
Light-OCB: Parallel Lightweight Authenticated
Cipher with Full Security

Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha3, Cuauhtemoc
Mancillas-López4, and Mridul Nandi5

1 University of Exeter, UK
avikchkrbrti@gmail.com

2 Institute for Advancing Intelligence, TCG CREST, Kolkata, India
nilanjan.datta@tcgcrest.org

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
ashwin.jha@cispa.de

4 Computer Science Department, CINVESTAV-IPN, Mexico
cuauhtemoc.mancillas@cinvestav.mx

5 Indian Statistical Institute, Kolkata, India
mridul.nandi@gmail.com

Abstract. This paper proposes a lightweight authenticated encryption
(AE) scheme, called Light-OCB, which can be viewed as a lighter vari-
ant of the CAESAR winner OCB as well as a faster variant of the high
profile NIST LWC competition submission LOCUS-AEAD. Light-OCB is
structurally similar to LOCUS-AEAD and uses a nonce-based derived
key that provides optimal security, and short-tweak tweakable block-
cipher (tBC) for efficient domain separation. Light-OCB improves over
LOCUS-AEAD by reducing the number of primitive calls, and thereby sig-
nificantly optimizing the throughput. To establish our claim, we provide
FPGA hardware implementation details and benchmark for Light-OCB
against LOCUS-AEAD and several other well-known AEs. The implemen-
tation results depict that, when instantiated with the tBC TweGIFT64,
Light-OCB achieves an extremely low hardware footprint - consuming
only around 1128 LUTs and 307 slices (significantly lower than that for
LOCUS-AEAD) while maintaining a throughput of 880 Mbps, which is
almost twice that of LOCUS-AEAD. To the best of our knowledge, this
figure is significantly better than all the known implementation results
of other lightweight ciphers with parallel structures.

Keywords: Authenticated Encryption, lightweight, tBC, Light-OCB, parallel

1 Introduction

From the recent past, lightweight cryptography is enjoying high popularity due
to an increase in the demands of security for lightweight IoT applications such
as healthcare applications, sensor-based applications, banking applications, etc.,
where resource-constrained devices communicate and need to be implemented

2 Chakraborti et al.

with a low resource. Lightweight cryptography involves providing security in
these resource-constrained environments. The importance of this research do-
main has been addressed by the ongoing NIST Lightweight Standardization
Competition (LWC) [17] followed by the CAESAR [8]. Hence, in recent years,
the cryptographic research community has seen a surge in new lightweight au-
thenticated encryption proposals.

One popular design approach for lightweight AE schemes is to use a block-
cipher based parallel structure as it can be efficient for both lightweight and
faster implementations. Blockcipher (BC) based parallel AE schemes popularly
use XEX structure. It processes all the inputs in parallel and finally integrates
them. Thus, blockcipher-based parallel AE schemes can be well described by
the underlying blockcipher, and the final integration function. Consequently, the
efficiency and the hardware footprint of the AE scheme also largely depend on
these two components. In the following part, we assume that the underlying
blockcipher is ultra-lightweight and efficient to instantiate the AE scheme. The
efficiency of a construction is primarily dependent upon the rate, the number
of data blocks processed per primitive call where the upper bound on the rate
value is one. Here, we only concentrate on rate-1 authenticated encryptions with
a small hardware footprint such that we can achieve a lightweight construction
as well as a high throughput construction.

1.1 Parallel Authenticated Encryption

Parallel AE modes, such as OCB[21], OTR[15], COPA[1], ELmD[7] have mainly
been designed to exploit the advantage of parallel computations needed for sev-
eral high performance computing environments. These constructions mainly con-
centrate on efficiency in software as well as on faster implementations in hard-
ware. Among them, OCB and OTR are efficient, achieve rate one, and COPA
and ELmD achieve rate half. One of the disadvantages of such schemes are
large state size. For example, OCB has 3n + k and OTR, COPA and ELmD
require 4n + k-bit state size where n and k are the block size and the key size
respectively. Furthermore, both of them are only birthday bound secure in the
block size n. This means they need at least an 128-bit block cipher to satisfy
the NIST criteria (which says that when the key size is 128 bits, any cryptan-
alytic attack should need at least 2112 computations in a single key setting).
This large state size makes these designs inefficient for lightweight applications.
One possible way out is to improve the security, and thereby instantiate with
64-bit primitives such as PRESENT[6], SKINNY[4], or GIFT[3] that have ultra
lightweight implementation with decent throughputs. In [16], Naito proposed a
variant of OCB, called ΘCB+, which offers beyond the birthday bound security
but does not meet NIST’s security criteria if instantiated with 64-bit primitive.
This raises the important question of whether it is possible to design AE schemes
using 64-bit primitives that satisfies the NIST criteria.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 3

1.2 LOCUS-AEAD

Chakraborti et al. answers the above question in a positive direction by proposing
LOCUS-AEAD [10] that employs OCB style encryption with nonce-based derived
key that boosts the design by providing full security, and hence realizable by 64-
bit primitives. Additionally, the novel use of short-tweak tweakable block ciphers
handles all the domain separation, and makes the design simple and compact.
To achieve RUP security, the construction uses two primitives in a sequential
manner to process each message block, which degrades the throught, and hence
the speed of the cipher, which is the primary focus for parallel constructions. So,
we ask the question

“Can we design a rate-1 parallel authenticated cipher with full security?”

1.3 Our Contribution

We answer the above question in an affirmative way by presenting a new rate
one parallel, nonce based authenticated encryption mode of operation with full
security named Light-OCB. As the name suggests, Light-OCB follows the general
design paradigms of popular NAEAD modes OCB [13,12]. However, we update
Light-OCB introduces several key changes (see section 3.1 for more details) in
order to add new features. Some of the important changes include nonce-based
rekeying and short-tweak based domain separation similarly as used in [10].

Light-OCB achieves higher NAEAD security bounds with lighter primitives.
It allows close to 264 data and 2128 time limit when instantiated by a block ci-
pher with 64-bit block and 128-bit key. Light-OCB is a single pass, online, fully
parallelizable, rate-1 authenticated encryption mode. This mode is extremely
versatile, in the sense that, it is equally suitable for lightweight memory con-
strained environments, as well as high-performance applications. We provide
concrete AE security proof for Light-OCB in the ideal-cipher model.

We instantiate Light-OCB with TweGIFT-64 [9,10], a tweakable variant of
the GIFT-64-128 [3] block cipher. TweGIFT-64 is a dedicated design, built upon
the original GIFT-64-128 block cipher, for efficient processing of small tweak
values of size 4-bit. TweGIFT-64 provides sufficient security while maintaining
the lightweight features of GIFT-64-128. We propose Light-OCB [TweGIFT-64],
the TweGIFT-64 based instantiation of Light-OCB.

Finally, we also provide our own hardware implementation results for Light-
OCB on FPGA. The implementation result depicts Light-OCB is significantly
better than LOCUS-AEAD in throughput (twice the value for LOCUS-AEAD). In
fact, Light-OCB also improves the hardware area over LOCUS-AEAD.

1.4 Applications and Use Cases

The most important feature of Light-OCB is its scope of applicability. At one
end of the spectrum, the parallelizability of Light-OCB make them a perfect
candidate for applications in high-performance infrastructures. On the other

4 Chakraborti et al.

end, there overall state size is competitively small with respect to many exist-
ing lightweight candidates, which makes them suitable for low-area hardware
implementations. We would like to emphasize that Light-OCB is inherently par-
allel and can be implemented in a fully pipelined manner keeping a comparable
area-efficient implementation. Hence, it is well-suited for protocols that require
both lightweight and high-performance implementations e.g, lightweight clients
interacting with high performance servers (e.g, LwM2M protocols [19]). Some
real life applications, where our proposed mode would best fit includes vehicular
applications and memory encryptions.

