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Abstract
Secure inference allows a model owner (or, the server) and
the input owner (or, the client) to perform inference on ma-
chine learning model without revealing their private informa-
tion to each other. A large body of work has shown efficient
cryptographic solutions to this problem through secure 2-
party computation. However, they assume that both parties
are semi-honest, i.e., follow the protocol specification. Re-
cently, Lehmkuhl et al. showed that malicious clients can
extract the whole model of the server using novel model-
extraction attacks. To remedy the situation, they introduced
the client-malicious threat model and built a secure inference
system, MUSE, that provides security guarantees, even when
the client is malicious.

In this work, we design and build SIMC, a new crypto-
graphic system for secure inference in the client malicious
threat model. On secure inference benchmarks considered
by MUSE, SIMC has 23− 29× lesser communication and
is up to 11.4× faster than MUSE. SIMC obtains these im-
provements using a novel protocol for non-linear activation
functions (such as ReLU) that has > 28× lesser communica-
tion and is up to 43× more performant than MUSE. In fact,
SIMC’s performance beats the state-of-the-art semi-honest
secure inference system!

Finally, similar to MUSE, we show how to push the majority
of the cryptographic cost of SIMC to an input independent
preprocessing phase. While the cost of the online phase of
this protocol, SIMC++, is same as that of MUSE, the overall
improvements of SIMC translate to similar improvements to
the preprocessing phase of MUSE.

1 Introduction

Extensive use of machine learning in applications, specifically
inference using pre-trained models, has made the problem of
privacy preserving machine learning and in particular, secure
inference increasingly important. In secure inference, a server
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P0 holds a machine learning (ML) model M whose weights
w are private and sensitive, while a client P1 holds a private
input data point x. The goal is for P1 to learn the output
of the model on its input - i.e., for P1 to learn M(w,x) and
nothing else; while P0 must learn no information about client’s
private input. Secure inference has many applications - private
health diagnosis, and secure machine-learning-as-a-service
(MLaaS), to name a few. This problem, in theory, can be
solved using the cryptographic primitive of secure 2-party
computation (2PC) [22,55] that allows any two parties, to run
an interactive protocol, to compute any arbitrary function over
their inputs without revealing any other information to each
other. Over the last 10 years, much work has gone towards
building concretely efficient solutions for secure inference [21,
24, 34, 35, 37, 41, 42]. Being already a challenging problem
to solve efficiently, all these works focus on the semi-honest
adversarial model. In this model, both parties P0 and P1 are
trusted to follow the specifications of the secure inference
protocol faithfully and privacy is only provided against such
entities that do so.

Prior work by Lehmkuhl et al. [32] (refererred to as MUSE)
argued that while in deployments it might be reasonable to
assume that a server hosting the ML model is semi-honest, it
is far less likely that all thousands of clients would be semi-
honest. This is because while the server is a fixed, typically
reputed entity – the model owner, the client could be any arbi-
tray entity. MUSE showed that if a client behaved maliciously
(i.e., deviates from protocol specification) in such semi-honest
secure inference protocols, then it can completely break the
privacy of server’s input. Formally, they develop a model ex-
traction attack against state-of-the-art semi-honest protocols
that enables a malicious client to learn all the weights of the
model in far less number of inference queries compared to
best black-box model extraction attack [10]. While this at-
tack can be thwarted in theory by using 2PC protocols secure
against malicious adversaries [15, 18, 27, 28], the overhead
of doing so is exorbitant. To address this gap between ex-
isting works in literature and practice, MUSE proposed the
client-malicious threat model, where the clients are allowed



to behave malciously, and the server is still assumed to be
semi-honest. In this model, MUSE built a system for secure
inference with much lower overheads than those that protect
against both malicious servers and clients. However, the con-
crete communication and computational cost of MUSE leaves
much to be desired and are still roughly 15× larger than a
similar semi-honest system DELPHI [35] supporting arbitrary
activation functions that MUSE builds on.

1.1 Our Contribution

In this work, we present SIMC1 - a new secure neural network
inference system that is secure in the client malicious model
and is at least an order of magnitude more performant than
prior state-of-the-art, MUSE.

Neural networks consist of 2 types of layers or functions -
linear layers (that include functions such as matrix multipli-
cation, convolutions and so on) and non-linear layers (that
include functions such as ReLU, ReLU6, Maxpool and so on).
In the benchmarks considered by MUSE, nearly 99% of the
communication overhead of MUSE (and roughly 80% of the
overall performance overhead) was due to the secure compu-
tation protocols for non-linear layers. At the core of SIMC is a
completely novel protocol for securely computing non-linear
layers that is even analytically significantly lighter weight
compared to MUSE in both compute and communication. As
we explain in Section 1.3, MUSE uses computationally heavy
leveled homomorphic encryption [8,19,20] as well communi-
cation heavy authenticated Beaver triples [15, 28] to realize
their non-linear layers. In contrast, SIMC uses cheap oblivi-
ous transfer and onetime pad encryptions to achieve the same
task. Similar to MUSE, our protocol supports computation of
arbitrary non-linear functions, is 28− 33× communication
frugal and upto 43× more performant than MUSE for popular
activation functions such as ReLU and ReLU6 (Section 5.2).

Next, we carefully design our protoocols for linear layers
and combine them with non-linear layer protocols using a
custom consistency check phase, to obtain end-to-end client
malicious security for secure inference tasks. On neural net-
work inference benchmarks considered in MUSE, SIMC is
23− 29× more communication efficient than MUSE and is
between 4.3−11.4× more performant than it. With all this,
we are even cheaper than DELPHI, the state-of-the-art in semi-
honest secure inference that supports arbitrary non-linear func-
tions, in both communication and runtime.

Finally, MUSE demonstrated how to split their protocols
into 2 phases - an offline, client-input independent phase,
and an online input-dependent phase. This split can be done
in such a way that > 99.6% of the cryptographic overhead
can be moved to the offline phase. We show how to modify
our protocols in a similar manner, at the cost of marginally
increasing our overall cost. This protocol, SIMC++ pushes
almost all cryptographic overhead into a preprocessing model,
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and has an online phase identical to MUSE. Furthermore,
SIMC++’s preprocessing phase is 15−17× communication
frugal compared to MUSE and is upto 7.4× more performant.

1.2 Technical Overview

We describe our main technical ideas starting with setting
up necessary notation for secure inference and background
on authenticated shares and mixed arithmetic and boolean
computation. We provide a analytical comparison with the
state-of-the-art prior work MUSE [32] in Section 1.2.1 and
comparison of techniques later in Section 1.3 along with other
relevant works.
Notation. For ease of exposition, consider a neural network
(NN) with alternating linear and non-linear layers. Let the
specification of linear layers be M1, · · · ,M` and of non-linear
layers be f1, · · · , f`−1. Consider an input vector v0, with ele-
ments in Fp (let κ = dlog pe). Then, one needs to sequentially
compute si = Mivi−1 and vi = fi(si) for i ∈ {1, . . . , `− 1},
followed by s` = M`v`−1 = NN(v0). For the setting of se-
cure inference, as already discussed, the server (P0) holds
M1, · · · ,M` and the client (P1) holds v0.
Authentication. A long line of influential work [5,15,27,28]
on malicious secure computation for dishonest majority uses
information theoretic homomorphic MACs as follows: Parties
hold shares of a MAC key α∈ Fp. The protocol maintains the
invariant that parties start with authenticated shares of input
x ∈ Fp to an arithmetic gate (shares of x along with shares
of MAC on x, i.e., αx) and compute authenticated shares of
the output of the gate. These authentications, along with a
protocol specific consistency check at the end, ensure that any
malicious behavior is detected and the honest party aborts.
In the client malicious setting, as pointed by [32], the server
(semi-honest party) can pick the MAC key.
Mixed Computation. The main challenge for computations
such as NN inference is the use of mixed computation. In
more detail, linear layers such as matrix multiplications and
convolutions are best expressed as arithmetic circuits, and
non-linear activations such as ReLU, ReLU6, and Maxpool
are best expressed as boolean circuits. Applying standard
machinery for malicious security to mixed computation is
problematic and inefficient. For example, while switching
between authenticated shares (for arithmetic compute) and
garbled circuits (for boolean compute),one must ensure that
labels obtained by the (malicious) client correspond to the
correct authenticated share. Recent line of work [2,16,18,46]
considers such mixed-computation in the malicious setting
with dishonest majority. MUSE, by focusing on mixed com-
pute for the weaker client malicious setting, provides pro-
tocols that are much more efficient than standard malicious
secure protocols [28]. We now discuss our solution that out-
performs the prior work by atleast an order of magnitude, in
the client malicious setting.



1.2.1 Our Protocol

We maintain the invariant that P0 and P1 hold authenticated
shares of s values that are components of the output vectors
of linear layers, then the shares of s are input to non-linear
layers. We first discuss how we realize non-linear layers in our
protocol where the challenge is to design a boolean-friendly
protocol for non-linear layers that ensures that a malicious
client feeds in the correct share of s, and that the output of
the non-linear layer is fed correctly into the subsequent linear
layer. This describes our main technical ideas; we follow this
by describing the computation of linear layers and finally the
consistency check phase.
Non-linear layers. We use standard semi-honest secure gar-
bled circuits to realize the non-linear layers and labels corre-
sponding to the client’s share are transferred using receiver
malicious oblivious transfer. Note that this step allows for a
malicious client to input arbitrarily values, and not necessarily
the outputs from the previous linear layer. Our main technical
idea to ensure security against a malicious client is to generate
a re-authentication on the input s and later verify the equality
of two independently generated authentications on s. Below,
we describe how we efficiently realize both parts.

