
Amortizing Rate-1 OT and Applications to PIR and PSI

Melissa Chase1, Sanjam Garg2∗, Mohammad Hajiabadi3†, Jialin Li4, and Peihan Miao5‡

1 Microsoft Research, melissac@microsoft.com
2 University of California, Berkeley and NTT Research, sanjamg@berkeley.edu

3 University of Waterloo, mdhajiabadi@uwaterloo.ca
4 University of California, Berkeley, j.li98@berkeley.edu

5 University of Illinois Chicago, peihan@uic.edu

Abstract

Recent new constructions of rate-1 OT [Döttling, Garg, Ishai, Malavolta, Mour, and Ostro-
vsky, CRYPTO 2019] have brought this primitive under the spotlight and the techniques have
led to new feasibility results for private-information retrieval, and homomorphic encryption for
branching programs. The receiver communication of this construction consists of a quadratic (in
the sender’s input size) number of group elements for a single instance of rate-1 OT. Recently
[Garg, Hajiabadi, Ostrovsky, TCC 2020] improved the receiver communication to a linear num-
ber of group elements for a single string-OT. However, most applications of rate-1 OT require
executing it multiple times, resulting in large communication costs for the receiver.

In this work, we introduce a new technique for amortizing the cost of multiple rate-1 OTs.
Specifically, based on standard pairing assumptions, we obtain a two-message rate-1 OT pro-
tocol for which the amortized cost per string-OT is asymptotically reduced to only four group
elements. Our results lead to significant communication improvements in PSI and PIR, special
cases of SFE for branching programs.

1. PIR: We obtain a rate-1 PIR scheme with client communication cost of O(λ · logN) group
elements for security parameter λ and database size N . Notably, after a one-time setup (or
one PIR instance), any following PIR instance only requires communication cost O(logN)
number of group elements.

2. PSI with unbalanced inputs: We apply our techniques to private set intersection with unbal-
anced set sizes (where the receiver has a smaller set) and achieve receiver communication
of O((m + λ) logN) group elements where m,N are the sizes of the receiver and sender
sets, respectively. Similarly, after a one-time setup (or one PSI instance), any following
PSI instance only requires communication cost O(m · logN) number of group elements. All
previous sublinear-communication non-FHE based PSI protocols for the above unbalanced
setting were also based on rate-1 OT, but incurred at least O(λ2m logN) group elements.

1 Introduction

Oblivious transfer (OT) [Rab05] is a foundational primitive in cryptography. In this work, we are
interested in two-message OT protocols between: (i) a receiver with an input bit b who sends the

∗Supported in part by DARPA under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-0200, NSF
CNS Award 1936826, and research grants by the Sloan Foundation and Visa Inc.
†Supported in part by NSF CNS Award 2055564.
‡Supported in part by NSF CNS Award 2055358 and a 2020 DPI Science Team Seed Grant.

1

first message otr of the protocol, and (ii) a sender with input two (equal length) strings m0,m1 who
sends the second message ots. Correctness requires that at the end of execution, the receiver should
learn mb, while security requires that the receiver does not learn m1−b and that the sender does
not learn the bit b. Over the years, significant progress has been made in constructing two-message
OT protocols, either from general assumptions [EGL82,GMW87], or from specific assumptions but
with enhanced security/functionality/efficiency, such as OT based on DDH [NP01,AIR01,PVW08],
CDH [DGH+20], factoring related [HK12] and LWE [PVW08].

Rate-1 OT. In this work, we are interested in constructing rate-1 two-message OT protocols.
We say that an OT protocol is rate-1 if the ratio |m0|

|ots| approaches 1, as n := |m0| grows. As shown

by Ishai and Paskin [IP07], rate-1 OT enables powerful applications such as (i) semi-compact
homomorphic encryption for branching programs (where the ciphertext grows only with the depth
but not the size of the program) as well as (ii) communication-efficient private-information retrieval
(PIR) protocols.

The rate-1 property is crucial in realizing these applications, allowing a sender to compress a
large database for a receiver who is interested only in a small portion of it. To give some intuition,
suppose we want to use a rate-1 OT to implement a 1-out-of-4 OT for a sender with four elements
m := (m00,m01,m10,m11). Thinking about the corresponding binary tree, the receiver on an input
uw ∈ {0, 1}2 will send two messages otr and otr′, the first one for choice bit u and the second one
for w. The sender will use otr′ once against (m00,m01) and once against (m10,m11) to get two
outgoing messages ots0 and ots1. The receiver is only interested in otsu, but the sender does not
know which one it is. So, the sender compresses (ots0, ots1) using otr, allowing the receiver to learn
otsu, and consequently muw.

The above construction employs a self-eating process, where a pair of ots messages is used as the
sender input for the next OT, and so on. Employing a low rate 1-out-of-2 OT to build 1-out-of-n
OT will blow up the communication, falling short for PIR. To see this, suppose |ots| ≥ 2|m0|, as is
the case with most 1-out-of-2 OT protocols. Then, if n = 2k, as the sender packs up the tree from
bottom-up, in each OT invocation the size of the resulting ots message (which either packs two
previous ots messages, or two leaf messages) doubles, resulting in a final message of size at least
O(2kf), where f is the size of each initial individual message of the sender. While the protocol is
a 1-out-of-n OT, it is not a sublinear PIR, because the size of the sender’s protocol message is not
sublinear in its total input size, nf . Moreover, as we will see later, in some applications involving
branching programs, such as Private Set Intersection (PSI) with unbalanced set sizes, the sender
will need to pack a tree of depth polynomial in the security parameter (as opposed to logarithmic
size as in PIR), so using low rate 1-out-of-2 OT will result in an exponential size blow-up.

Building rate-1 OT. Recent work of Döttling, Garg, Ishai, Malavolta, Mour, and Ostro-
vsky [DGI+19] provides a framework for constructing rate-1 OT based on a variety of assumptions
such as DDH, QR, and LWE. This in turn led to PIR protocols with sender messages of only a
logarithmic size dependence on the server size, and, more generally, branching-program protocols
with sender messages whose size only grows with the depth of the program. In addition to these
applications, the underlying techniques have been used in building collision-intractable hash func-
tions and non-interactive zero-knowledge (NIZK) proofs [BKM20]. This has made the notion of
rate-1 OT fundamental both from a theory and applications point of view.

2

How about the receiver communication? An overlooked aspect of rate-1 OT is the receiver
communication cost. This is an important metric because, as stated above, the self eating process
involve producing many otr messages (proportional to the depth of the tree/program), and hence
sending a fresh otr for each depth results in large first-round messages. Concretely, in the DDH-
based rate-1 OT construction of [DGI+19], for a sender with (m0 ∈ {0, 1}n,m1 ∈ {0, 1}n), the
receiver should send a linear (O(n)) number of group elements for each bit of the sender, resulting
in overall O(n2) group elements. This incurs high receiver communication in the respective appli-
cations. Addressing this issue, Garg, Hajiabadi and Ostrovsky [GHO20] obtained rate-1 OT for
which otr consists of only a linear O(n) number of group elements in total, as opposed to O(n2).

One limitation of [GHO20] is that it only improves the communication efficiency of the base
rate-1 OT, but still requires the receiver to send a fresh otr message for each new OT execution. This
constitutes a prohibitive overhead for the receiver in applications in which the depth of the branching
program is large, and where the receiver needs to engage with a sender holding a branching program
BP on many different inputs x1, . . . , xn (e.g., PSI). Addressing this communication bottleneck is
the goal of our paper. We achieve this by introducing and realizing a new primitive that we call
receiver-amortized (or amortized, for short) rate-1 OT.

1.1 Our Results

We put forth a cryptographic primitive that we call amortized rate-1 OT, and show how to realize
it using standard assumptions on bilinear groups. As applications we obtain significant efficiency
improvements, shaving a factor of poly(λ) off the receiver communication in various protocols
involving secure branching program computation (e.g., unbalanced PSI).

An amortized rate-1 OT breaks up the computation of a receiver into an offline and online
phase. The offline phase is performed by the receiver once and for all, prior to receiving any
choice bits. Specifically, we have an algorithm PreP(1λ), run by the receiver, which outputs a
private state str for the receiver, and a reusable parameter prm. Next, we have an algorithm

OT1 run by the receiver on a choice bit b to obtain otr
$←− OT1(str, b). A sender with messages

m := (m0 ∈ {0, 1}n,m1 ∈ {0, 1}n) runs OT2((prm, otr),m) to obtain ots. Finally, the receiver can
recover mb by running OT3(str, ots). One notable aspect is that the state str used by OT1 and OT3

is the same as the initial state outputted by PreP — the state is not updated as a result of OT1

executions. This property is in fact exploited in some of our applications, such as PSI cardinality.
Also, the message prm is reused across all communications, so the receiver may send it only once.
We require the following properties:

1. Sender rate-1 communication: |ots| = n+ poly(λ), where poly is a fixed polynomial (e.g., the
size of a group element) independent of how large n is.

2. Receiver non-reusable compactness: |otr| = poly′(λ), where poly′(λ) is independent of n.

3. Receiver privacy: We require indistinguishability security for the receiver against adaptive

adversaries. If (str, prm)
$←− PreP(1λ), an adaptive adversary who is given prm and who sends

many pairs of choice bits in an adaptive fashion cannot determine whether his received otr
messages (all made relative to str) were built using the first choice bits or the second choice
bits of his submitted pairs. Notice that since otr messages are all produced based on the same
private state str, we should give the adversary the ability to submit many pairs.

3

4. Sender privacy: Standard indistinguishability security against honest receivers.1

Assuming an SXDH-hard bilinear map e : G1 × G2 7→ GT on prime-order groups, we give a
construction of amortized rate-1 OT in which prm consists of O(n2) group elements in G1 and otr
consists of 4 group elements in G2. Recall that the SXDH assumption [BGdMM05] (Symmetric
External Diffie-Hellman) states that both G1 and G2 are DDH hard. Our construction is based on
a new re-randomization trick that allows us to obtain a structured matrix, as required for rate-1
OT, from a reusable initial matrix and and a re-randomizing term involving four group elements.

The above reusable parameter prm is still quite large, even though it can be amortized among
many OT executions. We show by relying on a stronger assumption on G1, called 2n-power-DDH,
we can make prm consist only of O(n) group elements in G1. We achieve this by relying on a sliding
window technique, introduced in [GHO20], that implicitly builds a Toeplitz matrix in the exponent
using a linear number of group elements. The t-power DDH assumption says the distribution
(g, ga, . . . , ga

t
) is pseudorandom.

Efficiency gained. For performing t rate-1 OTs where the size of each message of the sender is n,
our receiver communication consists of O(n2) reusable group elements in G1 and 4t group elements
in G2, relying on SXDH. Assuming power DDH on G1 the receiver communication becomes O(n)
group elements in G1 and 4t group elements in G2. In comparison, the most receiver compact
bilinear SXDH-based rate-1 OT, due to [DGI+19], involves sending O(tn

√
n) both in G1 and G2.

As we will see in Section 1.2 in many applications of rate-1 OT, we have t >>
√
n, allowing us

to cut off large multiplicative polynomial factors from the receiver communication. We compare
our receiver communication with prior rate-1 OT protocols in Table 1. We only include receiver
communication, since the sender communication in all these protocols is the same (rate-1 for each
instance of the OT).

