Figure 3). Since we simply replace AND gates by scaling
gates, we do not further specify. A modified stack with n elements each of width
w costs amortized O(w · log n) bits of communication per pop.

Construction 2 (Pop-only Stack). Let x0, ..., xn−1 be a n elements such that
xi ∈ {0, 1}w. Stack(x0, ..., xn−1) is a pop-only stack of elements x0, ..., xn−1.
Pop-only stacks support the procedures stack -init and pop (Figure 4).

5.3 Lazy Permutations

Recall from Section 2 that our lazy permutation network allows E to look up
an encoded physical address and an encoded language for the needed RAM
slot. The network is a binary tree where each inner node holds two pop-only
oblivious stacks. Each inner node forwards messages to its children. Once a
message is forwarded all the way to a leaf, the leaf node interprets the message
as (1) an encoding of the current RAM time and (2) an encoding of an output
language. This leaf node accordingly computes encodings of the appropriate
physical address and language, then translates these to the output language.
The encoded address and language are later used to allow E to read from RAM.

Inner nodes. For simplicity of notation, let level 0 denote the tree level that
holds the leaves; level log n holds the root. Consider an arbitrary inner node i on
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– Input:
• Let i denote the node id and k denote the tree level. Level 0 holds leaves;

level logn holds the root.
• Parties input two stacks s0 = Stack(L`2i, ...) and s1 = Stack(Lr2i+1, ...) such

that each language Lba is an independent uniform string unknown to E.
• Parties input message JmK such that m ∈ {0, 1}k·κ+w

• E inputs a bit d indicating if m should be sent to the left or right child.
– Output:
• E outputs L

(d̄`+dr)
2i+d ⊕m′ for m′ ∈ {0, 1}(k−1)κ+w. I.e., she outputs a share

that encodes the last (k− 1)κ+w bits of the incoming message m and that
is encoded by a language for child d.

• Parties output updated stacks Stack(L`+d̄2i , ...) and Stack(Lr+d2i+1, ...).
– Procedure inner(s0, s1, JmK, d):
• Parties parse JmK as ⦃dE ⦄, Jm′K.
• Parties pop both stacks (Figure 4):

(Jd̄ · L`2iK, s′0) = pop(s0, ⦃d̄⦄) (Jd · Lr2i+1K, s
′
1) = pop(s1, ⦃d⦄)

• Parties compute:

Jd̄ · L`2i ⊕ d · Lr2i+1 ⊕m′K = JL(d̄`+dr)
2i+d ⊕m′K

• G opens his share to E and E outputs L
(d̄`+dr)
2i+d ⊕m′.

• Parties output s′0 and s′1.

Fig. 5. Procedure for inner nodes of a lazy permutation network.

level k. This node can 2k times receive a message JmK of a fixed, arbitrary length.
On each message, the node strips the first κ bits from the message and interprets
them as the garbling of a bit ⦃d⦄. d is a direction indicator: if d = 0, then the
node forwards the remaining message to its left child; otherwise it forwards to
its right child. Over its lifetime, the inner node forwards 2k−1 messages to its
left child and 2k−1 messages to its right child. Crucially, the order in which a
node distributes its 2k messages to its children is not decided until runtime.

Each of the 2k messages are sharings with a particular language. I.e., the jth
message JmjK has form 〈Lj , Lj ⊕mj〉 where each language Lj is distinct. The
node must convert each message to a language next expected by the target child.

Assume that a particular node has so far forwarded ` messages to its left
child and r messages to its right child. Let Lba denote the bth input language for
node a. Note that the current language is thus L`+ri and the language expected
by the left (resp. right) child is L`2i (resp. Lr2i+1).

To forward mj based on d, the node computes the following translation value:

q
d̄ · L`2i ⊕ d · Lr2i+1

y
= JL(d̄`+dr)

2i+d K (1)

To compute the above, node i maintains two oblivious pop-only stacks (see Sec-
tion 5.2) of size 2k−1. The first stack stores, in order, sharings of the 2k−1 lan-
guages for the left child. The second stack similarly stores languages for the right
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– Input:
• Let this node be leaf π(p) where π is a permutation chosen by G.
• G inputs the storage metadata (Definition 4) Mp for one-time index p.
• Parties input ⦃T ⦄, a garbling of the current RAM time.
• Parties input JY K, a sharing of an output language such that Y is uniform.

– Output:
• Let (tpi ,@

p
i , X

p
i )i∈[logn] = Mp. Let tpj be the largest metadata timer such

that tpj ≤ T . E outputs Y ⊕ (@p
j ·∆,X

p
j ). I.e., she outputs a sharing of the

appropriate physical address and language for one-time index p.
– Procedure leaf (Mp, ⦃T ⦄, JY K):
• Parties set ⦃@⦄← ⦃@p

0⦄ and JXK← JXp
0 K.

• For each i ∈ {1.. logn− 1} parties compute ⦃tpi ≤ T ⦄ via a Boolean circuit.
• For each i ∈ {1.. logn− 1} the parties update JXK:

JXK← JXK⊕ ⦃tpi ≤ T ⦄ · (Xp
i−1 ⊕X

p
i )

= JX ⊕ (tpi ≤ T ) · (Xp
i−1 ⊕X

p
i )K G knows (Xp

i−1 ⊕X
p
i )

=

{
JX ⊕X ⊕Xp

i K if tpi ≤ T
JXK otherwise

(tpi ≤ T )⇒ (tpi−1 ≤ T ) (Defn. 4)

=

{
JXp

i K if tpi ≤ T
JXK otherwise

We elaborate the above step carefully to show this conditional update can
be achieved using efficient sharing procedures given in Section 5.1.

• For each i ∈ {1.. logn− 1} the parties update ⦃@⦄ via a Boolean circuit:

⦃@⦄←

{
⦃@p

i ⦄ if tpi ≤ T
⦃@⦄ otherwise

• Let JmK , ⦃@⦄, JXK be the concatenated output. Then parties compute
Jm⊕ Y K and G opens his share to E.

• E outputs m⊕ Y = Y ⊕ (@p
j ·∆,X

p
j ).

Fig. 6. Procedure for leaf nodes of a lazy permutation network.

child. By popping both stacks based on ⦃d⦄, the node computes Equation (1).
Figure 5 specifies the formal procedure for inner nodes.

Leaf nodes. Once a message has propagated from the root node to a leaf, we
are ready to complete a lookup. Each leaf node of the lazy permutation network
is a static circuit that outputs the encoding of a physical address and a language.

As the parties access RAM, G repeatedly permutes the physical storage to
hide the access pattern from E. Each one-time index p has O(log n) different
physical addresses and languages; the needed address and language depends
on how many accesses have occurred. Thus, each leaf node must conditionally
output one of O(log n) values depending on how many accesses have occurred.
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– Input:
• G inputs a uniform size-n permutation π.
• G inputs storage metadata Mp (Definition 4) for each one-time index p.

– Output:
• Parties output a size-n lazy permutation π̃.

– Procedure π̃-init(π,Mp∈[n]):
• G and E consider a full binary tree with n leaves.

• For each node i on tree level k, G uniformly samples 2k languages L
j∈[2k]
i .

• For each inner node i on level k of the tree, G and E initialize two stacks:

s`i , stack -init
(
L
j∈[2k−1]
2i

)
sri , stack -init

(
L
j∈[2k−1]
2i+1

)
• For each inner node i on level k of the tree and for each j ∈ [2k] G runs the

inner node (Figure 5):

(·, s`i , sri )← inner(s`i , s
r
i , L

j
i , ·)

E does not run these procedures. Instead, she receives and stores the 2k GCs.
• For each leaf node i, parses L0

i into strings LT , LY of appropriate length. G
runs the leaf (Figure 6):

leaf (Mπ−1(i), LT , LY )

E does not run this procedure. Instead, she receives and stores the GC.
• The parties output π̃ , (JLj∈[n]

0 K, (s`i∈[n−1], s
r
i∈[n−1]))

Fig. 7. Lazy permutation network initialization. When initializing with leaves that
store languages of length w, G sends to E a GC of size O(w · n · log2 n) bits.

