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Abstract—In this paper, we introduce a configurable hardware
architecture that can be used to generate unified and parametric
NTT-based polynomial multipliers that support a wide range
of parameters of lattice-based cryptographic schemes proposed
for post-quantum cryptography. Both NTT and inverse NTT
operations can be performed using the unified butterfly unit of
our architecture, which constitutes the core building block in
NTT operations. The multitude of this unit plays an essential
role in achieving the performance goals of a specific application
area or platform. To this end, the architecture takes the size
of butterfly units as input and generates an efficient NTT-
based polynomial multiplier hardware to achieve the desired
throughput and area requirements. More specifically, the pro-
posed hardware architecture provides run-time configurability
for the scheme parameters and compile-time configurability for
throughput and area requirements. This work presents the first
architecture with both run-time and compile-time configurability
for NTT-based polynomial multiplication operations to the best
of our knowledge. The implementation results indicate that the
advanced configurability has a negligible impact on the time and
area of the proposed architecture and that its performance is on
par with the state-of-the-art implementations in the literature,
if not better. The proposed architecture comprises various sub-
blocks such as modular multiplier and butterfly units, each of
which can be of interest on its own for accelerating lattice-based
cryptography. Thus, we provide the design rationale of each sub-
block and compare it with those in the literature, including our
earlier works in terms of configurability and performance.

Index Terms—NTT, PQC, Polynomial Multiplication, Paramet-
ric, Hardware

I. INTRODUCTION

The progress in quantum computer technologies has gained
considerable momentum in recent years, which, in turn, calls
attention once again to the vulnerability of current public cryp-
tosystems to quantum computers. Lattice-based cryptography
has emerged as one of the most promising cryptographic con-
structions for post-quantum cryptography (PQC) as it is based
on a set of hard mathematical problems, which are conjectured
to be resistant against attacks by quantum computers. In the
NIST standardization process, which is in the third round as of
writing, five out of the seven remaining candidates are lattice-
based cryptographic schemes [1]. An efficient polynomial
multiplier, where most of the execution time of the majority
of lattice-based cryptosystems are expended, is conducive to
practicable implementations of lattice-based cryptography [2].
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It is a significant challenge to implement polynomial
multipliers efficiently for different platforms, from resource-
constrained micro-controllers used in IoT applications to pow-
erful data centers. IoT devices call for area-optimized and
power-optimized designs with less emphasis on throughput,
while data centers prefer throughput-optimized designs to meet
aggressive timing requirements [3]. Therefore, it is essential
to propose a design methodology that allows specifying area,
power, and throughput as design parameters. This feature of
the architecture is referred to as compile-time configurabil-
ity (CTC).

Providing run-time configurability (RTC) is also an essential
feature since it allows the hardware to be used in different PQC
schemes without requiring its recompilation. In addition, the
PQC schemes achieve different security levels by employing
different parameters, which also supports the claim of con-
figurability requirement. Thus, having a hardware implemen-
tation that supports various scheme parameters with run-time
configurability will allow us to choose dynamically between
different security levels of the same PQC scheme as well as
different PQC schemes.

The number-theoretic transform (NTT) is a popular method
utilized in the lattice-based cryptosystems to reduce the com-
plexity of multiplication in the polynomial rings, Rq =
Zq[x]/φ(m), where the coefficient modulus q and the degree
of the cyclotomic polynomial φm(x) = xn+1, n, are referred
to as the scheme parameters. The schoolbook polynomial
multiplication method has the complexity of O(n2) and NTT
reduces this complexity to O(n log n) [4]. When the poly-
nomial multiplication in Rq is performed using NTT, the
efficiency of the NTT operation determines the performance of
the cryptosystem to a great extent. An NTT multiplier, which
can work with various n and q values that appeared in various
PQC schemes without recompilation, is referred to as RTC.

The core processing unit in an NTT multiplier is the but-
terfly circuit, which can take different forms such as Cooley-
Tukey (CT) and Gentleman and Sande (GS) designs [5]. An
NTT multiplier that features a butterfly unit (BU), which
implements both CT and GS is referred to as a unified
multiplier. It enables the implementation of NTT and inverse
NTT (INTT) in the same circuit efficiently. An NTT-based
multiplier that can be recompiled with a different number of
BUs for throughput or time-area efficiency is referred to as
CTC.

A. Related Works
There are multitudes of implementations for NTT and NTT-

based polynomial multiplication operations of lattice-based
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TABLE I
CONFIGURABILITY OF WORKS IN THE LITERATURE

Work Platform n q BU

[10] Virtex-7 Fixed Fixed Fixed256 12-bit

[11] Artix-7 Fixed Fixed Fixed256 12-bit

[12] Virtex-7 Fixed Constant Fixed1024 32-bit

[13] RISC-V RTC RTC Fixedup to 1024 up to 32-bit

[14] 65 nm RTC RTC Fixedup to 1024 up to 16-bit

[15] Virtex-7 RTC RTC Fixedup to 4096 up to 32-bit

[16] 40 nm RTC RTC Fixedup to 2048 up to 24-bit

[17] Artix-7 RTC RTC Fixedup to 4096 up to 39-bit

[18] Virtex-6 CTC CTC Fixedup to 512 up to 13-bit

[19] Artix-7 CTC CTC Fixedup to 2048 up to 30-bit

[20] Virtex-7 CTC CTC CTCup to 4096 up to 60-bit

[21] 32 nm CTC CTC CTCup to 4096 up to 71-bit
This Virtex-7 RTC RTC CTCWork 256 to 1024 12-bit to 30-bit

cryptosystems for various platforms with different area power
and timing requirements. Those in [6], [7], [8], [9] are essen-
tially software implementations, which can support the imple-
mentations of many lattice-based algorithms; therefore, they
offer run-time configurability. Seiler [8] focused on optimizing
the NTT operation for the AVX2 instruction set on Intel pro-
cessors. Other works such as [6], [7], [9] proposed instruction
set extensions for RISC-V architecture for hardware/software
co-design. Since NTT is a highly parallelizable operation,
involving many multiply-accumulate operations, CPU imple-
mentations reached their full potentials in terms of timing
performance as they have a limited number of computational
units, which does not facilitate further parallelization. This
motivates research on parallel hardware implementations.

Some hardware architectures proposed in the literature
support multiple scheme parameters for PQC, such as [13],
[14], [16], [17], [18], [19]. However, their throughput and area
are determined at design time, and thus they do not provide
configurability thereof. There are also efforts for configurable
NTT design using HLS [4], [22], [23]. However, HLS does
not produce the most optimal design, leaving space for more
optimizations of design parameters for RTL developers.

To make most of these optimization opportunities, we
propose a novel architecture that can be used to obtain run-
time and compile-time configurable (RTC and CTC, respec-
tively) NTT-based polynomial multiplier architecture for NTT-
friendly PQC schemes. Specifically, the proposed architecture
provides RTC for scheme parameters (n and q) and CTC for
area and performance (i.e., the number of BU).

