
An Alternative Approach for Computing
Discrete Logarithms in Compressed SIDH

Kaizhan Lin1, Weize Wang1, Lin Wang2, and Chang-An ZhaoB1,3

1 School of Mathematics, Sun Yat-sen University,
Guangzhou 510275, P. R. China

linkzh5@mail2.sysu.edu.cn
wangwz@mail2.sysu.edu.cn

zhaochan3@mail.sysu.edu.cn
2 Science and Technology on Communication Security Laboratory,

Chengdu 610041, Sichuan, P. R. China
linwang@math.pku.edu.cn

3 Guangdong Key Laboratory of Information Security,
Guangzhou 510006, P. R. China

Abstract. Currently, public-key compression of supersingular isogeny
Diffie-Hellman (SIDH) and its variant, supersingular isogeny key en-
capsulation (SIKE) involve pairing computation and discrete logarithm
computation. In this paper, we propose novel methods to compute only 3
discrete logarithms instead of 4, in exchange for computing a lookup ta-
ble efficiently. The algorithms also allow us to make a trade-off between
memory and efficiency. Our implementation shows that the efficiency of
our algorithms is close to that of the previous work, and our algorithms
perform better in some special cases.

Keywords: Isogeny-based Cryptography · SIDH · SIKE · Public-key
Compression · Discrete Logarithms

1 Introduction

Isogeny-based cryptography has received widespread attention due to its small
public key sizes in post-quantum cryptography. The most attractive isogeny-
based cryptosystems are supersingular isogeny Diffie-Hellman (SIDH) [11] and
its variant, supersingular isogeny key encapsulation (SIKE) [3]. The latter one
was submitted to NIST, and now it still remains one of the nine key encapsulation
mechanisms in Round 3 of the NIST standardization process.

Indeed, Public key sizes in SIDH/SIKE can further be compressed. Azarder-
akhsh et al. [4] firstly proposed a method for public-key compression, and later
Costello et al. [6] proposed new techniques to further reduce the public-key size
and make public-key compression practical. Zanon et al. [20,21] improved the im-
plementation of compression and decompression by utilizing several techniques.
Naehrig and Renes [14] employed the dual isogeny to increase performance of
compression techniques, while the methods for efficient binary torsion basis gen-
eration were presented in [16].

However, the implementation of pairing computation and discrete logarithm
computation are still bottlenecks of public-key compression of SIDH/SIKE. Lin
et al. [13] saved about one third of memory for pairing computation and made
it perform faster. To avoid pairing computation, Pereira and Barreto [15] com-
pressed the public key with the help of ECDLP. As for discrete logarithms,
Hutchinson et al. [10] utilized signed-digit representation and torus-based repre-
sentation to reduce the size of lookup tables for computing discrete logarithms.
Both of them compress discrete logarithm tables by a factor of 2, and the for-
mer one reduces without any computational cost of lookup table construction.
It makes practical to construct the lookup tables without precomputation.

In the current state-of-the-art implementation, there are four values to be
obtained in discrete logarithm computation. Note that one of the four values
must be invertible in Zℓeℓ . One only needs to get three new values [6] by per-
forming one inversion and three multiplications in Zℓeℓ , and then transmit them.
It is natural to ask whether one can compute the three transmitted values di-
rectly during discrete logarithm computation.

In this paper, we propose an alternative way to compute discrete logarithms.
We summarize our work as follows:

– We propose a trick to compute only 3 discrete logarithms to compress the
public key, in exchange for computing a lookup table efficiently.

– Currently, the algorithm used for discrete logarithm computation in com-
pressed SIDH/SIKE is recursive. Inspired by [5], we present a non-recursive
algorithm to compute discrete logarithms.

– We propose new algorithms to compute discrete logarithms in public-key
compression of SIDH/SIKE. Our experimental results show that the effi-
ciency of new algorithms is close to that of the previous work. Furthermore,
our algorithms may perform well in storage constrained environments since
we can make a memory-efficiency trade-off.

The sequel is organized as follows. In Section 2 we review the techniques
that utilized for computing discrete logarithms in public-key compression. In
Section 3 we propose new techniques to compute discrete logarithms without
precomputation. We compare our experimental results with the previous work
in Section 4 and conclude in Section 5.

2 Notations and Preliminaries

2.1 Notations

In this paper, we use EA : y2 = x3 + Ax2 + x to denote a supersingular Mont-
gomery curve defined over the field Fp2 = Fp[i]/⟨i2 + 1⟩, where p = 2e23e3 − 1.
Let E6[2

e2] = ⟨P2, Q2⟩ and E6[3
e3] = ⟨P3, Q3⟩. We also use ϕ2 and ϕ3 to de-

note the 2e2 -isogeny and 3e3 -isogeny, respectively. Besides, we define µn to be a
multiplicative subgroup of order n in F∗

p2 , i.e,

µn = {δ ∈ F∗
p2 |δn = 1}.

As usual, we denote the cost of one Fp2 field multiplication and squaring by M
and S, respectively. We also use m and s to denote the cost of one multiplication
and squaring in the field Fp. When estimating the cost, we assume that M ≈ 3m,
S ≈ 2m and s ≈ 0.8m.

2.2 Public-key Compression

In this subsection, we briefly review public-key compression of SIDH/SIKE, and
concentrate on computing discrete logarithms. We only consider how to compress
two points of order 3e3 , while the other case is similar. We refer to [11,7,8,3] for
more details of SIDH and SIKE. For their security analysis, see [9,12,17,1].

Azarderakhsh et al. [4] first presented techniques to compress the public
key. The main idea is to generate a 3e3 -torsion basis ⟨U3, V3⟩ by a deterministic
pseudo-random number generator, and then utilize this basis to linearly represent
ϕ2(P3) and ϕ2(Q3). That is,[

ϕ2 (P3)
ϕ2 (Q3)

]
=

[
a0 b0
a1 b1

] [
U3

V3

]
. (1)

Note that

r0 = e3e3 (U3, V3) ,

r1 = e3e3 (U3, ϕ2 (P3)) = e3e3 (U3, a0U3 + b0V3) = rb00 ,

r2 = e3e3 (U3, ϕ2 (Q3)) = e3e3 (U3, a1U3 + b1V3) = rb10 ,

r3 = e3e3 (V3, ϕ2 (P3)) = e3e3 (V3, a0U3 + b0V3) = r−a0
0 ,

r4 = e3e3 (V3, ϕ2 (Q3)) = e3e3 (V3, a1U3 + b1V3) = r−a1
0 .