G chooses all permutations and storage languages before the first RAM ac-
cess. Hence, G can precompute metadata indicating which one-time index will
be stored where and with what language at which point in time:

Definition 4 (Storage Metadata). Consider a one-time index p. The stor-
age metadata Mp for one-time index p is a sequence of log n three-tuples:

Mp , (tpi ,@
p
i , L

p
i )[i∈logn]

where each tpi is a natural number that indicates a point in time, @p
i is a physical

address, and Lpi is a uniform language. Each time ti ≤ ti+1.

In our construction, each one-time index p may have fewer than log n cor-
responding physical addresses. G pads storage metadata by repeating the last
entry until all log n slots are filled. G uses the storage metadata for each one-time
index to configure each leaf. Figure 6 specifies the procedure for leaf nodes.

Putting the network together. We now formalize the top level lazy permu-
tation network. To instantiate a new network, G and E agree on a size n and



24 David Heath, Vladimir Kolesnikov, and Rafail Ostrovsky

– Input:
• A size n lazy permutation network π̃.
• A garbled index ⦃π(p)⦄ such that π(p) has not yet been routed.
• The current RAM time T .

– Output:
• A physical address ⦃@p⦄.
• A shared language JXpK.
• The updated lazy permutation network (i.e., where π(p) has been routed).

– Procedure route(π̃, ⦃π(p)⦄, T ):
• Let v denote the number of times π̃ has already been used.
• G and E parse the input lazy permutation network:(

JLj∈[n]
0 K, (s`i∈[n−1], s

r
i∈[n−1])

)
= π̃

• G samples a uniform value Y with length appropriate for the output; the
parties trivially hold JY K. The parties also hold JLv0K.

• Parties collect JmK , ⦃π(p)⦄, ⦃T ⦄, JY K and then compute JLv0⊕mK; G opens
his share to E such that E holds Lv0 ⊕m.

• Recall from Figure 7 that at initialization, E stored 2k GCs for each level
k node. Let E initialize M ← Lv0 ⊕m. E now traverses the tree from root
to leaf π(p). At each node i on the path to π(p), G invokes:

(M, s`j , s
r
j )← inner(s`j , s

r
j ,M, d)

where j is the id of the ith node on the path to π(p) and d is the ith
bit of π(p). To perform each invocation, E loads in the jth GC stored at
initialization. This propagates E’s share of ⦃T ⦄ and JY K to leaf π(p).

• E invokes (using the appropriate GC) the leaf node procedure:

Y ⊕ (@p ·∆,Xp)← leaf (·, ⦃T ⦄, JY K)

• The parties output the updated π̃.
• The parties compute and output:

〈Y, Y ⊕ (@p ·∆,Xp)〉 = J@p ·∆,XpK = ⦃@p⦄, JXpK

Fig. 8. Procedure to route one value through a lazy permutation network.

a width w and G provides storage metadata, conveying the information that
should be stored at the leaves of the network. From here, G proceeds node-by-
node through the binary tree, fully garbling each node. E receives all such GCs
from G, but crucially she does not yet begin to evaluate. Instead, she stores the
GCs for later use, remembering which GCs belong to each individual node.

Recall that G selects a uniform permutation π that prevents E from viewing
the one-time index access pattern: when the GC requests access to one-time
index p, E is shown π(p). Now, let us consider the ith access to the network. At
the time of this access, a garbled index ⦃π(p)⦄ is given as input by the parties.

G selects a uniform language Y to use as the output language, and the parties
trivially construct the sharing JY K. The parties then concatenate the message
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JmiK , ⦃π(p)⦄, ⦃T ⦄, JY K where T is the number of RAM writes performed so far.
Let Li0 denote the ith input language for the root node 0. The parties compute
JLi0K⊕ JmiK and G sends his resulting share, giving to E a valid share of mi with
language configured for the root node. E now feeds this value into the the tree,
starting from the root node and traversing the path to leaf π(p). Note that G
does not perform this traversal, since he already garbled all circuits.

Each inner node strips off one garbled bit of π(p). This propagates the mes-
sage to leaf π(p). Finally, the leaf node computes the appropriate physical ad-
dress and language for one-time index p and translates them to language Y . Let
Y ⊕ (@p ·∆,Lp) denote E’s output from the leaf node. The parties output:

〈Y, Y ⊕ (@p ·∆,Lp)〉 = J@p ·∆,LpK = ⦃@p⦄, JLpK

Thus, the parties successfully read an address and a language from the network.

Construction 3 (Lazy Permutation Network). Let n be a power of two. A
size-n lazy permutation network π̃ is a two-tuple consisting of:

1. Sharings of the input languages to the root node JLj∈[n]
0 K.

2. 2n− 2 stacks belonging to the n− 1 inner nodes, s`i∈[n−1] and sri∈[n−1].

Here, each input language L
j∈[n]
0 and each language stored in each stack is an

independently sampled uniform string. Lazy permutation networks support ini-
tialization (Figure 7) and routing of a single input (Figure 8).

5.4 Our GRAM

We formalize our GRAM on top of our lazy permutation network:

Construction 4 (GRAM). Let n – the RAM size – be a power of two and let
w – the word size – be a positive integer. Let x0, ..., xn−1 be n values such that
xi ∈ {0, 1}w. Then Array(xi∈[n]) denotes a size-n GRAM holding the content
xi∈[n]. Concretely, a GRAM is a tuple consisting of:

1. A timer T denoting the number of writes performed so far.
2. A sequence of languages X held by G and used as the languages for the

permuted RAM content. Each language has length w · κ, sufficient to encode
a single garbled word.

3. A size-2n uniform permutation π held by G.
4. A sequence of n + 1 uniform permutations π0, ..., πn held by G and used to

permute the physical storage. These hide the RAM access pattern from E.
5. A size-2n lazy permutation π̃.
6. A recursively instantiated RAM called the index map that maps each logical

index α to π(p): the (permuted) one-time index where α is currently saved.
For each recursive RAM of size n, we instantiate the index map with word
size w = 2(log n + 1). To bound the recursion, we use a linear-scan based
RAM when instantiating a index map that stores only O(w · log2 n) bits.
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– Input:
• Let n denote a number of elements and let w denote the width of each

element. The parties input a vector ⦃x0, ..., xn−1⦄ where xi ∈ {0, 1}w
– Output:
• A length n random access array Array(xi∈[n]).

– Procedure array-init(⦃xi∈[n]⦄):
• Parties initialize the timer T to n, indicating the n initial writes.
• G schedules all accesses and computes his needed metadata:

(X ,Mp∈[2n], πi∈[n+1])← G-schedule(n,w)

• G uniformly samples a size-2n permutation π.
• Parties instantiate the lazy permutation network: π̃ ← π̃-init(π,Mp∈[2n])
• G and E recursively initialize the index map with content ⦃0, 1, ..., n− 1⦄,

indicating that each index i starts in one-time index i:

index -map ← array-init(⦃0, 1, ..., n− 1⦄)

• Parties zero initialize the stash and each of the logn+ 2 levels of storage.
• Parties store the initial data ⦃xi∈[n]⦄ on level logn− 1.a

a This is a simple trick. On each access, we shuffle RAM levels (see Figures 10
and 14). By initializing the content on level logn − 1, we ensure that the first
access will shuffle the n items with n dummies and place them on level logn.

Fig. 9. RAM initialize.

7. log n+ 2 levels of physical storage where level i is a garbling of size w · 2i+1.
Each level i is either vacant or stores 2i real elements and 2i dummies. The
physical storage is permuted according to permutations π0, ..., πn.

8. A garbling of size 2w called the stash. Parties write back to the stash; on each
access, items are immediately moved from the stash into a level of storage.

GRAMs support initialization (Figure 9) and access (Figure 10).

Our top level garbling scheme is defined with respect to this data structure;
EpiGRAM makes explicit calls to array-init (Figure 9) and access (Figure 10).

We call attention to G-schedule, shuffle, flush, and hide:

– G-schedule is a local procedure run by G where he plans ahead for the next
n accesses. Specifically, G selects uniform permutations on storage, chooses
uniform languages with which to store the RAM content, and computes
the storage metadata Mp for each one-time index p ∈ [2n]. Supplementary
Material D gives the explicit interface to G-schedule.