Table I gives a summary of the current designs in the
literature from the perspective of configurability. A parameter
being fixed means that the specified work only supports a
single parameter. If it is constant, it shows that the specified
work supports a parameter in a constant range, i.e., constant

dlog2(q)e bit-size. To the best of our knowledge, there are only
two designs in the table, which propose NTT architectures
providing compile-time configurability in terms of area and
performance [20], [21]. While the architecture in [20] supports
only the NTT operation, the one in [21] supports large scheme
parameters typically used in homomorphic encryption applica-
tions. There is also another work [24] not appearing in Table I,
which is exclusively designed for homomorphic encryption
(supporting scheme parameters q from 109 to 438 bits and
n from 4096 to 32768), which is therefore not comparable
with our work as ours focuses on optimized architectures
for relatively small parameters of lattice-based PQC schemes.
Finally, none of the designs in [20], [21], [24] provides run-
time configurability for scheme parameters.

B. Our Contribution

In this work, the proposed architecture can perform NTT,
INTT, and NTT-based polynomial multiplication operations
for NTT-friendly PQC schemes, namely CRYSTALS-KYBER
(Kyber) with old and new parameters [25], [26], NewHope-
512/1024 [27], CRYSTALS-DILITHIUM (Dilithium) [28],
Falcon-I/II [29], and qTESLA-q-I [30]. Besides, the proposed
multiplier can also be used for lattice-based schemes with
ring degrees ranging from 256 to 1024 and NTT-friendly
coefficients up to 30 bits. For instance, Fritzmann et al. [7]
showed that NTT operations for SABER scheme [31] can
be performed with three prime moduli. Thus, the proposed
architecture is also suitable for the SABER PQC scheme
without making any changes. Many algorithms benefit from
the cryptographic agility offered by our architecture. Although
some of the aforementioned schemes are not advanced to the
final round in NIST’s standardization process (i.e., NewHope)
or their parameter sets are changed (i.e., Kyber (v1)), they or
their variants still can be employed in different settings.

Furthermore, the architecture can be scaled to larger values
of n so that it can also be utilized in various other lattice-based
applications and schemes such as homomorphic encryption
than PQC schemes proposed for NIST’s competition. As
homomorphic encryption applications are beyond the scope
of this work, we include the implementations that are only
relevant for PQC applications in this paper.

The proposed architecture can generate intermediate hard
macroblocks in the hardware design process of lattice-based
cryptosystems. Therefore, to provide developers of lattice-
based cryptography with a better insight into the building
blocks of our architecture, we analyze and compare each block
with other similar proposals in the literature. We focus on
the differences in each block and give a summary of their
functionalities.

Specifically, our contribution in this paper is listed as
follows:
• We introduce a configurable hardware architecture of

NTT-based polynomial multiplier for lattice-based cryp-
tography that is optimized for FPGA implementation.

• We propose a run-time configurable word-level Mont-
gomery modular multiplier unit capable of multiplying
up to 30-bit coefficients of the polynomials in Rq and
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employing incomplete arithmetic [32]. This unit is con-
figured at run-time to support modular multiplication
operation on integers that have different bit lengths.
Note that we use word-level Montgomery algorithm with
NTT-friendly primes to decrease the complexity of the
operation.

• We propose a unified butterfly unit that can perform CT
and GS butterfly operations as the central processing
element in our design. It is possible to configure this unit
at run-time to be used for NTT, INTT and NTT-based
polynomial multiplication operations.

• The number of butterfly units can be configured at
compile-time to meet a particular design’s throughput and
area requirements. The CTC feature allows the architec-
ture to avail itself to different applications that operate
with a diverse set of requirements.

• We propose a configurable memory control unit that
handles writing and reading coefficients to and from
BRAMs of reconfigurable FPGA devices. The control
unit ensures the order between the processing elements
and the memory units. This unit dictates the state of the
overall design so that it is possible to employ NTT, INTT,
and NTT-based polynomial multiplication operations as
desired. The configurability of this unit allows us to
perform operations on polynomials with degrees ranging
from 256 to 1024 for a different number of butterfly units.

• We provide a code sample that implements the proposed
architecture via the GitHub repository (https://github.
com/kemalderya/pqc-param-ntt). Note that there is a lim-
ited number of open-source hardware-based NTT designs
in the literature. Our open-source hardware design can
be beneficial for future studies in this field. Moreover,
the researchers can easily integrate the NTT unit into
their design and adjust its performance by just changing
a single parameter.

The organization of the paper is as follows. Section II
introduces background information. In Section III, the pro-
posed hardware architecture is presented. Section IV presents
the implementation results compared to prior works, and
Section V concludes the paper.

II. BACKGROUND

This section presents the notation used throughout the paper
and the background on PQC and the NTT-based polynomial
multiplication.

A. Notation

The ring Zq consists of integers in [0, q) and uses two oper-
ations on them: modular addition and modular multiplication,
where q is the modulus. Also, φm(x) represents the cyclotomic
polynomial, which is the unique irreducible polynomial. The
cyclotomic polynomial has the form of φm(x) = xn + 1
where n is a power of two. Let Rq = Zq[x]/φm(x) represent
the polynomial ring reduced with φm(x) over Zq . Namely, it
represents the polynomials with coefficients in Zq and reduced
with φm(x). Slightly abusing the terminology, we refer n as
the degree of the ring.

Let lowercase letters (i.e., a) and boldface lowercase let-
ters (i.e., a or a(x)) represent integers and polynomials,
respectively. Let a represent the polynomial a in the NTT
domain (i.e., a = NTT(a)). Let, finally, ·, × and � represent
the integer, polynomial, and the NTT-domain multiplication
operations, respectively.

B. Lattice-based Cryptography

As the progress in the construction of quantum computers
has accelerated in recent years, PQC has raised interest in
academia as well as industry and different PQC schemes
have been proposed based on cryptographic constructions
such as lattice-based cryptography [28], [27], [30] and code-
based cryptography [33]. Lattice-based cryptography schemes
provide security even under worst-case scenarios, and they are
claimed to be more efficient, simple, and parallelizable than
other schemes [1].

Most of the lattice-based cryptosystems are based on the
Learning with Errors (LWE) problem. There are different
variants of the LWE problem that offer better performance
such as Ring-LWE (R-LWE) used in NewHope [27] and
Module-LWE (M-LWE) used in Kyber [25], [26]. The R-LWE
problem is formulated using the equation in Rq , b = a×s+e
(mod q), where a, b ∈ Rq are public parameters, s ∈ Rq is
the secret key, and e← D0,σ is the error polynomial, which
is also the element of Rq , whose coefficients are normally
distributed with zero mean and (a small) σ standard deviation.

Two hard problems are given for R-LWE: (i) search prob-
lem intends to find the value s when the pair (a, b) is given
and (ii) decision problem is to distinguish between the pair
(a, b) and a random pair sampled from a uniform distribution
over Rq . M-LWE problem uses matrices of ring elements (i.e.,
polynomials in Rq) instead of ring elements of R-LWE [31].