Work Receiver Reusable Comm Receiver Non-Reusable Comm Receiver Total Comm Assumption
[DGI+19] N/A O(tn2) G O(tn2) G DDH
[DGI+19] N/A O(tn

√
n) G1 + O(tn

√
n) G2 O(tn

√
n) G1 + O(tn

√
n) G2 Bilinear SXDH

[GHO20] N/A O(tn) G O(tn) G Power-DDH
Ours O(n2) G1 O(t) G2 O(n2) G1 + O(t) G2 Bilinear SXDH
Ours O(n) G1 O(t) G2 O(n) G1 + O(t) G2 Bilinear Power DDH

Table 1: Receiver communication complexity for t executions of a rate-1 OT. Here n denotes the
bit size of each message of the sender in the OT executions.

1.2 Applications

Our results allow us to realize SFE for branching programs with significantly lower receiver com-
munication. To illustrate our improvements, we first review the concept of branching programs.
A deterministic κ-bit input branching program BP is a directed acyclic graph, where every leaf
node has a label 0 or 1 (reject or accept), and every non-leaf node v has a label lb(v) ∈ {1, . . . , κ}.
The root node is labeled with 1. Every non-leaf node has two outgoing edges labeled 0 and 1.

1For applications involving non-oblivious branching programs we need to strengthen sender privacy, along the lines
of [IP07]. For oblivious branching programs, from which all our applications are obtained, the stated requirement
suffices.

4

An input x ∈ {0, 1}κ induces a unique computation path from the root to a leaf node, where the
computation from a node v will branch out to one of its two children depending on the value of
xi, where i = lb(v). We say BP(x) = b if the underlying computation path ends in a b-labeled leaf
node. The size of a branching program is the number of nodes, and the depth, `, is the length of
the longest path. A branching program is oblivious if κ = ` and if all nodes at level i (where the
root is considered level 1) are labeled i.2

As an example, consider a client who wants to know whether her input x ∈ {0, 1}λ is in the
set D ⊂ {0, 1}λ of a server. This reduces to evaluating an oblivious branching program PSI on x
where PSI is constructed as follows: for every string a ∈ {ε} ∪ {0, 1} ∪ · · · {0, 1}λ such that a is a
prefix of a string in D, we put a node va in the graph. We designate vε as the root node, and all
va such that a ∈ D as accept leaf nodes. The label of a node va for |a| < λ is lb(va) = |a|+ 1. For
a node va, for |a| < λ, and for b ∈ {0, 1}, if a node vab exists, we put a b-labeled edge from va to
vab; otherwise, we create a new reject leaf node and put a b-labeled edge from va to this node. The
depth of PSI is λ and its size is O(λ|D|).

Now if a client wants to learn the intersection of her set S = {x1, . . . , xm} with D, she needs to
learn the values of all PSI(xi) for i ∈ [m], leading to m evaluations of PSI.

Shorter client communication for PSI. Ishai and Paskin [IP07] give a construction of SFE
for branching programs from rate-1 OT, where, for an oblivious branching program BP of depth
d, the receiver sends d otr messages, each prepared for a sender whose input messages are of size
O(dλ). Returning to the PSI problem for a client with set S = {x1, . . . , xm} and a server with
set D, we need to evaluate the oblivious branching program PSI m times. Recall that the depth
of PSI is λ. Hence, setting t = mλ and n = λ2 in Table 1, our PSI-client communication consists
of O(mλ) non-reusable group elements in G2 (in either SXDH or power-DDH cases) and O(λ4)
reusable group elements in G1 (in the case of SXDH), and O(λ2) reusable group elements in G1 (in
the case of bilinear power DDH). In contrast, [DGI+19] results in O(mλ4) group elements in both
G1 and G2. Thus, we drop a multiplicative factor of m by relying on the same SXDH assumption,
and a factor of mλ2 by relying on bilinear power DDH. The results of [GHO20] give O(mλ3) group
elements for the receiver using (pairing-free) power DDH. This is again significantly larger than
what we achieve.

In Section 7.3 we describe some PSI optimization techniques that further reduce the client
communication, replacing a multiplicative factor of λ with logN , where N = |D|. These techniques
may be of independent interest. We also give more applications, involving PSI/PIR, in Section 7.

SFE for non-oblivious branching programs. Ishai and Paskin [IP07] show how to realize
SFE for non-oblivious branching programs (in which at any given level the program might branch
over several variables, not known to the receiver) by relying on a stronger sender privacy notion
for the underlying rate-1 OT. Informally, the stronger property requires that a sender’s response
message should hide the previous protocol message of the receiver, even for the receiver herself.
In Section 8 we show that simple variants of our amortized rate-1 OT satisfy the stronger sender
security requirement, without affecting the efficiency parameters. All our applications are obtained
based on oblivious branching programs, however.

2The standard definition of oblivious branching programs is more general than what we give here, but we stick to
our own definition since it captures our application needs.

5

We summarize our efficiency parameters for branching programs in Table 2. See Table 3
(Page 24) for a more detailed comparison.

Work Assumption Primitive Recv Reuse Comm Recv Non-Reuse Comm
Ours Bilinear SXDH Oblivious BP λ(h+ λ`)2 mλ`
Ours Bilinear Power DDH Oblivious BP λ(h+ λ`) mλ`

[GHO20] Power DDH Oblivious BP N/A mλ`(h+ λ`)

[DGI+19] Bilinear SXDH Oblivious BP N/A O(mλ`(h+ λ`)3/2)
[DGI+19] DDH Oblivious BP N/A O(mλ`(h+ λ`)2)

Ours Bilinear SXDH BP λ(h+ λ`)2 mκλ`
Ours Bilinear Power DDH BP λ(h+ λ`) mκλ`

[GHO20] Power DDH BP N/A mκλ`(h+ λ`)

[DGI+19] Bilinear SXDH BP N/A O(mλ`κ(h+ λ`)3/2)
[DGI+19] DDH BP N/A O(mλ`κ(h+ λ`)2)

Table 2: Bit-complexity for receiver communication, omitting O(·) notation. We assume O(λ) is the
bit size of a group element (in the case of pairings, for both source and target group elements). m
denotes the number of branching programs executions. For (oblivious) branching programs (BP),
h is the bit size of the output, κ is the bit size of receiver message and ` is the depth of the BP
program.

1.3 Comparison with Prior Work

The rate-1 OT constructions of [DGI+19] built upon ideas developed in the context of trapdoor
functions (TDFs) [GH18, GGH19], identity-based encryption [CDG+17, DG17, BLSV18] and ho-
momorphic secret sharing [BGI16]. The TDF techniques in turn led to notions such as hinting
PRGs [KW19], which found extensive applications, e.g., [LQR+19,KMT19,HKW20,GVW20].

OT extension. One might wonder about the difference between amortized rate-1 OT and OT
extension [Bea96, IKNP03]. The primary goal of OT extension is to minimize the number of
public-key operations: Performing n := n(λ) OTs at the cost of doing a fewer, λ, number of
OTs and some private key operations. On the other hand, we are concerned with amortizing
receiver communication for rate-1 OT; doing t rate-1 OTs, but in a way that the receiver total
communication is less than the sum of t individual rate-1 OT executions. OT extension techniques
do not provide this feature. Moreover, OT extension techniques destroy the rate-1 property of the
sender. For example, Beaver’s protocol, which is round preserving, results in sender’s OT protocol
messages which are larger than |m0| + |m1|, where (m0,m1) is the sender’s initial input pair. We
leave it as open problem whether one can achieve some form of OT extension and amortized rate-1
OT at the same time.

PSI Private set intersection (PSI) enables two parties, each holding a private set of elements, to
compute the intersection of the two sets while revealing nothing. PSI and its variants have found
many real-world applications including online advertising [IKN+20], password breach alert [TPY+19,
APP,MIC], mobile private contact discovery [KRS+19], privacy-preserving contact tracing [TSS+20,
CCF+20]. In the recent years, there has been tremendous progress made towards realizing PSI ef-
ficiently in various settings, including Diffie-Hellman-based [HFH99,IKN+20], RSA-based [ADT11],

6

OT-extension-based [KKRT16,PRTY19,PRTY20,CM20], FHE-based [CLR17], circuit-based [HEK12,
PSSZ15,PSWW18,PSTY19], Vector-OLE-based [RS21] approaches.

Most of the existing approaches require the communication complexity to grow with the size of
the larger set, the only exception being the FHE-based protocol [CLR17] (where communication
grows linearly in the receiver set and logistically in the sender set) and RSA-based protocol [ADT11]
(where the receiver has the bigger set and the communication grows linearly in the smaller, sender
set). We consider the dual setting of [ADT11], meaning that in our case the receiver has the
smaller set. In many real-world applications such as password breach alert [TPY+19, APP, MIC]
and mobile private contact discovery [KRS+19], we need to perform unbalanced PSI between a
constrained device (e.g. cellphone) holding a small set and a service provider holding a large set,
thus having communication grow the larger set (especially the sender set) is a big concern. Our
work presents unbalanced PSI with communication complexity linear in the size of the receiver
set and logarithmic in the sender set. Furthermore, our approach is easily adapted to PSI with
advanced functionalities such as PSI-Cardinality, PSI-Sum, PSI-Test, etc., which could only be
achieved from Diffie-Hellman-based or circuit-based approaches. See Section 7 for more details.

2 Technical Overview

One tool used in our constructions (and in all recent rate-1 OT constructions) is a compressed
version of n-bit packed ElGamal encryption. We review these compression features, formalized
in [BBD+20], building on [BGI16]. A secret key is an n-bit tuple of exponents sk := (ρ1, . . . , ρn)
and the public key is pk := (g, gρ1 , . . . , gρn). Given pk := (g, g1, . . . , gn) we can encrypt an n-bit
message Enc(m1, . . . ,mn) as ct : (gr, gr+m1

1 , . . . , gr+mn
n). We have two additional algorithms Shrink

and ShrinkDec, where Shrink(ct) shrinks ct ∈ Gn+1 to obtain Shrink(ct) → (g′,K, b1, . . . , bn) ∈
G× {0, 1}λ+n. We have shrinking correctness: Pr [ShrinkDec(sk, Shrink(ct)) = (m1, . . . ,mn)] = 1.

Approach of [DGI+19]. Let G be a group of prime order p with a generator g. We let ~ei ∈ G2n

denote a vector which has g in its ith position, and the identity element 1 everywhere else.

The receiver on a choice bit b samples ~hk
$←− G2n and for every i ∈ [n] samples ρi

$←− Zp and sets
~eki := ~hk

ρi ·~ei+nb, where ~hk
ρi

denotes entry-wise exponentiation, and (·) denotes entry-wise group
multiplication. She sends otr := (~hk, {~eki}) to the sender.