1.5 Light-OCB in DSCI Light-weight Competition

In 2020, National CoE, the joint initiative of the Data security council of India
and the Ministry of Electronics and IT (MeitY), announced a lightweight cryp-
tography competition named “Lightweight Cipher Design Challenge 2020” [18].
One of the primary objectives of the challenge is to design new lightweight
authenticated ciphers, and the best designs will be considered for developing
the prototype for ready industry implementation. The algorithm Light-OCB has
been nominated as one of the top three candidates in the challenge and has been
selected for the final round. Interestingly, this is the only construction that sup-
ports full pipelined implementation alongside a very hardware footprint, making
it to be the most versatile design in the competition.

2 Preliminaries

2.1 Notations and Conventions.

For n ∈ N, we write {0, 1}∗ and {0, 1}n to denote the set of all binary strings
including the empty string λ, and the set of all n-bit binary strings, respectively.
For A ∈ {0, 1}∗, |A| denotes the length (number of the bits) of A, where |λ| = 0
by convention. For all practical purposes, we use the little-endian format for
representing binary strings, i.e., the least significant bit is the rightmost bit. For
any non-empty binary string X, (Xk−1, . . . , X0)

n← x denotes the n-bit block
parsing of X, where |Xi| = n for 0 ≤ i ≤ k − 2, and 1 ≤ |Xk−1| ≤ n. For
A,B ∈ {0, 1}∗ and |A| = |B|, we write A ⊕ B to denote the bitwise XOR of A
and B.

We use the notation Ẽ to denote a tweakable block cipher. For K ∈ {0, 1}κ,

T ∈ {0, 1}τ , and M ∈ {0, 1}n, we use ẼK,T (M) := Ẽ(K,T,M) to denote invo-

cation of the encryption function of Ẽ on input K, T , and M . The decryption
function is analogously defined as D̃K,T (M). We fix positive even integers n, τ ,
κ, r, and t to denote the block size, tweak size, key size, nonce size, and tag
size, respectively, in bits. Throughout this document, we fix n = 64, τ = 4, and
κ = 128, r = κ, and t = n.

We sometimes use the terms (complete) blocks for n-bit strings, and partial
blocks for m-bit strings, where m < n. Throughout, we use the function ozs,

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 5

defined by the mapping

∀X ∈
n⋃

m=1

{0, 1}m, X 7→
{

0n−|X|−1‖1‖X if |X| < n,

X otherwise,

as the padding rule to map partial blocks to complete blocks. Note that the
mapping is injective over partial blocks. For any X ∈ {0, 1}+ and 0 ≤ i ≤ |X|−1,
xi denotes the i-th bit of X. The function chop takes a string X and an integer
i ≤ |X|, and returns the least significant i bits of X, i.e., xi−1 · · ·x0.

The set {0, 1}κ can be viewed as the finite field F2κ consisting of 2κ elements.
Addition in F2κ is just bitwise XOR of two κ-bit strings, and hence denoted by
⊕. P (x) denotes the primitive polynomial used to represent the field F2κ , and
α denotes the primitive element in this representation. The multiplication of
A,B ∈ F2κ is defined as A � B := A(x) · B(x) (mod P (x)), i.e., polynomial
multiplication modulo P (x) in F2. For κ = 128, we fix the primitive polynomial

P (x) = x128 + x7 + x2 + x+ 1.

2.2 (Ideal) Tweakable Blockcipher

The notion of tweakable blockciphers was first formalized by Liskov et al. [14].
Additional to a plaintext X and a key K, it takes a third input - a tweak T ,
which is generally public. An ideal tweakable blockcipher provides an indepen-
dent permutation for each new key and tweak pair (K,T). More formally,

Ẽ : K × T × {0, 1}n → {0, 1}n.

Here, K and T are called the keyspace and the tweak space respectively. To ease
the notation, for a fix K and T we denote Ẽ (K,T, ·) by Ẽ T

K (·). Hence, according

to the definition Ẽ T
K is a permutation (for K and T .

2.3 Authenticated Encryption in the Ideal Cipher Model

Authenticated encryption (AE) is a cryptographic scheme that provides both
privacy of the message and authenticity of both the message, the nonce, and the
associated data. It takes as input, a plaintext M ∈ {0, 1}∗, a nonce N ∈ {0, 1}n
(typically one block data) and an associated data A ∈ {0, 1}∗, such that the
encryption function of AE, EK , outputs a ciphertext-tag pair (C, T) such that
|C| = |M | and |T | = t (t is called the tag length). Throughout the paper, we as-
sume that t is fixed and n = t. There is a corresponding decryption function, DK ,
that takes (N,A,C, T) as the inputs and outputs the corresponding ciphertext
M if (N,A,C, T) is successfully verified, otherwise DK rejects the (N,A,C, T)
tuple denoted by the symbol ⊥.

6 Chakraborti et al.

Privacy in the Ideal Cipher Model. Given an adversary A, we define the
privacy-advantage of A against AE in the ideal cipher model as

Advpriv

AE[Ẽ]
(A) = |Pr[AAEK ,Ẽ± = 1]− Pr[A$,Ẽ± = 1]|,

where $ returns a random string of the same length as the output length of AEK .
where the maximum is taken over all adversaries running in time t and making
qe many queries to the encryption oracle with an aggregate of σe blocks and and
qp many the primitive queries.

INT-CTXT Security in the Ideal Cipher Model. We say that an adver-
sary A forges an AE scheme (AE ,AD) in the INT-CTXT security settings in
the ideal cipher model if A is able to compute a tuple (N,A,C, T) satisfying
ADK(N,A,C, T) 6= ⊥, without querying (N,A,M) for some M to AEK and
receiving (C, T), i.e., (N,A,C, T) is a non-trivial forgery. The forging advantage
for an adversary A is written as

Advint-ctxt
AE (A) = Pr[AAEK ,ADK ,,Ẽ± forges],

and the maximum forging advantage for all adversaries running in time t, making
qe encryption queries with an aggregate of σe blocks, qp ideal cipher oracle queries
and qv forgery attempts with an aggregate of σv blocks is denoted by

Advint-ctxt
AE ((qe, qv, qp), (σe, σv), t) = max

A
Advint-ctxt

AE (A).

2.4 Coefficients-H Technique

We briefly describe the Coefficients-H technique proposed by Patarin [20]. This
technique is used to find the upper bound of the statistical distance between
the outputs of two interactive systems. This is traditionally used to prove the
information theoretic pseudo randomness of constructions. Here, we assume a
computationally unbounded adversary (hence deterministic) A that interacts
with either the real oracle, i.e., the construction of our interest, or the ideal oracle
which is usually considered to be a uniform random function or permutation.
The tple of all the interactive queries and responses that A made and received
to and from the oracle, is called a transcript of A, which is typically denoted
by ω. We often let the oracle release additional information A only if A is done
with all its queries and replies but before it outputs its decision bit.

Let Λ1 and Λ0 denote the probability distributions of the transcript ω induced
by the real oracle and the ideal oracle respectively. The probability of realizing
a transcript ω in the ideal oracle (i.e., Pr[Λ0 = ω]) is called the ideal interpo-
lation probability. Similarly, one can define the real interpolation probability. A
transcript ω is said to be attainable with respect to A if the ideal interpolation
probability is non-zero (i.e., Pr[Λ1 = ω] > 0). We denote the set of all attain-
able transcripts by Ω. Following these notations, we state the main lemma of
H-Coefficient Technique as follows:

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 7

Lemma 1. Suppose we have a set of transcripts, Ωbad ⊆ Ω, which we call bad
transcripts, and the following conditions hold:

1. The probability of getting a transcript in Ωbad the ideal oracle O0 is at most
ε1,

2. For any transcript ω ∈ Ω \Ωbad, we have Pr[Λ1 = ω)] ≥ (1− ε2) ·Pr[Λ0 = ω].

Then, we have
|Pr[AO0 = 1]− Pr[AO1 = 1]| ≤ ε1 + ε2. (1)

Proof of this lemma can be found in [22].