C. NTT-based Polynomial Multiplication

NTT is a discrete Fourier transform defined over Rq =
Zq[x]/φm(x). It facilitates fast convolutions over polynomials,
which, in turn, makes polynomial multiplication more effi-
cient. Let a(x) =

∑n−1
i=0 ai · xi represent a polynomial over

Rq with degree of n − 1. Then, NTT of a(x) can also be
represented in polynomial form, a(x) =

∑n−1
i=0 ai · xi over

Rq with degree of n−1, where coefficients ai can be defined
using Eqn. 1.

ai =

n−1∑
j=0

aj · ωi·j (mod q) for i = 0, 1, ..., n− 1 (1)

As the coefficients in the NTT domain, ai are computed over
n values of the coefficients in the polynomial domain ai, the
computation is sometimes referred to as n-point NTT.

The NTT operation uses a primitive n-th root of unity
constant called twiddle factor, ω ∈ Zq satisfying the conditions
ωn ≡ 1 (mod q), ωi 6= 1 (mod q) ∀i < n and q ≡ 1
(mod n). The inverse NTT (INTT) operation is performed
similarly except for using ω−1 ∈ Zq instead of ω and
multiplying the resulting coefficients with n−1 in Zq as the
last step in the computation of INTT.

https://github.com/kemalderya/pqc-param-ntt
https://github.com/kemalderya/pqc-param-ntt
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For random values of n, polynomial multiplication with
NTT/INTT requires the input polynomials to be padded with
0 coefficients of n and a polynomial reduction operation to be
performed to reduce the degree of the resulting polynomial to
at most n−1 as the last step of the ring multiplication. When
φm(x) has the form of xn + 1, however, negative wrapped
convolution technique can be used, eliminating the need for
padding the input polynomials and polynomial reduction. It
requires input and output polynomials to be multiplied with
the powers of ψ and ψ−1, respectively, which are referred
to as pre-processing and post-processing operations. Here, the
constant ψ is a primitive 2n-th root of unity satisfying the
conditions ψ2n ≡ 1 (mod q), ψi 6= 1 (mod q) ∀i < 2n and
q ≡ 1 (mod 2n).

Roy et al. proposed a method for merging the pre-processing
and NTT operations, which requires utilizing CT butterfly
structure for merged forward NTT operation [18]. Similarly,
Pöppelmann et al. proposed a similar method merging INTT
and post-processing operations, which requires utilizing GS
butterfly structure for merged inverse NTT operation [34].
Thus, the pre-processing and post-processing steps can be
eliminated from the computation by combining these ap-
proaches at the expense of using two different butterfly archi-
tectures. In our work, we employ this approach and performed
NTT-based polynomial multiplication operation as shown in
Eqn. 2, where NTTn and INTTn represent n-point (pt) merged
NTT and INTT operations, respectively.

c = INTTn((NTTn(a)� NTTn(b))) (2)

As shown in the subsequent sections, a unified design that
allows both CT and GS formulation to be supported in the
same unit is possible with minimum overhead in the hardware
(e.g., area and latency).

Lyubashevsky et al. proposed a new method for NTT-based
polynomial multiplication operation over Rq , where the pre-
processing and post-processing operations can be eliminated
while satisfying only q ≡ 1 (mod n) instead of q ≡ 1
(mod 2n) [26]. The Kyber scheme adopted this technique
and optimized its parameters (i.e., reducing q from 7681
to 3329 and saving one bit from the integer operations of
coefficients) and updated the NTT/INTT operation definition
accordingly [35]. The Kyber scheme with old parameters and
new parameters are referred to as Kyber (v1) and Kyber (v2),
respectively. The NTT-domain multiplication of Kyber (v2)
is also slightly different. In Kyber (v1), the NTT operation
generates 256 degree-0 polynomials, and the coefficient-wise
multiplication operation is performed with 256 modular multi-
plication operations. The NTT operation of Kyber (v2) outputs
128 degree-1 polynomials, and multiplication operation in the
NTT domain is performed with 128 polynomial multiplica-
tions over Zq[x]/(x2−ωi) where i depends on the position of
coefficients as shown in Algorithm 1. The unified merged NTT
and merged INTT algorithms for Kyber (v2), and other NTT-
friendly schemes are shown in Algorithm 2 and Algorithm 3,
respectively, where br(a, b) represents bit-reversal operation
on b-bit integer a and fd determines the type of NTT/INTT
operation (2 for Kyber (v2) and 1 for other schemes).

Algorithm 1 Algorithm of Multiplication in the NTT domain
for Kyber (v2) [26]

Input: a(x), b(x) ∈ Rq in bit-reversed order
Input: ω ∈ Zq
Output: c(x) ∈ Rq in bit-reversed order

1: for (i = 0; i < 128; i++) do
2: a0, a1, b0, b1 ← a[2i],a[2i+ 1], b[2i], b[2i+ 1]
3: c[2i]← (a0 · b1 + a1 · b0) mod q
4: c[2i+ 1]← (a1 · b1 · ωbr(i,7)+1 + a0 · b0) mod q
5: end for
6: return c

Algorithm 2 Unified Forward NTT Algorithm
Require: a(x) ∈ Rq , in natural order
Require: n, q, ω ∈ Zq (or ψ ∈ Zq)
Require: fd ∈ {1, 2} (final degree)
Ensure: a(x) ∈ Rq , in bit-reversed order

1: k, l, v = 1, (n/2), log2(n/fd)
2: while (l ≥ fd) do
3: for (s = 0; s < n; s = j + l) do
4: w, k = ωbr(k,v) (mod q), k + 1
5: for (j = s; j < (s+ l); j ++) do
6: t = a[j + l] · w (mod q)
7: a[j + l] = a[j]− t (mod q)
8: a[j] = a[j] + t (mod q)
9: end for

10: end for
11: l = l/2
12: end while
13: return a

III. PROPOSED WORK

In this section, the architectural details of the polynomial
multiplier are given hierarchically, starting from the word-
level Montgomery modular multiplier employing incomplete
arithmetic. Then, we present the unified butterfly unit, which
can perform both the GS and CT butterfly operations. Finally,
we present the configurable memory control and the overall
design. We also compare each building block with equivalent
blocks proposed in our earlier works and the works in the
literature.

A. Word-level Montgomery Modular Multiplier Unit

In this section, we first provide the details of our modular
multiplier unit and then compare it with those in other works
in the literature.

1) Our architecture: In our design, the modular multiplier
unit consists of two parts: (i) a 32-bit integer multiplier
(see Fig. 1) and (ii) a word-level Montgomery modular
reduction unit (see Fig. 2) for NTT-friendly primes, which
offers configurability for n and q parameters. The run-time
configurable word-level Montgomery modular reduction unit
utilizes the technique proposed in [12], employs incomplete
arithmetic [32]. Our unit offers RTC for a wide range of
scheme parameters and uses fixed word size. Therefore, it
has less hardware complexity compared to the other run-
time configurable word-level Montgomery modular multiplier
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Algorithm 3 Unified Inverse NTT Algorithm
Require: a(x) ∈ Rq , in bit-reversed order
Require: n, q, ω−1 ∈ Zq (or ψ−1 ∈ Zq)
Require: fd ∈ {1, 2} (final degree)
Ensure: a(x) ∈ Rq , in natural order

1: k, l, v = 0, fd, log2(n/fd)
2: while (l ≥ (n/2)) do
3: for (s = 0; s < n; s = j + l) do
4: w, k = ωbr(k,v)+1 (mod q), k + 1
5: for (j = s; j < (s+ l); j ++) do
6: a[j + l] = a[j] + a[j + l] (mod q)
7: a[j] = a[j]− a[j + l] (mod q)
8: a[j + l] = a[j + l] · w (mod q)
9: end for

10: end for
11: l = 2 · l
12: end while
13: for (i = 0; i < n; i++) do
14: a[i] = a[i] · n−1 (mod q)
15: end for
16: return a

Fig. 1. 32-bit Integer Multiplier Unit

architectures in the literature [15]. In particular, the modular
multiplier unit uses 8 DSP blocks and it can have up to five
clock cycles latency, depending on the modulus size.