We define our functionality for non-linear layers computing
a function f as follows: It takes shares of a value s from
P0 and P1 and returns shares of u = αs and authenticated
shares of v = f (s), i.e., shares of f (s) and α f (s). Note that
the previous linear layer already outputs authenticated shares
of s, i.e., shares of s and shares of t = αs. Hence, t and u are
MACs on the same s computed by consecutive linear and
non-linear layers, respectively. We check for their equality
during the final consistency check phase, which we describe
later. Now, realizing this functionality in a straightforward
manner using garbled circuits requires doing at least 2 field
multiplications within the circuit and is quite expensive. Note
that doing field multiplication inside a garbled circuit requires
O
(
κ2λ

)
communication.

To remedy this, we garble a circuit, that given shares of s,
only computes s and f (s) (and not their MACs). Now, one of
our key technical ideas is to effectively use the output labels
of the garbled circuit as one-time pad encryption keys to send
the appropriate shares of αs, f (s),α f (s) to the client. Security
of this step follows by the authenticity property of garbled
circuits (see Section 2.2.3). This requires only 6κ2 bits of
additional communication, where κ is the bitlength used. For
further details see Section 3.

Overall, our protocol only requires communication of ap-
proximately 2cλ + 4κλ + 6κ2, where c is the number of
AND gates required to reconstruct shares of s and compute
f (s). In contrast, MUSE required communication2 of at least
2dλ+190κλ+232κ2 where d > c is number of AND gates
required to reconstruct shares of s, compute f (s) and generate
shares of f (s). As an example, when computing the popular

2Constant factors are determined using existing implementation.

non-linear function ReLU(x) := max(x,0), with λ = 128 and
κ = 44, this results in our protocol being roughly 30× more
communication efficient than the corresponding protocol in
MUSE (see Section 5.2).
Linear Layers. We compute authenticated shares of si+1
from authenticated shares of vi = fi(si) using additively ho-
mormorphic encryption (AHE). Denote authentication on
vi as wi. To prevent P1 from inputing something different
from what it received from the previous non-linear layer, we
compute an additional tag zi = α3vi−α2wi, which is zero
if wi = αvi and non-zero otherwise for α 6= 0. We check for
zi = 0 in the final consistency check described below. As dis-
cussed in Section 4.1 and validated in Section 5, our cost for
linear layer is similar to MUSE.
Consistency check. Let ti and ui denote authentications on si
obtained from the ith linear and non-linear layers respectively.
Recall that zi is the tag output from linear layers. In this phase,
P0 and P1 compute a random linear combination of ti−ui and
zi and P0 checks that final result q evaluates to 0. We formally
show that if P1 deviates from the protocol, then q 6= 0 with
overwhelming probability. This proof crucially relies on the
structure of zi, that is, zi using high powers for α, to avoid
cancellation between different errors introduced by P1. This
phase is super lightweight.
Preprocessing Model. Plugging our novel protocols and cus-
tom consistency checks into the basic protocol design of
DELPHI/MUSE, we are able to push bulk of the cryptographic
cost of our protocol to an client input-independent preprocess-
ing phase. Our online phase has same cost as MUSE. For
details see Section 4.4.

1.3 Related Works

Since MUSE [32] is the only prior work on secure inference
in the client-malicious setting, we begin with a detailed com-
parison of techniques with MUSE pointing out their main
performance bottleneck. For non-linear layers, MUSE uses
a garbled circuit that takes shares of s as input and outputs
shares of f (s). Note that this circuit has higher number of
AND gates compared to the circuit used in SIMC. Next, they
provide specialized protocols to securely transfer the labels
corresponding to the client’s share of s when the correspond-
ing MAC is valid. This part of their protocol has the highest
complexity among all the building blocks used in MUSE. At
a high level, the parties do the following: for every bit of
client’s share for s, they run a secure multiplication protocol
where the parties learn the shares of the label. The server
sends its share of the label, only if the check on client’s input
and MACs succeed. This method, in addition to the garbled
circuit communication, requires communication of at least
188λκ+232κ2 for each s, for security parameter λ. Further-
more, this step is computationally heavy and corresponds to
bulk of the compute cost of non-linear layers due to the use of
homomorphic encryption (to generate (λ+κ) authenticated



Beaver triples per s value). We provide an extensive empirical
comparison with MUSE in Section 5.

We note that the works of [2,16,18,46] study mixed compu-
tation and provide malicious security in the dishonest majority
setting. [53] discusses secure inference in the zero knowledge
setting. All these works use boolean MACs as a building
block for authenticated boolean computation and hence incur
higher cost than SIMC. In our protocol, to provide security
against a malicious client we do not use any building block
for authenticated boolean computation and instead leverage
the authenticity (of the semi-honest secure) garbled circuits
to detect a cheating client, thus avoiding boolean MACs. Our
techniques differ in this fundamental way.

Many prior works also consider secure inference in the hon-
est majority setting [7,13,30,36,44,50,51], or rely on trusted
hardware [38, 49]. In this work, we focus on the stronger
threat model of 2PC and provide formal cryptographic secu-
rity guarantees. Other works include those that considered
malicious adversaries [12, 23, 57] (for simpler ML models
like linear models, regression, and polynomials) as well as
specialized DNNs with 1 or 2 bit weights [1, 43, 47].

1.4 Organisation
We begin by describing the various cryptographic building
blocks used by our protocol and the threat model in Section 2.
Section 3 presents our novel protocol for non-linear functions
along with its security proof. In Section 4, we describe how
to securely compute linear layers as well as our end-to-end
protocol for secure inference and its proof. In the same section
we provide details of our secure inference protocol in the
preprocessing model. We provide implementation details and
empirical results in Section 5. We conclude in Section 6.

2 Threat Model and Building Blocks

2.1 Threat Model and Security
Threat Model. We consider the two party setting with a
server P0 and a client P1. The adversary can corrupt the server,
but is restricted to be semi-honest, i.e., is guaranteed to follow
the protocol specification. Or, the adversary can corrupt the
client and can behave maliciously, i.e., is allowed to deviate
from the protocol arbitrarily. The network architecture is as-
sumed to be known to both P0 and P1. Our goal is to design
a protocol that allows the client to learn the inference result
on the model owned by the server; the client must learn no
other information and the server must learn no information
through this interaction. Our formal definition, provided for
completeness in Appendix B captures this.
Hybrid Model. Our protocols sometimes invoke multiple
sub-protocols and we describe these using the hybrid model.
This is similar to a real interaction, except that sub-protocols
are replaced by the invocations of instances of corresponding

functionalities. A protocol invoking a functionality F is said
to be in “F -hybrid model.”

2.2 Building Blocks
Notation. λ is the computational security parameter. σ is
the statistical security parameter. For n > 0, [n] denotes the
set {1,2, · · · ,n}. In this paper, all arithmetic additions and
multiplications are over a field Fp, where p is a prime and
κ = dlog pe. We assume natural mapping of elements in Fp
to {0,1}κ and a[i] denotes the ith bit of this map for a ∈ Fp
(i.e a = ∑i∈[κ] a[i] ·2i−1). For two vectors a and b, a+b repre-
sents their component wise addition. For an element α ∈ Fp
and a vector a over Fp, α+ a and αa denote addition and
multiplication of each component in a with α respectively.
Inner product of vectors a and b is denoted by a∗b. For any
function f : Fp→ Fp, f (a) denotes evaluation of f on each
component of a. We use a similar notation for functionalities
and F (a) denotes invocation of F on each component of a.
a||b denotes concatenation of a and b. We denote uniform
distribution on the set {0,1}n by Un for any n > 0. For any
two distributions A and B, A ≈ B denotes computational in-
distinguishability of A and B.
Additive Secret Sharing. For x ∈ Fp, 〈x〉0 ∈ Fp and 〈x〉1 ∈
Fp denote additive shares of x, i.e., x = (〈x〉0 + 〈x〉1) mod p.
Authenticated Shares [15]. For α ∈ Fp chosen uniformly
at random (known as the MAC key) and any x ∈ Fp, au-
thenticated shares of x on α denote that Pb holds the shares
〈x〉b and 〈αx〉b for b ∈ {0,1}. While fully malicious proto-
cols [15, 27, 28] require α to be uniform and secret shared
amongst all participating parties, in our client malicious set-
ting, similar to [32], we have P0 pick α. Note that these au-
thenticated shares offer blog pc-bit statistical security, which
means the probability that a malicious P1 forges the shared
value x to x + δ (by tampering the shares (〈x〉1,〈αx〉1) to
(〈x〉1 + δ,〈αx〉1 + δ′) for a non-zero (δ,δ′) ∈ F2

p) such that
the shares are authenticated on x+δ (i.e (αx+δ′) =α(x+δ))
is atmost 2−blog pc.

2.2.1 Additive Homomorphic Encryption

An additive homomorphic encryption scheme [17, 39, 45]
AHE = (KeyGen,Enc,Dec,Eval) is a public key encryption
scheme that additionally supports linear homomorphic opera-
tions on the ciphertexts. We use Fp as the message space.

• KeyGen→ (pk,sk). KeyGen is a randomised algorithm that
samples a public key pk and a corresponding secret key sk.

• Enc(pk,m)→ c. Enc takes a public key pk and a message
m ∈ Fp to output a ciphertext c.

• Dec(sk,c)→ m. Dec takes a secret key sk and a ciphertext
c to output the message m encrypted in c.

• Eval(pk,c1,c2,L)→ c′. Eval takes a public key pk and two
ciphertexts c1 and c2 encrypting messages m1,m2 ∈ Fp and



a linear function L3 to output a ciphertext c′ encrypting
L(m1,m2).