(2)

Therefore, with the help of bilinear pairings, one can compute a0, a1, b0 and b1
by computing four discrete logarithms in the multiplicative group µ3e3 .

Instead of (ϕ2 (P3) , ϕ2 (Q3)), one could transmit the tuple (a0, b0, a1, b1, A).
Costello et al. [6] observed either a0 ∈ Z∗

3e3 or b0 ∈ Z∗
3e3 since the order of

ϕA (PB) is 3e3 , and concluded that the public key could be compressed to the
tuple(

a−1
0 b0, a

−1
0 a1, a

−1
0 b1, 0, A

)
, or

(
b−1
0 a0, b

−1
0 a1, b

−1
0 b1, 1, A

)
if a0 /∈ Z∗

3e3 .

Zanon et al. [21] proposed another new technique, called reverse basis decom-
position, to speed up the performance of computing discrete logarithms. Note
that ⟨ϕ2 (P3) , ϕ2 (Q3)⟩ is also a 3e3 -torsion basis of EA. The coefficient matrix
in Equation (1) is invertible, i.e.,[

U3

V3

]
=

[
c0 d0
c1 d1

] [
ϕ2 (P3)
ϕ2 (Q3)

]
, where

[
c0 d0
c1 d1

]
=

[
a0 b0
a1 b1

]−1

.

Correspondingly, the following pairing computation substitutes for Equa-
tion (2):

r0=e3e3 (ϕ2 (P3) , ϕ2 (Q3))=e3e3 (P3, Q3)
2e2

,

r1=e3e3 (ϕ2 (P3) , U3)=e3e3 (ϕ2 (P3) , c0ϕ2 (P3) + d0ϕ2 (Q3))=rd0
0 ,

r2=e3e3 (ϕ2 (P3) , V3)=e3e3 (ϕ2 (P3) , c1ϕ2 (P3) + d1ϕ2 (Q3))=rd1
0 ,

r3=e3e3 (ϕ2 (Q3) , U3)=e3e3 (ϕ2 (Q3) , c0ϕ2 (P3) + d0ϕ2 (Q3))=r−c0
0 ,

r4=e3e3 (ϕ2 (Q3) , V3)=e3e3 (ϕ2 (Q3) , c1ϕ2 (P3) + d1ϕ2 (Q3))=r−c1
0 .

(3)

In this situation one needs to transmit

(−d−1
1 d0,−d−1

1 c1, d
−1
1 c0, 0, A), or (−d−1

0 d1, d
−1
0 c1,−d−1

0 c0, 1, A) if d1 /∈ Z∗
3e3 .

Since the value r0 only depends on public parameters, the arbitrary order
of r0 could be precomputed to improve the implementation of computing dis-
crete logarithms. In addition, note that the order of the group µ3e3 is smooth.
Therefore, four discrete logarithms could be computed by using Pohlig-Hellman
algorithm [18] , as we will describe in the following subsection.

2.3 Pohlig-Hellman algorithm

Pohlig-Hellman algorithm is an algorithm which is used to efficiently compute
discrete logarithms in a group whose order is smooth. For a discrete logarithm
h = gx ∈ µℓeℓ , one could simplify it to eℓ discrete logarithms in a multiplicative
group of order ℓ.

Algorithm 1 Pohlig-Hellman Algorithm
Ensure: ⟨g⟩: multiplicative group of order ℓeℓ ; h: challenge.
Require: x: integer x ∈ [0, ℓeℓ) such that h = gx.
1: s← gℓ

eℓ−1 , x← 0, h0 ← h;
2: for i from 0 to eℓ − 1 do
3: ti ← hℓeℓ−1−i

i ;
4: find xi ∈ {0, 1, · · · , ℓ− 1} such that ti = sxi ;
5: x← x+ xi · ℓi, hi+1 ← hi · g−xiℓ

i ;
6: end for
7: return x.

As we can see in Algorithm 1, a lookup table

T1[i][j] = g−jℓi , i = 0, 1, · · · , eℓ − 1, j = 0, 1, · · · , ℓ− 1,

can be precomputed to save the computational cost. Besides, one can also use a
windowed version of Pohlig-Hellman algorithm to simplify the discrete logarithm
to eℓ

w discrete logarithms in a group of order L = ℓw, where w|eℓ. The windowed

version of Pohlig-Hellman algorithm reduces the loop length, but it consumes
more storage.

When w does not divide eℓ the procedure needs some modifications. Zanon
et al. handled this situation by storing two tables [21, Section 6.2]:

T1[i][j]=g−jℓwi

, i = 0, 1, · · · , eℓ − 1;

T2[i][j] =

{
g−j , if i = 0,

g−jℓw(i−1)+eℓmodw

, otherwise;
(4)

where j = 0, 1, · · · , ℓeℓ − 1. This doubles the storage compared to the situation
when w divides eℓ.

2.4 Optimal Strategy

The time complexity of Algorithm 1 is O(e2ℓ). However, this strategy is far from
optimal [19]. Inspired by the optimal strategy of computing isogenies [11], Zanon
et al. [21] claimed that one can also adapt the optimal strategy into Pohlig-
Hellman algorithm, reducing the time complexity to O(eℓ log eℓ) in the end.

Let △n be a graph containing the vertices {△j,k|j+k ≤ n− 1, j ≥ 0, k ≥ 0},
satisfying the following properties:

– Each vertex △j,k(j + k < n− 1, j > 0, k > 0) has either two outgoing edges
△j,k →△j+1,k and △j,k →△j,k+1, or no edges at all;

– Each vertex △j,0(0 < j < n− 1) has only one outgoing edge △j,0 →△j+1,0,
and △0,k(0 < k < n− 1) has only one outgoing edge △0,k →△0,k+1;

– Each vertex △j,k(j+ k = n− 1) has no edges, called leaves; We also call the
vertex △0,0 the root.