Let ~m = (m0,m1) ∈ {0, 1}2n be a vector concatenating the two strings of the sender. Let
g′ := ~m· ~hk, and for i ∈ [n] let g′i := ~m· ~eki, where we overload the (·) notation to define (b1, . . . , b2n)·
(g1, . . . , g2n) =

∏
gbii . Letting pk := (g, gρ1 , . . . , gρn), we have (g′, g′1, . . . , g

′
n) ∈ Enc(pk,mb), where

Enc denotes n-bit packed ElGamal. With this in mind, the sender sends ots = Shrink(ct) to the
receiver, and the receiver, who has sk := (ρ1, . . . , ρn) can recover mb as ShrinkDec(sk, ots). We have
ots ∈ G× {0, 1}λ+n, so the OT is sender rate-1.

In the above, each vector ~eki is a ρi exponentiation of ~hk but with a bump on its (n + ib)’s
location: namely, we multiply its (n+ b)’s location by g.

Our techniques: SXDH. We now give a new technique based on pairings that allows us to
produce many bumpy vectors ~eki’s in the target group, using only 4 group elements and a reusable

initial parameter in the source groups. The receiver samples 2n vectors ~ri
$←− Z2

p, and let M contain

7

all these vectors in the exponent in G1, namely

M := ([~r1]1, . . . , [~rn]1 | [~rn+1]1, . . . , [~r2n]1),

where [~r]1 := g~r. We similarly define [~r]2 := h~r and [~r]T := e(g, h)~r.
Also, let

~ν1 := ([p1~r1 + ~u]1, [p1 ~r2]1, · · · , [p1~rn]1 | [p1~rn+1 + ~u]1, [p1~rn+2]1, · · · , [p1~r2n]1)

...

~νn := ([pn~r1]1, [pn ~r2]1, · · · , [pn~rn + ~u]1 | [pn~rn+1]1, [pn~rn+2]1, · · · , [pn~r2n + ~u]1) ,

The receiver sets prm := (M,~ν1, . . . ,~νn) and her private state as str := (~u, p1, . . . , pn).

Receiver’s non-reusable messages. To send a short otr message for a choice bit b, the receiver
samples two random vectors (~v, ~w) s.t. 〈~v, ~u〉 = 0 and 〈~w, ~u〉 = 1. The receiver sends otr :=
([~f]2, [~h]2), where (~f ,~h) = (~w,~v) if b = 0, and (~f ,~h) = (~v, ~w) if b = 1.

Sender’s protocol messages. Given prm := (M,~ν1, . . . ,~νn) and otr := ([~f]2, [~h]2), the sender
uses the pairing to computes the inner product of ~f with all the vectors in the left-hand side
of M,~ν1, . . . ,~νn, and the inner product of ~h with all the vectors in the right-hand side of the
M,~ν1, . . . ,~νn. That is, using the notation above, letting αj := 〈~rj , ~f〉 if j ∈ [n], and αj := 〈~rj ,~h〉
if j ∈ {n+ 1, . . . , 2n} the sender will compute

~hk := ([α1]T · · · , [αn]T | [αn+1]T · · · , [α2n]T)

EK :=

 [p1α1 + 1]T . . . [p1αn]T [p1αn+1]T . . . [p1α2n]T
...

. . .
...

...
. . .

...
([pnα1]T . . . [pnαn + 1]T [pnαn+1]T . . . [pnα2n]T

 if b = 0

EK :=

 [p1α1]T . . . [p1αn]T [p1αn+1 + 1]T . . . [p1α2n]T
...

. . .
...

...
. . .

...
([pnα1]T . . . [pnαn]T [pnαn+1]T . . . [pnα2n + 1]T

 if b = 1

The sender has now built (~hk, IK) that satisfies the bump structure explained in the first
paragraph. Namely, think of the ith row of EK as ~eki in that paragraph. Moreover, the receiver
knows all the underlying exponent values sk := (p1, . . . , pn). Now the sender can perform the step
explained in the first paragraph to send a rate-1 message ots, and the receiver will be able to use
sk to decrypt it to obtain mb.

Notice that the protocol has rate-1 sender communication, and that otr consist of only 4 group
elements in G2.

To argue about receiver privacy, let us, for simplicity, argue that an adversary A cannot distin-
guish between a world in which otr always encrypts the bit 0 from a world in which otr encrypts 1;
the proof for the case where the adversary can submits adaptively-chosen pairs of choice bits will
be similar. We should show that A for a random pair ([~f]2, [~h]2) of vectors cannot tell which one

8

is orthogonal to ~u and which one has inner product one. This should be argued in the presence of
prm, known to A. We will first remove the presence of ~u from prm, relying on DDH for G1. Let

prm′ be the same as prm but with ~u removed. By DDH, (~u, prm)
c≡ (~u, prm′). If we want to replace

prm with prm′ for A, we should be able to reply to A’s subsequent OT1 queries. The reason this
can be done is because OT1 responses are produced based on only ~u and the underlying choice bit,
and ~u is included in both distributions. Thus, we can remove ~u from the prm view of A. Once
this is done, we will then show that the entire otr view of A can be simulated by knowing a pair
of vectors (~v, ~w) where ~v is orthogonal to ~u and ~w has inner product one with ~u. In particular,
to sample from OT1(str, b), we return (k1~v + (1 − b)~w, k2~v + b~w), where k1 and k2 are random
exponents. Next we show that the distribution of (~v, ~w) is identical to uniformly random vectors.
This can be argued because information about ~u has been already removed from prm. Finally, we
rely on DDH for G2 to show that by using a random (~v, ~w) in the above simulation, the entire otr
view of A will be pseudorandom, masking the value of the choice bit b.

Our techniques: Bilinear Power DDH. We sketch how to adapt our cancellation technique
to a sliding window setting, developed in [GHO20], to reduce the size of prm into a linear number

of group elements. The receiver samples a random exponent a and a vector ~r
$←− Z2

p and sets

M :=
(
[a~r]1, [a

2~r]1, · · · , [a2n~r]1
)

~w :=([ka~r]1, · · · , [kan−1~r]1, [ka
n~r + ~u]1, [ka

n+1~r]1, · · · , [ka2n−1~r]1,

[ka2n~r + ~u]1, [ka
2n+1~r]1, · · · , [ka3n−1~r]1),

where k is a random exponent. The receiver sets prm := (M, ~w).
The receiver samples a non-reusable message otr = ([~f]2, [~h]2) for a choice bit b exactly as in

the SXDH case — by sampling it based on ~u and b.
A sender given (prm, otr) builds n vectors ~ν1, . . . ,~νn as follows. For i ∈ [n] let ~νi = ~w[n+ 1−

i, 3n − i], where ~w[i, j] denotes the elements in positions i all the way up to j. Once the vectors
~ν1, . . . ,~νn are formed, the sender will proceed exactly like the SXDH case. Correctness will then
follow. The proof of receiver privacy follow similarly to the SXDH case, but we should replace
DDH with power DDH in the appropriate places. We omit the details.

3 Preliminaries and Definitions

We use λ for the security parameter. We use
c≡ and

s≡ for computational and statistical indistin-
guishability, respectively. We let ≡ denote that two distributions are identical. For a distribution

S we use x
$←− S to mean x is sampled according to S and use y ∈ S to mean y ∈ sup(S), where sup

denotes the support of a distribution. For a set S we overload the notation to use x
$←− S to indicate

that x is chosen uniformly at random from S. If A(x1, . . . , xn) is a randomized algorithm, then
A(a1, . . . , an), for deterministic inputs a1, . . . , an, denotes the random variable obtained by sampling
random coins r uniformly at random and returning A(a1, . . . , an; r). We use [n] := {1, . . . , n} and
[i, i+s] := {i, i+1, . . . , i+s}. For a vector ~v = (v1, . . . , vn) we define ~v[i, i+s] := (vi, vi+1, . . . , vi+s).

9

Definition 3.1 (Pairings and SXDH hardness). A bilinear map is given by (e,G1,G2,GT , p, g, h)
$←−

G(1λ), where p is a prime number and is the order of G1, G2 and GT , and g and h are ran-
dom generators of G1 and G2, respectively. The function e is a non-degenerate map, satisfying
e(ga, hb) = e(g, h)ab for all exponents a and b. The Symmetric External Diffie-Hellman (SXDH)
assumption [BGdMM05] says G1 and G2, sampled as above, are DDH-hard.

Computing inner product in the exponent. Given ~g := (g1, . . . , gk) ∈ Gk
1 and~h := (h1, . . . , hk) ∈

Gk
2 we define e(~g,~h) :=

∏
i∈[k] e(gi, hi).

Inner product with integer vectors. Given ~b := (b1, . . . , bk) ∈ Zkp and ~g := (g1, . . . , gk) ∈ Gk
1,

we define ~b · ~g :=
∏
i∈[k] g

bi
i .

3.1 Amortized Rate-1 OT: Definition

We define our new notion of amortized rate-1 OT, which allows a receiver to reuse part of her
protocol message across many independent OT executions. In the definition below, think of n as
the maximum size of each input message of a sender. The receiver will generate a reusable parameter
prm, based on n, which will allow her later to send a short protocol message otr whenever she wants
to perform a new OT. The sender will use (prm, otr) to complete an OT transfer for any pair of
messages (m0 ∈ {0, 1}n1 ,m1 ∈ {0, 1}n1), as long as n1 ≤ n.

Definition 3.2 (Amortized Rate-1 OT). Let n := n(λ) be a polynomial. An amortized rate-1 OT
OT := (PreP,OT1,OT2,OT3) is defined as follows.

• PreP(1λ, n) → (str, prm): Takes as input a security parameter 1λ and n, denoting the maxi-
mum length of each of the sender’s messages, and outputs a private state str and a reusable
message prm.

• OT1(str, b) → otr: Takes as input a security parameter 1λ and a choice bit b ∈ {0, 1}, and
outputs a a protocol message otr. We refer to otr as a fresh receiver’s message, to distinguish
it from the reusable message prm.

• OT2((prm, otr), (m0,m1))→ ots: Takes as input a reusable message prm, a fresh message otr
and a pair of messages (m0,m1) ∈ {0, 1}n1 × {0, 1}n1, for some n1 ≤ n, and outputs ots.

• OT3(str, ots)→ m: Takes as input a private state str and ots and outputs m ∈ {0, 1}n.

We require

• Correctness: For any polynomial n := n(λ), b ∈ {0, 1}, n1 ≤ n and (m0,m1) ∈ {0, 1}n1 ×
{0, 1}n1, Pr[OT3(str, ots) = mb] = 1, where (str, prm)

$←− PreP(1λ, n), otr
$←− OT1(str, b) and

ots
$←− OT2((prm, otr), (m0,m1)).

• Rate-1 sender communication: There exists a fixed polynomial poly such that for all n
and n1 ≤ n, |ots| = n1 + poly(λ), where ots is formed as above.

10

• Receiver amortized compactness: The length of otr is independent of n. There exists a
fixed polynomial poly′ such that for all polynomials n := n(λ), |otr| = poly′(λ), where otr is
formed as above.

• Receiver privacy: An adaptive sender cannot determine the choice bits of a receiver. Any
PPT adversary A has at most 1/2 +negl(λ) advantage in the following game. The challenger

samples b
$←− {0, 1} and (str, prm)

$←− PreP(1n, λ) and gives prm to A. Then, A adaptively
submits queries (s0, s1) ∈ {0, 1}2, and receives OT1(str, sb). A has to guess the value of b.