We require AHE to satisfy correctness, semantic security and
additive homomorphism along with function privacy4. Con-
cretely, we use the SEAL library [48] that implements the
more versatile fully homomorphic scheme [20] from [8, 19].

2.2.2 Oblivious Transfer

The oblivious transfer (OT) functionality [40] over strings
of length n, denoted by OTn, takes as input s0,s1 ∈ {0,1}n

from P0 (the sender) and a choice bit c ∈ {0,1} from P1 (the
receiver) and outputs sc to P1. We require instantiation of OTn
that is secure against a semi-honest sender and a malicious
receiver. Finally, we use OTk

n to denote k instances of OTn.
We use the instantiation from [26] that has communication
complexity of k(λ+2n)-bits.

2.2.3 Garbled Circuits

A garbling scheme for boolean circuits [4, 55] consists of a
pair of algorithms (Garble,GCEval) defined as:

• Garble(1λ,C) → (GC,{{labin
i, j}i∈[n],{labout

j }} j∈{0,1}).
Garble on input the security parameter λ and a boolean
circuit C : {0,1}n → {0,1} outputs a garbled circuit
GC, a collection of input labels {labin

i, j}i∈[n], j∈{0,1} and a
collection of output labels {labout

j } j∈{0,1} where each label
is of λ-bits. For any x ∈ {0,1}n, the labels {labin

i,x[i]}i∈[n] are
referred to as the garbled input for x and the label labout

C(x) is
referred to as the garbled output for C(x).

• GCEval(GC,{labi}i∈[n])→ lab′. GCEval on input a garbled
circuit GC and a set of labels {labi}i∈[n] outputs a label lab′.

and is required to satisfy the following properties. Let
Garble(1λ,C)→ (GC,{{labin

i, j}i∈[n],{labout
j }} j∈{0,1}).

• Correctness is the guarantee that evaluation of GCEval on
GC and garbled input of x gives the garbled output for C(x).
Formally, for any circuit C and x ∈ {0,1}n, it holds that
GCEval(GC,{labin

i,x[i]}i∈[n]) = labout
C(x).

• Security is the guarantee that GC and garbled input for
any x is simulatable given C. Formally, there exists a sim-
ulator Sim such that for any circuit C and x ∈ {0,1}n,
(GC,{labin

i,x[i]}i∈[n])≈ GCSim(1λ,C).

• Authenticity implies that given GC and a garbled input
of x, it is infeasible to guess the output label for 1−
C(x). Formally, for any circuit C and any x, it holds that(

labout
(1−C(x))

∣∣∣GC,{labin
i,x[i]}i∈[n]

)
≈Uλ.

3L maps (m1,m2) to am1 +m2 for some a ∈ Fp
4Function privacy informally guarantees that a ciphertext c encrypting a

share of L(m1,m2), obtained as a result of homomorphically computing L, is
indistinguishable from a ciphertext encrypting a share of L′(m1,m2), for any
other L′, even given sk.

Note that this definition naturally extends to boolean
circuits with multi-bit outputs. Garbling scheme instantiations
use two labels {labw,0, labw,1} for every wire w in C and the
initial constructions of garbled circuit comprises of a set of
four ciphertexts for each gate in C, one for each pair of input
wire labels. Our protocols use the instantiation of garbling
schemes with point-and-permute described below.
Point-and-permute [3]: Consider any gate g in C. Given
a label for each input wire of g, earlier instantiations of
garbled circuits required to decrypt all the four ciphertexts
(using the labels as keys) during the evaluation, to obtain
a label for the output wire of g. For every wire w in C,
the point-and-permute optimization allows to choose a
permutation bit b and for j ∈ {0,1}, the bit b⊕ j is prepended
to labw, j. The four ciphertexts of g are then cleverly permuted
according to the permutation bits of g’s input wires such that
given a label for each input wire of the gate the ciphertext
to be decrypted is uniquely pointed. The property that we
use from point-and-permute is that, for all the wires, the
exclusive-or of the first bits of the two labels is 1.
We use the state-of-the-art constructions of garbled circuits
that use point-and-permute and other optimizations such as
free-XOR [29] and half-gates [56]. For these instantiations,
the size of the garbled ciruit is 2cλ, where c is the number of
AND gates in the circuit C, that is being garbled.

Secure computation using garbled circuits. As back-
ground, we provide high-level description on how garbled
circuits along with OTs are typically used for 2-party secure
computation [55]. A semi-honest P0 and a malicious P1 with
inputs x and y respectively, can securely evaluate5 any boolean
circuit C on these inputs to learn C(x,y) as follows. P0 garbles
the circuit C to learn a garbled circuit GC and a collection
of input and output labels. Then, both the parties invoke the
OT functionality, where the server (acting as the sender) in-
puts the collection of input labels corresponding to the input
wires of P1 and P1(acting as the receiver) inputs y to learn the
garbled input for y. P0 additionally sends to P1 the garbled
input for x, GC and a pair of ciphertexts for every output wire
w (of C) encrypting the bits 0 and 1 using the labels labw,0
and labw,1 respectively, as encryption keys. P1 evaluates the
garbled circuit using the garbled inputs for (x,y) to learn the
garbled output for C(x,y). From this garbled output and the
pair of ciphertexts given for each output wire P1 learns C(x,y).
P1 sends C(x,y) along with the (hash of) garbled output to P0
who would accept C(x,y) upon verifying that the (hash of)
garbled output sent by P1 corresponds to C(x,y).

3 Nonlinear Functions

We begin by formally describing the functionality F f
Non-lin

for non-linear layers in Figure 1 required by our protocol

5See Appendix B for formal interpretation of secure evaluation.



for secure inference in Section 4.2. For ease of exposition,
we first consider elementary or single-input functions, i.e.,
the functionality is parameterized by a function f : Fp→ Fp
and defer the discussion on multi-input functions such as
Maxpool to Remark 3.1. F f

Non-lin takes shares of s ∈ Fp from
P0 and P1 and a MAC key α (also in Fp) from P0 as input. It
outputs authenticated shares of f (s) (i.e., shares of f (s) and
α f (s)), along with the shares of authentication on s (i.e. αs)
to both parties.

Function f : Fp→ Fp.
Input: P0 sends 〈s〉0,α ∈ Fp. P1 sends 〈s〉1 ∈ Fp.
Output: Pb learns 〈αs〉b,〈 f (s)〉b,〈α f (s)〉b for b ∈
{0,1}.

Figure 1: Functionality F f
Non-lin.

The above functionality can be realized naïvely using gar-
bled circuits. In slightly more detail, P0 can create a garbled
circuit that computes the above functionality - i.e., recon-
structs s from its shares, computes αs, f (s),α f (s), and out-
puts shares of these values to P0 and P1 respectively. However,
this approach has the drawback that field multiplication (while
computing α f (s) and αs) must be performed within the gar-
bled circuit. Field multiplication would require roughly κ2

AND gates and hence, this would lead to a protocol with high
communication. In our protocol that realizes this functionality,
described in the following subsection, we show how to avoid
performing field multiplications within the garbled circuit and
consequently, how to obtain a protocol with much lower cost.
Moreover, our technique is also more efficient in generating
additive shares of f (s) after computing f (s).

3.1 Protocol

Our protocol proceeds in three main phases - Garbled Circuit
phase, Authentication phase, and Local Computation phase.
Below, we provide a high level overview of our protocol.
Recall that P0 inputs (〈s〉0, α) and P1 inputs 〈s〉1.

• Garbled Circuit phase. The goal of this phase is for P0 to
hold a pair of “labels” for each bit of s and f (s) and P1 to
learn the “correct labels" depending on the value of the bits
of s and f (s). To enable this, P0 creates a garbled circuit
for the boolean circuit Comp f – this circuit takes shares of
a ∈ Fp, reconstructs a and outputs (a, f (a)). Recall that a
garbled circuit has 2 output labels encoded in it for each
of the output bits, which in this case are the bits of a and
f (a). P1 evaluates this garbled circuit on 〈s〉0 and 〈s〉1 after
learning the correct input labels using an OT protocol. After
this phase, P1 learns the set of output labels corresponding
to the bits of s and f (s).

• Authentication phase. We make two observations. First,
“output labels” of a garbled circuit can be used as one-time
pads for encryption6. Second, to compute shares of αs, it
suffices to compute shares of α(s[i]) (written shortly as
αs[i]) for every bit s[i] of s (a similar observation holds
for computing α f (s) and hence we focus the rest of this
discussion on computing shares of αs). Now, shares of αs[i]
are either shares of 0 or α depending on whether s[i] is 0
or 1. Recall that the garbled circuit used in the previous
phase had 2 output labels corresponding to every s[i] (one
each for s[i] = 0 and 1); we denote these labels by labout

i,0
and labout

i,1 for s[i] = 0 and s[i] = 1, respectively. Now, to
compute shares of αs[i], P0 picks a random νi ∈ Fp and
“encrypts” νi with labout

i,0 and νi +α with labout
i,1 . P0 sends

these 2 ciphertexts to P1. P0 sets it’s share of αs[i] as −νi.
Now, since from the first phase P1 received labout

i,s[i], P1 can
decrypt exactly one of these 2 ciphertexts7 and learn its
share of αs[i]. Computation of α f (s)[i] values for every i
are done in a similar manner using the output labels for f (s).
We use a similar logic to compute shares of f (s)[i] using
output labels for f (s).