A subgraph is called a strategy if it contains a given vertex △j,k such that
all leaves and vertices can be reached from △j,k. A strategy △′

n of △n is full if it
contains the root △0,0 and all leaves △j,k(j + k = n− 1). Assigning the weights
p, q > 0 to the left edges and the right edges, respectively, 4 we can define the
cost of an optimal strategy △′

n by

Cp,q(n) =

{
0, if n = 1,

min {Cp,q(i) + Cp,q(n− i) + (n− i)p+ iq | 0 ≤ i ≤ n} , if n > 1.
(5)

By utilizing Equation (5), the optimal strategy could be attained by [21,
Algorithm 6.2].

2.5 Signed-digit Representation

Hutchinson et al. [10] reduced the memory for computing discrete logarithms
by utilizing signed-digit representation [2]. Here we only introduce the situation
4 In this case, they are the cost of raising an element in µp+1 to ℓw-power and one

multiplication in Fp2 , respectively.

when w divides eℓ, while the other situation when w does not divide eℓ one needs
to store an additional table, but the handling is similar.

Instead of limiting x = logg h ∈ {0, 1, · · · , ℓeℓ − 1}, we represent it by

x =

eℓ/w−1∑
k=0

D′
kL

k,

where L = ℓw and D′
k ∈ [− ⌈L−1⌉

2 , ⌈L−1⌉
2]. It seems that in this case we need to

store

T sgn
1 [i][j] = gjL

i

, i = 0, 1, · · · , eℓ
w
− 1, j ∈ [−⌈L− 1

2
⌉, ⌈L− 1

2
⌉].

Since for any element a+ bi ∈ µp+1 (a, b ∈ Fp) and p ≡ 3 mod 4,

(a+ bi)p+1 = 1 = (a+ bi)(a+ bi)p = (a+ bi)(ap + bpip) = (a+ bi)(a− bi).

Hence, one inversion of an arbitrary element in µp+1 is equal to its conjugate.
This property guarantees one can reduce the table size by a factor of 2, i.e.,

T sgn
1 [i][j] = gjL

i

, i = 0, 1, · · · , eℓ
w
− 1, j ∈ [1, ⌈L− 1

2
⌉].

Remark 1. All the values in Column 0, i.e., T sgn
1 [i][0], are equal to g0 = 1. This

is the reason why we do not need to precompute and store them.

In fact Hutchinson et al. took advantages of torus-based representation of
cyclotomic subgroup elements to further reduce the table size by a factor of 2.
Since this technique is difficult to be utilized into this work, we do not review
here and refer the interested reader to [10] for more details.

2.6 Section Summary

The implementation of computing discrete logarithms in public-key compression
of SIDH/SIKE has been optimized in recent years. However, it is still one of the
main bottlenecks of key compression.

To summarize, we propose Algorithm 2 to compute discrete logarithms by
utilizing the techniques mentioned above.

3 Computing Discrete Logarithms Without Precomputed
Tables

As mentioned in Section 2.2, one needs to compute four discrete logarithms in
the multiplicative group ⟨r0⟩ during public-key compression. Since r0 is fixed,
the techniques mentioned above are put to good use. In this section, we present
another method to compute discrete logarithms, offering a time-memory trade-
off as well.

Algorithm 2 Traverse(r, j, k, z, S, T sgn
1 , L, D): Improved Pohlig-Hellman

Algorithm [21] [10]
Ensure: h: value of root vertex △j,k (i.e., challenge); j, k: coordinates of root vertex
△j,k; z: number of leaves in subtree rooted at vertex △j,k; S: optimal strategy;
T sgn
1 : lookup table; L: ℓw.

Require: D: Array such that h = g(D[
eℓ
w

−1]···D[1]D[0])
L .

1: if z > 1 then
2: t← S[z];
3: h′ ← hLz−t ;
4: Traverse(h′, j + (z − t), k, t, S, T sgn

1 , L,D);
5: h′ ← h ·

∏k+t−1
l=k (T sgn

1 [j + l][|D[k]| − 1])−sign(D[k]);
6: Traverse(h′, j, k + t, z − t, S, T sgn

1 , L,D);
7: else
8: if h = 1 then
9: D[k]← 0.

10: else
11: find xk ∈ {0, · · · , ⌊ ℓ

w−1
2
⌋} such that h = T sgn

1 [eℓ
w
− 1][xk + 1] or h =

T sgn
1 [eℓ

w
− 1][xk + 1];

12: if h = T sgn
1 [eℓ

w
− 1][xk + 1] then

13: D[k]← xk + 1;
14: else
15: D[k]← −xk − 1;
16: end if
17: end if
18: end if
19: return D.

3.1 Three Discrete Logarithms

Note that the main purpose of computing discrete logarithms is to compute
three values (−d−1

1 d0,−d−1
1 c1, d

−1
1 c0) (or (−d−1

0 d1, d
−1
0 c1,−d−1

0 c0) when d1 is
not invertible in Zℓeℓ). For simplicity, we assume that d1 is invertible and aim
to compute (−d−1

1 d0,−d−1
1 c1, d

−1
1 c0).

Since d1 is invertible in Zℓeℓ , we can deduce that r2 = rd1
0 is a generator of the

multiplicative group ⟨r0⟩. Hence, instead of computing four discrete logarithms
of r1, r2, r3, r4 to the base r0 (defined in Equation (3)), we consider three discrete
logarithms of r1, r3, r4 to the base r2. It is clear that

r1 = rd0
0 = r

d1·d−1
1 ·d0

0 = r
d−1
1 d0

2 ,

r3 = rc00 = r
d1·d−1

1 ·c0
0 = r

d−1
1 c0

2 ,

r4 = rc10 = r
d1·d−1

1 ·c1
0 = r

d−1
1 c1

2 .

In other words, we only need to compute three discrete logarithms to com-
press the public key. Since it is unnecessary to compute d−1

1 and multiply it
by d0, c0 and c1, we also save one inversion and three multiplications in Zℓeℓ .