Sender privacy? Notice that Definition 3.2 does not impose any sender security requirements.
The reason for this is that sender security can be generically realized for rate-1 OT using known
techniques [BGI+17], as sketched below. Let poly be the polynomial defined in the rate-1 sender
property of Definition 3.2. The new sender on a pair of messages (m0,m1) ∈ {0, 1}n × {0, 1}n
samples two seeds (r0, r1) whose length is sufficiently larger than poly(λ) but independent of n.

The sender sends (ots′1, ots
′
2) to the receiver, where ots′1

$←− OT2((r0, r1), (prm, otr)) and ots′2
$←−

OT2((ct0, ct1), (prm, otr)), where ct0 := PRG(Ext(r0))⊕m0 and ct1 := PRG(Ext(r1))⊕m1, and Ext
is a randomness extractor. The protocol is still sender rate-1. It now provides computational sender
privacy against honest receivers: This is because given ots′1 the value of Ext(r1−b) is statistically
close to uniform, where b is the receiver’s choice bit.

Finally, we mention that we may modify our constructions so that they achieve sender privacy
for free, without using the above generic randomness extraction method.

4 Amortized Rate-1 OT from SXDH

Our amortized rate-1 OT protocol makes use of a shrinking algorithm, that allows one to shrink
ciphertexts of ElGamal encryption, as long as the underlying plaintexts are coming from a small
space, say, {0, 1}. An n-bit packed ElGamal encryption has a secret key sk := (x1, . . . , xn) and
a public key pk := (g, gx1 , . . . , gxn). Given pk := (g, g1, . . . , gn) we can encrypt an n-bit message
Enc(m1, . . . ,mn) as ct : (gr, gr+m1

1 , . . . , gr+mn
n). We have a shrinking procedure for n-bit ElGamal

encryption that will shrink a ciphertext into one group element plus n bits, while allowing for
efficient decryption. The procedure below, presented in [BBD+20], enables perfect decryption
correctness, improving upon the previous procedures [BGI16,DGI+19] that had a decryption error.

Lemma 4.1 ([BBD+20]). There exists a pair of (expected) PPT algorithms (Shrink, ShrinkDec)

such that if (pk, sk) is as above and ct
$←− Enc(pk,m) is a packed ElGamal ciphertext encrypting a

message m ∈ {0, 1}n,

(1) Shrink(ct)→ (g′,K, b1, . . . , bn) ∈ G× {0, 1}λ+n.

(2) Pr [ShrinkDec(sk,Shrink(ct)) = m] = 1.

Our amortized rate-1 OT makes us of the following procedure OrthSam that given a vector
~u ∈ Z2

p and a bit b ∈ {0, 1}, samples two random vectors ~v and ~w such that 〈~u,~v〉 = 0 and
〈~u, ~w〉 = 1, and it outputs these two vectors in a shuffled order based on the value of b.

Definition 4.2. The algorithm OrthSam(~u ∈ Z2
p, b ∈ {0, 1}) works as follows. It Samples random

vectors ~w,~v such that 〈~w, ~u〉 = 1 and 〈~v, ~u〉 = 0, and returns (~f ,~h) ∈ Z4
p, where

11

(~f ,~h) =

{
(~w,~v) b = 0

(~v, ~w) b = 1

4.1 Our Construction

We now present our construction. For notational clarity, we assume the size of each message of the
sender is exactly n, as opposed to an arbitrary value n1 ≤ n. Adapting the construction to work
with respect to varying lengths for the sender messages will be immediate.

Construction 4.3 (Amortized rate-1 OT: SXDH). Build OT := (PreP,OT1,OT2,OT3) as follows.

• PreP(1λ, n): Sample pp := (e,G1,G2,GT , p, g, h)
$←− G(1λ). Then

1. For i ∈ [2n], sample ~ri
$←− Z2

p. Let

M := [g~r1 , g~r2 , · · · , g~rn | g~rn+1 , g~rn+2 , · · · , g~r2n].

2. Sample ~u
$←− Z2

p and for i ∈ [n] sample a random exponent pi
$←− [p]. Let ~D :=

(~ν1, . . . , ~νn), where

~ν1 := [gp1 ~r1+~u, gp1 ~r2 , · · · , gp1~rn | gp1~rn+1+~u, gp1~rn+2 , · · · , gp1~r2n]

...

~νn := [gpn ~r1 , gpn ~r2 , · · · , gpn~rn+~u | gpn~rn+1 , gpn~rn+2 , · · · , gpn~r2n+~u],

(1)

3. Return private state str := (~u, p1, . . . , pn) and reusable message prm := (pp,M,~ν1, . . . ,~νn).

• OT1(str, b ∈ {0, 1}): Parse str and all its inside variables as above. Sample (~f ,~h)
$←−

OrthSam(~u, b) (Definition 4.2). Return return otr := (h
~f , h

~h) ∈ G4
2.

• OT2((prm, otr), (m0,m1) ∈ {0, 1}n × {0, 1}n): Parse prm := (pp,M,~ν1, . . . ,~νn), otr :=
(~χ1, ~χ2) ∈ G4

2, M := (~m1, . . . , ~m2n) and ~νi := (~νi,1, . . . ,~νi,2n) for i ∈ [n]. Let

~hk :=(e(~χ1, ~m1), . . . e(~χ1, ~mn) | e(~χ2, ~mn+1), . . . e(~χ2, ~m2n))

IK :=

 e(~χ1,~ν1,1) . . . e(~χ1,~ν1,n) e(~χ2,~ν1,n+1) . . . e(~χ2,~ν1,2n)
...

. . .
...

...
. . .

...
e(~χ1,~νn,1) . . . e(~χ1,~νn,n) e(~χ2,~νn,n+1) . . . e(~χ2,~νn,2n)

 .
Let ~m := (m0,m1) ∈ {0, 1}2n. Let ~yj ∈ G2n

T be the jth row of IK. The sender then sends

ots := Shrink(~m · ~hk, ~m · ~y1, . . . , ~m · ~yn) ∈ GT × {0, 1}n+λ.

• OT3(str, ots): Parse str := (~u, p1, . . . , pn) and set sk := (p1, . . . , pn). Return m′ := ShrinkDec(sk, ots).

12

Correctness. We prove m′ = mb, where, following the notation of Construction 4.3, m′ is the
string output by OT3, and (m0,m1) are the input strings to OT2 and b is the choice bit for OT1.

Let ~f , ~h and ~r1, . . . ,~r2n be as in Construction 4.3. Let αj := 〈~rj , ~f〉 if j ∈ [n], and αj := 〈~rj ,~h〉
if j ∈ {n+ 1, . . . , 2n}. Letting ~hk and IK be as in Construction 4.3, we have

~hk := [e(g, h)α1 · · · , e(g, h)αn | e(g, h)αn+1 · · · , e(g, h)α2n] ∈ G2n
T

IK :=

 e(g, h)p1α1 · e(g, h) . . . e(g, h)p1αn e(g, h)p1αn+1 . . . e(g, h)p1α2n

...
. . .

...
...

. . .
...

e(g, h)pnα1 . . . e(g, h)pnαn · e(g, h) e(g, h)pnαn+1 . . . e(g, h)pnα2n

 ∈ Gn×2n
T if b = 0

IK :=

 e(g, h)p1α1 . . . e(g, h)p1αn e(g, h)p1αn+1 · e(g, h) . . . e(g, h)p1α2n

...
. . .

...
...

. . .
...

e(g, h)pnα1 . . . e(g, h)pnαn e(g, h)pnαn+1 . . . e(g, h)pnα2n · e(g, h)

 ∈ Gn×2n
T if b = 1.

Thus, (~m · ~hk, ~m · ~y1, . . . , ~m · ~yn) ∈ Enc(pk, (mb[1], . . . ,mb[n])), where ~m = (m0,m1), ~yj is the
jth row of IK, pk := (e(g, h), e(g, h)p1 , . . . , e(g, h)pn) and Enc is the packed ElGamal encryption
algorithm as in Lemma 4.1. By Lemma 4.1, m′ = mb, as desired.

Rate-1 sender communication and receiver amortized compactness. We have |ots| =
n+ λ+ |g| = n+ poly(λ) and |otr| = 4|h|.

4.2 Receiver Privacy

In the following we say a vector ~f is non-orthogonal to ~u if 〈~f , ~u〉 = 1. This is an abuse of
terminology (because non-orthogonality refers to any non-zero inner product), but we stick to it
below.

To prove receiver OT security, we should argue that a fresh receiver protocol message otr does
not reveal the receiver’s underlying choice bit. The main difficulty is that all otr values depend on
the vector ~u.

The core of our argument is in showing that the vector ~u remains hidden in the following sense.

Given a sequence of (g
~f i , g

~hi), an adversary cannot determine the order of orthogonality/non-
orthogonality in any given pair, with respect to g~u. To this end, we will first remove u from all
vectors ~D := (~ν1, . . . , ~νn), given in Equation 1. Once ~u is removed from the reusable message prm,
we will then show any receiver’s future fresh message otr may be simulated by the underlying choice
bit b and a pair of vectors (~v, ~w) which are orthogonal/non-orthogonal to ~u, in a way that if the
joint distribution of (~v, ~w) is pseudorandom, then the entire simulated view will be pseudorandom
as well, masking the choice bits. We will then show that the distribution of a random (~v, ~w) subject
to them being orthogonal/non-orthogonal to a random ~u is uniformly random. Taken all together,
receiver security will follow.

Definition 4.4 (Distribution Dual). For ~u ∈ Z2
p the distribution Dual(~u) returns (~v, ~w), where

~v and ~w are sampled uniformly subject to 〈~v, ~u〉 = 0 and 〈~w, ~u〉 = 1.

13

We now describe a way of simulating messages otr, for a given choice bit b, without knowing ~u,
but by knowing a pair (~v, ~w) sampled according to Dual(~u).

Definition 4.5 (Simulator Sim). The algorithm Sim(~v, ~w, b) samples k, k′
$←− Zp, and returns

(hk~v+(1−b)~w, hk
′~v+b~w).

Hybrid Hyb1: Real game. Sample (str, prm)
$←− PreP(1λ, 1n), a challenge bit b

$←− {0, 1}, and give
prm to the adversary. Parse str := (~u, p1, . . . , pn). Reply to an adversary’s query (s0, s1) ∈ {0, 1}2
with OT1(str, sb). The view of the adversary for otr messages can be produced just by knowing ~u, as
opposed to str := (~u, p1, . . . , pn). In particular, the values p1, . . . , pn do not participate in producing
the output of OT1(str, sb), and are only used in OT3, which is immaterial to the adversary’s view.

Hybrid Hyb2: Replace ~D = (~ν1, . . . , ~νn), Equation 1, with uniformly random vectors of group
elements. Thus, information about ~u will be removed from ~D, and hence from prm.

Hybrid Hyb3: Same as Hybrid Hyb2, except we sample (~v, ~w)
$←− Dual(~u), and reply to any

adversary’s query (s0, s1) as Sim(~v, ~w, sb). The whole view is produced by knowing only (~v, ~w).

Hybrid Hyb4: Same as Hyb3, except we sample (~v, ~w)
$←− Z4

p.