• Local Computation phase. As the last step, the parties can
locally compute shares of αs, f (s) and α f (s) from shares
of {αs[i]}, f (s)[i] and {α f (s)[i]} as follows: Each party
locally multiplies the share of αs[i] with 2i−1 and sums all
the resultant values to obtain share of αs. The other outputs
are computed in a similar manner.

We describe our protocol for realising F f
Non-lin formally in

Figure 2. Note that our protocol only incurs additional com-
munication of 6κ2 bits (as ciphertexts) in addition to garbled
circuits and has much lower communication compared to the
naïve approach. For comparison of our non-linear layers with
MUSE, refer to Section 1.2 for (rough) asymptotic compar-
ison and Section 5.2 for concrete comparison of cost (both
communication and runtime).

Remark 3.1 (Multi-input non-linear functions). Our tech-
niques extend easily for non-elementary functions, i.e., func-
tions that take multiple inputs and produce one or more out-
puts, such as Maxpool. For this, our garbled circuit will take
shares of all inputs {s1, . . . ,sk} to f and output the recon-
structed input values {s1, . . . ,sk} and f (s1, . . . ,sk). We gener-
ate authentications on both of these using exactly the same
ideas. Moreover, when the Maxpool windows are overlap-
ping, we create a big garbled circuit for the entire non-linear
layer so that our cost is linear in input size and output size
(instead of input-size×filter-size).

6Strictly speaking, in order to be compatible with the point-and-permute
optimization, the label is parsed as two components and a part of it is can be
used as a one-time pad.

7We make use of the point-and-permute optimization to determine which
of the two ciphertexts should be decrypted by P1.



Preamble: The function f is such that f : Fp→ Fp. Consider a boolean circuit Comp f that takes additive shares of a ∈ Fp,
i.e., 〈a〉0,〈a〉1 ∈ Fp, as input and outputs (a, f (a)). Let Trimn : {0,1}λ→{0,1}n be a function that outputs the last n bits
of input.
Input: P0 inputs 〈s〉0 ∈ Fn

p and α ∈ Fp. P1 inputs 〈s〉1 ∈ Fn
p.

Output: Pb learns 〈αs〉b,〈 f (s)〉b,〈α f (s)〉b for b ∈ {0,1}.
Protocol:

1. Garbled Circuit Phase:
• P0 computes (GC,{{labin

i, j}i∈[2κ],{labout
i, j }i∈[2κ]} j∈{0,1})← Garble(1λ,Comp f )

• P0 and P1 invoke OTκ

λ
where P0 is the sender and P1 is the receiver with inputs {labin

i,0, labin
i,1}i∈{κ+1,··· ,2κ} and 〈s〉1,

respectively. P1 learns {l̃ab
in

i }i∈{κ+1,··· ,2κ}. P0 sends GC and {l̃ab
in

i = labin
i,〈s〉0[i]}i∈[κ] to P1.

• P1 computes {l̃ab
out

i }i∈[2κ]← GCEval(GC,{l̃ab
in

i }i∈[2κ])

2. Authentication Phase:
• For i ∈ [κ], P0 chooses ηi,0,δi,0,νi,0 ∈R Fp and sets (ηi,1,δi,1,νi,1) = (1+ηi,0,α+δi,0,α+νi,0).

• For i ∈ [2κ] and j ∈ {0,1}, P0 parses labout
i, j as pi, j||ki, j where pi, j ∈ {0,1} and ki, j ∈ {0,1}λ−1.

• For i ∈ [κ], j ∈ {0,1}, P0 sends cti,pi, j = νi, j⊕Trimκ(ki, j) and ĉti,pi+κ, j = (ηi, j||δi, j)⊕Trim2κ(ki+κ, j).

• For i ∈ [2κ], P1 parses l̃ab
out

i as p̃i||k̃i where p̃i ∈ {0,1} and k̃i ∈ {0,1}λ−1.
• For i ∈ [κ], P1 computes ci = cti,p̃i ⊕Trimκ(k̃i) and (di||ei) = ĉti,p̃i+κ

⊕Trim2κ(k̃i+κ).

3. Local Computation Phase:
• P0 outputs 〈z1〉0 =

(
−∑i∈[κ] νi,02i−1

)
, 〈z2〉0 =

(
−∑i∈[κ] ηi,02i−1

)
and 〈z3〉0 =

(
−∑i∈[κ] δi,02i−1

)
.

• P1 outputs 〈z1〉1 =
(
∑i∈[κ] ci2i−1

)
, 〈z2〉1 =

(
∑i∈[κ] di2i−1

)
and 〈z3〉1 =

(
∑i∈[κ] ei2i−1

)
.

Figure 2: Protocol π
f
Non-lin

Remark 3.2. Note that in Step 2 of our protocol, P0 uses
(parts of) output labels of garbled circuit (i.e., λ-bit strings)
to one-time pad values of length κ bits and 2κ bits. For our
benchmarks, it holds that λ > 2κ. In case this condition is not
met, i.e., λ < 2κ, P0 first applies a pseudorandom generator
(PRG) to the output label to expand it to an appropriate length
string and then uses the PRG output as an one-time pad.

Remark 3.3 (Checking well-formedness of client input).
Note that a malicious client can input a value x ∈ {0,1}κ

such that x /∈ Fp as its share of the input to Comp f . In our
implementation, the garbled circuit first checks if x < p and
outputs a label corresponding to this bit. In the end of evalua-
tion phase of our main protocol, the client will send a hash of
all such labels to the server, who will check that it is equal to
the hash of labels corresponding to the bit 1. This will be a
part of the consistency check phase (see Section 4.2).

Remark 3.4 (Optimization for semi-honest setting). Our
novel method for generating shares of f (s) is beneficial even
for semi-honest secure inference. All prior works [24, 34, 35]
generated arithmetic shares of f (s) within the garbled circuit.
When working over prime fields, this computation requires at
least 3κ additional AND gates, and hence, 6κλ bits of com-
munication. Our method for generating shares of f (s) using
garbled circuit output labels requires sending only 2κ encryp-

tions of length κ bits each. For κ = 44, λ = 128, our method
gives roughly 9× lower communication for generating shares
of f (s) from f (s).

Theorem 1. Let (Garble,GCEval) be a garbling scheme for
boolean circuits satisfying the properties defined in Section
2.2.3. Then, the protocol π

f
Non-lin (in Figure 2) securely real-

izes the functionality F f
Non-lin in the OTκ

λ
-hybrid model against

a malicious client (P1) and a semi-honest server (P0).

Proof. We first prove correctness of the protocol followed by
security.
Correctness. By correctness of OTκ

λ
, for all i ∈ {κ +

1, · · · ,2κ}, l̃ab
in

i = labin
i,〈s〉1[i]. Using l̃ab

in

i = labin
i,〈s〉0[i] for

i ∈ [κ] and correctness of (Garble,GCEval) for Comp f , it
holds that l̃ab

out

i = labout
i,s[i] and l̃ab

out

i+κ = labout
i+κ, f (s)[i], for

i ∈ [κ]. Therefore, p̃i||k̃i = (pi,s[i]||ki,s[i]) and p̃i+κ||k̃i+κ =
(pi+κ, f (s)[i]||ki+κ, f (s)[i]) for i ∈ [κ]. Using this we get, for
each i ∈ [κ] it holds that ci = cti,pi,s[i] ⊕ Trimκ(ki,s[i]) =

νi,s[i] and (di||ei) = ĉti,pi+κ, f (s)[i] ⊕ Trim2κ(ki+κ, f (s)[i]) =

(ηi, f (s)[i]||δi, f (s)[i]). With this, we have:
• z1 = ∑i∈[κ](ci−νi,0)2i−1 = ∑i∈[κ] α(s[i])2i−1 = αs

• z2 = ∑i∈[κ](di−ηi,0)2i−1 = ∑i∈[κ] f (s)[i]2i−1 = f (s)



• z3 = ∑i∈[κ](ei−δi,0)2i−1 = ∑i∈[κ] α( f (s)[i])2i−1 = α f (s).

This concludes the correctness proof.
Security. Security of π

f
Non-lin against any semi-honest adver-

sary A controlling the server P0 is immediate from the proto-
col description. This is because P0 gets no output from OTκ

λ

and receives no message from P1. Now, we prove security
against any malicious adversary A controlling P1.

Claim 1. Let (Garble,GCEval) be a garbling scheme with the
properties defined in Section 2.2.3. Then, in the OTκ

λ
-hybrid

model, π
f
Non-lin is secure against any malicious adversary A

corrupting the client P1.

Proof. Let Real denote the protocol execution π
f
Non-lin

between P0 and an adversarially controlled P1. We argue
simulation based security against a malicious P1, i.e., we will
show that the view of A in Real is indistinguishable from the
view of A in a simulated execution Sim via a standard hybrid
argument. In particular, we define two intermediate hybrid
executions Hyb1 and Hyb2 and argue indistinguishability of
the views of the adversary in consecutive executions.

Hybrid execution Hyb1: Hyb1 is identical to Real except in

the authentication phase, where S uses the labels l̂ab
out

i, j (in-

stead of labout
i, j used in Real) where l̂ab

out

i, j is defined as fol-
lows. Note that S in Hyb1 has access to honest P0’s inputs 〈s〉0
and α. Define s = 〈s〉0 + 〈s〉1. For t = (s|| f (s)) and i ∈ [2κ],
if j = t[i], l̂ab

out

i, j = labout
i, j , else (the “other” label) l̂ab

out

i,1−t[i]

is chosen uniformly from {0,1}λ such that the first bit8 is
1− pi,t[i]. The formal description of Hyb1 is provided below.
The indistinguishability of views of A in Real and Hyb1 exe-
cutions directly follows from the authenticity of the garbled
circuit (Section 2.2.3).