As shown in Fig. 1, the 32-bit integer multiplier unit
multiplies the coefficients of the input polynomials, which can
be up to 32 bits, i.e., it computes d = a · b, where a, b < 232

and d < 264. In the first step, 32-bit inputs are divided into two
parts, including the upper and lower 16-bit parts of the inputs.
Then, 16-bit values are multiplied using four DSP blocks in
FPGA. The results are registered and added using a 32-bit
carry-save adder. The upper and lower 16-bit parts from DSP
blocks are appended to the result of the carry-save adder to
generate the multiplication result. Overall, the 32-bit integer
multiplier unit has two clock cycle latency.

The word-level Montgomery reduction unit, depicted in
Fig. 2, supports different parameters, and it is run-time
configurable. The word-level Montgomery reduction divides
reduction operation into smaller parts, and it leverages the spe-
cial form of the NTT-friendly primes with negative wrapped
convolution as shown in Eqns. 3-4, where w represents the
word size for reduction operation, as proposed in [12].

q ≡ 1 (mod 2n) (3)

Algorithm 4 Word-Level Montgomery Reduction Algorithm
Input: d = a · b (2K-bit integer)
Input: w = 8 (word size)
Input: L = dK+2

w e (iteration count)
Input: q (K-bit integer, q = qH · 2w + 1)
Output: c = d ·R−1 (mod q), R = 2w·L (mod q)

1: T = d
2: for (i = 0; i < L; i++) do
3: T1H = T � w
4: T1L = T (mod 2w)
5: T2 = −T1L (mod 2w)
6: Cin = T2[w − 1] ∨ T1L[w − 1]
7: T = T1H + (qH · T2[w − 1 : 0]) + Cin
8: end for
9: c = T

10: return c

q = qH · 2w + 1 where w = log2(2n) (4)

For k = dlog2(q)e, regular Montgomery reduction algo-
rithm takes d = a · b as input and calculates c = d · R−1
(mod q) as shown in Eqn. 5, where R = 2k and q′ = q−1

(mod R). The proposed technique in [12] divides the opera-
tion in Eqn. 5 into w-sized parts and redefines R for w-sized
operations as R′ = 2w. Thus, q′ = q−1 (mod 2w) becomes -1
when word size is selected as w ≤ log2(2n), which replaces
d·q′ (mod R) operation with simple 2’s complement. Finally,
w-sized reduction operation should be iterated for L = d kw e
times for reducing 2k-bit input d to k-bit output d · R−1
(mod q) where R is now 2w·L.

c =
d+ q · (d · q′ (mod R))

R
(5)

Selection of word size (w) significantly affects the perfor-
mance of modular reduction implementation since it deter-
mines the iteration count for w-sized operation (i.e., larger w is
favored for a fewer number of iterations). We target supporting
a wide range of parameters, and our architecture supports the
values of n ranging from 256 to 1024. Schemes with different
values of n can work with different word sizes, which require
slightly different computations. The naive solution would be
designing a modular reduction unit supporting multiple w
values for each n parameter as proposed in [15]. However,
this would require extra logic for configurability and increase
the hardware complexity. Therefore, in our architecture, we
select a fixed word size. Since we support Kyber (v2), which
works with n = 256 and q = 13 · 28 + 1, as the scheme with
the smallest parameters, we select w as 8. The word-level
Montgomery reduction algorithm is shown in Algorithm 4.

As shown in steps 5-7 of Algorithm 4, each w-sized
reduction step can be implemented using one 2’s complement
unit, one OR gate, and one DSP block in FPGA performing
multiply-and-accumulate operation x · y+ z+ cin. Therefore,
in this work, we used this approach for implementing one w-
sized reduction step. A complete reduction operation requires
L smaller w-sized reduction steps, which also determine the
number of DSP blocks in the design.

The Montgomery reduction operation requires an extra sub-
traction operation at the end to bring the result back to the in-
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terval [0, q) [12]. Therefore, in this work, we utilize incomplete
arithmetic in the Montgomery reduction operation so that the
subtraction operation at the end of the Montgomery reduction
algorithm is eliminated. In regular modular arithmetic, we
always work with integers in the range [0, q), and whenever an
intermediate value becomes larger than or equal to the modulus
q, a modular reduction operation is applied to bring it back in
the interval [0, q). A method called incomplete arithmetic [32]
avoids the reduction operation whenever possible to perform
word-level operations on the integers and eliminates the bit-
level operations, which slow down the arithmetic. Therefore,
instead of working in [0, q), our modular arithmetic units can
work with the integers in the range [0, 2k+1).

In our design, inputs of the Montgomery reduction operation
(a and b) should be in the range [0, 2k+1). The output (c)
should also stay in the same range for Montgomery reduction
unit to work correctly. Thus, no extra reduction or subtraction
will be required at the end of the Montgomery reduction
operation. This requires R to be at least 2k+2. When we
substitute these values into Eqn. 5, we show that output also
stays in the range [0, 2k+1) as shown in Eqn. 6-7. Since we
work with word-level Montgomery reduction, we define R as
2w·L where the iteration count L is now defined as dk+2

w e as
shown in Algorithm 4.

c <
d+ q · (d · q′ (mod R))

R
=

22k+2 + 2k · 2k+2

2k+2
(6)

c <
22k+2 + 22k+2

2k+2
=

22k+3

2k+2
= 2k+1 (7)

Since we work with fixed word size (w = 8), the maximum
supported size of coefficient modulus (k) determines the
iteration count. For an iteration count of 3, we can support
at most k = 3 · 8− 2 = 22, which does not support Dilithium
and qTESLA-q-I schemes. Therefore, we select the iteration
count as L = 4, enabling coefficient modulus size up to
k = 4 · 8 − 2 = 30. In the proposed hardware, we used four
DSP blocks in our modular reduction unit. When a parameter
set requiring an iteration count less than four (i.e., k = 12),
extra DSP blocks are not used, and proper output is selected
using output multiplexer. The proposed run-time configurable
word-level Montgomery reduction hardware is shown in Fig. 2,
where primitive output registers of DSP blocks are used for
improving the critical path. The proposed modular reduction
unit uses four DSP blocks, and its latency is three clock cycles.