3 Specification

We propose a short-tweak tweakable block cipher based authenticated encryption
algorithm Light-OCB instantiated with the underlying tweakable block cipher
TweGIFT-64. The instantiation is denoted by Light-OCB [TweGIFT-64].

3.1 Light-OCB Mode

During the encryption phase, Light-OCB mode receives an encryption key K ∈
{0, 1}κ, an associated data A ∈ {0, 1}∗, a nonce N ∈ {0, 1}κ, and a message
M ∈ {0, 1}∗ as inputs and generates a ciphertext C ∈ {0, 1}|M |, and a tag T ∈
{0, 1}n pair. The corresponding decryption function receives a key K ∈ {0, 1}κ,
an associated data A ∈ {0, 1}∗, a nonce N ∈ {0, 1}κ, a ciphertext C ∈ {0, 1}∗,
and a tag T ∈ {0, 1}n pair as inputs, and returns the corresponding plaintext
M ∈ {0, 1}|C|, if T is matched. Light-OCB is tweakable block cipher based with

an underlying primitive Ẽ. The tweaks are very short with 4-bit length, and are
mainly used for domain separation. The 4-bit tweaks vary from 0 to 13. Light-
OCB can process data with a maximum 264 − 1 block message and a maximum
264 − 1 block AD.

Initialization. In the initialization phase, a κ-bit nonce N is added to the κ-bit
master secret key K to output a κ-bit nonce-based encryption key denoted by
KN . Next, ∆N , a nonce dependent masking key is generated by double encrypt-
ing a constant 0n with K and KN successively with Ẽ.

Associated Data Processing. In this phase, we divide the data into n-bit
blocks and the blocks are processed following the hash layer of PMAC [5]. For
each of the associated data blocks, we first update the current key value by field
multiplying it by 2. Next, we add this block with ∆N and encrypt it with Ẽ
under the fixed tweak 0010 (also denoted by 2 in integer representation) and
KN . The encrypted output is finally accumulated by adding it to the previous
checksum value. For domain separation, if the final block is partial the tweak
0011 is used (also denoted by 3) to process it. Output of this associated data
processing phase is denoted as AD checksum. This phase is described in Fig. 1
and Algorithm 1.

8 Chakraborti et al.

Plaintext Processing. In this phase, we divide the message into n-bit blocks
and the blocks are processed following OCB’s [21] message processing. Each
message block is first masked and then encrypted with the tBC. Next, it is again
masked to compute the ciphertext block. The ∆N masking along a query is done
following OCB and plaintext checksum is computed by adding all the message
blocks. For the last plaintext block, we first apply XEX on the block length
(instead of applying it on the last plaintext block) and add the output with the
last plaintext block. This ensures a similar process technique of the complete or
incomplete last blocks. Note the, we also update the key by multiplying it by 2
before each block processing. It is described in Fig. 2.

Tag Generation. In this phase, tweak 0100 and 0101 (4 and 5 respectively)
are used for non final and final blocks respectively. Here, XEX transformation
is applied on the sum of the plaintext checksum and AD checksum. Algorithm
1 describes this phase in detail.

A1

∆N

⊕

Ẽ2
KN ,1

U1

V1

A2

∆N

⊕

Ẽ2
KN ,2

U2

V2

⊕ · · ·

Aa

∆N

⊕

Ẽ
2/3
KN ,a

Ua

Va

⊕ V⊕

Fig. 1. Associated Data Processing for Light-OCB. Here Ẽt
KN ,i denotes invocation of Ẽ

with key 2i+1 �KN and tweak i. For the final associated data block, the use of Ẽ
2/3
KN ,a

indicates invocation of Ẽ with key 2a � KN and tweak 2 or 3 depending on whether
the final block is full or partial.

3.2 Features

Here we discuss the salient features of our proposal and possible applications:

1. High Security: Light-OCB provides beyond the birthday bound security
as it uses nonce-based encryption key and masking key. Actually, Light-OCB
provides the optimal security with the level DT = O(2n+κ), such that D
and T are the data and time complexity, respectively. We assume, D < 2n,
and T < 2κ.

2. Lightweight: Light-OCB satisfies all the lightweight requirements of the
NIST lightweight standardization process. In fact, Light-OCB uses a 64-bit
block cipher and optimizes the state size. TweGIFT-64 can perfectly fit with
Light-OCB.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 9

M1

∆N ⊕

Ẽ4
KN ,1

X1

∆N ⊕

C1

Y1

Mm−1

∆N ⊕

Ẽ4
KN ,m−1

Xm−1

∆N ⊕

Cm−1

Ym−1

〈M〉

∆N ⊕

Ẽ5
KN ,m

Xm

∆N Mm⊕

Cm

· · ·

V⊕ ⊕M⊕ ⊕Mm

Ẽ6
KN ,m+1

⊕ ∆N

T

⊕ ∆N

Fig. 2. Processing of an m block message M and tag generation for Light-OCB. 〈len〉n
denotes the n bit representation of the size of the final block in bits. M⊕ denotes the
plaintext checksum value and V⊕ denotes the AD checksum value. Ẽt

KN ,i is defined in
a similar manner as in Fig. 1.

3. Parallel: Light-OCB has a parallel structure and hence the implementation
of Light-OCB can be fully pipelined. This can help to achieve high through-
put.

4. Single Pass: Light-OCB makes only one pass through the data while main-
taining both confidentiality and authenticity. This, in turn reduces the com-
putational cost by a factor of two as compared to two-pass schemes.

5. Rate-1: The rate of an AEAD is defined as the number of blocks of the mes-
sage (plaintext) processed per non-linear (block-cipher, field multiplication,
etc.) operation. Constructions with higher rates have shorter latency and
achieve high speed. The maximum rate that a secure AEAD construction
can achieve is 1, and our mode Light-OCB achieves the rate. This signifies
extremely high speed and low latency which is ideal for high-speed applica-
tions.

6. Optimal: An authenticated encryption scheme is called optimal if the num-
ber of non-linear operations it uses is the minimum possible. For nonce based
AEAD, the minimum number of non-linear operations required to process
a data with a block associated data and m block plaintext is (a + m + 1)
[11]. Light-OCB is an optimal construction, and hence it performs excellent
especially for short messages.

7. Versatility: As mentioned already, the parallelizability and small state size
together makes the design extremely versatile.

3.3 Recommended Instantiation

We instantiate Light-OCB with the short-tweak tweakable block cipher TweGIFT-
64. Here, the key size is 128 bits, nonce size is 128 bits, and tag size is 64
bits. Here we briefly describe the tBC TweGIFT-64 or more formally TweGIFT-
64/4/128 [9]. It is a 64-bit tweakable block cipher with 4-bit tweak and 128-bit

10 Chakraborti et al.

Fig. 3. The encryption and verification-decryption algorithms of Light-OCB.