– shuffle describes how G permutes levels of storage. By doing so, we ensure
that the revealed physical addresses give no information to E. shuffle is
a straightforward formalization of the permutation schedule given in Sec-
tion 2.4 and is formalized in Supplementary Material D.

– After each n-th access, we invoke flush (Figure 11) to reinitialize GRAM.
We also mention that our proof of correctness (see Supplementary Material
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– Input:
• A length n array A = Array(x0, ..., xn−1).
• A garbled index ⦃α⦄ such that α ∈ {0, 1}logn.
• A garbled value ⦃y⦄ to store in the case of a write.
• A garbled bit ⦃r⦄ that indicates if this is a read; else this is a write.

– Output:
• The indexed value ⦃xα⦄.
• The updated array Array(x0, ..., xα−1, (r · xα ⊕ r̄ · y), xα+1, ..., xn−1).

– Procedure access(A, ⦃α⦄, ⦃y⦄, ⦃r⦄):
• Parties appropriately permute levels of storage: A← shuffle(A)
• If T = 2n then the parties reinitialize and try again, returning that result:

access(array-init(flush(A)), ⦃α⦄, ⦃y⦄, ⦃r⦄)

Otherwise, the parties continue as follows:
• Parties recursively access the index map and update the one-time index for

index α by writing back a garbling ⦃π(T )⦄ (G knows π(T )):

⦃π(p)⦄← access(index -map, ⦃α⦄, ⦃π(T )⦄, ⦃0⦄)

• G opens his share of ⦃π(p)⦄ to reveal π(p) to E.
• E uses π̃ to route time T to leaf π(p). This returns the current physical

address and language corresponding to p.

(⦃@⦄, JXK)← route(π̃, ⦃π(p)⦄, T )

• For each populated storage level i, G chooses a previously unaccessed
dummy element with address @′i and language Di.

• Let j denote the level that holds @. Parties compute (Figure 15):

(⦃@i⦄, JDjK)← hide(@′i, Di, ⦃@⦄)

I.e., hide computes one physical address per populated storage level.
• G reveals to E each physical address @i by sending his share.
• E reads each physical address and XORs the values together. I.e., E reads

each dummy language Di 6=j and the desired element X ⊕ xα∆. This yields:(⊕
i 6=j

Di
)
⊕X ⊕ xα∆

• Let 〈L,L⊕X〉 = JXK and 〈L′, L′⊕Dj〉 = JDjK. Parties compute and output:〈
L⊕ L′ ⊕

(⊕
i
Di
)
, L⊕X ⊕ L′ ⊕Dj ⊕

(⊕
i 6=j

Di
)
⊕X ⊕ xα∆

〉
=
〈
L⊕ L′ ⊕

(⊕
i
Di
)
, L⊕ L′ ⊕

(⊕
i
Di
)
⊕ xα∆

〉
= ⦃xα⦄

• Parties compute ⦃r ·xα⊕ r̄ · y⦄ and place their shares in the first slot of the
stash. Parties place ⦃0⦄, a fresh dummy, in the second slot of the stash.

• Parties increment the timer: T ← T + 1.

Fig. 10. RAM access.
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– Input:
• A length n array A = Array(x0, ..., xn−1).

– Output:
• The flushed content ⦃x0, ..., xn−1⦄.

– Procedure flush(A):
• Parties recursively flush the index map:

⦃π(p0), ..., π(pn−1)⦄← flush(index -map)

• For each i ∈ [n] the parties route time T to leaf π(pi), returning the current
physical address and language corresponding to pi:

(⦃@i⦄, JXiK)← route(π̃, ⦃π(pi)⦄, T )

When flushing, each level i 6= logn+ 1 is vacant, so we need not use extra
machinery to hide the accessed level: E knows each item is on level logn+1.

• G reveals to E each physical address @i by sending his share.
• E reads each address @i, yielding Xi ⊕ xi∆.
• For each i, let 〈Li, Li ⊕Xi〉 = JXiK. Parties compute and output:

〈Li, Li ⊕Xi ⊕Xi ⊕ xi∆〉 = ⦃xi⦄

Fig. 11. flush is a helper procedure used to reset the array after n accesses. flush
recovers the n array elements and places them into a contiguous block.

F) defines correctness of the GRAM data structure with respect to flush: a
GRAM is valid if we can flush and recover its content.

– On each access, hide picks a dummy on each storage level, the conveys to
E (1) a physical address on each level of storage and (2) a sharing of the
language of the unaccessed dummy. The precise procedure is formalized in
Supplementary Material D.

With these four helper procedures defined, we formalize GRAM initialization
(Figure 9) and GRAM access (Figure 10). Initialization is straightforward, and
GRAM access is a formalization of the high level procedure given in Section 2.4.

6 Evaluation

In this section, we analyze EpiGRAM’s performance. We leave implementation
and low-level optimization as important future work.

To estimate cost, we implemented a program that modularly computes the
communication cost of each of EpiGRAM’s subcomponents. E.g., a permutation
network on n width- welements uses w · (n log n− n+ 1) ciphertexts [Wak68].

Figure 12 fixes the word size w to 128. That is, each RAM slot stores 128
garbled bits. We plot the estimated communication cost as a function of n. For
comparison, we also plot the cost of a linear scan; a linear scan on n elements of
width w and while using [ZRE15] AND gates can be achieved for (slightly more
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Fig. 12. Estimated concrete communication cost of our GRAM. We fix the word size
w = 128 and plot per-access amortized communication as a function of n.

than) 2 ·w · (n−1) ciphertexts. We also plot the function 215 log2 n bytes, a close
approximation of EpiGRAM’s cost for w = 128.

Figure 12 clearly demonstrates EpiGRAM’s low polylogarithmic scaling.
Note that our communication grows slightly faster than the function 215 log2 n.
This can be explained by the fact that we fixed a relatively low and constant
word size w = 128; recall that to achieve O(log2 n) scaling, we must choose
w = Ω(log2 n). Still, our cost is closely modeled by O(log2 n).

EpiGRAM is practical even for small n. The breakeven point with trivial
GRAM (i.e., GRAM implemented by linear scans) is only n = 512 elements.
Even non-garbled ORAMs have similar breakeven points. For example, Circuit
ORAM [WCS15] gives the breakeven point w = 128, n = 128. At n = 220,
EpiGRAM consumes ≈ 200× less communication than trivial GRAM.
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Supplementary Material

A Conservative Estimate of the Cost of Existing GRAM

Our objective here is to estimate the concrete cost of the best previously known
realistic GRAM instantiation. Note that GRAM can always be instantiated by
trivial linear scans, incurring ≈ 2 · w · n · κ bits per access (when using [ZRE15]
AND gates). Thus trivial GRAM has terrible scaling, but excellent constants.
Of course, there is no point employing sophisticated methods if trivial GRAM
is concretely the cheaper option.

From a concrete performance standpoint, [LO13] is the fastest prior nontrivial
GRAM: subsequent GRAMs, aiming to resolve the circularity issue, use even
more expensive tools, such as non-black-box public-key cryptography [GHL+14]
or extremely costly routing networks [GLO15]. Note, all prior GRAMs compose
a (rough equivalent of our) leaky array with off-the-shelf ORAM, which incurs
multiplicative overhead.

When instantiating GRAM based off of [LO13], we must choose an appro-
priate ORAM. Circuit ORAM [WCS15] is probably the best concrete choice.
ORAMs with lower constants, e.g. square-root ORAM [RS19], have worse com-
plexity. E.g., Circuit ORAM outperforms [ZWR+16]’s square-root ORAM after
around 217 elements. For arrays smaller than 217 elements, the [LO13]/square-
root ORAM combination would not yet outperform trivial GRAM, due to the
high constants imposed by [LO13]’s PRF use.

We thus use the combination of [LO13] and Circuit ORAM [WCS15] as a
complete GRAM instantiation which reasonably reflects prior state of the art in
concrete GRAM performance. We now conservatively estimate its cost and its
break-even point with trivial GRAM.