1. S receives 〈s〉1 from A as its input to OTκ

λ
.

2. Garbled Circuit Phase:

• S computes (GC,{{labin
i, j}i∈[2κ],{labout

i, j }i∈[2κ]} j∈{0,1})←

Garble(1λ,Comp f ) and sends {l̃ab
in

i+κ =
labin

i+κ,〈s〉1[i]}i∈[κ] to A as the output of OTκ

λ
. It

also sends GC and {l̃ab
in

i = labin
i,〈s〉0[i]}i∈[κ] to A .

3. Authentication Phase:

• S sets t = (s|| f (s)).

• For i ∈ [2κ], S sets l̂ab
out

i,t[i] = labout
i,t[i].

• For i ∈ [2κ], S samples l̂ab
out

i,1−t[i] ∈R {0,1}λ such that

first bit of l̂ab
out

i,1−t[i] equals 1− pi,t[i]

8This restriction on the first bit is done, so as to be consistent with the
point and permute optimization. Recall that for any i ∈ [2κ], pi,0⊕ pi,1 = 1.

• S computes and sends {cti, j, ĉti, j}i∈[κ], j∈{0,1} to A using

{l̂ab
out

i, j }i∈[2κ], j∈{0,1} (similar to how P0 computes in the
real execution using {labout

i, j }i∈[2κ], j∈{0,1}).

Hybrid execution Hyb2: We make four changes to Hyb1 to
obtain Hyb2 and argue that the views of the adversary in
the two hybrids are identical distributions. Let {l̃ab

out

i =

(p̃i||̃ki)}i∈[2κ] ← GCEval (GC,{l̃ab
in

i }i∈[2κ]). First, by cor-

rectness of garbled circuits, {l̃ab
out

i = labout
i,t[i]}i∈[2κ]. Sec-

ond, since, for i ∈ [κ], the ciphertexts cti,1−p̃i and ĉti,1−p̃i+κ

are computed using the “other” set of output labels (as
onetime pads) picked uniformly in Hyb1, S can directly
sample them uniformly at random. With this change, the
randomness ηi,0,δi,0,νi,0 is only used once to generate
one set of ciphertexts. It can be shown that the underly-
ing messages of the ciphertexts cti,p̃i and ĉti,p̃i+κ

, namely,
ci, di||ei are uniformly random subject to the only con-
straint that

(
∑i∈[κ] ci2i−1

)
= 〈αs〉1,

(
∑i∈[κ] di2i−1

)
= 〈 f (s)〉1

and
(
∑i∈[κ] ei2i−1

)
= 〈α f (s)〉1. Hence, as the third change,

S correctly picks ci,di||ei from this distribution. Finally, one
can observe that 〈αs〉1,〈 f (s)〉1〈α f (s)〉1 are the outputs of P1

from the functionality F f
Non-lin on input 〈s〉1. Hence, as the

fourth change, S obtains these as outputs from F f
Non-lin. Ob-

serve that with these changes, S no longer needs to know
one of the inputs of P0, i.e., α. A formal description of Hyb2

follows:

1. S receives 〈s〉1 from A as its input to OTκ

λ
.

2. Garbled Circuit Phase: Same as Hyb1.

3. Authentication Phase: S uses (〈s〉1,GC,{l̃ab
in

i }i∈[2κ]) as
inputs to this phase.

• S runs {l̃ab
out

i }i∈[2κ]← GCEval (GC,{l̃ab
in

i }i∈[2κ]).

• For each i ∈ [2κ], S parses l̃ab
out

i as (p̃i||̃ki).

• S sends 〈s〉1 to F f
Non-lin to learn

(〈αs〉1,〈 f (s)〉1,〈α f (s)〉1).
• For each i ∈ [κ], S samples ci,di,ei each uniformly from
Fp such that

(
∑i∈[κ] ci2i−1

)
= 〈αs〉1,

(
∑i∈[κ] di2i−1

)
=

〈 f (s)〉1 and
(
∑i∈[κ] ei2i−1

)
= 〈α f (s)〉1.

• For each i ∈ [κ], S computes cti,p̃i = ci⊕Trimκ(k̃i) and
ĉti,p̃i+κ

= (di||ei)⊕Trim2κ(k̃i+κ), and samples cti,1−p̃i

and ĉti,1−p̃i+κ
uniformly from {0,1}κ and {0,1}2κ resp.

• S sends {cti, j, ĉti, j}i∈[κ], j∈{0,1} to A .

Simulated execution Sim: We remove the dependence on P0’s
input 〈s〉0 by invoking the simulator of the garbling scheme
in the Garbled Circuit Phase. The indistinguishability of Sim
and Hyb2 directly follows by the security of garbled circuits.
The formal description of Sim is given below.
1. S receives 〈s〉1 from A as its input to OTκ

λ
.

2. Garbled Circuit Phase:



• S samples (G̃C,{ ˆlab
in
i }i∈[2κ]) ← GCSim(1λ,Comp f )

and sends { ˆlabi}i∈{κ+1,··· ,2κ} to A as the output of OTκ

λ
.

It also sends G̃C and { ˆlab
in
i }i∈[κ] to A .

3. Authentication Phase: Same as Hyb2, where S uses
(〈s〉1, G̃C,{ ˆlab

in
i }i∈[2κ]) as its input in the phase.

4 Secure Inference

Neural network inference algorithms typically consist of two
types of layers - linear and non-linear. Linear layers include
functions such as matrix multiplications (fully connected lay-
ers) and convolutions, while non-linear layers consists of func-
tions such as ReLU,ReLU6 and Maxpool. In this section, we
first discuss how to securely compute the linear layers – the
functionality and the protocol to realize it– in Section 4.1.
Then, in Section 4.2 we describe our complete protocol for
secure inference in the client malicious setting. This protocol,
by combining our protocols from Section 4.1 and Section 3.1,
together with a consistency check phase, allows for the secure
inference of any neural network that uses any combination
of linear and non-linear layers. In Section 4.4 we discuss our
secure inference protocol in the preprocessing model.

4.1 Linear Layers
We describe the functionality FLin formally in Figure 3 used
by our protocol for secure inference in Section 4.2. The func-
tionality can be invoked in two ways. The argument InitLin
is used for invoking the functionality for the first linear layer
of the neural network. InitLin is invoked exactly once and
takes as input a matrix M and a MAC key α from P0 and x
from P1. It outputs authenticated shares of Mx to both parties,
i.e., shares of Mx and shares of αMx. Second, the argument
Lin is used for all subsequent linear layers in the neural net-
work. Lin is invoked on shares of v and w from P0 and P1 and
a matrix M and a MAC key α from P0. It outputs shares of
Mv, Mw and α3v−α2w to both the parties. Looking ahead,
in an honest execution, w = αv and hence, this functionality
takes in authenticated shares of input and produces authenti-
cated shares of output along with α3v−α2w that would be
used later to check that a malicious P1 indeed fed in correct
authenticated shares9.

We note here that our novelty in linear layers is not how we
realize the functionality in Figure 3, but rather defining the
functionality itself such that it is both efficiently realizable
and allows for cheap consistency checks against a malicious
client when we put different pieces together in the overall
protocol (Section 4.2).

9We discuss the use of higher powers of α in consistency check later.

InitLin: On input (InitLin,M,α) from P0 and
(InitLin,x) from P1 (where M ∈ Fm×n

p , α ∈ Fp and
x ∈ Fn

p), Pb learns 〈Mx〉b and 〈αMx〉b for b ∈ {0,1}.

Lin: On input (Lin,〈v〉0,〈w〉0,M,α) from P0 and
(Lin,〈v〉1,〈w〉1) from P1 (where v,w ∈ Fn

p, M ∈ Fm×n
p

and α∈Fp), Pb learns 〈Mv〉b, 〈Mw〉b and 〈α3v−α2w〉b
for b ∈ {0,1}.

Figure 3: Functionality FLin

Protocol. We realize this functionality using standard tech-
niques relying on any additive homomorphic encryption (Sec
2.2.1) and zero-knowledge proofs. We formally describe the
protocol πLin in Figure 4. Correctness of πLin follows from in-
spection; security follows using arguments similar to existing
protocols in literature [14, 15, 28, 32].

Remark 4.1 (Convolutions). For ease of exposition, we only
considered the case of matrix multiplication (or fully con-
nected layers) in the above discussion. It is easy to see that
a similar functionality and a corresponding protocol can be
defined for convolutional layers as well, where the communi-
cation complexity of the protocol again depends only on the
size of the input and output for that layer.

4.2 Neural Network Inference Protocol
For ease of exposition, similar to [32], we consider a neural
network NN with ` linear layers (specified by M1, · · · ,M`)
and `−1 non-linear layers evaluating the non-linear functions
f1, · · · , f`−1, such that linear and non-linear layers alternate
and the first layer is a linear layer. Our protocol can naturally
also be extended to arbitrary combinations of linear and non-
linear functions (Appendix D). Let x be the input to NN and
the output of inference is denoted by NN(x). Let si denote
the (intermediate) inference vector after the ith linear layer
evaluation for i∈ [`] and vi denote the (intermediate) inference
vector after the ith non-linear layer evaluation for i ∈ [`−1].
Note that, s1 = M1x, for i ∈ [`− 1] it holds that vi = fi(si)
and si+1 = Mi+1vi, and finally, s` = NN(x).

In the setting of secure inference, the server’s (P0’s) input
is weights of all the linear layers, i.e., M1, · · · ,M` and the
client (P1) holds input x. The goal is for the client to learn
NN(x) where the non-linear layers are as above. We describe
our protocol πInf for this setting formally in Figure 5 that is
secure against a semi-honest server and a malicious client.
Below, we provide a protocol overview.