1: function Light-OCB Ẽ.Enc(K,N,A,M)

2: C ← ⊥, M⊕ ← 0, V⊕ ← 0

3: (KN , ∆N)← init(K,N)

4: if |A| 6= 0 then

5: (KN , V⊕)← proc ad(KN , ∆N , A)

6: if |M | 6= 0 then

7: (KN ,M⊕, C)← proc pt(KN , ∆N ,M)

8: T ← proc tg(KN , ∆N , V⊕,M⊕)

9: return (C, T)

10: function init(K,N)

11: Y ← Ẽ0
K(0n)

12: KN ← K ⊕N
13: ∆N ← Ẽ1

KN
(Y)

14: return (KN , ∆N)

15: function proc ad(KN , ∆N , A)

16: L← KN

17: (Aa−1, . . . , A0)
n← A

18: for i = 0 to a− 2 do

19: U ← Ai ⊕∆N
20: L← L� 2

21: V ← Ẽ2
L(U)

22: V⊕ ← V⊕ ⊕ V
23: U ← ozs(Aa−1)⊕∆N
24: L← L� 2

25: V ← (|Aa−1| = n)? Ẽ2
L(U) : Ẽ3

L(U)

26: V⊕ ← V⊕ ⊕ V
27: return (L, V⊕)

28: function proc pt(KN , ∆N ,M)

29: L← KN

30: (Mm−1, . . . ,M0)
n←M

31: for j = 0 to m− 2 do

32: M⊕ ←M⊕ ⊕Mj

33: X ←Mj ⊕∆N
34: L← L� 2

35: Y ← Ẽ4
L(X)

36: Cj ← W ⊕∆N
37: L← L� 2

38: X ← 〈|Mm−1|〉n ⊕∆N
39: Y ← Ẽ5

L(X)

40: Cm−1 ← chop(Y ⊕∆N , |Mm−1|)⊕Mm−1

41: M⊕ ←M⊕ ⊕Mm−1

42: C ← (Cm−1, . . . , C0)

43: return (L,M⊕, C)

1: function Light-OCB Ẽ.Dec(K,N,A,C, T)

2: M ← ⊥, M⊕ ← 0, V⊕ ← 0

3: (KN , ∆N)← init(K,N)

4: if |A| 6= 0 then

5: (KN , V⊕)← proc ad(KN , ∆N , A)

6: if |C| 6= 0 then

7: (KN ,M⊕,M)← proc ct(KN , ∆N , C)

8: T ′ ← proc tg(KN , ∆N , V⊕,M⊕)

9: if T ′ = T then

10: return M

11: else

12: return ⊥

13: function proc ct(KN , ∆N , A, C, T)

14: L← KN

15: (Cm−1, . . . , C0)
n← C

16: for j = 0 to m− 2 do

17: Y ← Cj ⊕∆N
18: L← L� 2

19: X ← D̃4
L(Y)

20: Mj ← X ⊕∆N
21: M⊕ ←M⊕ ⊕Mj

22: L← L� 2

23: X ← 〈|Cm−1|〉n ⊕∆N
24: Y ← Ẽ5

L(W)

25: Mm−1 ← chop(Y ⊕∆N , |Cm−1|)⊕ Cm−1

26: M⊕ ←M⊕ ⊕Mm−1

27: M ← (Mm−1, . . . ,M0)

28: return (L,M⊕,M)

29: function proc tg(KN , ∆N , V⊕,M⊕)

30: L← KN � 2

31: T ← Ẽ6
L(V⊕ ⊕M⊕ ⊕∆N)⊕∆N

32: return T

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 11

key. As the name suggests, it is a tweakable variant of GIFT-64-128 [3] block
cipher. TweGIFT-64 is composed of 28 rounds and each round consists following
operations:

SubCells: TweGIFT-64 uses a 4-bit S-box as GIFT-64-128 and paralelly applies it
to each nibble of the cipher state. Table 1 below defines the S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
GS(x) 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

Table 1. The GIFT S-Box GS. Each value is a hexadecimal number.

PermBits: PermBits also uses the same permutation as used in GIFT-64-128. It
maps the ith of the cipher state to the GP (i)th bit, where

GP (i) = 4bi/16
⌋

+ 16

((
3b(i mod 16)/4c+ (i mod 4)

)
mod 4

)
+ (i mod 4).

AddRoundKey: Here a 32-bit round key is extracted from the master key and
added to the cipher state. This also follows the same as used in GIFT.

AddRoundConstant: A single bit “1” and the bits of a 6-bit round constant are
added to the cipher state at the 63rd, 23rd, 19th, 15th, 11th, 7th and 3rd-bit
respectively. The 6-bit constants are generated using a 6-bit affine LFSR (same
as that of SKINNY [4] and GIFT-64-128 [3]).

AddTweak: The 4-bit tweak is first expanded to a 16-bit expanded tweak by the
linear code Exp and then XOR this expanded tweak to the state at an interval of
4 rounds (starting from the 4th round) at bit positions 4i+3, for i = 0, ..., 15. Exp
takes as input a 4-bit tweak t = t1‖t2‖t3‖t4 and outputs a 16-bit expanded tweak
te = t‖t′‖t‖t′, such that t′ = s⊕ t1‖s⊕ t2‖s⊕ t3‖s⊕ t4 and s = t1⊕ t2⊕ t3⊕ t4.

3.4 Design Rationale

In this section, we briefly describe the various design choices and rationale for
our proposals.

Choice of the Mode Light-OCB . We mainly target to design a lightweight
AEAD that should be efficient as well as provides high-performance capability.
The AEAD can be efficent by incorporating one-pass data process. It can be
parallelizable to provide high-performance capability.

We take the approach to start with the well-known mode OCB. OCB is on-
line, one-pass as well as fully parallelizable. OCB also provides birthday bound
security, and thus we need 128-bit blocks that satisfy the NIST criteria. This in
turn, increases the state size while keeping the main features intact.

12 Chakraborti et al.

The associated data is processed following the hash layer of PMAC, and the
computation is fully parallel in order to maximize the performance in parallel
computing environments.

Light-OCB mainly updates the use of nonce and position dependent keys.
OCB achieves only the birthday bound security level. This is due to the fact that
collision probability at any two distinct block cipher calls (as two calls share the
same encrytion key). Light-OCB overcomes this by changing the key and tweak
tuple for each block cipher invocation. Hence, even if there is a collision the
security remains intact as the key, tweak tuples are distinct. Actually, Light-
OCB achieve full security up to a data complexity 2n, and time complexity 2κ,
and combined data-time complexity up to 2n+κ (see the security analysis in Sect.
4). This helps us to design a secure aead using a ultra lightweight block cipher
TweGIFT-64.

Choice of short Tweakable Block Cipher: TweGIFT-64 . We choose a
twekable block cipher TweGIFT-64, that can handle short tweaks. This is essen-
tial for instantiating our mode Light-OCB. There are several efficient tweakable
ciphers like SKINNY [4] but they are designed to handle general purpose tweaks
and are optimized for handling short tweaks. On the other hand, TweGIFT-64 is
designed over GIFT-64-128 to handle such short tweaks.

Tweak expansion is done using a simple (only 7 XORs are needed) high
distance linear code (distance 4) to convert a 4-bit tweak value into a 16-bit
codeword. This high distance code ensures strong differential characteristics for
TweGIFT-64.

The expanded codeword is XORed to the block cipher state to the third
bit of each nibble. The choice of this position has been made due to the fact
that the other three positions are already masked by the round key and round
constant bits. In addition, tweak addition after 4 rounds ensures low differential
probability for TweGIFT-64.

3.5 Light-OCB vs LOCUS-AEAD

In this section, we briefly discuss how Light-OCB differs from LOCUS-AEAD. We
first discuss on the difference between the two modes from specification point
of view, and then demonstrate the advantages of Light-OCB over LOCUS-AEAD.

Structurally, both the modes are very similar in the sense that they both are
parallel authenticated encryption schemes following the XEX paradigm, both
use nonce based derived key, and short tweak tweakable block cipher. However,
the modes have the following subtle differences:

1. While processing the message, Light-OCB uses one primitive call per message
block, while LOCUS-AEAD requires two primitive calls per message block.

2. Light-OCB computes plain text (or message) checksum for generating the
tag, while LOCUS-AEAD uses an intermediate checksum to generate the tag.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 13

Due to the above two structural modification, Light-OCB achieves the following
advantages over LOCUS-AEAD:

High Throughput : In LOCUS-AEAD, processing each message block requires 2
block-cipher invocations. On the contrary, Light-OCB requires only 1 block-cipher
invocation per message. Hence, to process a message block of 64-bits Light-OCB
requires only 1 clock-cycle as compared to 2 clock cycles required for LOCUS-
AEAD. This gives a double speed-up, and improves the overall throughput by a
factor of 2.