Hybrid Hyb5: Same as Hyb4, except we reply to any adversary’s query (s0, s1) with a uniformly
random vector sampled from G4

2. This hybrid perfectly hides the value of the challenge bit b.
We will now show that any two adjacent hybrids produce computationally indistinguishable

views.

Lemma 4.6 (Hyb1
c≡ Hyb2). Assuming DDH hardness of G1, (~u,D)

c≡ (~u, ~D′), where ~u and ~D
are as in Equation 1, and ~D′ is a uniformly random matrix of group elements.

Proof. By DDH hardness of G1, (~u, ~D)
c≡ (~u, ~D′). The views in Hybrid Hyb1 and Hyb2 can be

produced just by knowing (~u, ~D) and (~u, ~D′), respectively. (See the explanation given in Hybrid

Hyb1 on why the view can be simulated just by knowing (~u, ~D).) Thus, Hyb1
c≡ Hyb2.

Lemma 4.7. Hyb2
s≡ Hyb3.

Proof. Let ~v and ~w be as in Hyb3, namely (~v, ~w)
$←− Dual(~u). We show that for any choice bit z ∈

{0, 1}, the output of Sim(~v, ~w, z) is statistically close to (h
~f , h

~h), where (~f ,~h)
$←− OrthSam(~u, z).

Let S0 be the set of all vectors whose inner product with ~u is one, and S1 be the set of all vectors
orthogonal to ~u. The vectors ~f and ~h are uniformly distributed over Sz and S1−z, respectively.

Also, recall that the output of Sim(~v, ~w, z) is as (hk~v+(1−z)~w, hk
′~v+z ~w), where k, k′

$←− Zp. In what
follows, we show (r~v, r′~v + ~w) for random r and r′ is statistically close the uniform distribution
over (S0,S1), and this will complete the proof.

Notice that S1 is a subspace and has dimension one; i.e., any basis of it has only one vector.
Letting ~v := (v1, v2) assume v1 6= 0 and v2 6= 0. (The probability that either is zero is negligible,

so we may ignore it.) Since v1 6= 0 and v2 6= 0, if r
$←− Zp, then r~v is uniformly random in S1.

14

Next, note that S0 = ~w+S1; i.e., for any ~m′ ∈ S0, there exists ~m ∈ S1 s.t. ~m′ = ~w+ ~m. Since

~v spans S1, the vector r′~v + ~w for a random r′
$←− Zp is uniformly distributed over S0. The above

was conditioned on v1 6= 0 and v2 6= 0, which is true with all but negligible probability. Thus, we
have statistical indistinguishability.

Lemma 4.8 (Hyb3
s≡ Hyb4). Assuming ~u

$←− Z2
p, the output of Dual(~u) is statistically close to the

uniform distribution over Z4
p. Thus, the two hybrids are statistically indistinguishable.

Proof. The only difference between these two hybrids lies in (~v, ~w), sampled as (~v, ~w)
$←− Dual(~u)

in Hyb3 and as completely random in Hyb4. We show that the marginal distribution of (~v, ~w)

sampled as (~v, ~w)
$←− Dual(~u) is statistically close to the uniform distribution over Z4

p, assuming
~u is uniformly random. This will complete the proof, because the view in either hybrid can be
sampled by knowing (~v, ~w), and by knowing prm, from which we have already removed ~u, so prm
is information-theoretically independent of ~u.

Parse ~u := (a, b) ∈ Z2
p. First, we know that ~u = ~0 with negligible probability. In case ~u 6= ~0,

without loss of generality assume b 6= 0, then we have ~v = (x,−a
bx) and ~w = (z,−a

b z + 1
b), where

x, z
$←− Zp. Let (t, t′) := (−a

b ,
1
b), and note that (t, t′) is uniform over Z2

p with t′ 6= 0, since ~u is
uniformly random except that b 6= 0. We may then rewrite ~v = (x, tx) and ~w = (z, tz + t′), where
x, z, t, t′ are all independent and uniformly random over Zp with the constraint that t′ 6= 0. Thus,
(~v, ~w) is statistically close to the uniform distribution over Z4

p.

Lemma 4.9 (Hyb4
c≡ Hyb5). Assuming DDH hardness of G2, Hyb4

c≡ Hyb5.

Proof. In Hyb4 the receiver forms an otr message for an adversary’s query (s0, s1) ∈ {0, 1}2 as

(hk~v+(1−sb)~w, hk
′~v+sb ~w). Since ~v and ~w are independent and uniformly random, and since k, k′

$←−
Zp, by DDH (gk~v, gk

′~v) is pseudorandom, and hence (hk~v+(1−bi)~w, hk
′~v+bi ~w) is pseudorandom. The

proof is now complete.

Thus, we have the following theorem.

Theorem 4.10. Assuming DDH hardness for G1 and G2, the amortized rate-1 OT protocol of
Construction 4.3 provides receiver privacy.

5 Amortized Rate-1 OT from Bilinear Power DDH

We show how to shorten the reusable parameter using the circulant structure imposed by power-
DDH assumptions, following ideas from [GHO20]. We assume G2 is DDH-hard, and G1 is m-power-
DDH hard, meaning that (g, gα, gα

2
,, gα

m
) is pseudorandom. We will need to set m = O(n),

where n is the bit length of each of the sender’s messages. Concretely, m = 3n− 1 suffices.

Construction 5.1 (Amortized rate-1 OT: Bilinear Power DDH). Build OT := (PreP,OT1,OT2,OT3)
as follows.

• PreP(1λ, n): Sample pp := (e,G1,G2,GT , p, g, h)
$←− G(1λ). Then

1. Sample M := [ga~r, ga
2~r, · · · , ga2n~r], where a

$←− Zp and ~r
$←− Z2

p.

15

2. Sample k
$←− Zp and let

~w :=[gka~r, gka
2~r, · · · , gkan−1~r, gka

n~r+~u, gka
n+1~r, · · · , gka2n−1~r,

gka
2n~r+~u, gka

2n+1~r, · · · , gka3n−1~r]
(2)

3. Return private state str := (~u, k, a) and reusable message prm := (pp,M, ~w).

• OT1(str, b ∈ {0, 1}): Parse str as above. Sample (~f ,~h)
$←− OrthSam(~u, b) (Definition 4.2).

Return return otr := (h
~f , h

~h) ∈ G4
2.

• OT2((prm, otr), (m0,m1) ∈ {0, 1}n×{0, 1}n): Parse otr := (~χ1, ~χ2) ∈ G4
2, prm := (pp,M, ~w),

M := (~m1, . . . , ~m2n) and ~w := (~w1, . . . , ~w3n−1). For j ∈ [n] let ~wj := ~w[j, j + 2n − 1];
namely, the elements of ~w in the range [j, j + 2n− 1]. Parse ~wj := (~wj,1, . . . , ~wj,2n). Let

~hk :=(e(~χ1, ~m1), . . . e(~χ1, ~mn) | e(~χ2, ~mn+1), . . . e(~χ2, ~m2n))

IK :=

 e(~χ1, ~wn,1) . . . e(~χ1, ~wn,n) e(~χ2, ~wn,n+1) . . . e(~χ2, ~wn,2n)
...

. . .
...

...
. . .

...
e(~χ1, ~w1,1) . . . e(~χ1, ~w1,n) e(~χ2, ~w1,n+1) . . . e(~χ2, ~w1,2n)

 .
Let ~m := (m0,m1) ∈ {0, 1}2n. Let ~yj ∈ G2n

T be the jth row of IK. The sender then sends

ots := Shrink(~m · ~hk, ~m · ~y1, . . . , ~m · ~yn) ∈ GT × {0, 1}n+λ.

• OT3(str, ots): Parse str := (~u, k, a) and set sk := (kan−1, . . . , ka, k). Return m′ := ShrinkDec(sk, ots).

Correctness. We prove m′ = mb, where, following the notation of Construction 5.1, m′ is the
string output by OT3, and (m0,m1) are the input strings to OT2 and b is the choice bit for OT1.

Let ~f , ~h, ~r and ~wj for j ∈ [n] be as in Construction 5.1. Let β = 〈~r, ~f〉 and µ = 〈~r,~h〉. Letting
~hk and IK be as in Construction 5.1, we have

~hk := [e(g, h)βa · · · , e(g, h)βa
n | e(g, h)µa

n+1 · · · , e(g, h)µa
2n

]

IK :=

 e(g, h)kβa
n · e(g, h) . . . e(g, h)kβa

2n−1
e(g, h)kµa

2n
. . . e(g, h)kµa

3n−1

...
. . .

...
...

. . .
...

e(g, h)kβa . . . e(g, h)kβa
n · e(g, h) e(g, h)kµa

n+1
. . . e(g, h)kµa

2n

 if bi = 0

IK :=

 e(g, h)kβa
n

. . . e(g, h)kβa
2n−1

e(g, h)kµa
2n · e(g, h) . . . e(g, h)kµa

3n−1

...
. . .

...
...

. . .
...

e(g, h)kβa . . . e(g, h)kβa
n

e(g, h)kµa
n+1

. . . e(g, h)kµa
2n · e(g, h)

 if bi = 1

Thus, (~m · ~hk, ~m · ~y1, . . . , ~m · ~yn) ∈ Enc(pk, (mb[1], . . . ,mb[n])), where ~m = (m0,m1), ~yj is the

jth row of IK, pk := (e(g, h), e(g, h)ka
n−1

, . . . , e(g, h)k) and Enc is the packed ElGamal encryption
algorithm as in Lemma 4.1. By Lemma 4.1, m′ = mb, as desired.

16

5.1 Receiver Privacy

The proof of security follows the same sequence of hybrids as in Section 4.2, so we only sketch the
hybrids and the proofs.

Hybrid Hyb1: Real game. Sample (str, prm)
$←− PreP(1λ, 1n), a challenge bit b

$←− {0, 1}, and give
prm to the adversary. Parse str := (~u, ∗). Reply to an adversary’s query (s0, s1) ∈ {0, 1}2 with
OT1(str, sb). The view of the adversary for OT1 outputs can be produced just by knowing ~u.

Hybrid Hyb2: Replace ~w, Equation 2, with uniformly random vectors of group elements. Thus,
information about ~u will be removed from ~D, and hence from prm.

Hybrid Hyb3: Same as Hybrid Hyb2, except we sample (~v, ~w)
$←− Dual(~u) (Definition 4.4), and

reply to any adversary’s query (s0, s1) ∈ {0, 1}2 as Sim(~v, ~w, sb) (Definition 4.5). The whole view
is produced by knowing only (~v, ~w).

Hybrid Hyb4: Same as Hyb3, except we sample (~v, ~w)
$←− Z4

p.

Hybrid Hyb5: Same as Hyb4, except we reply to any adversary’s query (s0, s1) with a uniformly
random vector sampled from G4

2. This hybrid perfectly hides the value of the challenge bit b.

Hyb1
c≡ Hyb2 is established exactly like Lemma 4.6, except we use the power-DDH assumption

instead of DDH. We have Hyb2
s≡ Hyb3, Hyb3 ≡ Hyb4 and Hyb4 ≡ Hyb5, and the proofs are exactly

the same as those of Lemma 4.7, Lemma 4.8 and Lemma 4.9, respectively. Thus, we have the
following theorem.