At a high level, our protocol has two phases: the evaluation
phase and the consistency check phase. The evaluation phase
evaluates the alternate linear and non-linear layers with ap-
propriate parameters. After the evaluation phase, the server
performs a consistency check on the values computed so far.



Realization of InitLin in πLin :
Input: P0 holds M ∈ Fm×n

p and α ∈ Fp and P1 holds
x ∈ Fn

p.
Output: Pb learns 〈Mx〉b, 〈αMx〉b for b ∈ {0,1}.
Protocol:
• P0 and P1 (one time) engage in a two-party compu-

tation protocol secure against a semi-honest P0 and
malicious P1 to sample (pk,sk) for AHEa such that
P1 learns (pk,sk) and P0 learns pk. Both parties store
these for use in this all subsequent calls to πLin as well.

• P1 sends the encryption c1← Enc(pk,x) to P0 along
with a zero-knowledge (ZK) proof of plaintext knowl-
edge of this ciphertextb.

• P0 samples 〈Mx〉0,〈αMx〉0 ∈R Fm
p .

• P0 homomorphically evaluates and sends to P1,
the ciphertexts c2 ∈ Encpk(Mx− 〈Mx〉0) and c3 ∈
Encpk(αMx−〈αMx〉0).

• P1 sets 〈Mx〉1 = Decsk(c2), 〈αMx〉1 = Decsk(c3).

• Pb outputs 〈Mx〉b, 〈αMx〉b for b ∈ {0,1}.

Realization of Lin in πLin:
Input: P0 holds 〈v〉0,〈w〉0 ∈ Fn

p, M ∈ Fm×n
p and α ∈ Fp.

P1 holds 〈v〉1,〈w〉1 ∈ Fn
p.

Output: Pb learns 〈Mv〉b, 〈Mw〉b and 〈α3v−α2w〉b for
b ∈ {0,1}.
Protocol:
• P1 sends the encryptions e1 ← Enc(pk,〈v〉1), e2 ←

Enc(pk,〈w〉1) to P0 and a ZK proof of plaintext knowl-
edge for both.

• P0 samples 〈Mv〉0,〈Mw〉0 ∈R Fm
p and 〈α3v −

α2w〉0 ∈R Fn
p.

• P0 homomorphically evaluates and sends to P1,
the ciphertexts e3 ∈ Encpk(Mv − 〈Mv〉0), e4 ∈
Encpk(Mw− 〈Mw〉0) and e5 ∈ Encpk(α

3v−α2w−
〈α3v−α2w〉0).

• P1 sets 〈Mv〉1 = Decsk(e3), 〈Mw〉1 = Decsk(e4) and
〈α3v−α2w〉1 = Decsk(e5).

• Pb outputs 〈Mv〉b, 〈Mw〉b and 〈α3v−α2w〉b for b ∈
{0,1}.

aFunction privacy of AHE holds only for honestly generated keys.
bZK proof of knowledge for the statement that c is a valid sample

from Encpk(m) for an m known to the prover. We refer the reader to
[28, 32] for more details.

Figure 4: Protocol πLin

If the check passes, output is revealed to the client. In more
detail, P0 begins by sampling a MAC key α ∈ Fp uniformly
that will be used to authenticate all intermediate values. Dur-
ing the protocol, the two parties will hold authenticated shares

of all intermediate values where authentications are generated
using α along with some additional values generated to aid in
consistency checks.

• Linear Layer Evaluation: To evaluate the first linear layer,
P0 and P1 invoke FLin with inputs (InitLin,M1,α) and
(InitLin,x) respectively. They learn authenticated shares of
s1, i.e., shares of s1, t1, where t1 is authentication on s1. For
evaluation of the ith linear layer (i > 1), P0 and P1 invoke
FLin with input Lin and authenticated shares of the output of
the previous non-linear layer, i.e vi−1 and (Mi,α) from P0.
We denote authentication on vi−1 with wi−1. Lin outputs
shares of si = Mivi−1 and ti = Miwi−1 and an additional
"tag" zi = (α3vi−α2wi−1) (that is 0 numerically whenever
the inputs to Lin were infact authenticated shares, i.e., if
αvi−1 = wi−1 and non-zero otherwise (when α 6= 0)).

• Non-linear Layer Evaluation: To evaluate the ith non-
linear layer for i ∈ [`− 1], P0 and P1 invoke F fi

Non-lin on
shares of si and the input α from P0 to learn authenticated
shares of vi = f (si) and another set of shares of authentica-
tion on si, denoted by ui.

• Consistency Check Phase: The server performs the fol-
lowing two sets of checks.

– For each i ∈ {2, · · · , `}, check that the pair of shares input
to Lin are valid authenticated shares under α by verifying
that zi = 0ni−1 .

– For each i ∈ [`−1], check that the shares input to F fi
Non-lin

were same as the shares output by Lin on ith linear layer
by verifying if ti−ui = 0ni .

Finally, all the above checks can be combined into a single
check by using random scalars picked by P0. If the check
fails, P0 aborts, and sends its final share to P1 otherwise,
who can reconstruct the output.

Remark 4.2. Our protocol works over Fp that represents
fixed-point numbers. We use fixed-point computation to em-
ulate computation on real numbers. Moreover, to maintain
precision, we need to truncate intermediate values and our
protocol can do this for free within garbled circuits.

4.3 Correctness and Security
Theorem 2. The protocol πInf securely realizes the
functionality FInf in the F -hybrid model where F =

(FLin,F f1
Non-lin, · · · ,F

f`−1
Non-lin) against a semi-honest server P0

and a malicious client P1 with probability atleast 1−6/p.

Proof. Correctness. By correctness of FLin on InitLin, we
have s1 = M1x and t1 = αs1. By correctness of FLin on Lin,
for each i ∈ {2, · · · , `} it holds that si = Mivi−1, ti = Miwi−1

and zi =α3vi−1−α2wi−1. By correctness of F fi
Non-lin, for each

i∈ [`−1] it follows that ui = αsi, vi = fi(si) and wi = α fi(si).
On substituting, it is easy to see that q = 0 since for each



Preamble. A neural network NN with ` linear and `−1 non-linear layers. Let f1, . . . , f`−1 be the elementary functions that
need to be computed in `−1 non-linear layers.
Input: P0 holds {M j ∈ Fn j×n j−1

p } j∈[`], i.e., weights for the ` linear layers. P1 holds the input x ∈ Fn0
p for NN.

Output: P1 learns NN(x).
1. P0 samples MAC key α uniformly from Fp to be used throughout the protocol.

2. First Linear Layer: P0 and P1 invoke FLin with inputs (InitLin,M1,α) and (InitLin,x) respectively. For b ∈ {0,1},
Pb learns (〈s1〉b,〈t1〉b).

3. For each j ∈ [`−1],

Non-linear Layer f j: P0 and P1 invoke F f j
Non-lin with inputs (〈s j〉0,α) and 〈s j〉1 respectively. For b ∈ {0,1}, Pb learns

(〈u j〉b,〈v j〉b,〈w j〉b).

Linear Layer j+1: P0 and P1 invoke FLin with inputs (Lin,〈v j〉0,〈w j〉0,M j+1,α) and (Lin,〈v j〉1,〈w j〉1) respectively.
For b ∈ {0,1}, Pb learns (〈s j+1〉b,〈t j+1〉b,〈z j+1〉b).

4. Consistency Check:
• For j ∈ [`−1], P0 samples r j ∈R Fn j

p and r′j+1 ∈R Fn j+1
p and sends (r j,r′j+1) to P1.

• P1 computes 〈q〉1 = ∑ j∈[`−1]

(
(〈t j〉1−〈u j〉1)∗r j + 〈z j+1〉1∗r′j+1

)
and sends it to P0.

• P0 computes 〈q〉0 = ∑ j∈[`−1]

(
(〈t j〉0−〈u j〉0)∗r j + 〈z j+1〉0∗r′j+1

)
.

• P0 aborts if 〈q〉0 + 〈q〉1 mod p 6= 0. Else, sends 〈s`〉0 to P1.

5. Output Phase: P1 outputs 〈s`〉0 + 〈s`〉1 mod p if P0 didn’t abort in the previous step.

Figure 5: Secure Inference Protocol πInf

i ∈ [`−1], zi+1 = 0, ti = ui. Finally, we conclude correctness
by noting that s` = NN(x).
Security. We prove that our protocol is secure against a semi-
honest server P0 and a malicious client P1 using simulation
based security. It is easy to see security against a semi-honest
adversary corrupting P0 as follows: During the evaluation
phase of the protocol, P0 only learns one of the shares as
output from FLin/F f

Non-lin and hence, can be simulated easily
by picking uniformly random values from the field. In the
consistency check phase, it learns 〈q〉1. This value is easy
to simulate using q = 0 and 〈q〉0 that can be locally com-
puted. Now, we prove security against a malicious client in
the following lemma.

Lemma 1. The protocol πInf is secure against a malicious
adversary A controlling the client P1 in the F -hybrid model
where F = (FLin,F f1

Non-lin, · · · ,F
f`−1

Non-lin).