Circuit ORAM includes recursively instantiated position maps. In our analy-
sis, we ignore this recursion and conservatively only consider the Circuit ORAM’s
top-level tree. On a logical access, Circuit ORAM physically accesses two paths
through its binary tree, each node of which has two elements. Thus, we can
conservatively estimate the total number of physically accessed bits as:

4 · w · log n

For word size w = 128 and n = 220, on a logical access, Circuit ORAM looks
up a very modest (estimated) 10240 bits. However, under [LO13], this implies
2 · 10240 non-black-box calls to the PRF! If we instantiate the PRF using AES,
which has 6400 AND gates, and we compare this to trivial linear scan on 220

elements, we see that the costs are roughly the same (≈ 4GB, assuming standard
security parameter κ = 128, and 32 bytes per AND gate [ZRE15]). Thus, by the
time a chosen RAM is large enough to warrant use of prior GRAM, each and
every access (very) conservatively costs at least 4GB worth of communication.
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B Language Translation Attempts

We examine three potential solutions to the language translation problem (Sec-
tion 2.1) that do not help to achieve practical GRAM.

First, suppose we simply give to E each language Xi and the language Y .
This is insecure: E can use the languages to decrypt wires and immediately learn
some or all of G’s input. It is safe to convey to E particular translation values
between languages, but not the languages themselves.

Second, suppose G builds a simple encrypted table with n rows: the ith row
holds the value Xi ⊕ Y encrypted by the GC labels that encode index i. At
runtime, E jumps to row α, uses the GC encoding of α as a key to decrypt the
row, and obtains the proper translation Xα ⊕ Y . Unfortunately, this is a linear
cost construction and hence is too expensive. However, this attempt shows that
it is possible to dynamically convey to E particular translation values.

Third, suppose each language Xi is not chosen uniformly, but rather is chosen
deterministically by a PRF: let each Xi , Fk(i). It is not safe to give the PRF
key k to E, but we can place the key k inside the GC. From here, given a
GC encoding of α, we can compute Fk(α) ⊕ Y inside the GC and reveal the
result to E, giving her the needed translation value. This technique is, in fact,
sublinear, and is the main idea of the original garbled RAM construction [LO13].
Unfortunately, this approach has two serious problems:

– First, the construction is not practical. Evaluating a PRF inside the GC is
extremely expensive. If we implement the PRF with AES and use 128-bit
GC labels, then moving a single bit from RAM storage into the GC requires
a full AES-128 evaluation, costing 6400 AND gates. If we use the best GC
AND gate implementation [ZRE15], then each AND gate costs 32B, so G
must send to E a staggering 200KB GC just to move one bit.

– Second, there is a circularity concern that arises in the security proof due
to storing the PRF key k inside the GC and using Fk(i) as a language
for the same circuit. It is not known how to reduce this circularity to a
simple assumption: currently, we must essentially assume that the entire
construction is secure [LO13]. This problem can be removed by replacing
the PRF by even more expensive techniques [GHL+14,GLOS15].

However, this third approach does suggest a crucial idea: we can store and ma-
nipulate GC languages inside the GC itself. Our GRAM builds extensively uses
this idea.

C Related Work – Extended

Practical Garbled Circuits. Since Yao originally described GC, a number of
works improved the technique. This line of work improved the cost of Boolean
gates such that it is now practical to run GC even for enormous circuits. The
relevant work in this line is [ZRE15]: they gave an AND gate construction that
consumes only one ciphertext if E knows the left AND gate input. We generalize
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– Input:
• A length RAM size n.
• A bit width for RAM entries w.

– Output:
• A sequence of languages X . X stores O(n logn) languages each of length w.
• The storage metadata Mp∈[2n] corresponding to each one-time index.
• n+ 1 uniform permutations πi∈[n+1] to apply to physical storage.

– Procedure G-schedule(n,w):
• For brevity and because it is computed locally by G, we do not explicitly list

the G-schedule procedure. The high level idea is that G uniformly samples
each πi in his head, then uses these to track which one-time index is stored
where and with which language (drawn from X ). This tracking allows G to
assemble the storage metadata for each one-time index.

Fig. 13. G-schedule is a helper procedure that describes how G chooses all of the
metadata he needs to garble the a GRAM.

this and show that the right input can be an arbitrary value, not just an encoding
of zero or one. This simple generalization is crucial for efficiently manipulating
languages inside the GC.

Oblivious RAM. Oblivious RAM [GO96]is a vibrant and important area of
cryptographic research. It is well known that ORAM incurs Ω(log n) bandwidth
overhead [LN18]. This bound is tight: [AKL+20] gave the first O(log n) ORAM
that works for all block sizes.

The ORAM literature is vast. Techniques include (1) tree-based ORAMs,
e.g. [SvS+13,WCS15](2) hierarchical ORAMs, (3) square-root ORAMs, e.g. [RS19],
(4) ORAMs specialized for MPC, and much more.

We technically present a new ORAM, though ours is specialized for GRAM.
The key property of our ORAM is its highly deterministic read/write order,
which makes it easy for G to predict most GC languages (see Section 2.4).

D Approach – Extended

In this appendix, we formalize GRAM helper procedures that were deferred from
the main body. Specifically:

– Figure 13 formalizes the interface to G-schedule. This procedure formalizes
how G chooses his random permutations and GC languages.

– Figure 14 formalizes shuffle. shuffle formalizes how uniform permutations
are applied to the levels of RAM storage.

– Figure 15 formalizes the hide procedure. hide is used on each access to ac-
count for the single dummy that G chooses but that E does not read.



Practical Garbled RAM 35

– Input:
• A length n array Array(x0, ..., xn−1).

– Output:
• The array Array(x0, ..., xn−1) where some levels of physical storage have

been shuffled.
– Procedure shuffle(Array(xi∈[n])):
• Let 2i+1 ≤ 2n be the highest power of two that divides the RAM time T .
• Let πT be G’s T -th chosen permutation (Figure 13).
• Parties concatenate together each storage level ` ∈ [i+1]. If i = −1 this con-

catenation is empty. They concatenate this with the stash. Let ⦃to-permute⦄
denote the concatenated garbling. πT is a permutation on 2i+2 elements.

• Parties compute:

⦃permuted ⦄← G-permute(πT , ⦃to-permute⦄)

• G splits off the first 2i+2 languages from X : (target-languages,X ) ← X
Parties trivially hold Jtarget-languagesK.

• Parties compute ⦃permuted⦄⊕Jtarget-languagesK, then G opens his shares,
ensuring the parties now hold a new garbling ⦃permuted ⦄′ where the chosen
languages are stored in the leaves of the lazy permutation network π̃.

• Parties save ⦃permuted ′⦄ in level i+ 1 of physical storage.

Fig. 14. shuffle is a helper procedure that describes howG applies uniform permutation
networks to the levels of physical storage.

E Encoding and Decoding

In this appendix we complete the EpiGRAM garbling scheme by specifying En
and De; see Figure 16.

F Security Proofs

In this appendix, we prove EpiGRAM (Construction 1) correct and secure.

Our security proofs assume the existence of a circular correlation robust hash
function H. We use the definition given by [ZRE15]:

Definition 5 (Circular Correlation Robustness). We define two oracles:

– circ∆(x, i, b) , H(x⊕∆, i)⊕ b∆ where ∆ ∈ {0, 1}κ−11.

– R(x, i, b) is a random function with κ-bit output.

A sequence of oracle queries (x, i, b) is legal when the same value (x, i) is never
queried with different values of b. H is circular correlation robust if for all poly-
time adversaries A:∣∣∣Pr

∆

[
Acirc∆(1κ) = 1

]
− Pr
R

[
AR(1κ) = 1

]∣∣∣ is negligible.
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– Input:
• For each populated level of physical storage i, G inputs @′i: a physical ad-

dress that holds a dummy.
• For each address @′i, G inputs Di, the language for that physical address.
• ⦃@⦄, a garbling of the physical address of the accessed RAM element.

– Output:
• Let j denote the storage level that holds address @.
• For each populated level of physical storage i, parties output ⦃@i⦄, a physi-

cal address on that level. In particular, @j = @ and for each i 6= j, @i = @′i.
• Parties output JDjK, a sharing of language of the unaccessed dummy.