The result of Algorithm 4 has an extra multiple R−1, which
needs to be eliminated by either multiplying the result or one
of the inputs by R. In this work, we used the latter approach
and multiplied constants ω/ω−1 and ψ/ψ−1 by R=2w·L before
loading to the hardware. For a better understanding of the
word-level Montgomery reduction algorithm, we provide a
Python script generating the steps of algorithm for different
parameters using sample input data in GitHub repository of
our work.

2) Comparison with other works: There are mainly three
approaches for implementing efficient modular reduction units
in hardware: (i) shift and add method, (ii) Montgomery
reduction and (iii) Barrett reduction. The shift and add method

Fig. 2. Reconfigurable Word-level Montgomery Reduction Unit

is suitable for q with special form [36], while Montgomery
and Barrett reduction techniques can work efficiently with ar-
bitrary q values. There are also table-based modular reduction
techniques that store the pre-computed reduced values in a
table and use a sliding window for performing reduction oper-
ation step by step [37], [38]. However, these implementations
mainly target applications working with very large values of
q. Thus, they are not included for comparison.

The modular reduction unit in [10] supports a modular
reduction for fixed q = 3329, which is used by Kyber (v2)
scheme. It utilizes a similar approach by Zhang et al. [39],
and it does not need to convert coefficients from Montgomery
domain. Since it is optimized for a fixed modulus; it does not
employ any multiplier unit for modular reduction operation.
However, it lacks configurability, and it does not have the
capabilities of our modular reduction unit. Similarly, the
modular reduction unit in [11] only supports a fixed value
q = 3329. It uses the Barrett reduction, but it does not have
any configurability options as our modular reduction unit.
Moreover, the modular reduction unit in [40] uses the Barrett
reduction for q values up to 16-bit. Even though it offers RTC,
it does not offer an operating window as large as what our
design offers for scheme parameters.

The work in [12] utilizes the word-level Montgomery re-
duction algorithm with a fixed word size of 11. It employs
three DSP units, supports the range 22 < dlog2(q)e ≤ 33,
and offers no configurability. More specifically, the modular
reduction unit in [12] does not provide RTC for q, unlike our
modular reduction unit offers.

The modular reduction unit in [20] also uses the word-
level Montgomery reduction technique, and it provides CTC
in which n, k, and w are fixed at the design time. Thus,
it uses a fixed number of DSP blocks and offers no run-
time flexibility for scheme parameters after the compilation
of the design. It would use fewer area resources than our
modular reduction unit since it is optimized to work with
a single parameter at the run-time. Therefore, it does not
have the configurability capabilities that our work offers.
Furthermore, Wang et al. [19] use the regular Montgomery
reduction algorithm for a coefficient modulus with constant
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bit size. Their design offers CTC for a set of parameters. The
complexity of their modular multiplier unit is low compared to
our unit; however, it lacks the run-time configurability options.

The modular multiplier hardware in [15] has RTC over
the scheme parameters. It uses the word-level Montgomery
reduction technique, and it chooses w as shown in Eqn. 3-
4. It has additional control hardware to change word size
(w) at run-time; therefore, it occupies more area than our
modular reduction unit although it provides similar level of
configurability. Additionally, it employs a fixed number of
DSPs, so it is only possible to configure it within a specific
range of coefficient sizes once it is compiled. The work in [16]
uses the Barrett algorithm for modular reduction. It offers RTC
for q by using control signals. The complexity of the unit
in [16] is high because it utilizes a different reduction unit for
each value of q; therefore, the occupied area increases.

Overall, the modular multiplier unit can be designed adopt-
ing different approaches as observed in the literature. It is, also,
expected that a reconfigurable unit increases the hardware area
to enhance its capabilities. However, this increase should be
negligible (if at all) as shown in our design.

B. Unified Butterfly Unit
1) Our architecture: The proposed unified butterfly unit

(BU) performs the butterfly operations for NTT/INTT. This
unit can be adjusted to perform CT or GS butterfly config-
urations. The CT configuration is used for NTT operation,
while the GS configuration for INTT operation. The proposed
butterfly unit uses one modular adder, one modular subtractor,
and one word-level Montgomery modular multiplier, as shown
in Fig. 3. The control input ct configures the output values,
even and odd, in run-time, depending on the operation, namely
NTT or INTT. For the NTT operation, the output values even
and odd are computed as a + b · w (mod q) and a − b · w
(mod q), respectively. For the INTT operation, the output
values become a+ b (mod q) and (a− b) · w (mod q). The
input w is set as a power of ω/ω−1 and ψ/ψ−1 for Kyber
(v2) and other schemes, respectively, for NTT and INTT
operations.

The word-level Montgomery modular multiplier unit can
have latency between 2 and 5 clock cycles based on the
selected parameters. The latency depends on the iteration count
L. Therefore, even and odd outputs need to be synchronized at
the output. In our work, we used extra registers for generating
extra delay for synchronization (shown as 2cc, 3cc, 4cc, 5cc
in Fig. 3). The control signal i, determined by the word-level
Montgomery reduction unit’s iteration count, selects a delay
path based on the parameters.

Polynomial multiplication requires coefficient-wise multi-
plication as shown in Eqn. 2, and it is possible to configure
butterfly units to perform coefficient-wise multiplication. The
butterfly unit with the GS configuration calculates (a− b) ·w
(mod q) as odd output. This output can be configured to
perform a · w (mod q) by setting the input b as zero and a,
w as input operands. In this work, we utilized this approach
for performing coefficient-wise multiplication.

Kyber(v2) uses different coefficient-wise multiplication that
requires multiply-accumulate operations, as shown in Al-

Fig. 3. Unified Butterfly Unit

gorithm 1. The proposed butterfly unit has add and sub
outputs used for reading the results of modular addition and
subtraction operations, respectively. These outputs are used
for performing modular arithmetic operations as shown in
Alg. 1. For Kyber(v2), the multiplication operation in the NTT
domain first takes two degree-1 polynomials and performs
multiplication for the coefficients of those polynomials. In the
proposed hardware, this is performed using the butterfly unit
in the GS configuration as already explained. These operations
generate a0 · b0, a0 · b1 a1 · b0 and a1 · b1 intermediate values.
Then, a modular adder is used to perform Step 3 of Alg. 1.
Finally, the butterfly unit is used with the CT configuration to
perform Step 4 for the a + b · w (mod q) operation. In this
configuration, a is set as a1 · b1, w is set as the appropriate
power of the twiddle factor and b is set as a0 · b0. We utilize
this approach to perform the NTT domain multiplication in
the Kyber(v2) scheme.

2) Comparison with other works: There are mainly three
approaches for implementing the butterfly operation in the
hardware efficiently: (i) only the GS configuration [12], [15],
[20], (ii) only the CT configuration [18] and (iii) unified
GS and CT configurations [10], [11], [16], [19], [40]. The
architectures using only GS or only CT configurations require
pre-processing and post-processing operations during the NTT-
based polynomial multiplication operation. For polynomial
degree n, this requires extra 2n modular multiplication op-
erations. As explained in Section II-C, the architectures with
a unified GS-CT butterfly unit can eliminate pre-processing
and post-processing operations by employing merged NTT
and INTT operations. However, those designs need more
control signals to configure for both operations; thus, these
architectures have higher complexity and area than those with
only GS and only CT configurations.