Unfortunately, computing discrete logarithms to the base r0 when lookup tables
are available are much more efficient than computing discrete logarithms to the
base r2. Furthermore, it is impossible to precompute values to improve the per-
formance due to the fact that the base r2 depends on d1. Hence, compared to
the previous work in the case where w|eℓ, one needs to efficiently construct the
lookup table

T sgn
1 [i][j] = (r2)

(j+1)Li

, i = 0, 1, · · · , eℓ
w
− 1, j = 0, 1, · · · , ⌈L− 1

2
⌉ − 1. (6)

Zanon et al. handled the situation when w ∤ eℓ to precompute an extra
lookup table, as described in Equation (4). Inspired by the method proposed
by Pereira et al. when handling ECDLP [15, Section 4.4], we present a similar
approach for computing discrete logarithms when w ∤ eℓ. That is, instead of
discrete logarithms of r1, r3, r4 to the base r2, we compute discrete logarithms
of (r1)ℓ

m , (r3)ℓ
m , (r4)ℓ

m to the base r2, where m = eℓ mod w. Correspondingly,
the lookup table should be modified by the following:

T sgn
1 [i][j] = r

(j+1)Li+ℓm

2 , i = 0, 1, · · · , ⌊eℓ
w
⌋ − 1, j = 0, 1, · · · , ⌈L− 1

2
⌉ − 1.

In this situation, we recover the values d−1
1 d0(mod ℓeℓ−m), d−1

1 c0(mod ℓeℓ−m)
and d−1

1 c1(mod ℓeℓ−m). Afterwards, we compute the three values as follows:

r1 · (r2)−d−1
1 d0 mod ℓeℓ−m

= (r2)
d−1
1 d0−(d−1

1 d0 mod ℓeℓ−m) ,

r3 · (r2)−d−1
1 c0 mod ℓeℓ−m

= (r2)
d−1
1 c0−(d−1

1 c0 mod ℓeℓ−m) ,

r4 · (r2)−d−1
1 c1 mod ℓeℓ−m

= (r2)
d−1
1 c1−(d−1

1 c1 mod ℓeℓ−m) .

(7)

Finally, we compute three discrete logarithms of the above values to the base
(r2)

ℓeℓ−m to recover the full digits of three values −d−1
1 d0, −d−1

1 c1 and d−1
1 c0.

Since ⟨(r2)ℓ
eℓ−m⟩ is a multiplicative subgroup of ⟨(r2)ℓ

eℓ−w⟩, we can regard
the last three discrete logarithms as the discrete logarithms to the base (r2)

ℓeℓ−w ,
which are computed efficiently with the help of the lookup table. However, the
computation in Equation (7) is not an easy task. Therefore, except the construc-
tion of the lookup table, we also take into account how to obtain the three values
mentioned in Equation (7) with high efficiency when w ∤ eℓ.

3.2 Base Choosing

Before constructing the lookup table, it is necessary to check whether r2 is a
generator of the multiplicative group ⟨r0⟩. If not, we choose r1 to be the base of
discrete logarithms and construct the corresponding lookup table.

Note that in this case, d1 is unknown. So we can not determine the order of
r2 by computing the greatest common divisor of d1 and ℓeℓ . Instead, we compute

(r2)
ℓeℓ−1 to check whether it is equal to 1. For any element δ = u + vi ∈ µp+1,

we have
δ2 =(u+ vi)2

=u2 − v2 + 2uvi

=u2 − v2 + (1− u2 − v2)i,

δ3 =(u+ vi)3

=u3 + 3u2vi− 3uv2 − v3i

=u3 + 3u2 · vi− 3u(1− u2)− (1− u2) · vi
=− 3u+ 4u2 · u+ (4u2 − 1) · vi.

(8)

Hence, we can efficiently compute (r2)
ℓeℓ−1 by squaring or cubing eℓ − 1 times

with respect to ℓ and check whether it is equal to 1. Another advantage is that
we also compute the values in the first column of the lookup table when r2 is a
generator of ⟨r0⟩. Furthermore, when r2 is a generator, the intermediate values

C[i] = (r2)
ℓi , i = 0, 1, · · · , eℓ −m, (9)

could be utilized to speed up the performance when w does not divide eℓ. When
r1 is a generator, one can also construct the array

C[i] = (r1)
ℓi , i = 0, 1, · · · , eℓ −m,

with a few additional square or cube operations. We will explain the reason why
we also require these values in Section 3.4.

We present Algorithm 3 for determining the base of discrete logarithms and
computing the values in the first column of the lookup table. We also output
the intermediate values that are used to improve the performance of discrete
logarithms when w ∤ eℓ.

Algorithm 3 choose_base(ℓ, eℓ, w, r1, r2)
Ensure: w : base power; r1, r2: elements defined in Equation (3); label: sign bit

used to mark the choice of the generator.
Require: A: values in the first column of the lookup table; C: intermediate

values used to improve the performance of discrete logarithms when w ∤ eℓ.
1: label← 1, A[0]← r2, C[0]← r2, j ← 0;
2: for i from 0 to (eℓ mod w)− 1 do
3: A[0]← (A[0])

ℓ, j ← j + 1, C[j]← A[0];
4: end for
5: for i from 1 to ⌊ eℓw ⌋ − 1 do
6: A[i]← A[i− 1];
7: for k from 0 to w − 1 do
8: A[i]← (A[i])

ℓ, j ← j + 1, C[j]← A[i];
9: if A[i] = 1 then

10: label← 0, break.

11: end if
12: end for
13: end for
14: if label = 1 then
15: t← A[⌊ eℓw ⌋ − 1];
16: for i from 0 to w − 2 do
17: t← tℓ, j ← j + 1, C[j]← t;
18: if t = 1 then
19: label← 0, break.
20: end if
21: end for
22: end if
23: if label = 0 then
24: A[0]← r1, C[0]← r1, j ← 0;
25: for i from 0 to (eℓ mod w)− 1 do
26: A[0]← (A[0])

ℓ, j ← j + 1, C[j]← A[0];
27: end for
28: for i from 1 to ⌊ eℓw ⌋ − 1 do
29: A[i]← A[i− 1];
30: for k from 0 to w − 1 do
31: A[i]← (A[i])

ℓ, j ← j + 1, C[j]← A[i];
32: end for
33: end for
34: t← A[⌊ eℓw ⌋ − 1];
35: for i from 0 to w −m− 1 do
36: t← tℓ, j ← j + 1, C[j]← t;
37: end for
38: end if
39: return label, A,C.