– Procedure hide(@′i, Di, ⦃@⦄):
• For each populated level i, parties compute ⦃herei⦄ by comparing @ to two

constants that indicate the highest and lowest address on level i.
• For each populated level i, the parties compute and output an address:

⦃@i⦄ ,

{
⦃@⦄ if herei = 1

⦃@′i⦄ otherwise

• Parties set JDK← J0K.
• For each populated level i, the parties update JDK:

JDK← JDK⊕ (⦃herei⦄ ·Di) = JDK⊕ Jherei ·DiK Section 5.1

=

{
J0K⊕ JDiK if herei = 1

JDK otherwise
only one bit herei is 1

• Parties output JDK.

Fig. 15. When E accesses physical storage, we ensure that she accesses an element on
each nonempty level of storage. This prevents E from learning which level of storage
holds the accessed element. This hide procedure accounts for the single dummy element
that E does not read from storage (see Section 2.4).

EpiGRAM is correct and secure under the [BHR12] garbling scheme defi-
nitions. We define and then prove that EpiGRAM satisfies each of [BHR12]’s
formal properties: correctness, obliviousness, privacy, and authenticity.

Definition 6 (Scheme Correctness). A garbling scheme is correct if for all
circuits C and all input strings x of appropriate length:

De(d,Ev(C, C̃,En(e, x))) = C(x) where (C̃, e, d)← Gb(1κ, C)

Correctness ensures the scheme properly implements circuits.

Theorem 2 (Correctness). EpiGRAM (Construction 1) is correct (Defini-
tion 6).

Proof. Our proof of correctness technically proceeds gate-by-gate through cir-
cuit C. However, the details of this gate-by-gate handling, particularly for AND
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– En(e, x):
• Let n = |x| be the length of the input string.
• Let (e0, ..., en−1) = e and suppose each ei ∈ {0, 1}κ is a uniform string.
• For each i ∈ [n], En computes and outputs ei ⊕ xi ·∆.

– De(d, ⦃x⦄):
• Let n = |x| be the length of the output string to decode.
• For each i ∈ [n], let (d0

i , d
1
i ) = di denote two labels that respectively indicate

an output zero/one.
• For each i ∈ [n], let 〈·, Xi〉 = ⦃xi⦄ denote E’s output share.
• For each i ∈ [n], De selects a fresh nonce j, then computes and outputs:

0 if H(Xi, j) = d0
i

1 if H(Xi, j) = d1
i

⊥ otherwise

Fig. 16. Our garbling scheme procedures En and De. The procedures are simple maps
between cleartext and encoded values. The most interesting detail is in De. We use
Free XOR-based labels [KS08], so each output label is either a string Xi or Xi ⊕ ∆.
However, for privacy (Definition 9) it is crucial that the output decoding string d not
reveal ∆. De breaks the correlation between labels by applying H.

and XOR gates, are simple and well known [ZRE15]. Thus, we focus on array
initialization and array accesses.

Formally, we define the following validity property:

Definition 7 (RAM Validity). An array Array(x0, ..., xn−1) is valid if:

flush(Array(x0, ..., xn−1)) = ⦃x0, ..., xn−1⦄

I.e., validity ensures that we can recover the garbled content of a RAM. We
argue that (1) array-init yields a valid array and (2) given a valid input array,
access yields ⦃xα⦄ and a valid output array. Since Sections 2 and 5 discuss the
correctness of our approach at great length, we highlight formal details of these
two steps only:

– The proof for the access procedure proceeds by induction on the index map:
i.e., the top-level array is correct given that the index map is correct. The
inductive argument is sensible because the bottom-most index map is in-
stantiated by simple linear scans, and hence is trivially correct.

– array-init sets up validity by properly storing indices 0, ..., n−1 in the index
map. I.e., each index i is stored in one-time index i.

– Validity ensures array accesses will succeed by guaranteeing that there is be
a path through the lazy permutation network to the needed one-time index;
if there were not, we would be unable to flush. Validity is maintained because
we write back to a fresh one-time index and appropriately update the index
map.
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– We ensure the lazy permutation network can always route at least n more
values (until we refresh the RAM). This ensures we can always look up all
n values in RAM.

We refer the reader back to Sections 2 and 5 for further discussion on the cor-
rectness of our RAM.

Because all four kinds of gates are correct, EpiGRAM is correct.

Definition 8 (Scheme Obliviousness). A garbling scheme is oblivious if
there exists a simulator Sobv such that for any circuit C and all inputs x of
appropriate length, the following are indistinguishable:

(C̃,En(e, x))
c
= Sobv (1κ, C) where (C̃, e, ·)← Gb(1κ, C)

Obliviousness ensures that the GC and encoded inputs leak nothing to E.

Theorem 3 (Obliviousness). If H is a circular correlation robust hash func-
tion, then EpiGRAM (Construction 1) is oblivious (Definition 8).

Proof. By construction of a simulator Sobv .
At a high level, our proof demonstrates two crucial facts:

1. We reveal to E permuted one-time indices π(p) and we reveal physical ad-
dresses @i. However, G applies uniform permutations to these values, so each
is easily simulated.

2. G opens various sharings to E. We are careful that whenever G opens such
a value, G’s transmitted share is itself masked by a uniform string that is
independent of all other openings. Hence, we can simulate each opening with
a uniform string.

The remaining proof proceeds in detail.

Our proof approach. We modularly build up our obliviousness simulator from
per-component simulators. Each simulator takes as input an input encoding
and yields as output (1) a simulated garbled circuit and (2) simulated encoded
output. These two simulated values are then argued indistinguishable from (1)
the actual garbled circuit for the subcomponent and (2) the actual encoded
output given by the subcomponent.

Usually, simulators take as input the real world output. The simulators for
our intermediate procedures do not need to do this since we know the output
distributions of our subcomponents precisely. Hence our simulators can simulate
the output of our subcomponents. This leads to simpler hybrid arguments, since
we can one-for-one substitute calls to real subcomponents by their simulator
without restructuring any code in the hybrids.

We note that, as a minor and convenient abuse of notation, our simulators
do not explicitly return simulated garbled circuits. We do this because, in all
cases, the individual messages that compose our GCs are simply concatenated
together. Thus, we simply state how we simulate each new piece of GC material,
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and we simplify notation by not explicitly threading and concatenating together
portions of the GC. In line with this fact, we sometimes say that a simulator
sends a value to E. This corresponds to adding that value to E’s simulated view.

Finally, we use sharing notation in our simulators. This said, we only simulate
E’s view, so each share JxK has an empty left hand component: i.e., JxK = 〈·, X〉.
This use of sharing notation is meant to clearly show the relationship between
the simulator and the procedure it simulates. We intend for the reader to inspect
each explicit simulator alongside the procedure it simulates.

Boolean circuit simulation. We did not formally specify Boolean AND gates
in this work, instead delegating that concern to the [ZRE15] construction. We use
their simulator to simulate AND gates. Hence, we can simulate GC evaluation
of arbitrary Boolean circuits consisting of AND and XOR gates (XOR gates are
locally computed and are trivially simulated [KS08]).

Sharing scale simulator. We construct a simulator for our scaling procedure
(Figure 3). We prove security when G’s share of the vector JyK is either (1) a
uniform bitstring Y or (2) a bitstring z∆ for z ∈ {0, 1}. The latter case arises
when G introduces a garbled input.

– Simulator Sscale(⦃xE ⦄, JyK):
• Let 〈·, X ′〉 = ⦃xE ⦄ and let 〈·, Y ′〉 = JyK.
• Let i be the gate-specific nonce.