The butterfly unit in [10] utilizes a unified GS-CT configu-
ration approach to perform butterfly operations. It can perform
NTT, INTT, and coefficient-wise multiplication operations by
changing control signals. However, it only works for Kyber
(v2) scheme. It uses a technique by Zhang et al. [39] to
eliminate multiplying coefficients by n−1 (mod q) after INTT
operation. Similarly, the butterfly unit in [11] follows the same
approach for butterfly operations. These units offer Kyber (v2)
scheme optimizations and do not support any other scheme due
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to the fixed data length of the used arithmetic units.
The work in [12] uses the GS configuration for butterfly

operations. The number of modular arithmetic units is the
same as in our design. We gain configurability options by
using more control hardware besides having the same number
of modular arithmetic units. The butterfly unit in [20] uses
the same approach for the implementation of the butterfly
unit. The bit size of the supported coefficient modulus is
determined at compile-time. Therefore it is not possible to
change coefficient modulus at run-time. It does not have the
configurability options that our BU offers. Furthermore, the
design in [15] utilizes the same approach in the butterfly
unit. Even and odd outputs have seven clock cycle latency
in the unit in [15]; therefore, the latency stays the same
with different scheme parameters where our design offers
different delay paths. We use fewer clock cycles for the
butterfly operation while offering more configurability options.
Moreover, the design in [18] uses the CT configuration for
butterfly operations. It has less complexity than our design.
However, it lacks the configurability options offered by our
design.

The design in [19] uses a unified butterfly unit with CT
and GS configurations for butterfly operations. They utilize
both configuration hardware into a unified design to avoid
having two different hardware for two configurations. It fixes
the coefficient modulus at compile-time; therefore, it does
not offer RTC for scheme parameters. Furthermore, the work
in [16] uses the same approach for butterfly operations. Our
design uses one modular adder and subtraction unit, whereas
the unit in [16] has one more modular adder and modular
subtraction units. Similarly, the butterfly unit in [40] uses
a similar implementation with one more modular adder and
subtractor units. We utilize the same approach by having less
hardware resources compared to those units. Overall, poly-
nomial multiplication operations are performed with different
design approaches, and we see that the complexity of hardware
increases as it becomes configurable.

C. Configurable Memory Control and Overall Design

1) Our architecture: NTT/INTT algorithms shown in Al-
gorithms 2-3 operate on loop structures. It is possible to unroll
these loops and parallelize each operation. We can adjust the
throughput and parallelization by changing the number of BUs.
In our work, the number of butterfly units can be adjusted at
compile-time, where it needs to be power-of-two and can be
set as n/2 at maximum. Then, the proposed work generates
hardware with the desired number of butterfly units and other
necessary building blocks. For each butterfly unit, there are
two BRAMs (BRAM 0 and BRAM 1 in Fig. 4) for storing
input coefficients and one BRAM (BRAM TW in Fig. 4) for
storing precomputed powers of twiddle factors (or primitive
2n-th root of unity), as shown in Fig. 4.

Our design also has one compile-time parameter control unit
that generates the necessary control signals, read and write
address values for BRAMs based on the given parameters
and the number of butterfly units. The address values are
generated according to the ring size n. The depth of BRAMs

Fig. 4. Overall Design

storing input coefficients and the powers of twiddle factors are
determined as 512/BU and

∑i=9
i=0 2

min(512/BU,i), respectively,
where BU represents the number of butterfly units. The data
size of each BRAM address is set as 32-bit.

NTT (and INTT) algorithm consists of log2(n) − 1 and
log2(n) stages for Kyber (v2) and other schemes, respectively,
where each stage requires n/2 butterfly operations. An NTT
operation can be implemented using a divide-and-conquer
approach, where one NTT operation is divided into smaller
NTT operations after each stage. After the first stage of n-pt
NTT, the resulting coefficients can be processed using two
n/2-pt NTT operations. This property enables an efficient
addressing scheme that supports multiple n values. After each
stage, the size of NTT operation is halved, and this approach
is performed recursively. Therefore, an n-pt NTT operation
can use the control logic of n/2-pt NTT twice after the first
stage.

In the butterfly unit, an extra register is inserted for odd
output. This is used to write two consecutive output values
into the same BRAM block in two consecutive clock cycles as
required by the NTT algorithm. Moreover, the INTT operation
starts with smaller INTT operations and merges into larger
INTT operations recursively. The address pattern of INTT is
the same as NTT in reverse order.

The control unit generates two types of address values
for memory units during the first log2(n) − log2(BU) − 1
NTT stages. It switces back and forth between these two
types in consecutive clock cycles. The first type address
value starts with 0 and second type address value starts with
n/(2log2(BU)+s+2) where s is the NTT current stage. The
control unit increments both types of address values by one
in every two clock cycles; thus, the difference between them
stays the same. The control unit generates address values until
the second type address value becomes n/(2·BU)−1. For other
NTT stages, there is only one type of address value generated.
It starts with 0, and it increments by one for every clock cycle
until it becomes n/(2 · BU)− 1.

A design with n as 16 and two BUs has a memory
access pattern as shown in Fig. 5. In this scenario, the NTT
operation starts with coefficients pairs of 0th-8th and 1st-9th.
The coefficients are loaded into BRAMs as suitable to the
coefficient pairs before the NTT operation starts. In the first
two stages, the pattern shows a data dependency for BRAMs
where the coefficients of BU operations need to be written
on the same BRAM. During the first two stages, coefficients
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Fig. 5. Memory Access Pattern for n = 16 with two Butterfly Units

are read in an alternating order to overcome this problem,
i.e. 0,2,1,3 instead of 0,1,2,3. We use an extra register with
the odd output in BU to write the coefficients into the same
BRAM in consecutive clock cycles. After the first two stages,
the data dependency disappears, and the memory read pattern
is made by incrementing the address after each BU operation,
i.e., 0,1,2,3. After each operation, some coefficients need to be
stored in different BRAM to be used in different BU. We use
control signals to reorder the coefficients into suitable BRAMs
when needed. The memory pattern for the INTT operation is
the reverse of the NTT operation.

The control unit also produces address values for the
coefficient-wise multiplication operation. The coefficients of
a polynomial are stored in BRAMs in the address space from
0 to 512/BU. The control unit generates address values in this
range and necessary control signals for the butterfly unit. Then,
the butterfly unit performs the coefficient-wise multiplication
operation with the GS configuration as a, w and b inputs
take the first operand, the second operand, and the value of
zero, respectively. Coefficient-wise multiplication of the Kyber
(v2) scheme needs an address scheduling slightly different
than the regular coefficient-wise multiplication operation. As
shown in Steps 3-4 of Algorithm 1, it first requires modular
multiplication and then modular addition. In our design, we
first perform the necessary modular multiplication operation
and store intermediate results in BRAMs. Then, the butterfly
unit is used to perform Step 3 and Step 4 of Algorithm 1. The
proposed design works in constant time for a given parameter
set.