3.3 Lookup Table Construction

Algorithm 3 outputs the values in the first column of the lookup table. As we
can see in Equation (6), all the values in the lookup table are the small powers
of the values in the corresponding row. More precisely,

T sgn
1 [i][j] = (T sgn

1 [i][1])
j+1

, i = 0, 1, · · · , eℓ
w
− 1, j = 1, 2, · · · , ⌈L− 1

2
⌉ − 1.

Therefore, one can raise the powers of the values in the first column to gen-
erate all the values in the lookup table. As mentioned in Equation (8), the
costs of squaring and cubing in the multiplicative group µp+1 are approximately
2s ≈ 1.6m and 1s + 2m ≈ 2.8m, respectively. Both of them are more efficient
than operating one multiplication in Fp2 , which costs approximately 3m. Note
that all the values are in the group µp+1. One can utilize squaring and cubing
operations, as we summarized in Algorithm 4.

Algorithm 4 T_DLP(ℓ, eℓ, w, A)
Ensure: w : base power; A: values in the first column of the lookup table T sgn

1 .
Require: T sgn

1 : entire lookup table.
1: for i from 0 to ⌊ eℓ

w
⌋ − 1 do

2: T sgn
1 [i][0]← A[i];

3: end for
4: for i from 0 to ⌊ eℓ

w
⌋ − 1 do

5: for j from 1 to ⌊ ℓw−1
2
⌋ do

6: if j mod 2 = 1 then
7: T sgn

1 [i][j]←
(
T sgn
1 [i][j−1

2
]
)2;

8: else
9: if j mod 3 = 2 then

10: T sgn
1 [i][j]←

(
T sgn
1 [i][j−2

3
]
)3;

11: else
12: T sgn

1 [i][j]←
(
T sgn
1 [i][j−1

2
]
)
· T sgn

1 [i][0];
13: end if
14: end if
15: end for
16: end for
17: return T sgn

1 .

The bigger the base power w, the larger the size of the lookup table T sgn
1 ,

i.e., the higher the computational cost of lookup table construction, but the less
discrete logarithms to be computed. Hence, just like efficiency-memory trade-
offs provided by the previous work, we also explore the optimal base power w to
minimize the whole computational cost. We leave this exploration in Section 4.

3.4 Discrete Logarithm Computation

For ease of exposition, in this subsection we assume that we have chosen r2 as
the base of discrete logarithms. By utilizing Pohlig-Hellman algorithm, three
discrete logarithms to the base r2 could be simplified into discrete logarithms
to the base (r2)

ℓeℓ−w or (r2)
ℓeℓ−m . Indeed, the discrete logarithms to the base

(r2)
ℓeℓ−m can also be regarded as discrete logarithms to the base (r2)

ℓeℓ−w since
(r2)

ℓeℓ−m is an element in the multiplicative group ⟨(r2)ℓ
eℓ−w⟩. Thus, we consider

how to compute discrete logarithms to the base (r2)
ℓeℓ−w first.

Note that all the entries in the last row of the lookup table T sgn
1 are of the

form
T sgn
1 [⌊eℓ

w
⌋ − 1][j] = (r2)

(j+1)ℓeℓ−w

, j = 0, 1, · · · , ⌈L− 1

2
⌉ − 1.

Thanks to signed-digit representation, all the entries in the last row of
the lookup table and their conjugates consist of all nontrivial elements in the
multiplicative group ⟨(r2)ℓ

eℓ−w⟩. Therefore, computing discrete logarithms to
the base (r2)

ℓeℓ−w is relatively easy with the help of T sgn
1 [⌊ eℓw ⌋ − 1][j], j =

0, 1, · · · , ⌈L−1
2 ⌉ − 1.

Algorithm 5 small_DLP(ℓ, w, h, B′)
Ensure: w: base power; h: challenge; B′: last row of the lookup table T sgn

1 ;
Require: x, sgn: integers such that h = (B′[0])

sgn·x.
1: if h = 1 then
2: x← 0, sgn← 1;
3: else
4: find x ∈ {0, · · · , ⌊L−1

2
⌋} such that h = B′[x] or h = B′[x];

5: if h = B′[x] then
6: x← −x− 1;
7: else
8: x← x+ 1;
9: end if

10: end if
11: return x, sgn.

Remark 2. When handling discrete logarithms to the base (r2)
ℓeℓ−m , the output

of Algorithm 5 is ℓw−m times of the correct answer. Therefore, we should modify
the output by dividing it by ℓw−m.

As we have pointed out in Section 3.1, when the base power w does not divide
eℓ, one efficiency issue to be solved is how to compute the values in Equation (7).
We propose a method to deal with this issue by utilizing the intermediate values
C from Algorithm 3.

In Algorithm 3, we repeat squaring or cubing operations and store the in-
termediate values, as described in Equation (9). On the other hand, after com-
puting discrete logarithms of (r1)

ℓm , (r3)ℓ
m , (r4)ℓ

m to the base r2, we recover
d−1
1 d0(mod ℓeℓ−m), d−1

1 c0(mod ℓeℓ−m) and d−1
1 c1(mod ℓeℓ−m). Therefore, sim-

ilar to the Double-and-Add algorithm, one can compute r
−d−1

1 d0 mod ℓeℓ−m

2 (the
other two are similar) according to the binary/ternary expansion of the value
−d−1

1 d0(mod ℓeℓ−m), with respect to ℓ. Afterwards, it just needs to perform
three multiplications in Fp2 to obtain all the values.

In Algorithm 6, we present pseudocode for computing r
−d−1

1 d0 mod ℓeℓ−m

2 ,
r
−d−1

1 c0 mod ℓeℓ−m

2 and r
−d−1

1 c1 mod ℓeℓ−m

2 . Note that squaring in µp+1 can also
benefit from Equation (8). Hence, for Line 18 of Algorithm 6, it would be efficient
if we square C[i] (or its conjugate C[i]) first, and then perform a multiplication.

Algorithm 6 fast_power(ℓ, w, D, C)
Ensure: D: array in base L = ℓw with signed digits; C: array from Algorithm 3;
Require: h: (C[0])(D[⌊ eℓ

w ⌋−2]···D[1]D[0])
L .