• Simulate row by uniformly sampling r ∈$ {0, 1}κ then computing row ′ ,
r ⊕H(X ′, i). This is indistinguishable from the real row. We prove this
by two cases, depending on G’s share of JyK. If Y is uniform, then:

row ′ = r ⊕H(X ′, i)

= (r ⊕ Y )⊕H(X ′, i)⊕ Y
c
= R(X ′, i, 0)⊕H(X ′, i)⊕ Y R is a random function
c
= circ∆(X ′, i, 0)⊕H(X ′, i)⊕ Y Definition 5

= H(X ′ ⊕∆, i)⊕H(X ′, i)⊕ Y = row

Otherwise, if G’s share of JyK is a string z∆ for z ∈ {0, 1} then:

row ′ = r ⊕H(X ′, i)
c
= R(X ′, i, z)⊕H(X ′, i) R is a random function
c
= circ∆(X ′, i, z)⊕H(X ′, i) Definition 5

= H(X ′ ⊕∆, i)⊕ z∆⊕H(X ′, i) = row

• The simulator outputs H(X ′, i) ⊕ x · (row ′ ⊕ Y ′). Here, E’s simulated
share is indistinguishable from E’s real output share by construction.
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Pop-only stack simulators. Note that – due to space and because they are
simple – we elided formal stack procedures stack -init and pop (Figure 4 lists
the interface to these procedures). We similarly elide their simulators and in-
stead simply claim that there exist simulators Sstack-init and Spop that properly
simulate E’s view during these two procedures. Formally, both of these simula-
tors simulate each of their gates, and the simulation is secure by a simple and
unsurprising hybrid argument.

Lazy permutation network simulators. Next, we simulate E’s view of our
lazy permutation network.

We start by constructing simulators for inner and leaf nodes (Figures 5 and 6).
Both inner and leaf are simple static circuits built from Boolean gates and
Figure 3. Thus, we do not exhaustively list the simulators for these procedures.
We do note one non-trivial detail: in both procedures, G opens a share to E.
This is made simulatable by the fact that each nodes’ input languages are chosen
uniformly. Hence,G’s opening can be simulated by uniform bits. Let Sinner (resp.
Sleaf ) be the simulator for procedure inner (resp. leaf ).

With simulators for the network nodes specified, we now construct simu-
lators for the overall lazy permutation newtwork. We start by simulating the
initialization of a network:

– Simulator Sπ̃-init(·, ·):
• Consider a full binary tree with n leaves.
• For each node i in level k of the tree, trivially instantiate E’s share of 2k

languages of appropriate length JLj∈[2k]
i K. I.e., each language Lji , 〈·, 0〉.

• For each internal node i on level k of the tree, simulate the initialization
of two stacks (Figure 4):

s`i , Sinit-stack (JLj∈[2k−1]
2i K) sri , Sinit-stack (JLj∈[2k−1]

2i+1 K)

• Output E’s simulated share of the lazy permutation network:

π̃ =
(
JLj∈[n]

0 K, (s`i∈[n−1], s
r
i∈[n−1])

)
The above simulation is indistinguishable from real by a trivial hybrid argument.
Note that we defer simulation of the GCs for each of permutation nodes until
we actually route the inputs:

– Simulator Sroute(π̃, ⦃αE ⦄, ⦃x⦄):
• Let v denote the number of times π̃ has already been used.
• Parse the lazy permutation into its parts:(

JLj∈[n]
0 K, (s`i∈[n−1], s

r
i∈[n−1])

)
= π̃

• Trivially construct E’s share of uniform language JY K = 〈·, 0〉.
• Collect JmK , ⦃α⦄, ⦃x⦄, JY K.
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• Simulate the opening of G’s share by sampling a uniform string row ∈
{0, 1}|m|. Note that this is indistinguishable from real because Lv0 is an
independently sampled uniform value that is unknown to E.

• Set Jm′K ← JmK ⊕ JLv0K ⊕ row . I.e., Jm′K is simulated input to the first
internal node.

• Traverse the tree from root to leaf α. At each internal leaf i, simulate
the internal node procedure by invoking:

(Jm′K, s`i , s
r
i )← Sinner (s`i , s

r
i , Jm

′K, αi)

• Simulate the leaf by invoking Sleaf (Cα, Jm′K); output the result and the
updated lazy permutation.

• To match the real world arrangement of GCs, the simulator rearranges
the simulated GCs according to node ids.

The above simulator is indistinguishable from real by a simple hybrid argument.
Note that Sroute assumes that α is part of E’s cleartext input. This is consistent
with the fact that our lazy permutation network leaks values to E. We postpone
simulating RAM indices to the simulation of our top level GRAM.

We note a tedious but important detail regarding the simulation of our lazy
permutation network. In our simulation, we postponed the simulation of the node
GCs until Sroute . This is sensible, because the moment when E calls route is the
moment when she has the most information that could help her to distinguish the
simulation from real. I.e., she holds an input to the root of the lazy permutation.

While this choice is natural, it has a problem. Suppose that a GC program
uses a lazy permutation network of size n, but routes fewer than n inputs through
the network. This can occur, e.g., when a GRAM of size n is accessed a number
of times that is not a multiple of n. In such cases, there will be a number of
GCs in the lazy permutation network that are not yet simulated. Thus, we must
separately simulate the unused GCs in the permutation network. We simply
mention this and do not fully flesh out such a simulator; we can clearly simulate
node GCs where E does not receive input, since we can simulate the GCs even
when E does receive input.

GRAM simulators. Now that we have constructed simulators for the lazy
permutation network, we move on to our GRAM procedures. We start with
simulators for the helper procedures (Figures 11 and 13 to 15):

– G-schedule (Figure 13) is local to G. We need not simulate.
– shuffle is easily simulated. First, Sshuffle simulates the call to G-permute by

simulating the permutation network; This is done by simulating each of the
constituent Boolean gates. Then, Sshuffle simulates G opening his share of
the output. This is simulatable by a uniform string because target-languages
is a uniform string chosen by G and independent of all other messages.

– We for now postpone discussion of flush (Figure 11).
– hide (Figure 15) is a simple circuit built from other gadgets, and so Shide is

simply constructed by simulating each of the constituent gates.
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With these set, we focus on simulating GRAM initialization (Figure 9) and
access (Figure 10). Simulating initialization is straightforward: Sarray-init first
simulates the initialization π̃ by calling Sπ̃-init . Then it recursively simulates
initialization of the index map.

Array access is more detailed, and must handle important revelations to E.
We fully formalize this simulator:

– Simulator Saccess(A, ⦃α⦄, ⦃y⦄, ⦃r⦄):
• Simulate permutation of levels of storage: A← Sshuffle(A)
• If T = 2n reinitialize and try again, returning that result:

Saccess(Sarray-init(Sflush(A)), ⦃α⦄, ⦃y⦄, ⦃r⦄)

Otherwise, continue as follows:
• Recursively simulate access to the index map:

⦃π(p)⦄← Saccess(index -map, ⦃α⦄, ⦃π(T )⦄, ⦃0⦄)

• Simulate G’s opening of π(p). This is one of the most important
points of our proof. Let 〈·, P 〉 = Jπ(p)K = lsb(⦃π(p)⦄). The simulator
uniformly samples a value R ∈ [2n] without replacement. I.e., each time
the simulator reaches this point it ensures that it samples a fresh value.
(After array reinitialization, the simulator forgets which values it has
shown to E; this allows us to simulate more than n accesses.) The simu-
lator sends to E R⊕ P , revealing the value R. This is indistinguishable
from real: in the real world, E views a value π(p), but π is a uniform
permutation and each p over the course of n accesses is distinct. Hence,
each such π(p) appears uniformly chosen without replacement.

• Simulate routing of the permutation network.

(⦃@⦄, JXK)← Sroute(π̃, ⦃π(p)⦄, T )

• Simulate the hide procedure (Figure 15):

(⦃@i⦄, JDjK)← Shide(@′i, Di, ⦃@⦄)

• Simulate G’s opening of each physical address on each populated level.
This is one of the most important points of our proof. For each
populated level i let 〈·, Ai〉 = J@iK = lsb(⦃@i⦄). For each such level, the
simulator uniformly samples a value Ri ∈ [2i+1] without replacement. I.e.,
the simulator never reveals to E the same physical address more than
once. (After a level is permuted, the simulator forgets which addresses it
revealed on that level.) The simulator sends to E Ai⊕Ri, revealing to E
the value Ri. This is indistinguishable from real: Recall that the levels of
RAM are permuted according to uniform permutations π0, ..., πn. Hence,
each level i is uniformly shuffled. Since all 2i+1 elements are uniformly
shuffled, the real value @i is indistinguishable from a uniformly sampled
(without replacement) index.
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• Read each simulated address Ri and XOR the values together. XOR
with this result the values JDjK and JXK. Let ⦃xα⦄ denote the reslut.
Output ⦃xα⦄.