2) Comparison with other works: NTT-based polynomial
multipliers are generally implemented in two ways: (i) an
independent hardware accelerator [10], [12], [15], [20] and (ii)
a sub-block unit in a cryptographic hardware [11], [16], [19],
[18], [40]. Independent hardware accelerators utilize high-
performance features of FPGAs. Even though they show better
performance than those implemented as sub-blocks typically in
low-constrained devices, they need a host processor to operate.
Moreover, sub-block NTT multipliers are implemented on
low-constrained devices to lower the energy consumption;

thus, they prioritize low power over high performance.
The design in [10] introduces a hardware accelerator

for NTT-based polynomial multiplication in the Kyber (v2)
scheme. It follows a similar overall design concept with our
design. It uses BRAMs to store input polynomials, and it uti-
lizes a control unit to perform operations with a recursive NTT
approach. The control unit demonstrates a similar memory
access pattern to our design, and it is implemented to work
with the Kyber (v2) scheme; thus, it does not support any other
scheme. It uses Algorithm 1 for coefficient-wise multiplication
with pipeline optimizations. We gain configurability capacity
to accommodate other scheme parameters by using a slightly
more resources while showing similar performance for the
Kyber (v2) scheme compared to the design in [10] . Moreover,
we offer CTC for design parameters to tune the throughput
rate. The work in [12] follows the same approach for the
implementation of the overall design. It has a fixed number
of BRAMs and BUs; thus, it does not offer CTC for design
parameters. The overall design follows a similar memory
access pattern to perform operations while having no support
for the Kyber (v2) scheme. We have more configurabililty
options by having a slightly more complicated hardware.

The overall design in [15] introduces a hardware accelerator
with a similar design concept. The work uses a fixed number
of BRAMs and BUs, and it does not offer CTC options
to adjust the parallelism. Its control unit offers support for
different scheme parameters. The unit in [15] produces control
signals according to the chosen parameter set. Even though the
control unit offers RTC for scheme parameters, it uses many
complex multiplexers. The control signals are chosen using
multiplexers based on the current NTT stage. Our control
unit produces control signals by using much less hardware
that includes arithmetic operations and small multiplexers.
Our design utilizes the configurable control unit much more
efficiently. Furthermore, the design in [15] does not support
the Kyber (v2) scheme. We show a similar performance with
chosen parameter sets by having more configurability options.
The work in [20] shows a similar approach for the overall
design. The numbers of BRAMs and BUs are determined at
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compile-time; therefore, the design [20] can be configured
to adjust the throughput rate. The control unit is compiled
for a specific scheme parameter, and it follows a similar
memory access pattern. It is not possible to use its control
unit for different scheme parameters on run-time. We have
more configurability options by using a slightly more resources
compared to the design in [20].

The design in [11] implements Kyber (v2) cryptographic
scheme, using NTT structure to perform operations. NTT
multiplier is implemented as a sub-block, and it utilizes 2 BUs
with 2 RAM banks. The width of RAM banks is arranged
as the width of two coefficients pair. Coefficients pairs are
fetched from RAM banks to BUs, and the results are stored
back. The overall design in that work does not offer RTC for
different scheme parameters, and it is not possible to tune the
throughput rate. Compared to the unit in [11], we have more
configurabililty options by having a slighlty more hardware
resources. Furthermore, a configurable crypto-processor [16]
is implemented for PQC. It performs NTT multiplication and
utilizes single-port SRAM banks and a constant geometry NTT
structure to reduce hardware area. The constant geometry NTT
is an out-of-place operation that requires input and output
polynomials to be stored on different memory banks. Our
memory units store input and output polynomials simultane-
ously; thus, it uses fewer memory banks than the work in [16].

The work in [19] introduces cryptographic hardware for
PQC, and it utilizes a NTT-based polynomial multiplier. The
memory access pattern is modified to reduce the amount
of memory. The pattern is utilized to offer two butterfly
operations at the same time. They utilize four memory blocks
for NTT operation, where two of them store input polynomials
and two store twiddle factors. The control unit offers CTC for
the scheme parameters, and it is possible to use it for a specific
set of parameters. Similarly, the design in [18] uses a similar
implementation for the control unit with different memory
bank configurations. We offer RTC for the control unit, which
makes it applicable to various scheme parameters compared
to those units. As we have discussed, the overall design is
implemented in different ways for different applications. It
is reasonable to say that the overall design becomes more
complex to offer configurability.

IV. RESULTS AND COMPARISON

This section provides a discussion about our implementation
results and their comparison with the works in the literature.

A. Prior Works

There are a plethora of works in the literature presenting
efficient hardware and software implementations for PQC
schemes. A highly optimized AVX2 implementation of NTT
utilized in the NewHope and Kyber (v1) schemes is presented
in [8]. While Alkim et al. implemented Kyber (v2) and
NewHope schemes with ISA extension on RISC-V [9], the
work in [41] introduces Cortex-M3 implementations for the
Kyber (v2), Dilithium, and NewHope schemes.

A polynomial multiplier for the Kyber scheme (v2) is pre-
sented with optimizations for FPGA [10], and Banerjee et al.

TABLE II
RESOURCE UTILIZATION OF SUB-BLOCKS

BU Block Virtex-7 Artix-7
LUTs/FFs/DSPs/BRAMs

1

Overall 2128/1144/8/3 2119/1058/8/3
bMem. Con. 786/263/0/0 775/263/0/0
bBut. Unit 703/474/8/0 705/488/8/0
bMod. Mul. 239/186/8/0 241/100/8/0

8

Overall 10973/5422/64/12 10908/5182/64/12
bMem. Con. 1358/422/0/0 1358/422/0/0
bBut. Unit 7529/3400/64/0 7461/3160/64/0
bMod. Mul. 1926/1096/64/0 1918/856/64/0

32

Overall 61731/17846/256/48 63032/18182/256/48
bMem. Con. 7410/1457/0/0 7738/1466/0/0
bBut. Unit 46553/10728/256/0 47459/11096/256/0
bMod. Mul. 7680/1512/256/0 7690/1835/256/0

introduces a custom crypto-processor implemented on ASIC
for NIST’s round 2 candidates [16]. The hardware in [13]
presents a RISC-V architecture in ASIC and FPGA supporting
lattice-based PQC schemes. Fritzmann et al. [14] proposed
an ASIC implementation of a low-power NTT accelerator for
various PQC schemes. The work in [17] introduces RISC-V
instruction set extensions while utilizing NTT multiplier for
various PQC schemes. There are also NTT accelerators [4],
[20] that offer CTC for design parameters. The architecture
in [15] presents an accelerator for NTT-based multiplication
while having RTC for scheme parameters.

B. Implementation Results

Our design is implemented in Verilog and synthe-
sized using Vivado 2019.1 tool for Xilinx Virtex-7 FPGA
(xc7vx690tffg1761-2) and Artix-7 FPGA (xc7a200t-2fbg676c)
with default settings. Implementation results and their com-
parison with the works in the literature are presented in
Table III. The smallest implementation of our hardware design
employs one butterfly unit, which utilizes 2128 LUTs, 8
DSPs, 3 BRAMs and runs at 174 MHz on Virtex-7 FPGA.
Additionally, Table II presents the resource utilization of sub-
blocks on Virtex-7 and Artix-7 platforms. We also synthesized
our hardware accelerator for ASIC using a 32 nm standard
cell library. The synthesis results for the implementations with
different number of BU numbers excluding on-chip memory
are presented in Table III.