Proof. Recall that a malicious A controlling P1 can arbitrar-
ily deviate from the protocol specification. Formally, w.r.t.
our protocol πInf that invokes various ideal functionalities,
A can send inconsistent inputs. In particular, A can do the
following: (a) Invoke FLin(InitLin, ·) on x′ 6= x (client’s orig-
inal input), and learns 〈s1〉1 and 〈t1〉1; (b) For i ∈ [`− 1],
A can invoke F f1

Non-lin on input 〈s′i〉1 = 〈si〉1 + ∆1
i to learn

〈ui〉1,〈vi〉1,〈wi〉1; (c) For i ∈ [`− 1], A can invoke Lin on
input 〈v′i〉1 = 〈vi〉1 + ∆2

i and 〈w′i〉1 = 〈wi〉1 + ∆3
i to learn

〈si+1〉1,〈ti+1〉1,〈zi+1〉1; (d) A can add an error ∆4 to his share
of q and send this errorneous share of q to P0. Using the above
notation, A behaves honestly and follows the specification if
and only if all ∆’s are 0. We formally describe the simulator
S simulating the view of malicious A in Figure 6.
Now, there are two cases to analyse: In the first case, when
A follows the protocol specification, it is easy to see that
the views in the real execution of the protocol and simulated
execution are identical. In the case, when A deviates from
the protocol execution, i.e., there exists a non-zero ∆, then
the simulator sends abort to A with probability 1. Moreover,
it is easy to see, by inspection, that up until the end of the
consistency check phase, the views of A in real and simulated
executions are identical and consist of uniformly distributed
field elements. Hence, it suffices to argue that in the case of
non-zero ∆, P0 aborts in real execution with all but exponen-
tially low probability (in κ).

Claim 2. In real execution, if at least one of the ∆’s is non-
zero, then P0 aborts with probability at least 1−6/p.

Proof. Below q is the value that P0 reconstructs in the consis-
tency check phase of the real execution. Using notation from
above, we have that

q =∆
4 +

`−1

∑
j=1

((t j−u j)∗r j + z j+1∗r′j+1) (1)



• Preamble: S interacts with A controlling P1 with input x. S sets a flag bit flag = 0.

• First Linear Layer: A invokes FLin on input (InitLin,x′). S sends uniform 〈s1〉1 and 〈t1〉1 to A .

• For j ∈ [`−1],

Non-linear Layer f j: A invokes F f j
Non-lin on input 〈s j

′〉1 = 〈s j〉1 +∆1
j . S sends uniform 〈u j〉1,〈v j〉1 and 〈w j〉1 to A .

Additionally, it sets flag = 1, if ∆1
j 6= 0n j .

Linear Layer j + 1: A invokes FLin on inputs Lin, 〈v j
′〉1 = 〈v j〉1 +∆2

j and 〈w j
′〉1 = 〈w j〉1 +∆3

j . S sends uniform
〈s j〉1,〈t j〉1 and 〈z j〉1 to A . Additionally, S sets flag = 1 if (∆2

j ,∆
3
j) 6= (0n j ,0n j).

• Consistency Check:
– For j ∈ [`−1], S samples r j ∈R Fn j

p and r′j+1 ∈R Fn j+1
p and sends (r j,r′j+1) to A .

– A sends 〈q〉1 = ∆4 +∑ j∈[`−1](〈z j+1〉1∗r′j+1 +(〈t j〉1−〈u j〉1)∗r j). S sets flag = 1 if ∆4 6= 0.

• Output Phase: If flag = 0, S queries FInf on x′ to learn NN(x′) and sends NN(x′)−〈s`〉1 to A . Else, it sends abort to
both FInf and A .

Figure 6: Simulator against malicious client corresponding to πInf

Further, from the notation (of ∆’s) above and by correctness
of the functionalities invoked in πInf , we have that for each
j∈ [`−1], w j =αv j and z j+1 =(α3(v j+∆2

j)−α2(w j+∆3
j)).

Similarly, t1 = αM1x′, u1 = α(M1x′+∆1
1) and for each j ∈

{2, · · · , `−1}, t j = M j(w j−1+∆3
j−1) and u j = α(M j(v j−1+

∆2
j−1)+∆1

j). On substitution in Equation 1, we get

q = α
3(

`−1

∑
j=1

∆
2
j∗r′j+1)−α

2(
`−1

∑
j=1

∆
3
j∗r′j+1)

−α((
`−1

∑
j=1

∆
1
j +

`−1

∑
j=2

M j∆
2
j−1)∗r j)+∆

4 +
`−1

∑
j=2

((M j∆
3
j−1)∗r j)

The RHS of the above equation is a degree-3 polynomial
in α, denoted by Q(α). We argue that Q(α) is a non-zero
polynomial whenever A introduces errors, that is, at least one
of ∆’s is non-zero. This is because, if either ∆4 6= 0 or ∆i

j is a
non-zero vector for any j ∈ [`−1] and i∈ [3] atleast one of the
coefficients of Q(α) will be non-zero, with probability atleast
1−3/p over the choice of r′ j+1 and r j for j ∈ [`−1]. Further
when Q(α) is a non-zero polynomial, it has at most 3 roots.
Hence, over the choice of α, the probability that Q(α) = 0 is
atmost 3/p. Therefore, the probability that P0 aborts is atleast
1−6/p when A cheats.

Setting Fieldsize. We choose p to be greater than 2σ+3 for
πInf to be σ-bit statistically secure.

4.4 Secure Inference with Preprocessing
MUSE (similar to DELPHI) considers client input-
independent preprocessing model and showed how
majority of their cryptographic cost (> 99%) can be pushed
to the offline phase. We now briefly outline how our
techniques can be extended to obtain a client malicious

secure inference protocol in this preprocessing model whose
online cost is exactly the same as in MUSE. For concrete
communication and runtime, see Section 5.4. We provide the
outline for π

Prep
Inf below and present the full description in

Figure 8 in Appendix C.

We incorporate the novel ideas for non-linear lay-
ers and consistency check into the protocol structure of
DELPHI/MUSE. At a high level, in the preprocessing phase,
parties compute the linear layers on random inputs chosen by
the client, and the non-linear layers are set up so that the output
share of the client matches the random input chosen for next
linear layer. Then, the server adjusts its share of output from
linear layer based on output of previous non-linear layer, and
preprocessing information. Implementing this, requires addi-
tional computation in the garbled circuit as explained below,
and that is exactly the additional compute/communication
compared to our previous protocol.
In the preprocessing phase, for every linear layer, P0 holds
input Mi and P1 picks a uniformly random vector ci (of appro-
priate dimensions). Now, P0 and P1 securely compute authen-
ticated shares of Mici and shares of authentication on ci. The
online phase for computing linear layers is identical to MUSE
(and only involves P1 sending a share of its input to P0, fol-
lowed by local non-cryptographic computations at both ends).
For each non-linear layer that computes a function fi, define
a circuit C fi that takes in shares of si, and two random masks
di from P0 and ci+1 from P1. C fi outputs ( fi(si)−di− ci+1,
si, ci+1). The garbled circuit for C fi and labels for di are sent
in the preprocessing phase along with OT computation to
transfer labels for ci+1 and client’s share of si. The labels
for P0’s share of si are sent in the online phase. Similar to
our protocol π

f
Non-lin, we use the output labels of the garbled

circuit to generate shares of re-authentications on si,ci+1 and
check for consistency in the last phase.
We note that the overall cost of non-linear layers increases by



< 2× and the cost of linear layers decreases compared to the
previous protocol.

5 Implementation and Evaluation

We implement SIMC10 and empirically evaluate its perfor-
mance. Since the cost of non-linear layers dominate in
MUSE [32] (> 80%) and the cost of linear layers in SIMC
is similar, our evaluation focusses on three main questions:

• Section 5.2: What are the communication and runtime costs
of SIMC on non-linear layers such as ReLU and how do
these compare with MUSE?

• Section 5.3: How does SIMC compare with MUSE on end-
to-end secure inference tasks?

• Section 5.4: How does SIMC in preprocessing model (de-
noted by SIMC++) compare with MUSE?

We show that SIMC outperforms MUSE on all parameters.
Below, we first discuss our implementation details and evalu-
ation setup followed by evaluation results.

5.1 Implementation and System Setup
Implementation. SIMC is implemented in about 9000 lines
of C++ code and provides 128-bit computational security
and 40-bit statistical security. Similar to MUSE, our system
is implemented over a 44-bit prime. We use the Seal homo-
morphic encryption library [48] for implementing the AHE
scheme for linear layers, and the EMP toolkit [52] for garbled
circuits11 used in non-linear layers. We use AES as a pseu-
dorandom function to generate the randomness r j and r′j+1
used in consistency check phase. SHA-256 is used as the hash
function to hash all labels output from checking validity of
client’s inputs in the non-linear protocol (see Remark 3.3).
Zero-knowledge (ZK) proofs of plaintext knowledge [11] re-
quired in the linear layers, is not implemented in our system
due to the lack of a publicly available implementation. As
the end-to-end performance analysis of linear layers is some-
what orthogonal to our work, we estimate the performance
of these proofs based on [11, Table 1] (see Section 5.3 for
more details). MUSE [32] estimates the cost of ZK proofs in
their system in a similar way using MP-SPDZ [25]. Finally,
to evaluate the performance of SIMC on end-to-end secure
inference tasks, we time all individual components of our pro-
tocol (linear layers, non-linear layers, and consistency check
phase) separately and aggregate them to obtain end-to-end
execution times. As there is no cost incurred in connecting the
individual components of our protocol, the end-to-end execu-
tion time, obtained as described above, provides an accurate
estimate.

10Code available at https://aka.ms/simc.
11EMP toolkit uses actively secure COTs to send client’s labels.
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Figure 7: Improvement of SIMC over MUSE as a function of
number of ReLU6 instances. The y-axis shows MUSE Time

SIMC Time .