1: h← 1, i1 ← 0, i2 ← 0;
2: for i from 0 to ⌊ eℓw ⌋ − 2 do
3: t← D[i], s← 1;
4: if D[i] < 0 then
5: t← −t, s← −1;

6: end if
7: while t > 0 do
8: if ℓ = 2 then
9: if t mod 2 = 1 then

10: h← h · (C[i2])
s;

11: end if
12: i2 ← i2 + 1, t← ⌊ t2⌋;
13: else
14: if t mod 3 = 1 then
15: h← h · (C[i2])

s;
16: end if
17: if t mod 3 = 2 then
18: h← (C[i2])

2s · h;
19: end if
20: i2 ← i2 + 1, t← ⌊ t3⌋;
21: end if
22: end while
23: i1 ← i1 + w, i2 ← i1;
24: end for
25: return h.

It remains how to compute discrete logarithms of r1, r3 and r4 to the base r2
efficiently. Cervantes-Vázquez et al. proposed a non-recursive algorithm to com-
pute ℓeℓ -isogeny [5]. Inspired by their work, we present Algorithm 7 to compute
discrete logarithms. Now we describe how Algorithm 7 works in detail.

Notations: The input h is the challenge of discrete logarithms, i.e, r1, r3
or r4. The vector Str is the linear representation of the optimal strategy. In the
algorithm, we construct a stack, denoted by Stack, which contains the tuples
of the form (ht, et, lt), where ht ∈ µp+1 and et, lt ∈ N. Each tuple in Stack
represents the vertex which has been passed through (in left-first order), with
the value ht, the order ℓeℓ−et−m and a right outgoing edge. When pushing a tuple
into Stack, we also record the label Str[i] of the previous vertex, denoted by lt.
The integers (j, k) are coordinates of the last vertex which has been passed
through. The other notations, such as the lookup table T sgn

1 , are defined as
above.

Lines 3-6: As we described in Section 3.1, we compute discrete logarithms
of (h)ℓ

m to the base r2 when w ∤ eℓ. So we first compute (h)ℓ
m when m ̸= 0.

Afterwards, we push ((h)ℓ
m

, 0, 0) into Stack.
Lines 7-33: This part is the core of Algorithm 7. The main idea is to traverse

the optimal strategy according to a left-first ordering and construct a stack to
store all the vertices that have right outgoing edges. Once a discrete logarithm
is computed, all the vertices in Stack are replaced by their right vertices, respec-
tively.

Line 7 checks if k is equal to ⌊ eℓw ⌋−1, i.e, the rightmost vertex △0,⌊ eℓ
w ⌋−1 has

been traversed. In this case we jump out of the loop.

Line 8 aims to check whether the last vertex that has been passed through
is a leaf or not. When the vertex is not a leaf, we go the left Str[i] edges to
enter the next split vertex and then push the information of this vertex into
Stack until the vertex is a leaf (Lines 10-13). When the vertex is a leaf, there are
no edges to traverse left or right, and the values of the vertex is an element of
order ℓw in the multiplicative group µℓeℓ . Hence, we pop the tuple from Stack
and then execute the algorithm small_DLP in Lines 16-17. Then we store the
result into the array D in Lines 18-22.

Note that in this case, there are no left edges to be traversed. But all the
right edges of the vertices in Stack can be traversed since we have recovered
D[k]. For each tuple (ht, et, lt) in Stack, we execute

ht ← ht · T sgn
1 [et][xt − 1] or ht ← ht · T sgn

1 [et][xt − 1],

with respect to sgnt (Lines 23-31).
The rest is to modify the position of the last vertex, as described in Line 32.
Lines 34-40: Now we have passed through the whole optimal strategy and

in this case Stack remains one tuple, i.e., it remains the vertex △0,⌊ eℓ
w ⌋−1 that

needed to be handled. Therefore, we pop the tuple from Stack and execute the
algorithm small_DLP again. Finally, we store the answer into D[k] (Note that
k = ⌊ eℓw ⌋ − 1).

Lines 41-50: Line 41 checks whether the base power w divides eℓ. When w
divides eℓ, we are done. If not, we need to compute the values in Equation (7) and
an extra discrete logarithm to the base rℓ

eℓ−m

2 . Hence, when m ̸= 0, we execute
the algorithm fast_power to compute (r2)

(D[⌊ eℓ
w ⌋−2]···D[1]D[0])

L with the help
of the array C and the efficiency of squaring and cubing in µp+1. After that, we
perform a multiplication in Fp2 and finally execute the algorithm small_DLP.
As we mentioned in Remark 2, the output of small_DLP is ℓw−m times of the
correct answer. Therefore, we divide ℓw−m into the output.

Line 51: Return the array D.

Now we give a toy example to show how Algorithm 7 computes the discrete
logarithm h to the base g. For simplicity, we assume that m = 0, and there are
three leaves in the strategy Str = (1, 1), as illustrated in Figure (a). We first
push the tuple (h, 0, 0) into Stack. Now Lines 7-8 check that the vertex △0,0

is not a leaf, and therefore we are able to traverse left by squaring or cubing w
times and then push the tuple (hℓw , 1, 1) into Stack, as described in Lines 10-13.
Again, Line 8 checks that △0,1 is not a leaf as well, so we continue traversing
left and push the tuple (hℓw , 2, 1) into Stack (Figure (c)). Note that △2,0 is a
leaf of order ℓw. We pop the tuple and then execute the algorithm small_DLP
to compute the discrete logarithm, and then we recover D[0]. Afterwards, Lines
23-31 handle all the vertices in Stack by performing two multiplications in Fp2 ,
as shown in Figures (d) and (e). In this case, we check that △1,1 is a leaf, so we
pop the top tuple from Stack and then execute small_DLP again to recover
D[1]. We traverse right from △0,1 to enter the rightmost vertex with the help of

D[1] (Figure (f)). Finally, Lines 34-40 pop the tuple and execute small_DLP
once again to recover D[2].

(a) (b) (c)

(d) (e) (f)

Fig. 1: A toy example of Algorithm 7

Algorithm 7 PH_DLP(ℓ, eℓ, w, h, Str, T sgn
1 , C)

Ensure: w: base power; h: challenge; Str: Optimal strategy; T sgn
1 : entire lookup

table, C: Array from Algorithm 3;
Require: D: Array such that h = g(D[⌊ eℓ

w ⌋−1]···D[1]D[0])
ℓw .