Theorem 5.2. Assuming (3n − 1)-power DDH hardness for G1, and DDH hardness for G2, the
amortized rate-1 OT protocol of Construction 5.1 provides receiver privacy.

6 Optimization

In this section, we discuss some techniques to improve the concrete computational efficiency and
lower the communication cost in amortized rate-1 OT. These optimizations work for both the basic
amortized rate-1 OT from bilinear SXDH and the sliding-window construction from bilinear power
DDH. In Section 7 when we describe the applications of amortized rate-1 OT, we will discuss further
optimizations specific to these applications.

6.1 Delayed Pairing

Recall that when the sender computes her response message, she needs to compute the hash-key
vector ~hk, which requires 4n pairing operations. In addition, she needs to compute the matrix IK,
which requires 4n2 pairing operations in the basic construction and 6n pairing operations in the
sliding-window construction. Since paring operations are orders of magnitude more expensive than
the other group operations, we introduce a technique to minimize it.

17

On Basic Construction. The high-level idea is that we can leverage the bilinear property to
delay the pairing operations. Instead of first performing the pairing operations and then computing
inner products in the target group, we can first compute the inner products in G1 and then perform
the pairings.

In more detail, in the basic construction, let

M0 := [g~r1 , g~r2 , · · · , g~rn],

M1 := [g~rn+1 , g~rn+2 , · · · , g~r2n].

Let ~m = (~m0, ~m1) ∈ {0, 1}2n be the sender messages. With receiver message otr = (~χ1, ~χ2) ∈ G4
2,

the inner product of ~m · ~hk can be computed as

e(~m0 ·M0, ~χ1) · e(~m1 ·M1, ~χ2).

Here ~m0 ·M0 computes inner products for each vector component of M0 and results in a vector
of two group elements in G1, and e(M0 · ~m0, ~χ1) takes the inner product on the exponent of the
two vectors. e(~m1 ·M1, ~χ2) is computed in the same way. The same approach can be applied to
compute ~m · ~y1, . . . , ~m · ~yn.

The computational cost of ~m · ~hk in the basic construction includes 4n pairing operations and
4n multiplications in GT . By using the above technique, this cost can be reduced to 4 pairing
operations, 4n multiplications in G1, and 3 multiplications in GT . The same improvement applies
to each inner product ~m · ~y1, . . . , ~m · ~yn. Therefore, the total computational cost of the sender is
reduced to 4n pairing operations, 4n2 multiplications in G1, and 3n multiplications in GT .

On Sliding-Window Construction. The same technique can be applied on the sliding-window
construction and the improvements on ~m · ~hk is the same as above. The total cost of computing
~m ·~y1, . . . , ~m ·~yn in the sliding-window construction includes 6n pairing operations and (2n2 + 3n)
multiplications in GT . This can be improved to 4n pairing operations, 4n2 multiplications in G1,
and 3n multiplications in GT .

6.2 Increasing Vector Dimension

Reducing Hash Value Size. The hash value ~m · ~hk currently contains a single group element
in GT . Since the bit representation of group elements in GT is much longer than group elements
in G1, we can reduce that by sending 4 group elements in G1, namely ~m0 ·M0 and ~m1 ·M1,
and then let the receiver perform the remaining pairing operations. In applications such as PIR
and PSI, the sender message grows with the tree depth and this saving in communication gets
accumulated throughout all the levels of the tree. Another benefit of this optimization is that it
pushes the pairing operations in computing hashes to the receiver side, which significantly reduces
the computational cost in computing hashes because the sender had to compute hashes in every
node of the tree while the receiver only needs to compute hashes along a single path of the tree.

Next we discuss another technique to further reduce the cost to 3 group elements in G1.

On Basic Construction. At a high-level, we will unify ~f and ~h to a single vector by increasing
the vector dimension from 2 to 3. In more detail, the base hash key M is the same as before except

that each ~ri
$←− Z3

p is of dimension 3. The receiver’s reusable message is redefined by

~ν1 := [gp1 ~r1+~u, gp1 ~r2 , · · · , gp1~rn | gp1~rn+1+~v, gp1~rn+2 , · · · , gp1~r2n]

18

...

~νn := [gpn ~r1 , gpn ~r2 , · · · , gpn~rn+~u | gpn~rn+1 , gpn~rn+2 , · · · , gpn~r2n+~v],

where all pi’s are random exponents and ~u,~v
$←− Z3

p. For a choice bit b, the receiver samples a single

random vector ~f s.t. 〈~u, ~f〉 = 1− b and 〈~v, ~f〉 = b, and sends a single vector ~χ = h
~f ∈ G3

2.

Next the sender computes ~hk by taking the inner product in the exponent of M and ~χ. The
matrix IK can be computed by taking the inner product in the exponent of ~νj ’s and ~χ. We can

use delayed pairing to compute ~m · ~hk by

e(~m ·M, ~χ).

Again, we can reduce the hash value size by sending 3 group elements in the vector ~m ·M and
postpone the pairing operations to the receiver side. It also reduces the receiver’s non-reusable
message from 4 group elements in G2 to 3.

To summarize, the receiver’s reusable message is increased from (4n2 + 4n) to (6n2 + 6n) group
elements in G1, but the non-reusable message is reduced from 4 to 3 group elements in G2. The
hash value in the sender’s message is reduced from 1 group element in GT to 3 group elements in
G1.

On Sliding-Window Construction. The same technique can be applied on the sliding-window
construction and the improvements on the communication is the same as above. In particular, the
receiver’s reusable message is increased from 10n to 15n group elements in G1, but the non-reusable
message is reduced from 4 to 3 group elements in G2. The hash value in the sender’s message is
reduced from 1 group element in GT to 3 group elements in G1.

7 Applications

In this section, we discuss several applications of our amortized rate-1 OT and focus on the com-
munication improvements over prior work. For certain applications, we will discuss optimizations
that further improve the communication and/or computational complexity. The communication
improvements are summarized in Table 3 at the end of the section.

7.1 Secure Function Evaluation on Branching Programs

The work of Ishai and Paskin [IP07] presents an approach to two-round secure function evaluation
(SFE) on (oblivious) branching program (BP) from rate-1 OT where the communication complexity
only grows with the depth of the branching program instead of its size. In particular, consider a
sender holding a private branching program P and a receiver holding a private input x. They can
jointly compute P (x) in two rounds of communication, that is, the receiver first sends an encryption
c of the input x to the sender, and the the sender can compute a succinct ciphertext c′ which allows
the receiver to decrypt P (x) without revealing any further information about P except its depth.
The size of c′ depends polynomially on the size of x and the depth of P , but does not further
depend on the size of P .

In terms of concrete communication complexity, let ` be the depth of the oblivious BP and
h be the bit length of the output. The recent work of Garg et al. [GHO20] achieves receiver’s

19

communication complexity of O(`·(h+λ·`)) group elements and sender’s communication complexity
of O(h+ λ · `) bits, where the group elements are from a pairing-free group where the power DDH
assumption holds. This improves upon prior work of Döttling et al. [DGI+19] based on DDH with
receiver’s communication complexity of O(`·(h+λ·`)2) group elements and sender’s communication
complexity of O(h+ λ · `) bits.

In this work, we consider the problem in the reusable setting where the receiver first sends a one-
time reusable message to the sender consisting of O(h+λ · `) group elements in G1. Afterwards, for
any oblivious BP with depth ` and output length h and any input x, the receiver’s communication
complexity is O(`) group elements in G2 and the sender’s communication complexity is O(h+λ · `)
bits. Note that the one-time messages can be reused for arbitrary polynomially many times.

Example: Secure Inference of Decision Trees. As an example, we consider a server holding a
machine learning model of a decision tree, which takes as input a data point with multiple features.
Starting from the root, each node of the tree is a function on some feature (e.g. testing if x < 10,
t = true) that determines whether to go to the left or right child. The client has a single data point
and would like to perform a secure inference with the server on the decision tree. The decision
tree can be formalized as a branching program and two-round secure inference can be achieved by
two-round SFE described above, where the communication only grows with the depth of the tree.

7.2 PSI and PIR

In this section, we illustrate several useful applications that can be viewed as special cases of SFE
on oblivious BP, hence they achieve the same improvements over prior work.

Unbalanced Private Set Intersection (PSI) Consider the PSI problem between a server
holding a private set X = {x1, . . . , xN} and a client holding a private set Y = {y1, . . . , ym}.
They want to jointly compute the set intersection X ∩ Y without revealing any other information.
Without loss of generality we assume all the set elements xi, yj ∈ {0, 1}λ.3 We focus on the case
with unbalanced set sizes, namely N � m, and present a solution for two-round PSI.

To learn the intersection X ∩ {y} for any y ∈ Y , we can construct an oblivious BP with depth
λ and size λ · N . To construct the oblivious BP, we can first think of it as a full binary tree of
depth λ where each leaf node indicates whether the root-to-leaf path is an element in X. However,
this branching program has exponential size. We can prune the full binary tree by replacing each
subtree consisting of only 0’s with a “dummy node” of the same depth. A dummy node of depth
d is connected to two dummy nodes with depth d− 1.

Following this approach, the client only needs to performs m instances of SFE on the oblivious
BP to learn the intersection X ∩{y} for every y ∈ Y . The oblivious BP has depth ` = λ, size λ ·N ,
and single-bit output.

Private Set Intersection (PIR) Consider a server (sender) holding a large database D ∈
{0, 1}N and a client (receiver) who wants to retrieve D[i] for i ∈ [N] without revealing i to the
server. As pointed out in [IP07], single-server two-round PIR can be viewed as two-round SFE on
an oblivious BP with depth ` = logN and single-bit output.

3The set elements can be of arbitrary length, but the parties can first apply a collision-resistant hash function on
the elements to make them all have length λ.

20

PIR-with-Default Consider a PIR variant where the server holds N binary strings s1, . . . , sN ∈
{0, 1}t along with N values v1, . . . , vN ∈ {0, 1}k. The server additionally holds a default value
vdflt ∈ {0, 1}k. The client holds a binary string w ∈ {0, 1}t and wants to learn a value v such that
if w = sj for some j ∈ [N], then v = vj ; otherwise v = vdflt, without revealing any information
about w to the server. This problem is formalized by Lepoint et al. [LPR+20]. Two-round PIR-
with-Default can be viewed as two-round SFE on a k-bit output oblivious BP with depth t and
polynomial size. Hence the receiver and sender communication follow generically from oblivious
BP with many-bit outputs. We mention this PIR variant because it will be used to construct
PSI-Cardinality.

PSI-Cardinality Consider a PSI variant where a server holding a private set X = {x1, . . . , xN}
and a client holding a private set Y = {y1, . . . , ym} want to learn the cardinality of the intersection
|X ∩ Y | instead of the intersection itself.

We can achieve PSI-Cardinality by the client querying PIR-with-Default on every element in
the her set, where in each PIR-with-Default instance, the default value vidflt is sampled at random
such that all the default values sum up to 0, namely

∑m
i=1 v

i
dflt = 0. All the non-default values in

a single instance are set to vidflt + 1. At the end, the client sums up all the values retrieved from
the PIR-with-Default instances. Similar to PSI, we should prune the full binary tree to obtain an
oblivious BP with depth λ and polynomial size.