Efficient Short-Message Processing : Another notable advantage of Light-OCB
as compared to LOCUS-AEAD is efficiency in short message processing. Light-
OCB requires only (a + m + 1) primitive invocations to process a message of
m blocks with a block associated data, and this is the optimal number of non-
linear invocations for any nonce based authenticated encryption scheme. The
optimality ensures that the construction achieves extremely high throughput
even for very short messages.

We would like to point out that these advantages are obtained at the cost
of RUP security. However, we emphasize the fact that the RUP security is only
required in some unconventional settings, and practical applications where RUP
setting is necessary are limited. On the other hand, these modification allows the
design to boost the speed and throughput up to a factor of 2, which is critical,
specially for high-speed applications such as memory encryption, and vehicular
security applications.

4 Security Analysis of Light-OCB

4.1 Privacy Security of Light-OCB

Theorem 1. Let A be a non-trivial nonce-respecting adversary against Light-OCB[Ẽ]
that makes qe many encryption queries (with an aggregate of σe many blocks) to
the construction and qp many queries to the primitive. The privacy advantage
of A in the ideal cipher model satisfies

Advpriv

Light-OCB[Ẽ]
(A) ≤ qp

2k
+

4qpqe
2n+k

+
4qpσe
2n+k

.

Proof. We employ the coefficient-H technique to prove Theorem 1. In the same
spirit, we assume that A is deterministic. As per convention, A makes qe many
encryption queries to the construction oracle, with an aggregate of total νe many
associated data blocks and µe many message blocks. We write σe = µe + νe.
In addition, A makes qf many forward queries and qb many backward queries

to the underlying primitive oracle, i.e the tweakable ideal cipher Ẽ . We write
qp = qf + qb to denote the total number of primitive queries. The proof is given
in the rest of this subsection.

14 Chakraborti et al.

Oracle Description The two oracles at hand are: O1 := (Light-OCB[Ẽ], Ẽ±),

the real oracle, and O0 := ($, Ẽ±), the ideal oracle. We consider a stronger ver-
sion of these oracles, the one in which they release some additional information.

Description of the real oracle, O1: The real oracle O1 has access to
Light-OCB[Ẽ] and Ẽ±. We denote the transcript random variable generated by
A’s interaction with O1 by the usual notation Λ1, which is a collection of con-
struction and primitive query-response tuples. For i ∈ [qe], initially, the i-th con-
struction query-response tuple is of the form (Ni,Ai,Mi,Ci,Ti), where Ni is the
i-th nonce, Ai is the i-th associated data consisting of ai many blocks, Mi is the
i-th message consisting of `i many blocks, Ci is the i-th ciphertext consisting of
`i many blocks and Ti is the i-th tag value. Clearly, Light-OCB[Ẽ](Ni,Ai,Mi) =
(Ci,Ti) for all i ∈ [qe]. For i ∈ [qp], the i-th primitive query-response tuple

is of the form (K̂i, T̂i, X̂i, Ŷi), where K̂i: the i-th key, T̂i: the i-th tweak, X̂i:

the i-th input of Ẽ and Ŷi: the i-th output of Ẽ . Clearly, Ẽ (Ki,Ti,Xi) = (Yi)
for all i ∈ [qp]. Once the query-response phase is over O1 releases the secret key
K, and the internal variables, (Ui,Vi,Xi,Wi,Yi,Vi⊕,W

i
⊕,K

i
N,∆

i
N)i∈[qe], which are

defined analogously as in Fig. 3. Additionally it also releases ∆0 = Ẽ (K, (0, 0), 0).
Finally, we have

Λ1 =
{

(Ni,Ai,Mi,Ci,Ti,Ui,Vi,Xi,Yi,Vi⊕,M
i
⊕,K

i
N,∆

i
N,∆0,K)i∈[qe], (K̂i, T̂i, X̂i, Ŷi)i∈[qp]

}
.

Description of the ideal oracle, O0: The ideal oracle O0 has access
to $ and Ẽ±. The ideal transcript random variable Λ0, is also a collection of
construction and primitive query-response tuples. For i ∈ [qe], initially, the i-th
construction query-response tuple is of the form (Ni,Ai,Mi,Ci,Ti), where Ni

is the i-th nonce, Ai is the i-th associated data consisting of ai many blocks,
Mi is the i-th message consisting of `i many blocks, Ci←$ {0, 1}n`i is the i-th
ciphertext consisting of `i many blocks and Ti←$ {0, 1}n is the i-th tag value.
For i ∈ [qp], the i-th primitive query-response tuple is of the form (K̂i, T̂i, X̂i, Ŷi),
defined analogously as in the real world. Once the query-response phase is over
O0 defines the internal variables in the following order

1. K←$ {0, 1}k and ∆0←$ {0, 1}n.
2. Ki

N = K⊕ Ni.
3. ∆i

N←$ {0, 1}n.
4. ∀i ∈ [qe], j ∈ [ai], Uij = Aij ⊕∆i

N, and Vij ←$ {0, 1}n.

5. ∀i ∈ [qe], j ∈ [`i − 1], Xij = Mi
j ⊕∆i

N, Yij = Cij ⊕∆i
N.

6. ∀i ∈ [qe], Xi`i = 〈`i〉 ⊕∆i
N, Yi`i = Cij ⊕∆i

N ⊕Mi
`i

.

7. ∀i ∈ [qe], V⊕ =
⊕

j∈[ai] Vij , M⊕ =
⊕

j∈[`i] Mi
j , and CSi = Mi

⊕ ⊕ Vi⊕.

At this point, we have the complete ideal transcript random variable, i.e.,

Λ0 =
{

(Ni,Ai,Mi,Ci,Ti,Ui,Vi,Xi,Yi,Vi⊕,M
i
⊕,K

i
N,∆

i
N,∆0,K)i∈[qe], (K̂i, T̂i, X̂i, Ŷi)i∈[qp]

}
.

Note that, for brevity we used identical notations to describe the real and ideal
random variables. Since we never consider the joint probability of Θ1 and Θ0,
this abuse of notation should not cause any confusion.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 15

Bad Transcripts: Definition and Analysis Let Ω be the set of all attainable
transcripts. We say that a transcript

ω =
{

(N i, Ai,M i, Ci, T i, U i, V i, Xi, Y i, V i⊕,M
i
⊕,K

i
N , ∆

i
N , ∆0,K)i∈[qe], (K̂

i, T̂ i, X̂i, Ŷ i)i∈[qp]
}
,

is bad, denoted as ω ∈ Ωbad, if one of the following three cases occurs.

Case 1: Key-guessing primitive query: We say that a primitive query-
response tuple is key guessing if the following condition is true:

∃ i ∈ [qp], such that K̂i = K.

Case 2: Inconsistent primitive-construction queries: We say that the
primitive and construction query-response tuple is inconsistent if one of the
following conditions is true for some i ∈ [qe] and i′ ∈ [qp]:

• P1 : ∃ j ∈ [ai], such that (K̂i′ , T̂ i
′
, X̂i′) = (Ki

N , (0, j), U
i
j).

• P2 : ∃ j ∈ [`i], such that (K̂i′ , T̂ i
′
, X̂i′) = (Ki

N , (1, j), X
i
j).

• P3 : (K̂i′ , T̂ i
′
, X̂i′) = (Ki

N , (0, 0), CSi).
• P4 : (K̂i′ , T̂ i

′
, Ŷ i

′
) = (Ki

N , (1, 0), ∆0).
• P5 : ∃ j ∈ [ai], such that (K̂i′ , T̂ i

′
, Ŷ i

′
) = (Ki

N , (0, j), V
i
j).