1: initialize a Stack Stack, which contains tuples of the form (ht, et, lt), where
ht ∈ µp+1, et, lt ∈ N.

2: B′ ← last row of the lookup table T sgn
1 , i ← 0, j ← 0, k ← 0, m ←

eℓ mod w, ht ← h;
3: for i1 from 0 to m− 1 do
4: ht ← (ht)

ℓ;
5: end for
6: Push the tuple (ht, j, k) into Stack;
7: while k ̸= ⌊ eℓw ⌋ − 1 do
8: while j + k ̸= ⌊ eℓw ⌋ − 1 do
9: j ← j + Str[i];

10: for i2 from 0 to w · Str[i]− 1 do
11: ht ← (ht)

ℓ;
12: Push the tuple (ht, j + k, Str[i]) into Stack;
13: end for
14: i← i+ 1;
15: end while
16: Pop the top tuple (ht, et, lt) from Stack;

17: (xt, sgnt)← small_DLP(ℓ, w, ht, B′);
18: if sgnt = 1 then
19: D[k]← xt + 1;
20: else
21: D[k]← −xt − 1;
22: end if
23: for each tuple (ht, et, lt) in Stack do
24: if xt ̸= 0 then
25: if sgnt = 1 then
26: ht ← ht · T sgn

1 [et][xt − 1];
27: end if
28: else
29: ht ← ht · T sgn

1 [et][xt − 1];
30: end if
31: end for
32: j ← j − lt, k ← k + 1;
33: end while
34: Pop the top tuple (ht, et, lt) from Stack;
35: (xt, sgnt)← small_DLP(ℓ, w, ht, B′);
36: if sgnt = 1 then
37: D[k]← xt + 1;
38: else
39: D[k]← −xt − 1;
40: end if
41: if m ̸= 0 then
42: ht ← fast_power(ℓ, D, C);
43: ht ← h · ht;
44: (xt, sgnt)← small_DLP(ℓ, w, ht, B′);
45: if sgnt = 1 then
46: D[k + 1]← xt+1

ℓw−m ;
47: else
48: D[k + 1]← − xt+1

ℓw−m ;
49: end if
50: end if
51: return D.

4 Cost Estimates and Implementation Results

In this section, we estimate the computational cost of discrete logarithms and
compare our work with the previous work. We also report the implementation
of key generation of SIDH by utilizing our techniques.

4.1 Cost Estimates
We neglect additions and mainly take into account multiplications and squarings
(1s ≈ 0.8m) since they are much more expensive than additions. As shown in

Table 1, we predict that for all the Round-3 SIKE parameters, the cost of discrete
logarithm computation in µ3e3 would be minimal when the base power w is equal
to 3. When handling µ2e2 , the base power w = 4 would be the best choice.

Table 1: Cost estimates of three discrete logarithms utilizing our techniques. The
minimal costs in the same row, i.e, in the same setting except the base power,
are reported in bold.

Setting w=1 w=2 w=3 w=4 w=6

SIKEp434 µ3e3 8892.6 6904.3 6463.3 7603 21915
µ2e2 11762.4 7516 6083.6 5544.6 6232.4

SIKEp503 µ3e3 10780.3 8223.7 6859 8869.8 21960
µ2e2 13968.6 8902.2 8061.4 7441.7 8187.1

SIKEp610 µ3e3 13477.5 9237.5 8552.2 9990.5 30941.8
µ2e2 17650.2 12327.2 9542.4 9404.8 10256.6

SIKEp751 µ3e3 17354.3 13265.9 12326.8 14076.5 39564.4
µ2e2 22181.4 14334.4 11594 10539 11552

4.2 Implementation Results and Efficiency Comparisons

Based on the Microsoft SIDH library1 (version 3.4), we compiled our codeby
using an 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz on 64-bit Linux.

For each setting we execute 104 times and record the average cost of key
generation, as summarized in Table 2. The implementation results show that
our prediction in the previous subsection is correct.

Table 2: Implementation of key generation of compressed SIDH (expressed in
millions of clock cycles). The minimal cost in the same row, i.e, in the same
setting except the base power, are reported in bold.

Setting w=1 w=2 w=3 w=4 w=6

SIKEp434 µ3e3 6.41 6.16 6.07 6.27 8.68
µ2e2 6.35 6.00 5.96 5.82 5.97

SIKEp503 µ3e3 8.50 8.27 7.93 8.54 11.93
µ2e2 8.51 8.25 8.10 8.01 8.12

SIKEp610 µ3e3 17.08 16.54 16.52 16.88 22.69
µ2e2 16.31 15.89 15.65 15.59 15.71

SIKEp751 µ3e3 26.46 25.81 25.69 26.38 35.71
µ2e2 27.26 26.36 25.84 25.32 26.09

1 https://github.com/Microsoft/PQCrypto-SIDH

https://github.com/Microsoft/PQCrypto-SIDH

On memory-constrained devices, our algorithms would be attractive for their
relatively efficient performance even though we set small w. Table 3 reports RAM
requirements for the different parameters.

Table 3: RAM requirements (in KiB) for the different parameters.
Setting w=1 w=2 w=3 w=4 w=6

SIKEp434 µ3e3 14.98 29.75 63.98 148.75 875.88
µ2e2 23.63 23.63 31.50 47.25 126.00

SIKEp503 µ3e3 19.88 39.50 86.13 195.00 1183.00
µ2e2 31.25 31.25 41.50 62.00 164.00

SIKEp610 µ3e3 30.00 60.00 130.00 300.00 1820.00
µ2e2 47.66 47.50 63.13 95.00 250.00

SIKEp751 µ3e3 44.81 89.25 192.56 442.50 2661.75
µ2e2 69.75 69.75 93.00 139.50 372.00

Table 4 shows the comparison of efficiency between the previous work with
ours. We can see that the efficiency of our algorithms is close to that of the
previous work. When solving discrete logarithms in µ2e2 , our algorithms are
more efficient than the previous work when we set SIKEp434 or SIKEp751 as
parameters. In addition, when the base power w divides eℓ, our algorithms per-
form better because there is no need to compute three values in Equation 7 and
execute three additive discrete logarithms.