7.3 Optimization for PSI and PSI-Cardinality

We design optimizations for unbalanced PSI and PSI-Cardinality so as to achieve better commu-
nication than the above generic approaches.

Optimized PSI Note that the aforementioned oblivious BP for PSI has depth ` = λ. To further
improve the communication complexity, we replace small subtrees by small instances of two-round
PSI (e.g. DDH-based PSI [HFH99]), which we denote by ΠPSI.

In particular, to compute X ∩ {y}, the server first hashes his N elements into N random bins.
We know that each bin has at most O(logN) elements. The client computes the same hash on y to
identify the bin b that could possibly contain an element y. Now the client queries the server with
PIR-with-Default on a string b. The client additionally sends the round-1 message of the two-round
PSI protocol ΠPSI on a single element y. The server then computes a round-2 message of ΠPSI for
each bin with elements in that bin. The server views his database for PIR-with-Default as all the
N indices of the bins along with the associated values being the round-2 messages of ΠPSI, and
generates the response for PIR-with-Default. Finally, the client first recovers the round-2 message
of ΠPSI from PIR-with-Default, and then recovers the output of ΠPSI, namely X ∩ {y}.

The receiver’s reusable communication is reduced from O(λ2) to O(λ · logN) group elements
in G1. Then for each X ∩ {y} query, her online communication is reduced from O(λ) to O(logN)
group elements in G2. The sender’s communication is reduced from O(λ2) to O(λ · logN).

PSI-Cardinality We can optimize the PSI-Cardinality protocol by replacing small subtrees by
small instances of two-round PSI-Cardinality (e.g. DDH-based PSI-Cardinality [IKN+20]), simi-
larly as in the above PSI protocol. However, this would reveal which elements are in the intersection
and which are not.

21

• Server has a set X of size N , client has a single element y. All the elements are λ-bit strings.

• Let h : {0, 1}λ → [N] be a hash function.

• Let ΠPSI and ΠPIR-Default be two-round PSI and PIR-with-Default protocols, respectively.

Round 1: Client does the following:

1. Compute b := H(y).

2. Compute round-1 message of ΠPSI with a single element y, and round-1 message of ΠPIR-Default

with query b, and send them to the server.

Round 2: Server does the following:

1. Let B[i] := ∅ for each bin i ∈ [N].

2. For each j ∈ [N], compute bj := H(xj) and let B[bj] := B[bj] ∪ {xj}.
3. For each bin i ∈ [N]:

(a) Pad B[i] with dummy elements to be a total of logN elements.

(b) Based on the round-1 message of ΠPSI, compute round-2 message of ΠPSI with set B[i].
Let the round-2 message be Mi.

4. Based on the round-1 message of ΠPIR-Default, compute round-2 message of ΠPIR-Default with
N values M1, . . . ,MN , and send it to the client.

Output: Client does the following:

1. Compute the output of the ΠPIR-Default, which gives a round-2 message of ΠPSI, namely Mb.

2. Use the round-2 message Mb of ΠPSI to compute the PSI output.

Figure 1: Optimized two-round PSI protocol with a single element on the client side.

Nonetheless, we notice that in our reusable rate-1 OT protocol, any OT response from the sender
can be decrypted by the receiver using the same secret state str, and the receiver cannot distinguish
between different responses. Therefore, the server can randomly shuffle the responses for all the
PIR-with-Default instances so that the client can only learn the cardinality of the intersection.
This achieves the same improvement as in the above PSI protocol.

7.4 Other Variants of PSI and PIR

In this section, we discuss a few more useful variants of PSI and PIR problems.

PIR-by-Keywords Consider a PIR variant where the server holds N binary strings s1, . . . , sN ∈
{0, 1}t. The client holds a binary string w ∈ {0, 1}t, who wants to learn whether w = sj for some
j ∈ [N] without revealing any information about w to the server. This problem was introduced
by Chor et al. [CGN98]. As pointed out in [IP07], two-round PIR-by-Keywords can be viewed as
two-round SFE on a branching program with depth ` = t and single-bit-output.

PSI-Sum Consider a server holding a set with weights (X,W) = {(x1, w1), . . . , (xN , wN)} and
a client holding a set Y = {y1, . . . , ym}. They want to jointly compute the PSI-Cardinality along

22

with the sum of the weights associated with the elements in the intersection, namely
∑

i:xi∈Y wi.
This functionality, introduced by Ion et al. [IKN+20], is a generalization of PSI-Cardinality.

We can achieve PSI-Sum from PIR-with-Default similarly as in the PSI-Cardinality protocol
except that all the non-default values vj in a single instance are set to vidflt + wj where wj is the
corresponding weight. Note that this approach additionally hides the PSI-Cardinality and only
reveals the PSI-Sum.

PSI-Test Consider a PSI variant where a server holding a private set X = {x1, . . . , xN} and a
client holding a private set Y = {y1, . . . , ym} want to learn whether the two sets intersect or not,
namely whether |X ∩ Y | = ∅.

We can achieve this from PIR-with-Default similarly as in PSI-Cardinality but all the non-
default values in a single instance are all set to vidflt + ri for some random ri. At the end, the client
checks if all the values obtained from the PIR-with-Default instances sum up to 0. The sum equals
0 if and only if |X ∩ Y | = ∅ except with negligible probability.

Extended-PIR-with-Default An extension to PIR-with-Default, also formalized in [LPR+20],
enables two parties to learn random shares of the PIR-with-Default answer multiplied with a
weight w supplied from the client. By using the techniques from [LPR+20], we can achieve the
same complexity as PIR-with-Default with additively homomorphic encryption. In particular, we
make the following changes to the PIR-with-Default protocol. The client additionally sends Enc(w)
to the server (in the online phase) where Enc is an additively homomorphic encryption scheme.
The server picks a random value α as his output of Extended-PIR-with-Default and replaces each
value v in a leaf node of the PIR-with-Default tree by Enc(v · w − α). Finally the client needs to
decrypt her output from PIR-with-Default to recover her output for Extended-PIR-with-Default.
We mention this PIR variant because it will be useful in the following application.

Private Join and Compute (PJC) for Inner Product Consider a server holding a set
with weights (X,W) = {(x1, w1), . . . , (xN , wN)} and a client also holding a set with weights Y =
{(y1, v1), . . . , (ym, vm)}. They want to jointly compute the

∑
i,j:xi=yj

wi · vj . This functionality,

introduced by Lepoint et al. [LPR+20], is a generalization of PSI-Sum.
We can achieve this by the client querying Extended-PIR-with-Default on every element in her

set, where in each Extended-PIR-with-Default instance, the default values are set to 0 and the two
parties learn a secret share of wi · vj if X ∩ {yj} 6= ∅. From this the two parties can sum up their
own shares to obtain a secret sharing of the the inner product result. The server only needs to
additionally send the sum of his shares to the client, from which the client can recover the output.
Note that this approach additionally hides the PSI-Cardinality and only reveals the result of the
inner product.

8 Amortized Rate-1 OT with Strong Sender Privacy

We will now show that variants of our amortized rate-1 OT constructions satisfy a stronger sender
privacy requirement, essential for secure computation on non-oblivious branching programs, as
required in [IP07].

23

Application
Receiver Comm Receiver Comm Receiver Comm Sender Comm

[GHO20] Ours (reusable) Ours (online) (same)
SFE on oblivious BP O(` · (h+ λ · `)) G O(h+ λ · `) G1 O(`) G2 O(h+ λ · `)
PSI/PSI-Cardinality/

O(λ3 ·m) G O(λ2) G1 O(λ ·m) G2 O(λ2 ·m)
PSI-Sum/PJC/PSI-Test

Optimized PSI/
O(λ2 · logN ·m) G O(λ · logN) G1 O(logN ·m) G2 O(λ · logN ·m)

Optimized PSI-Cardinality

PIR O(λ · log2N) G O(λ · logN) G1 O(logN) G2 O(λ · logN)
PIR-by-Keywords O(λ · t2) G O(λ · t) G1 O(t) G2 O(λ · t)

(Extended-)PIR-with-Default O(t · (k + λ · t)) G O(k + λ · t) G1 O(t) G2 O(k + λ · t)

Table 3: Summary of communication complexity in various applications of rate-1 OT. We compare
our work based on bilinear power DDH with the state-of-the-art rate-1 OT based on power DDH
[GHO20], and show improvements in terms of the receiver’s communication while the sender’s
communication remain the same. Recall that ` is the depth of the oblivious BP and h is the output
length in bits, m is the client’s set size in PSI, N is the server’s set size in PSI and the size of
database in PIR, t is the length of the keywords in PIR-by-Keywords, k is the output length in
PIR-with-Default. In all the applications, the one-time reusable message sent by the receiver can
be reused for arbitrary polynomially many times.

Definition 8.1 (Strong sender privacy [IP07]). Let OT := (PreP,OT1,OT2,OT3) be as in Def-
inition 3.2. We say OT provides strong sender privacy if there exists a PPT algorithm OTSim

such that for any bit b and any pair of messages (m0,m1), sampling (str, prm)
$←− PreP(1λ) and

otr
$←− OT1(str, b), the two distributions OT2((prm, otr), (m0,m1)) and OTSim(prm,mb) are statisti-

cally close.

Our amortized rate-1 OT constructions, as presented in Sections 4,5, do not provide strong
sender privacy, because OT2 is deterministic. Thus, we will consider a randomized OT2 version
of these constructions, obtained by using random extractors and PRGs, as explained in Sec-
tion 3.1. Under these new OT2 algorithms of our constructions, the following holds: for any
choice b and any two pairs (m0,m1) and (m′0,m

′
1) such that mb = m′b, any otr ∈ OT1(str, b),

otr′ ∈ OT1(str, b
′), the two distributions OT2((prm, otr), (m0,m1)) and OT2((prm, otr

′), (m′0,m
′
1))

are statistically close. The simulation algorithm OTSim, which is only given mb, should somehow
sample from OT2((prm, otr), (m0,m1)). By what just mentioned, OTSim may, instead, sample from
OT2((prm, otr), (mb,mb)). The main challenge in doing so is that OTSim is only given (prm,mb),
and not otr, which in turn is sampled based on str, not known to OTSim. Luckily, in our proofs
we showed an oblivious way of sampling from OT1 without knowing str := (~u, . . .). In particular,

assuming OTSim is given (~v, ~w) sampled as (~v, ~w)
$←− Dual(~u) (Definition 4.4), then Sim(~v, ~w, b)

(Definition 4.5) samples an output statistically close to the output of OT1(str, b) (Lemma 4.7). We
may include (~v, ~w) in prm without harming security, as argued in the security of the constructions.

Once (~v, ~w) is included as part of prm, the output of OTSim(prm,mb) is formed as follows:

sample otr
$←− Sim(~v, ~w, 0) and return OT2((prm, otr), (mb,mb)). In terms of efficiency, the size of

otr remains the same, and the size of prm is increased by four group elements in G1.