• P6 : ∃ j ∈ [`i], such that (K̂i′ , T̂ i
′
, Ŷ i

′
) = (Ki

N , (1, j), Y
i
j).

• P7 : (K̂i′ , T̂ i
′
, Ŷ i

′
) = (Ki

N , (0, 0), T i ⊕∆i
N).

• P8 : (K̂i′ , T̂ i
′
, Ŷ i

′
) = (Ki

N , (1, 0), ∆i
N).

Let B1, and B2 denote the event that cases 1, and 2, respectively, are satisfied
for Λ0. Therefore, the probability that Λ0 ∈ Ωbad, is given by

Pr[Λ0 ∈ Ωbad] = Pr[B1 ∨ B2] ≤ Pr[B1] + Pr[B2] (2)

Upper bound on Pr[B1]: For a fixed i, K̂i = K, happens with at most 2−k

probability (K is uniform and independent of K̂i). There are at most qp many
choices for i. So, we get Pr[B1] ≤ qp2−k.

Upper bound on Pr[B2]: By the definition of B2, we have

Pr[B2] ≤
8∑

i=1

Pr[Pi] ≤
4qpqe
2n+k

+
4qpσe
2n+k

(3)

The proof of Eq. (3) is given in Appendix A.

Pr[Λ0 ∈ Ωbad] ≤
qp
2k

+
4qpqe
2n+k

+
4qpσe
2n+k

. (4)

Good Transcript Analysis Let us fix a transcript ω ∈ Ω \ Ωbad, where ω
has the usual form. In Eq. (5), we claim that the ratio of real to ideal world
interpolation probabilities is at least 1. The proof of this claim is available in
Appendix B.

Pr[Λ1 = ω]

Pr[Λ0 = ω]
≥ 1. (5)

Theorem 1 follows by using Eq. (4) and (5) in Eq. (1) of the coefficient-H tech-
nique.

16 Chakraborti et al.

4.2 INT-CTXT Security of Light-OCB

Theorem 2. Let A be a non-trivial nonce-respecting forger against Light-OCB[Ẽ]
that makes qe and qd many encryption and decryption, respectively, queries (with
an aggregate of σe many encryption query blocks) to the construction and qp
many queries to the primitive. The INT-CTXT advantage of A in the ideal ci-
pher model satisfies

Advint-ctxt
Light-OCB[Ẽ]

(A) ≤ 2

2n
+
qp
2k

+
16qp
2n+k

+
4qpqe
2n+k

+
4qpσe
2n+k

.

Proof. As per convention, A that makes at most qe many encryption queries
and at most qd many RUP queries to Light-OCB[Ẽ]. In addition A also makes qf
many forward queries and qb many backward queries to Ẽ . We write qp = qf +qb
to denote the total number of primitive queries. We will reuse the notations used
in Sect. 4.1. In particular, the i-th encryption query-response tuple is denoted
by (Ni,Ai,Mi,Ci,Ti), and the i-th primitive query-response tuple is denoted by
(K̂i, T̂i, X̂i, Ŷi). The intermediate variables are also analogously defined. In ad-

dition the i-th decryption query-response tuple is denoted by (N′i,A′i,M′i,C′i),
where A′i, and M′i contains a′i, and `′i many blocks, respectively. Note that,

(Ni, Ai,Mi,Ci) 6= (N′j ,A′j ,M′j ,C′j) for all i ∈ [qe] and j ∈ [qd].
Finally,A tries to forge with (N?,A?,C?,T?) 6= (Ni,Ai,Mi,Ci) for i ∈ [qe]. Let

Forge denotes the event that A submits valid forgery. We define the transcript

random variable corresponding to A’s interaction with Light-OCB[Ẽ] as

Λ1 :=
{

(Ni,Ai,Mi,Ci)i∈[qe], (N′
i
,A′

i
,M′

i
,C′

i
)i∈[qd], (K̂i, T̂i, X̂i, Ŷi)i∈[qp], (N?,A?,C?,T?)

}
.

Let multi(x) denote the number of i ∈ [qp] such that K̂i = x. Let Bad denote the
event that Λ1 satisfies one of the following properties:

• G1 : ∃i ∈ [qp], such that K̂i = K.

• G2 : ∃i ∈ [qp], such that (K̂i, X̂i) = (K?N, ẼK(0)).
• G3 : multi(K?N) ≥ 2n−1.

• G4 : ∃i ∈ [qp], such that (K̂i, Ŷi) = (K?N,T
? ⊕∆?

N).

• G5 : ∃i ∈ [qp], such that (K̂i, X̂i) = (K?N,U
?
a?).

• G6 : ∃i ∈ [qp], such that (K̂i, Ŷi) = (K?N,Y
?
`?

).

• G7 : ∃i ∈ [qe], i
′ ∈ [qp], such that (K̂i

′
, X̂i

′
) = (Ki

N, ẼK(0)).
• G8 : ∃i ∈ [qe], such that multi(Ki) ≥ 2n−1.
• G9 : ∃i ∈ [qe], j ∈ [ai], i

′ ∈ [qp], such that (K̂i
′
, X̂i

′
) = (Ki

N,U
i
j).

• G10 : ∃i ∈ [qe], j ∈ [`i], i
′ ∈ [qp], such that (K̂i

′
, Ŷi

′
) = (Ki

N,Y
i
j).

Observe that if Bad is satisfied, then A can forge with very high probability.
On the other hand, we will show that given that Bad is not satisfied, A cannot
succeed with significant probability. Formally, we have

Pr[Forge] ≤ Pr[Bad] + Pr[Forge|¬Bad]. (6)

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 17

We make two claims, given as follows

Pr[Bad] ≤ qp
2k

+
16qp
2n+k

+
4qpqe
2n+k

+
4qpσe
2n+k

(7)

Pr[Forge|¬Bad] ≤ 2

2n
. (8)

The proof for claims in Eq. (7) and (8) are given in Appendix C and D, respec-
tively. The result follows from Eq. (6), (7), and (8).

5 Hardware Implementation

In this section, we describe a lightweight implementation of Light-OCB. Light-
OCB is structurally simple with tweakable blockcipher and a few XORs. In this
section we provide hardware implementation details of Light-OCB instantiated
with the TweGIFT64 blockcipher.

5.1 Clock Cycle Analysis

We provide a conventional way for speed estimation, i.e, the number of clock
cycles per byte (cpb). This is a theoretical way to estimate the speed of the
architecture. We consider round-based architecture with 64 bit datapath. To
process a data block of d = a + m blocks (a is the number of associated data
blocks and m is the number of message blocks), we need 29d clock cycles. We
use one TweGIFT64 call to process one data block. Our block cipher is optimized
to process a bulk data, and the reset is required only to indicate that the stream
processing starts. We observe that the cpb values for different sized data are
constant as there is no initialization overhead and the overhead for the tag
generation (constant small number of clock cycles) is negligible for long messages.
Our design accept 64-bit or 8-byte data blocks and hence the cpb is 29d/8d =
3.625.

5.2 Hardware Architecture

Light-OCB is based on E-t-M paradigm and the message blocks are processed
in parallel to generate the ciphertext blocks and the tag. Here, the blockcipher
tweak values for the three types of input data (N , A and M) are required to
distinguish. Below, we provide brief hardware architecture details. For simplicity,
we omit the control unit from Fig. 4. The main components in the hardware
circuit are as follows.

State Registers. The architecture for Light-OCB contains four registers.

• A 64-bit state register to store the encryption state,
• an 128-bit register to store the blockcipher master secret key,
• a 64-bit register to store the checksum and
• the 64-bit ∆ register to store ∆N .

18 Chakraborti et al.

064

064

N

Ai, Mi, Ci, <l>

M
U

XL
M

U
XA

M
U

X
In

ACC

TweGIFT

Ci, Mi, T

Fig. 4. Hardware Architecture Diagram

Module TweGIFT. The TweGIFT module computes one round of the underly-
ing tweakable blockcipher. This module internally uses a 64-bit register for the
blockcipher internal state and an 128-bit register fr the master key. In addition,
TweGIFT also uses internally a control unit. We are omitting this for the sake of
simplicity.