• Simulate the Boolean circuit ⦃r · xα ⊕ r̄ · y⦄ and place the result in the
first slot of the stash. Place the trivial share of ⦃0⦄, a fresh dummy, in
the second slot of the stash.

• Increment the timer: T ← T + 1.

As a final detail, we now revisit the simulator Sflush . Just like the above
Saccess simulator, Sflush must take care when revealing physical addresses to
E. But using the same argument as above, the flush simulator can just choose
locations uniformly without replacement and reveal these to E.

We reiterate the crucial points of the above simulation: during an array ac-
cess, E views a permuted one-time index π(p) and O(log n) physical addresses.
However, all of these values are masked by uniform permutations chosen by G,
and hence can be simulated by uniformly sampling indices without replacement.
Other than this, the simulation is a straightforward reduction to simulators
of the subcomponents. The full simulation is indistinguishable from real by a
straightforward and unsurprising hybrid argument.

Top level simulator. We have now proved the GRAM simulators secure. We
use these simulators to simulate our top level obliviousness simulator Sobv :

– Simulator Sobv (1κ, C):
• Simulate each bit of the input with a uniform string. This is indistin-

guishable from real since the real garbling procedure chooses the zero
encoding of each input string uniformly.

• Step through the circuit gate by gate. Handle each gate by calling the
appropriate simulator and placing the result on the gate’s output wire:

∗ XOR gate: XOR the two simulated inputs.
∗ AND gate: call [ZRE15]’s AND gate simulator.
∗ ARRAY gate: call Sarray-init .
∗ ACCESS gate: call Saccess .

This simulation is indistinguishable from real by the security of each of the
invoked gate simulators and by a straightforward hybrid argument.

EpiGRAM is oblivious.

Definition 9 (Scheme Privacy). A garbling scheme is private if there exists
a simulator Sprv such that for any circuit C and all inputs x of appropriate
length, the following are computationally indistinguishable:

(C̃,En(e, x), d)
c
= Sprv (1κ, C, C(x)) where (C̃, e, d)← Gb(1κ, C)

Privacy ensures that the GC and encoded inputs together with the output
decoding string reveal nothing beyond the output.
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Theorem 4 (Privacy). If H is a circular correlation robust hash function,
then EpiGRAM (Construction 1) is private (Definition 9).

Proof. By construction of a privacy simulator Sprv . Privacy follows from oblivi-
ousness (Theorem 3) and the definition of De (Figure 16).

The privacy simulator (1) simulates a GC and encoded input by calling the
obliviousness simulator, (2) evaluates the simulated GC on the simulated input
to obtain encoded output, and (3) forges an output decoding string that ensures
the encoded output decodes to the correct cleartext value:

– Simulator Sprv (1κ, C, y):
• Compute (C̃, ⦃x⦄)← Sobv (1κ, C).
• Compute ⦃y⦄← Ev(C, C̃, ⦃x⦄).
• Let n = |y|. Initialize a length-n decoding string d′.
• For each i ∈ [n], let 〈·, Yi〉 = ⦃yi⦄ denote E’s simulated output.
• For each i ∈ [n], let j denote the nonce used in De and let ri ∈$ {0, 1}κ be

a uniform string. Assign the ith index of the decoding string as follows:

d′i ←

{
(H(Yi, j), ri) if yi = 0

(ri, H(Yi, j)) otherwise

• Output (C̃, ⦃x⦄, d′).

We argue:

(C̃,En(e, x), d)
c
= Sprv (1κ, C, C(x)) where (C̃, e, d)← Gb(1κ, C)

First, note that the simulation correctly outputs y: the forged decoding string
d′ is precisely chosen such that this holds. Second, note that each entry d′i is
indistinguishable from real. The real entry di is as follows:

(H(Yi, j), H(Yi ⊕∆, j))

Note the following indistinguishability argument:

di = (H(Yi, j), H(Yi ⊕∆, j))

=

{
(H(Yi, j), H(Yi ⊕∆, j)) if yi = 0

(H(Yi, j), H(Yi ⊕∆, j)) otherwise

=

{
(H(Yi, j), circ∆(Yi, j, 0)) if yi = 0

(circ∆(Yi ⊕∆, j, 0), H(Yi ⊕∆, j)) otherwise
Definition 5

c
=

{
(H(Yi, j),R(Yi, j, 0)) if yi = 0

(R(Yi ⊕∆, j, 0), H(Yi ⊕∆, j)) otherwise
Definition 5

c
=

{
(H(Yi, j), ri) if yi = 0

(ri, H(Yi ⊕∆, j)) otherwise
R is a random function

c
= d′i
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Because of the indistinguishability given by Sobv and because d is constructed
using H, the joint distribution of GC, encoded input, and decoding string d is
indistinguishable.

EpiGRAM is private.

Definition 10 (Scheme Authenticity). A garbling scheme is authentic if for
all circuits C, all inputs x of appropriate length, and all poly-time adversaries A
the following probability is negligible in κ:

Pr(Y ′ 6= Ev(C, C̃,En(e, x)) ∧De(d, Y ′) 6= ⊥)

where (C̃, e, d)← Gb(1κ, C) and where Y ′ ← A(C, C̃,En(e, x))

Authenticity ensures that even a malicious E cannot construct output labels
that successfully decode except by running the GC as intended.

Theorem 5 (Authenticity). If H is a circular correlation robust hash func-
tion, then EpiGRAM (Construction 1) is authentic (Definition 10).

Proof. Authenticity holds by the definition of the privacy simulator (Theorem 4)
and by our choice of De (Figure 16).

Recall that authenticity allows A access to a garbled circuit C̃ and encoded
input ⦃x⦄ produced by Gb. To derive a contradiction, let (C̃′, ⦃x⦄′, d′) be a
garbling constructed by the privacy simulator Sprv . Now, suppose A is instead

given (C̃′, ⦃x⦄′). Notice that here, it is infeasible for A to forge an encoded output
Y ′ that successfully decodes. Indeed, suppose A is able to flip even a single bit yi
of the output. But by the definition of the privacy simulator, this would require
that A guess a uniform value ri ∈ {0, 1}κ that was sampled by the simulator
and that is independent of A’s view, which is clearly infeasible. A cannot forge
an output when given a simulated GC.

If A can forge an output when given a real GC, then we can construct a
polytime privacy distinguisher:

– Distinguisher DCprv (C̃, X, d):

• Compute Y , Ev(C, C̃, X) to evaluate the GC normally.
• Compute Y ′ , A(C, C̃, X) to forge an output.
• Compute and output the following bit:

De(d, Y ′) 6= ⊥ ∧De(d, Y ′) 6= De(d, Y )

Assume that DCprv outputs 1 with non-negligible probability when given real-
world input, corresponding to the fact that A can forge an output with non-
negligible probability. Then Dprv is indeed a distinguisher, since we already
concluded A cannot succeed (except with negligible probability) when given
simulated input. But EpiGRAM is private, and hence no such distinguisher
should exist. We have reached a contradiction. It must be that A cannot forge
an output given a real-world input except with negligible probability.

EpiGRAM is authentic.
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G Efficiency Proofs

In this section we prove EpiGRAM achieves O(log2 n) overhead. To prove this,
we derive costs for the various components of our RAM. In particular, we:

1. Remind the reader of the cost of our scaling procedure (Figure 3).
2. Derive the cost of stacks internal to our lazy permutation network.
3. Use the cost of stacks to derive the total cost of a lazy permutation network.
4. Derive the cost of all permutations applied to physical storage by G.
5. Derive the cost of the helper procedure hide (Figure 15).
6. Show that the index map, which is instantiated by a recursive chain of RAMs,

incurs total O(log4 n · κ) amortized cost per access (if the index map stores
entries of size w = 2 log n).

7. Prove that, for w = Ω(log2 n), EpiGRAM incurs total O(w · log2 n · κ)
amortized cost per RAM access.

G.1 Costs of Subcomponents

We start by reminding the reader that our scaling procedure (Figure 3) avoids
factor κ overhead:

Lemma 1 (Scaling Cost). Let ⦃xE ⦄ be a garbled bit and let JyK for y ∈ {0, 1}κ
be a shared vector. Parties compute Jx·yK (Figure 3) for κ bits of communication
and O(κ) computation.