24

References

[ADT11] G. Ateniese, E. De Cristofaro, and G. Tsudik. (If) size matters: Size-hiding private set
intersection. In PKC 2011, LNCS 6571, pages 156–173, Taormina, Italy, March 6–9,
2011. Springer, Heidelberg, Germany. 6, 7

[AIR01] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digi-
tal goods. In EUROCRYPT 2001, LNCS 2045, pages 119–135, Innsbruck, Austria,
May 6–10, 2001. Springer, Heidelberg, Germany. 2

[APP] Password Monitoring – Apple Platform Security. https://support.apple.com/

en-al/guide/security/sec78e79fc3b/web. 6, 7

[BBD+20] Z. Brakerski, P. Branco, N. Döttling, S. Garg, and G. Malavolta. Constant ciphertext-
rate non-committing encryption from standard assumptions. In TCC 2020, Part I,
LNCS 12550, pages 58–87, Durham, NC, USA, November 16–19, 2020. Springer,
Heidelberg, Germany. 7, 11

[Bea96] D. Beaver. Correlated pseudorandomness and the complexity of private computations.
In 28th ACM STOC, pages 479–488, Philadephia, PA, USA, May 22–24, 1996. ACM
Press. 6

[BGdMM05] L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-resistant storage
via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417,
2005. https://eprint.iacr.org/2005/417. 4, 10

[BGI16] E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure com-
putation under DDH. In CRYPTO 2016, Part I, LNCS 9814, pages 509–539, Santa
Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany. 6, 7, 11

[BGI+17] S. Badrinarayanan, S. Garg, Y. Ishai, A. Sahai, and A. Wadia. Two-message witness
indistinguishability and secure computation in the plain model from new assumptions.
In ASIACRYPT 2017, Part III, LNCS 10626, pages 275–303, Hong Kong, China,
December 3–7, 2017. Springer, Heidelberg, Germany. 11

[BKM20] Z. Brakerski, V. Koppula, and T. Mour. NIZK from LPN and trapdoor hash via
correlation intractability for approximable relations. In CRYPTO 2020, Part III,
LNCS 12172, pages 738–767, Santa Barbara, CA, USA, August 17–21, 2020. Springer,
Heidelberg, Germany. 2

[BLSV18] Z. Brakerski, A. Lombardi, G. Segev, and V. Vaikuntanathan. Anonymous IBE,
leakage resilience and circular security from new assumptions. In EUROCRYPT 2018,
Part I, LNCS 10820, pages 535–564, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany. 6

[CCF+20] J. Chan, L. P. Cox, D. P. Foster, S. Gollakota, E. Horvitz, J. Jaeger, S. M. Kakade,
T. Kohno, J. Langford, J. Larson, P. Sharma, S. Singanamalla, J. E. Sunshine, and
S. Tessaro. PACT: privacy-sensitive protocols and mechanisms for mobile contact
tracing. IEEE Data Eng. Bull., 2020. 6

25

https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://eprint.iacr.org/2005/417

[CDG+17] C. Cho, N. Döttling, S. Garg, D. Gupta, P. Miao, and A. Polychroniadou. Laconic
oblivious transfer and its applications. In CRYPTO 2017, Part II, LNCS 10402,
pages 33–65, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg,
Germany. 6

[CGN98] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. Cryptol-
ogy ePrint Archive, Report 1998/003, 1998. https://eprint.iacr.org/1998/003.
22

[CLR17] H. Chen, K. Laine, and P. Rindal. Fast private set intersection from homomorphic
encryption. In ACM CCS 2017, pages 1243–1255, Dallas, TX, USA, October 31 –
November 2, 2017. ACM Press. 7

[CM20] M. Chase and P. Miao. Private set intersection in the internet setting from lightweight
oblivious PRF. In CRYPTO 2020, Part III, LNCS 12172, pages 34–63, Santa Barbara,
CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany. 7

[DG17] N. Döttling and S. Garg. Identity-based encryption from the Diffie-Hellman assump-
tion. In CRYPTO 2017, Part I, LNCS 10401, pages 537–569, Santa Barbara, CA,
USA, August 20–24, 2017. Springer, Heidelberg, Germany. 6

[DGH+20] N. Döttling, S. Garg, M. Hajiabadi, D. Masny, and D. Wichs. Two-round oblivious
transfer from CDH or LPN. In EUROCRYPT 2020, Part II, LNCS 12106, pages
768–797, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. 2

[DGI+19] N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky. Trapdoor
hash functions and their applications. In CRYPTO 2019, Part III, LNCS 11694, pages
3–32, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.
2, 3, 4, 5, 6, 7, 11, 20

[EGL82] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
In CRYPTO’82, pages 205–210, Santa Barbara, CA, USA, 1982. Plenum Press, New
York, USA. 2

[GGH19] S. Garg, R. Gay, and M. Hajiabadi. New techniques for efficient trapdoor functions
and applications. In EUROCRYPT 2019, Part III, LNCS 11478, pages 33–63, Darm-
stadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany. 6

[GH18] S. Garg and M. Hajiabadi. Trapdoor functions from the computational Diffie-Hellman
assumption. In CRYPTO 2018, Part II, LNCS 10992, pages 362–391, Santa Barbara,
CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. 6

[GHO20] S. Garg, M. Hajiabadi, and R. Ostrovsky. Efficient range-trapdoor functions and
applications: Rate-1 OT and more. In TCC 2020, Part I, LNCS 12550, pages 88–
116, Durham, NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany. 3,
4, 5, 6, 9, 15, 19, 24

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In 19th ACM STOC, pages
218–229, New York City, NY, USA, May 25–27, 1987. ACM Press. 2

26

https://eprint.iacr.org/1998/003

[GVW20] R. Goyal, S. Vusirikala, and B. Waters. New constructions of hinting PRGs, OWFs
with encryption, and more. In CRYPTO 2020, Part I, LNCS 12170, pages 527–558,
Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany. 6

[HEK12] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better
than custom protocols? In NDSS 2012, San Diego, CA, USA, February 5–8, 2012.
The Internet Society. 7

[HFH99] B. A. Huberman, M. K. Franklin, and T. Hogg. Enhancing privacy and trust in
electronic communities. In Proceedings of the First ACM Conference on Electronic
Commerce (EC-99), Denver, CO, USA, November 3-5, 1999, pages 78–86. ACM,
1999. 6, 21

[HK12] S. Halevi and Y. T. Kalai. Smooth projective hashing and two-message oblivious
transfer. Journal of Cryptology, 25(1):158–193, January 2012. 2

[HKW20] S. Hohenberger, V. Koppula, and B. Waters. Chosen ciphertext security from injective
trapdoor functions. In CRYPTO 2020, Part I, LNCS 12170, pages 836–866, Santa
Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany. 6

[IKN+20] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth, M. Raykova, D. Shana-
han, and M. Yung. On deploying secure computing: Private intersection-sum-with-
cardinality. In IEEE European Symposium on Security and Privacy, EuroS&P 2020,
Genoa, Italy, September 7-11, 2020, pages 370–389. IEEE, 2020. 6, 21, 23

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently.
In CRYPTO 2003, LNCS 2729, pages 145–161, Santa Barbara, CA, USA, August 17–
21, 2003. Springer, Heidelberg, Germany. 6

[IP07] Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In
TCC 2007, LNCS 4392, pages 575–594, Amsterdam, The Netherlands, February 21–
24, 2007. Springer, Heidelberg, Germany. 2, 4, 5, 19, 20, 22, 23, 24

[KKRT16] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched oblivious
PRF with applications to private set intersection. In ACM CCS 2016, pages 818–829,
Vienna, Austria, October 24–28, 2016. ACM Press. 7

[KMT19] F. Kitagawa, T. Matsuda, and K. Tanaka. CCA security and trapdoor functions via
key-dependent-message security. In CRYPTO 2019, Part III, LNCS 11694, pages 33–
64, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.
6

[KRS+19] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert. Mobile private
contact discovery at scale. In USENIX Security, 2019. 6, 7

[KW19] V. Koppula and B. Waters. Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. In CRYPTO 2019, Part II,
LNCS 11693, pages 671–700, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany. 6

27

[LPR+20] T. Lepoint, S. Patel, M. Raykova, K. Seth, and N. Trieu. Private join and compute
from PIR with default. Cryptology ePrint Archive, Report 2020/1011, 2020. https:
//eprint.iacr.org/2020/1011. 21, 23

[LQR+19] A. Lombardi, W. Quach, R. D. Rothblum, D. Wichs, and D. J. Wu. New constructions
of reusable designated-verifier NIZKs. In CRYPTO 2019, Part III, LNCS 11694,
pages 670–700, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany. 6

[MIC] Password Monitor: Safeguarding passwords in Microsoft
Edge. https://www.microsoft.com/en-us/research/blog/

password-monitor-safeguarding-passwords-in-microsoft-edge/. 6, 7

[NP01] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In 12th SODA, pages
448–457, Washington, DC, USA, January 7–9, 2001. ACM-SIAM. 2

[PRTY19] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. SpOT-light: Lightweight private set
intersection from sparse OT extension. In CRYPTO 2019, Part III, LNCS 11694,
pages 401–431, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany. 7

[PRTY20] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. PSI from PaXoS: Fast, malicious
private set intersection. In EUROCRYPT 2020, Part II, LNCS 12106, pages 739–
767, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. 7

[PSSZ15] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersec-
tion using permutation-based hashing. In USENIX Security 2015, pages 515–530,
Washington, DC, USA, August 12–14, 2015. USENIX Association. 7

[PSTY19] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient circuit-based PSI with
linear communication. In EUROCRYPT 2019, Part III, LNCS 11478, pages 122–153,
Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany. 7

[PSWW18] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-based PSI via
cuckoo hashing. In EUROCRYPT 2018, Part III, LNCS 10822, pages 125–157, Tel
Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany. 7

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and com-
posable oblivious transfer. In CRYPTO 2008, LNCS 5157, pages 554–571, Santa
Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany. 2

[Rab05] M. O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187, 2005. https://eprint.iacr.org/2005/187. 1

[RS21] P. Rindal and P. Schoppmann. VOLE-PSI: fast OPRF and circuit-psi from vector-
ole. In Advances in Cryptology - EUROCRYPT 2021, International Conference on
the Theory and Applications of Cryptographic Techniques, 2021. 7

28

https://eprint.iacr.org/2020/1011
https://eprint.iacr.org/2020/1011
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://eprint.iacr.org/2005/187

[TPY+19] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Invernizzi,
B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein. Protecting accounts
from credential stuffing with password breach alerting. In USENIX Security, 2019. 6,
7

[TSS+20] N. Trieu, K. Shehata, P. Saxena, R. Shokri, and D. Song. Epione: Lightweight contact
tracing with strong privacy. IEEE Data Eng. Bull., 2020. 6

29

	Introduction
	Our Results
	Applications
	Comparison with Prior Work

	Technical Overview
	Preliminaries and Definitions
	Amortized Rate-1 OT: Definition

	Amortized Rate-1 OT from SXDH
	Our Construction
	Receiver Privacy

	Amortized Rate-1 OT from Bilinear Power DDH
	Receiver Privacy

	Optimization
	Delayed Pairing
	Increasing Vector Dimension

	Applications
	Secure Function Evaluation on Branching Programs
	PSI and PIR
	Optimization for PSI and PSI-Cardinality
	Other Variants of PSI and PIR

	Amortized Rate-1 OT with Strong Sender Privacy