We present an area vs. latency graph for the proposed
hardware with a different number of butterfly units, as shown
in Fig. 6. As it requires only a single parameter change, our
design can easily be configured to work with different number
of butterfly units based on the area/performance requirements
of the application. For example, an application targeting high-
performance with fast or multiple SHA3 units will also require
a fast NTT unit. It should be noted that only the parts of
the works performing NTT operation for the same n and q
targeting the same platform make a meaningful comparison.
Therefore, the comparison presented in this section is not ideal,
and it should be considered an estimate.

The area optimized Kyber polynomial multiplier in our
earlier work [10] enjoys slightly better performance in com-
parison with the current design; but our previous architecture
in [10] does not have any support for other lattice-based PQC
schemes dissimilar from the current design. As expected, this
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TABLE III
IMPLEMENTATION RESULTS AND THEIR COMPARISON WITH OTHER WORKS

Design Platform n dlog2(q)e
LUT/FF/DSP/BRAM Freq. Latency (Clock Cycles)

(mm2 for ASIC) (MHz) NTT INTT P.M.

[16]† 40 nm CMOS
256 13

0.28 72
1289

– –512 14 2826
1024 14 6155

[4] Virtex-7

256 23 888 / – / 7 / 5

125

1096

– –

5K / – / 56 / 12 200

512 14 537 / – / 3 / 5.5 2340
2.5K / – / 24 / 12 324

1024 14 575 / – / 3 / 11 5160
17.1K / – / 96 / 48 200

[13]∗† Zynq-7000
256 12

2.9K / 170 / 9 / 0 45
1935 1930

–512 14 8169 8684
1024 14 18537 20171

[14]† UMC 65 nm
256 13

0.329 25
2056

– –512 14 4616
1024 14 10248

[10]∗ Spartan-6 256 12 985 / 444 / 1 / 5 138 904 904 3359Artix-7 948 / 352 / 1 / 2.5 190

[17]∗† Artix-7
256

– 2.4K / 1.9K / 7 / 4.5 153
3584

– –512 8192
1024 20480

[20] Virtex-7 1024 28 1K / 1K / 7 / 2 125 5290 – –16K / 14K / 56 / 24 490

[41]∗ Cortex-M3
256 12

– / – / – / – 16
10819 12994

–256 23 19347 21006
1024 14 77001 93128

[15]† Virtex-7
256

16 39.6K / – / 224 / 96 150
104

–
288

512 153 468
1024 249 815

Ours∗†

Virtex-7 256a 12 2128 / 1144 / 8 / 3 174 922 1184 3812
256a 13 1052 1314 3680

Artix-7 256a 23 2119 / 1058 / 8 / 3 117 1052 1318 3688
512a 14 2334 2854 8072

32 nm 1024a 14 0.053 462 5152 6182 17506
1024a 29 5162 6195 17552

Virtex-7 256b 12 11K / 5422 / 64 / 12 186 138 176 572
256b 13 156 197 550

Artix-7 256b 23 11K / 5182 / 64 / 12 140 156 198 552
512b 14 318 391 1100

32 nm 1024b 14 0.353 416 672 812 2296
1024b 29 682 819 2320

Virtex-7 256c 12 61K / 17K / 256 / 48 167 84 101 306
256c 13 95 112 319

Artix-7 256c 23 63K / 18K / 256 / 48 126 103 121 345
512c 14 126 141 428

32 nm 1024c 14 2.205 416 192 233 658
1024c 29 202 244 690

P.M.: Polynomial Multiplication; a: 1 BU; b: 8 BUs; c: 32 BUs; ∗: supports Kyber (v2); †: supports multiple n and q at run-time.

Fig. 6. Area vs Latency for n={256, 512, 1024} with Different Number of
Butterfly Units (BU)

additional functionality to support different schemes and CTC
& RTC come with an overhead in resource usage.

Our proposed design with one butterfly unit (i.e., one-BU
design) uses similar levels of resources as those architectures
in [13], [14], [17] with similar configurability capabilities (i.e.
all three offering RTC as our one-BU design). Our one-BU
design performs one NTT operation with much lower latency
than them; thus, it offers better performance. Compared to the
NTT unit of the custom crypto-processor Sapphire [16], our
one-BU design offers improved performance with higher fre-
quency and fewer clock cycles. Moreover, the one-BU design
has much lower latency than Cortex-M3 implementation [41]
for one NTT operation.

Our previous works in [4], [20] propose polynomial mul-
tipliers with CTC capability but no RTC. Our designs in
this work show comparable performance results using slightly
more resources than those designs in [4], [20]. Since the
current design offers RTC for scheme parameters, these results
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confirm our hypothesis that both RTC and CTC are possible
without sacrificing performance.

The NTT-based polynomial hardware in another work of
ours [15] attains similar performance with our current 32-BU
design. It uses a fixed number of BUs, and therefore, it is
impossible to use parallelism to control the throughput rate.
It offers RTC for scheme parameters and no support for the
Kyber (v2) scheme. It uses fewer resources than ours, but it
does not work in our operating window and does not have the
configurability options offered with the current design.

V. CONCLUSION

In this paper, we present a highly configurable NTT-
based polynomial multiplier architecture for NTT-friendly
PQC schemes. The proposed architecture provides run-time
configurability for scheme parameters (i.e., n and q) and
compile-time configurability for area and performance (i.e.,
the number of butterfly units). We also present the differences
in the adopted design approaches by our design and other
similar designs in the literature and especially emphasize
configurability options offered by each design.

The proposed architecture can perform NTT, INTT, and
NTT-based polynomial multiplication operations for ring sizes
ranging from 256 to 1024 and coefficient modulus up to
30 bits, targeting NTT-friendly lattice-based PQC schemes.
Therefore, Our architecture can be utilized as an accelerator
in lattice-based PQC schemes, and it allows adjusting the
trade-off between area and performance by changing a single
parameter.

We implemented our architecture with various configu-
rations both in FPGA and ASIC as target platforms and
compared our results with those representing the state-of-art in
the literature. As we have shown in Table III, the performance
of our design is almost as efficient as other designs (including
the fastest ones) in terms of latency. On one hand, the run-
time configurability of our architecture for various scheme
parameters provides acceleration support for a wide range of
lattice-based PQC schemes. Its compile-time configurability
for the time-area metric, on the other hand, can be used to meet
specific design constraints. To the best of our knowledge, there
is no other work in the literature that offers both. We achieved
this with no impact on latency and with a negligible increase
in the area.

ACKNOWLEDGEMENTS

This research is supported in part by the by The Scientific
and Technological Research Council of Turkey under Grant
Number 118E725.

REFERENCES

[1] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone, “Report on post-quantum cryptography,” 2016-04-28
2016.
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