Accumulator Module. The accumulator module ACC is used to compute the
checksum of the ECB layer and the last block for computing the tag.

Remark 1. (Combined Encryption and Decryption) In this implementation, we
mainly focus on a combined encryption-decryption circuit. We observe that we
can also implement encryption-only circuits even with a small decrease in hard-
ware area and with the same throughput.

5.3 Implementation Results

We implement Light-OCB on Virtex 7 (xc7v585tffg1761-3), using VHDL and the
VIVADO tool. We use exactly the same implementation for TweGIFT64 as used
in the implementation of LOCUS-AEAD [10]. The results are presented in Table 2.
The implementation follows the RTL approach and a basic iterative type archi-
tecture with 64-bit datapath. The areas are reported in the number of flipflops,
LUTs and slices. We also report the Frequency (MHz), Throughput (Gbps), and
throughput-area efficiencies. The mapped hardware results are reported in Ta-
ble 2. For the sake of comparison, we also provide the implementation results
for LOCUS-AEAD taken from [10].

5.4 Benchmarking

We benchmark our implemented results using the existing FPGA results on
Virtex 7. We provide comparisons with the implementation results of the well

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 19

Table 2. FPGA implementation comparison between Light-OCB and LOCUS-AEAD

Design (Platform)
Slice

Registers LUTs Slices
Frequency

(MHz)
Throughput

(Gbps) Mbps/LUT Mbps/Slice
Light-OCB (Virtex 7) 428 1128 307 400 0.88 0.780 2.866

LOCUS-AEAD (Virtex 7) 430 1154 439 392.20 0.44 0.38 1. 002

Table 3. Comparison of Parallel AEAD on Virtex 7 [2].

Scheme # LUTs # Slices Gbps
Mbps/
LUT

Mbps/
Slice

LIGHT-OCB 1128 307 0.88 0.780 2.866

LOCUS-AEAD [10] 1154 439 0.44 0.38 1.00

LOTUS-AEAD [10] 865 317 0.48 0.55 1.50

CLOC-TWINE [2] 1552 439 0.432 0.278 0.984

SILC-AES [2] 3040 910 4.365 1.436 4.796

SILC-LED [2] 1682 524 0.267 0.159 0.510

SILC-PRESENT [2] 1514 484 0.479 0.316 0.990

JAMBU-SIMON [2] 1200 419 0.368 0.307 0.878

AES-OTR [2] 4263 1204 3.187 0.748 2.647

OCB [2] 4269 1228 3.608 0.845 2.889

AES-COPA [2] 7795 2221 2.770 0.355 1.247

AES-GCM [2] 3478 949 3.837 1.103 4.043

CLOC-AES [2] 3552 1087 3.252 0.478 1.561

ELmD [2] 4490 1306 4.025 0.896 3.082

known designs in Table 3 below. Note that, all the candidates for benchmarking
in Table 3 either parallel in structure or can have almost parallel implementation.
We did not consider the blockcipher based feedback designs or sponge based
feedback designs.

References

1. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. Parallelizable and Authenticated Online Ciphers. In
ASIACRYPT (1), volume 8269 of LNCS, pages 424–443. Springer, 2013.

2. Authenticated Encryption FPGA Ranking. https://cryptography.gmu.edu/

athenadb/fpga_auth_cipher/rankings_view.
3. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng

Sim, and Yosuke Todo. GIFT: A small present - towards reaching the limit of
lightweight encryption. In Cryptographic Hardware and Embedded Systems - CHES
2017, Proceedings, pages 321–345, 2017.

4. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Advances in Cryp-
tology - CRYPTO 2016, Proceedings, Part II, pages 123–153, 2016.

5. John Black and Phillip Rogaway. A block-cipher mode of operation for paralleliz-
able message authentication. In Advances in Cryptology - EUROCRYPT 2002,
Proceedings, pages 384–397, 2002.

https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view

20 Chakraborti et al.

6. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007, pages 450–466,
2007.

7. Lilian Bossuet, Nilanjan Datta, Cuauhtemoc Mancillas-López, and Mridul Nandi.
Elmd: A pipelineable authenticated encryption and its hardware implementation.
IEEE Trans. Computers, 65(11):3318–3331, 2016.

8. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html.

9. Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,
Mridul Nandi, and Yu Sasaki. Elastic-tweak: A framework for short tweak tweak-
able block cipher. IACR Cryptology ePrint Archive, 2019:440, 2019.

10. Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,
Mridul Nandi, and Yu Sasaki. INT-RUP secure lightweight parallel AE modes.
IACR Trans. Symmetric Cryptol., 2019(4):81–118, 2019.

11. Avik Chakraborti, Nilanjan Datta, and Mridul Nandi. On the optimality of non-
linear computations for symmetric key primitives. J. Math. Cryptol., 12(4):241–
259, 2018.

12. Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In FSE, pages 306–327, 2011.

13. Ted Krovetz and Phillip Rogaway. OCB(v1.1). Submission to CAESAR, 2016.
https://competitions.cr.yp.to/round3/ocbv11.pdf.

14. Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block ciphers.
In CRYPTO 2002, pages 31–46, 2002.

15. Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR, 2016. https:

//competitions.cr.yp.to/round3/aesotrv31.pdf.
16. Yusuke Naito. Tweakable blockciphers for efficient authenticated encryptions with

beyond the birthday-bound security. IACR Trans. Symmetric Cryptol., 2017(2):1–
26, 2017.

17. NIST. Lightweight cryptography. https://csrc.nist.gov/Projects/

Lightweight-Cryptography.
18. National Centre of Excellence. Light-weight Cipher Design Challenge. https:

//www.dsci.in/ncoe-light-weight-cipher-design-challenge-2020/.
19. OMA-SpecWorks. Lightweight-M2M, 2019. https://www.omaspecworks.org/

what-is-oma-specworks/iot/lightweight-m2m-lwm2m/.
20. Jacques Patarin. The ”Coefficients H” Technique. In SAC 2008, pages 328–345,

2008.
21. Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of

operation for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur.,
6(3):365–403, 2003.

22. Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. J. Cryptology,
16(4):249–286, 2003.

Appendix

A Proof of Eq. (3)

We bound the probabilities of P1, P3, and P4, while the other probabilities can
be similarly bounded.

http://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://www.dsci.in/ncoe-light-weight-cipher-design-challenge-2020/
https://www.dsci.in/ncoe-light-weight-cipher-design-challenge-2020/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 21

• Upper bound on Pr[P1]: Fix i′ ∈ [qp], i ∈ [qe], j ∈ [ai]. Then, we have a
system of two equations

K = K̂i
′ ⊕ Ni, ∆i

N = X̂i
′ ⊕ Aij .

Here K and ∆i
N are uniform and independent of each other as well as K̂i

′
,

Ni, Aij , and X̂i
′
. So conditioning on K̂i

′
,Ni,Aij , X̂

i′ , the two equations sat-

isfy with probability at most 2−n−k. Since we have at most qpνe many such
i′, i, j indices, we get Pr[P1] ≤ qpνe2

−n−k. Similarly, Pr[P2] ≤ qpµe2
−n−k,

Pr[P6] ≤ qpµe2−n−k, Pr[P7] ≤ qpqe2−n−k, and Pr[P8] ≤ qpqe2−n−k.

• Upper bound on Pr[P3]: Fix i′ ∈ [qp], i ∈ [qe], j ∈ [`i]. Then, we have the
following system of two equations

K = K̂i
′ ⊕ Ni, CSi = X̂i

′
.