Proof. Trivial from Figure 3. G sends only a single length-κ string row .

Based on the above lemma, we briefly observe that pop-only stacks consume
amortized O(log n) overhead per pop:

Lemma 2 (Stack Cost). Let s = Stack(x0, ..., xn−1) be a size-n stack (Con-
struction 2) with w-bit entries. Let m = O(n) be a number of pops linear in the
stack size. For each i ∈ [m] let ⦃pEi ⦄ be a garbled bit. Consider a sequence of m
calls to pop:

(·, s)← pop(s, ⦃pEi ⦄)

The above calls incur total O(w · n · log n) communication and computation.

Proof. By analysis given by [ZE13] and because we replace AND gates – which
have factor κ overhead – with our scaling gates – which do not (Lemma 1).

Based off stack costs, we calculate the cost of our lazy permutation network.
A fully routed lazy permutation network incurs O(w · n · log2 n) cost:

Lemma 3 (Lazy Permutation Network Cost). Let π̃ be a lazy permutation
network on n elements where each leaf node p is configured by storage metadata
(Definition 4) Mp with O(log n) entries each with language of width w. Let π
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be an arbitrary permutation on n elements. For each i ∈ [n] let the parties hold
⦃π(i)⦄. Suppose the parties fully route π̃. I.e., for each i ∈ [n] they call:

(·, ·, π̃)← route(π̃, ⦃π(i)⦄, 0)

If w = Ω(log n ·κ) then the parties consume total O(w ·n · log2 n) communication
and computation.

Proof. By totaling the cost of stacks in π̃.
First, we show that each leaf node costs only O(w · log n + log2 n · κ), and

hence all leaf nodes together cost O(w ·n · log n+n log2 n ·κ) = O(w ·n · log2 n).
Each leaf performs O(log n) comparisons on an integer of length log n. Each
integer comparison can be implemented using a circuit with O(log n) gates, hence
total O(log2 n ·κ) cost. With the comparisons computed, the leaf then computes
O(log n) scalings, each incurring cost w.

Now, π̃ internally holds 2n − 2 stacks, though these stacks decrease in size
towards the leaves of the network. I.e., the network has log n levels, and each
inner node on level i has two stacks of size 2i−1. Recall from Lemma 3 that 2i calls
to pop on a stack with 2i−1 elements of width O(w) costs total O(w · 2i · log 2i).
For each of the 2i+1 stacks on level i, a fully utilized lazy permutation issues
2logn−i calls to pop. Thus we can sum up costs as follows:

logn−1∑
i=0

2i+1 ·O
(
w · 2logn−i · log 2logn−i)

= O

(
logn−1∑
i=0

2i+1 ·
(
w · 2logn

2i
· log

(
2logn

2i

)))

= O

(
logn−1∑
i=0

w · n · log
( n

2i

))

= O

(
w · n ·

(
logn−1∑
i=0

log n− i

))
= O(w · n · log2 n)

The total costs of inner and leaf nodes therefore sum to O(w · n · log2 n).

Lemma 4 (Traditional Permutation Network Cost). Let (π0, ..., πn) be a
sequence of n+1 permutations chosen by G-schedule(n,w) and let ⦃x0⦄, ..., ⦃xn⦄
be n garbled arrays such that each xi has length appropriate for permutation πi.
Let each element of each array xi have width w. Suppose the parties permute
each array using G-permute (Figure 2):

⦃π(xi)⦄← G-permute(πi, ⦃xi⦄)

Then the parties use O(w · n · log2 n · κ) communication and computation.
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Proof. By totalling the cost of each permutation network.
Recall that a permutation network on 2i garbled elements each of width w

incurs O(w · 2i log 2i · κ) cost (Figure 2). Recall also that for each i ∈ [n], the
procedure G-schedule samples a permutation of size 2k such that k ≤ n and
such that k is the largest power of two that divides i. Additionally, G-schedule
appends a final permutation of size 4n.

Note that by the above strategy, for each i ∈ [log n] there are 2logn−i−1

permutations of size 2 · 2i. Additionally, there is one permutation of size 2n and
one of size 4n. These two largest permutations have total cost O(w ·n · log2 n ·κ).
We can summarize the costs of all smaller permutations as follows:

logn−1∑
i=0

2logn−i−1 ·O(w · 2i · log 2i · κ)

= O

(
w · κ · 2logn ·

(
logn−1∑
i=0

i · 2i

2i−1

))

= O

(
w · κ · n ·

(
logn−1∑
i=0

i

))
= O(w · n · log2 n · κ)

The total cost of permutations assigned by G-schedule is O(w ·n · log2 n ·κ).

Before we explore the amortized cost of RAM accesses, we quickly derive the
cost of the hide helper procedure:

Lemma 5 (Hide Procedure Cost). Let @′i be O(log n) physical addresses
each of length O(log n) bits. Let Di be O(log n) languages each of length w. Let
⦃@⦄ be a garbled physical address. Suppose the parties invoke hide:

hide(@′i, Di, ⦃@⦄)

If w = Ω(κ) then the parties consume total O(w · log2 n) communication and
computation.

Proof. hide uses O(log n) integer comparisons for integers of size O(log n). Each
integer comparison can be implemented using a circuit with O(log n) gates, hence
total O(log2 n·κ) = O(w ·log2 n) cost. Additionally, hide involves O(log n) vector
scalings, each of cost w. Hence total cost is bounded by O(w · log2 n).

G.2 Costs of RAM

Now that we have derived the costs of the subcomponents of our RAM, we derive
the amortized cost of our core access procedure.

Recall that the RAM recursively instantiates a index map which maps each
logical index to a one-time index. Because of the recursive instantiation, we are at



Practical Garbled RAM 49

risk of incurring an additional factor log n overhead. To circumvent this, we use
a trick given by [SvS+13]: we instantiate the top level RAM with substantially
wider entries than the index map. I.e., we store blocks of width w = Ω(log2 n)
in the top level RAM and blocks of width w = 2 · (log n + 1) in lower levels of
RAM.

In practice, we play with constants for the top level RAM. For example, we
store blocks of size, say 128, in the top level.

We show that the top-level index map has total cost O(log4 n · κ). Then, we
show that the top level RAM has total cost O(w · log2 n · κ).

Lemma 6 (Index Map Efficiency). Let Array(x0, ..., xn−1) be a size-n array
with entries of width w = 2 · (log n + 1). Then each call to access (Figure 10)
consumes amortized O(log4 n · κ) communication and computation.

Proof. By amortizing the cost of the lazy permutation network (Lemma 3) and
traditional permutations (Lemma 4).

n accesses to a size-n RAM together utilize:

– A size-2n lazy permutation where the leaves store languages of size w · κ.
– n+ 1 traditional permutations.

By amortizing the costs of these components to each access, we see that each
access incurs O(w · log2 n ·κ) cost. The hide procedure – which is called once per
acces – also has cost bounded by O(w · log2 n · κ) (Lemma 5).

Crucially, each RAM access requires exactly one recursive access to its index
map. The index map for each level of RAM must uniquely identify one out of 2n
one-time indices, and hence each we must look up an entry of size log n+1. Since
we store 2(log n+1) bits per entry, each recursively instantiated RAM is at most
half the size of its parent. Thus, we have at most log n levels of RAM (recall that
the bottom-most level of RAM is instantiated by simple linear scans). Since the
cost of each level of RAM is bounded by O(w · log2 n · κ) and there are O(log n)
levels of RAM, the total cost is O(w · log3 n · κ) = O(log4 n · κ).

Theorem 6 (Access Efficiency). Let Array(x0, ..., xn−1) be a size-n array
with entries of width w = Ω(log2 n). Then each call to access (Figure 10) con-
sumes amortized O(w · log2n · κ) communication and computation.

Proof. By amortizing the cost of the lazy permutation network (Lemma 3) and
traditional permutations (Lemma 4) and because the index map has total cost
O(log4 n · κ) (Lemma 6)

The proof is nearly identical to that of Lemma 6, except that we ignore
recursive RAM instantiation since we have already proved the index map has
cost O(log4 n · κ) per access.

EpiGRAM achieves O(log2 n) overhead.