Table 4: Key generation performance of the previous work and ours (expressed
in millions of clock cycles). In the last column we report the ratio of the cost of
the previous work to ours. In the same situation, we emphasize the lower cost
in bold.

Setting Previous work [3] This work w|eℓ? Ratio

SIKEp434 µ3e3 5.96 6.07 No 98.2%
µ2e2 5.90 5.82 Yes 101.4%

SIKEp503 µ3e3 8.07 8.14 Yes 99.14%
µ2e2 7.93 8.01 No 99.00%

SIKEp610 µ3e3 16.34 16.52 Yes 98.91%
µ2e2 15.25 15.59 No 97.82%

SIKEp751 µ3e3 25.20 25.69 No 98.09%
µ2e2 25.61 25.32 Yes 101.15%

5 Conclusion

In this paper, we presented new techniques to compute discrete logarithms in
public-key compression of SIDH/SIKE with no pre-computed tables. We ana-
lyze cost estimates of discrete logarithm computation with our techniques, and
predict the best choices of w in different situations. The implementation con-
firmed our deduction, and our algorithms to compute discrete logarithms in µ2e2

performed better in the situation when w divides e2. We believe that this work
would be also attractive in storage restrained environments, for the reason that
we can make a trade-off between memory and efficiency.

Note that Algorithm 7 is a non-recursive algorithm. Hence, it would be more
efficient in parallel environments. We leave those further explorations for future
research.

Acknowledgments

The authors thank the anonymous reviewers for their useful and valuable com-
ments. The work of Chang-An Zhao is partially supported by NSFC under Grant
No. 61972428 and by the Major Program of Guangdong Basic and Applied Re-
search under Grant No. 2019B030302008.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-
Henríquez, F.: On the Cost of Computing Isogenies Between Supersingular Elliptic
Curves. In: Cid, C., Jacobson Jr., M.J. (eds.) Selected Areas in Cryptography –
SAC 2018. pp. 322–343. Springer International Publishing, Cham (2019)

2. Avizienis, A.: Signed-digit Number Representations for Fast Parallel Arith-
metic. IRE Transactions on Electronic Computers EC-10(3), 389–400 (1961).
https://doi.org/10.1109/TEC.1961.5219227

3. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Hutchinson,
A., Jalali, A., Jao, D., Karabina, K., Koziel, B., LaMacchia, B., Longa, P., Naehrig,
M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key
Encapsulation (2020), http://sike.org

4. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key Compression
for Isogeny-Based Cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. pp. 1–10 (2016)

5. Cervantes-Vázquez, D., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.: Parallel
strategies for SIDH: Towards computing SIDH twice as fast. Cryptology ePrint
Archive, Report 2020/383 (2020), https://ia.cr/2020/383, accepted by IEEE
Transactions on Computers

6. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
Compression of SIDH Public Keys. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in
Cryptology – EUROCRYPT 2017. pp. 679–706. Springer International Publishing,
Cham (2017)

https://doi.org/10.1109/TEC.1961.5219227
http://sike.org
https://ia.cr/2020/383

7. Costello, C., Longa, P., Naehrig, M.: Efficient Algorithms for Supersingular
Isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptol-
ogy – CRYPTO 2016. pp. 572–601. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016)

8. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.: A
Faster Software Implementation of the Supersingular Isogeny Diffie-Hellman Key
Exchange Protocol. IEEE Transactions on Computers 67(11), 1622–1636 (2018)

9. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the Security of Supersingular
Isogeny Cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology
– ASIACRYPT 2016. pp. 63–91. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016)

10. Hutchinson, A., Karabina, K., Pereira, G.: Memory Optimization Techniques for
Computing Discrete Logarithms in Compressed SIKE. In: Cheon, J.H., Tillich, J.P.
(eds.) Post-Quantum Cryptography. pp. 296–315. Springer International Publish-
ing, Cham (2021)

11. Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersin-
gular Elliptic Curve Isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography.
pp. 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

12. Jaques, S., Schanck, J.M.: Quantum Cryptanalysis in the RAM Model: Claw-
Finding Attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) Advances in
Cryptology – CRYPTO 2019. pp. 32–61. Springer International Publishing, Cham
(2019)

13. Lin, K., Lin, J., Wang, W., an Zhao, C.: Faster Public-key Compression of SIDH
with Less Memory. Cryptology ePrint Archive, Report 2021/992 (2021), https:
//ia.cr/2021/992

14. Naehrig, M., Renes, J.: Dual Isogenies and Their Application to Public-Key Com-
pression for Isogeny-Based Cryptography. In: Galbraith, S.D., Moriai, S. (eds.)
Advances in Cryptology – ASIACRYPT 2019. pp. 243–272. Springer International
Publishing, Cham (2019)

15. Pereira, G.C.C.F., Barreto, P.S.L.M.: Isogeny-Based Key Compression Without
Pairings. In: Garay, J.A. (ed.) Public-Key Cryptography – PKC 2021. pp. 131–
154. Springer International Publishing, Cham (2021)

16. Pereira, G.C.C.F., Doliskani, J., Jao, D.: x-only point addition formula and faster
compressed SIKE. Journal of Cryptographic Engineering 11, 57–69 (2021)

17. Petit, C.: Faster Algorithms for Isogeny Problems Using Torsion Point Images. In:
Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017. pp.
330–353. Springer International Publishing, Cham (2017)

18. Pohlig, S., Hellman, M.: An Improved Algorithm for Computing Logarithms over
GF(p) and Its Cryptographic Significance (Corresp.). IEEE Trans. Inf. Theor.
24(1), 106–110 (2006)

19. Shoup, V.: A computational introduction to number theory and algebra. Cam-
bridge University Press (2005)

20. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto,
P.S.L.M.: Faster Isogeny-Based Compressed Key Agreement. In: Lange, T., Stein-
wandt, R. (eds.) Post-Quantum Cryptography. pp. 248–268. Springer International
Publishing, Cham (2018)

21. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto,
P.S.L.M.: Faster Key Compression for Isogeny-Based Cryptosystems. IEEE Trans-
actions on Computers 68(5), 688–701 (2019)

https://ia.cr/2021/992
https://ia.cr/2021/992

	An Alternative Approach for Computing Discrete Logarithms in Compressed SIDH