Following a similar line of argument as in the case of P1, we can conclude
that the two equations satisfy with probability at most 2−n−k. We have
at most qpµe many i′, i, j indices. Thus Pr[P3] ≤ qpµe2

−n−k. Similarly,
Pr[P5] ≤ qpνe2−n−k.

• Upper bound on Pr[P4]: In this case ∆0 and K are independent and uniform.
So for fixed i′ ∈ [qp], i ∈ [qe], the event P4 holds with probability at most
2−n−k, whereby Pr[P4] ≤ qpqe2−n−k.

On combining all the above bounds Eq. (3) follows.

B Proof of Eq. (5)

Ideal World Interpolation Probability: In the ideal world, we have

Pr[Λ0 = ω] = Pr[∀i ∈ [qp], Ẽ T̂ i

K̂i (X̂
i) = Ŷ i]× Pr[∀i ∈ [qe], $(N i, Ai,M i) = (Ci, T i)]

× Pr[∀i ∈ [qe], Ui = U i,Vi = V i,Xi = Xi,Yi = Y i,∆i
N = ∆i

N]

× Pr[K = K] · Pr[∆0 = ∆0]

= Pr[∀i ∈ [qp], Ẽ (K̂i, T̂ i, X̂i) = Ŷ i]× 1

2k2n(σe+µe+2qe+1)
(9)

First of all note that in ideal world the construction query responses and primi-
tive query responses are independent. This justifies the first equality. The second
equality is justified as follows. First, µe + qe many blocks are sampled uniformly
(and independently) from {0, 1}n, corresponding to the ciphertext and tag for
all qe queries. Independently, σe+ qe blocks are sampled uniformly from {0, 1}n,
corresponding to V , and ∆N values. The key is sampled uniformly from {0, 1}k
and ∆0 is sampled uniformly from {0, 1}n. In total, we have σe + µe + 2qe + 1
many n-bit samplings and 1 k-bit sampling.

22 Chakraborti et al.

Real World Interpolation Probability: For a ∈ {0, 1}n, r ∈ {0, 1} and
s ≤ ` + 1, let κ(a, r, s) denote the number of i ∈ [qp] such that K̂i = a, and

T̂ i = (r, s). Then, we have

Pr[Λ1 = ω] = Pr[∀i ∈ [qp], Ẽ T̂ i

K̂i (X̂
i) = Ŷ i]× 1

2k
× 1

2n − κ(K, 0, 1)
×
∏

i∈[qe]

1

2n − κ(Ki
N , 1, 0)

×
∏

i∈[qe],j∈[`i]

1

(2n − κ(Ki
N , 1, j))(2

n − κ(Ki
N , 1, j)− 1)

×
∏

i∈[qe],j∈[ai]

1

2n − κ(Ki
N , 0, j + 1)

×
∏

i∈[qe]

1

2n − κ(Ki
N , 0, 0)

. (10)

Finally, we get Eq. (5) on dividing Eq. (10) by Eq. (9).

C Proof of Eq. (7)

From the definition of Bad, we have

Pr[Bad] = Pr[G1 ∨ G2 ∨ G3 ∨ G4 ∨ G5 ∨ G6 ∨ G7 ∨ G8 ∨ G9 ∨ G10]

≤ Pr[G1] + Pr[G2|¬G1] + Pr[G3] + Pr[G4|¬(G1 ∨ G2 ∨ G3)]

+ Pr[G5|¬(G1 ∨ G2 ∨ G3)] + Pr[G6|¬(G1 ∨ G2 ∨ G3)] + Pr[G7|¬G1] + Pr[G8]

+ Pr[G9|¬(G1 ∨ G7 ∨ G8)] + Pr[G10|¬(G1 ∨ G7 ∨ G8)]

We analyze all the ten terms in the following manner:

• Pr[G1]: Since K is uniformly distributed and there are at most qp many fa-
vorable values for K, we have Pr[G1] ≤ qp2−k.

• Pr[G2|¬G1] and Pr[G7|¬G1]: In this case, once we condition on {K̂i′ : i′ ∈ [qp]},
we get at least 2k − qp many choices for K. Further for each such choice K,

Ẽ
(0,1)
K (0) is uniformly distributed. Thus, we get

Pr[G2|¬G1] ≤ qp
2n(2k − qp)

.

Using a similar argument for each i ∈ [qe], we get Pr[G7|¬G1] ≤ qpqe
2n(2k−qp) .

• Pr[G3] and Pr[G8]: Let K̂ denote the set of all indices i ∈ [qp] such that

multi(K̂i) ≥ 2n−1. Then |K̂| ≤ qp/2n−1. Since K is uniformly distributed, we
have

Pr[G3] = Pr[K?N ∈ K̂] ≤ qp
2n−12k

.

Similarly, Pr[G8] ≤ qpqe
2n−12k

.

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security 23

• Pr[G4|¬(G1 ∨ G2 ∨ G3)]: Here conditioned on K?N = K̂i, ∆?
N is almost uniform

due to ¬(G1 ∨ G2 ∨ G3). Specifically, we have

Pr[G4|¬(G1 ∨ G2 ∨ G4)] ≤
∑

i∈[qp]
Pr[∆?

N = T? ⊕ Ŷi|¬(G1 ∨ G2 ∨ G3) ∧ (K?N = K̂i)]

· Pr[K?N = K̂i|¬(G1 ∨ G2 ∨ G3)]

≤ qp
2n−1(2k − qp)

.

Using the same argument, we get

Pr[G5|¬(G1 ∨ G2 ∨ G3)] = Pr[G6|¬(G1 ∨ G2 ∨ G3)] ≤ qp
2n−1(2k − qp)

.

Similarly,

Pr[G9|¬(G1∨G7∨G8)] ≤ qpνe
2n−1(2k − qp)

, Pr[G10|¬(G1∨G7∨G8)] ≤ qpµe
2n−1(2k − qp)

.

Combining all the probabilities we obtain the bound of Eq. (7), assuming qp ≤
2k−1.

D Proof of Eq. (8)

At this point, we know that Λ1 is good, as ¬Bad holds. Let ω ∈ Ω be a good
transcript. Then, we have

Pr[Forge|Λ1 = ω] = Pr[Ẽ
(0,0)
K?N

(CS?)⊕∆?
N = T? | Λ1 = ω]

We do the analysis in two disjoint cases, depending upon the freshness of the
nonce.

Case 1: N? is fresh, i.e., ∀i ∈ [qe], N? 6= Ni. In this case, we know that
K?N 6= Ki

N for all i ∈ [qe] and multi(K?N) < 2n−1 (since ¬G3 holds). Thus using
a similar line of argument as in the analysis of G4, we obtain

Pr[Forge|Λ1 = ω] = Pr[Ẽ 0,0
K?N

(CS?) = T? ⊕∆?
N | Λ1 = ω] ≤ 2

2n
.

Case 2: N? is not fresh, i.e., ∃i ∈ [qe], N? = Ni. If T? 6= Ti, then the forgery
succeeds with at most 21−n probability (since ¬Bad holds). Suppose T? = Ti.
In this case, (Ai,Ci) 6= (A?,C?). Without loss of generality we assume that
Ai 6= A?, hence there must be an index j ∈ max{ai, a?} such that Aij 6= A?j .
This trivially holds when ai 6= a?, as we can choose j = max{ai, a?}. If
ai = a?, j is chosen to be the smallest index such that Aij 6= A?j . Keeping
this index j in mind, we have

Pr[Forge|Λ1 = ω] = Pr[Vi⊕ ⊕ V?⊕ = Mi
⊕ ⊕M?

⊕|Λ1 = ω]

≤ 2

2n
,

where the inequality holds by conditioning on all other indices except j and
the fact that multi(Ki) < 2n−1.

24 Chakraborti et al.

The bound Pr[Forge|Λ1 = ω] ≤ 21−n holds for any arbitrary good transcript ω.
So, the bound in Eq. (8) follows from case 1 and 2.

	Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security