Evaluation Setup. We carry out our experiments in two net-
work configurations with varying bandwidth and ping latency:
In the CON setting, we use the same setup as in MUSE. P0
and P1 are two AWS c5.9xlarge instances with Intel Xeon
8000 series CPUs at 3.6GHz running 8 threads each, located
in the us-west-1 (Northern California) and us-west-2 (Ore-
gon) regions respectively. In this configuration, the measured
bandwidth between the two instances was 584 MBps with 21
ms rtt. For the EAN setting, we use the same machine config-
uration, but with the machines located in us-west-1 (Northern
California) and eu-west-2 (London) respectively. Here, the
measured bandwidth was 19.2 MBps with 144 ms rtt. To com-
pare SIMC with MUSE, we use the code available at [31]; all
numbers reported are the median values over 5 executions.

5.2 Non-linear Layers performance
We compare communication and latency of SIMC and MUSE
for non-linear layers. As representative examples, we choose
2 popular non-linear activation functions – ReLU defined to be
ReLU(x) = max(x,0); and ReLU6 := min(max(x,0),6) – to
run our microbenchmarks. While MUSE requires 388 KB and
405 KB of communication to securely compute one instance
of ReLU and ReLU6 respectively, SIMC only communicates
11.9 KB and 14.66 KB respectively; thus, SIMC communi-
cates 28−33× less than MUSE.

In typical neural networks, each non-linear layer requires
computing large number of instances of the same function,
e.g., ReLU6. Hence, we set up our microbenchmarks to study
how the performance of SIMC compares with MUSE as the
number of instances grow from 1 to 218. We depict speedups
of SIMC over MUSE for the ReLU6 function12 in the CON
and EAN settings in Figure 7. As discussed, SIMC gets rid of

12The graph for ReLU looks nearly identical and is omitted here.

https://aka.ms/simc


Benchmark A Benchmark B
Protocol MUSE SIMC MUSE SIMC

Linear Layer 0.04 0.05 0.07 0.14
Non-linear Layer 4.14 0.133 67.83 2.24

Total 4.18 0.18 67.90 2.38

Table 1: Communication (in GB) of MUSE and SIMC on
benchmarks A and B.

Benchmark A Benchmark B
Protocol MUSE SIMC MUSE SIMC

Linear Layer 4.40 4.60 40.40 28.30
Non-linear Layer 18.33 0.71 230.02 5.07

Total 22.73 5.31 270.42 33.37

Table 2: Latency (in seconds) of MUSE and SIMC on bench-
marks A and B [CON setting].

computationally expensive homomorphic encryption opera-
tions from non-linear layers, while reducing communication
and this results in significant performance improvements that
grow with the number of instances being computed. We ob-
serve that SIMC outperforms MUSE by 4−42× in our CON
setting and by 2− 16.3× in our EAN setting. For instance,
MUSE took 313.3s and 2567.7s to compute 218 ReLU6 in-
stances in CON and EAN setting. Whereas, SIMC took just
7.3s and 157.6s in the respective network settings. Further-
more, for 220 instances, the MUSE protocol runs out of mem-
ory and crashes, while SIMC computes it in 28.5s in CON
and 623.1s EAN settings. Such wide non-linear layers are om-
nipresent in real-world ML models; ResNet50 on ImageNet
dataset has non-linear layers with width upto 220 nodes.

Benchmark A Benchmark B
Protocol MUSE SIMC MUSE SIMC

Linear Layer 9.40 9.70 54.46 46.43
Non-linear Layer 111.69 9.73 1728.46 110.79

Total 121.09 19.43 1782.92 157.22

Table 3: Latency (in seconds) of MUSE and SIMC on bench-
marks A and B [EAN setting].

5.3 Secure Inference Performance
We evaluate SIMC on both neural network architectures con-
sidered in MUSE: Benchmark A, 2-layer convolutional neural
network (CNN) trained on the MNIST dataset from [34] and
Benchmark B, 7-layer CNN architecture for CIFAR-10 pro-
vided in [34]. For details on networks, see [32, 34].

As outlined earlier, we implement the components of the
protocol (linear layers, non-linear layers, and consistency
check) separately and aggregate them to obtain performance
estimates. Further, the cost of zero-knowledge proofs required
in the linear layers are simulated based on [11, Table 1]. For
Benchmark A, the dimensions of input ciphertexts to all the
linear-layers are tiny (and in particular much smaller than

even the smallest benchmark considered in [11]). Hence, one
can accurately estimate that the overhead of zero-knowledge
proofs in this benchmark is insignificant (< 100 ms). In Bench-
mark B, there are 4 layers that require zero-knowledge proofs
on sufficiently large vectors – namely linear layers 2 to 5,
in which the dimensions of the vectors are 65536, 16384,
16384, and 16384 respectively. Hence, we can estimate that
these proofs together would add approximately 1 second to
the overall latency (which is still a tiny fraction compared
to the overall cost). Since the bulk of the overhead in zero-
knowledge proofs is in compute, the above estimates hold
true for CON as well as EAN setting.

We compare communication followed by execution time in
the two network settings. Table 1 reports total communication
as well as the split of communication between linear and
non-linear layers of these benchmarks for both MUSE and
SIMC. We observe that the total communication of SIMC
is 23× and 29× less than that of MUSE for benchmarks A
and B respectively. Moreover, SIMC communicates between
21−41% less than even DELPHI13 [35], that provides only
semi-honest security, on the same benchmarks (see Remark
3.4). While linear layers for MUSE and SIMC communicate
similar amounts, non-linear layers in SIMC require ≈ 30×
lower communication than MUSE for both benchmarks.

Table 2 and Table 3 show the performance of SIMC and
MUSE on the two benchmarks in our CON and EAN settings,
respectively. As is clear from the split of execution times
for MUSE, non-linear layers were the major performance
bottleneck (upto 96% of total time). Since our protocol for
non-linear layers is significantly lighter weight compared to
MUSE, non-linear layers in SIMC outperform those in MUSE
by 25.8− 45.3× and 11.4− 15.7× in the CON and EAN
settings, respectively. As discussed in Section 1.2, SIMC sig-
nificantly improves upon MUSE in both the compute as well
communication, leading to high gains in both the high band-
width setting as well as the low bandwidth settings, where the
bottlenecks for MUSE are compute and communication, re-
spectively. Optimizing the performance bottleneck in MUSE,
results in significant performance gains for the end-to-end
secure inference task as well. In total execution time, SIMC
outperforms MUSE by 4.3−8.1× in the CON setting14 and
by 6.2−11.3× in the EAN setting.

5.4 Performance in Preprocessing model
We compare the performance of our protocol in the prepro-
cessing model (SIMC++) with MUSE, on the same bench-
marks A and B. As is expected, SIMC++ retains the im-
provements of SIMC over MUSE. In the preprocessing phase,
SIMC++ is 15× and 17× communication frugal compared
to MUSE for benchmarks A and B respectively (see Table 4).

13We use the communication numbers and runtime of DELPHI in CON
setting from [32] as it is identical system setting.

14SIMC outperforms DELPHI by 40−82% in the same setting.



Benchmark A Benchmark B
Protocol MUSE SIMC++ MUSE SIMC++

Preprocessing Phase 4.17 0.28 67.67 3.98
Online Phase 0.01 0.01 0.23 0.23

Total 4.18 0.29 67.90 4.21

Table 4: Communication (in GB) of MUSE and SIMC++ on
benchmarks A and B in the preprocessing model.

Benchmark A Benchmark B
Protocol MUSE SIMC++ MUSE SIMC++

Preprocessing Phase 21.93 5.51 263.44 36.90
Online Phase 0.8 0.8 7.86 7.86

Total 22.73 6.31 270.42 44.76

Table 5: Latency (in seconds) of MUSE and SIMC++ on
benchmarks A and B in preprocessing model [CON setting].

SIMC++’s preprocessing phase is 4−7× and 5−7.4× more
performant than MUSE in the CON and EAN setting (see Ta-
ble 5 and Table 6). As discussed in Section 4.4, our online
phase is identical to MUSE, which is reflected from the per-
formance numbers of the two protocols in the online phase.

The communication of SIMC++ is upto 1.8× of SIMC on
benchmarks A and B. Compared to SIMC, the end-to-end ex-
ecution time of SIMC++ is slower by at most 1.3× and 1.7×
in CON and EAN setting respectively. This slight increase in
overhead comes with the benefit of obtaining an online phase
with little cryptographic overhead.

Comparison with other works. We have so far seen that
SIMC++ outperforms MUSE by an order of magnitude. We
now compare SIMC++ with other related works – namely
maliciously-secure Overdrive [28] and the client-malicious
version of Overdrive presented in [32], which we refer to
as CMOverdrive. As shown in [32], for benchmarks A and
B, MUSE’s pre-processing phase is 2−3.6× more commu-
nication frugal than Overdrive (the improvements in com-
munication inclusive of online phase are also roughly the
same). Combining this with SIMC++’s communication pre-
sented in Table 4, we see that SIMC++ is 30−61×more com-
munication efficient than Overdrive. [32] also showed their
protocol to be 13− 21× faster than Overdrive in the CON
setting. From Table 5, we can in turn conclude that SIMC++
is 52−147× faster than Overdrive. In a similar manner, one
can see that SIMC++ communicates 14−24× lesser bits than
CMOverdrive and is 26−49× faster in the CON setting.

6 Conclusion

We consider the problem of client malicious secure inference
and build a system, SIMC that is at least an order of magni-
tude more communication efficient and performant than prior
state of the art. Furthermore, our system can also have a very
lightweight online phase. Based on our microbenchmarks

in Section 5.2, we expect our gains over MUSE to be even
higher for larger neural network models, such as ResNet50 on
ImageNet, as they have much wider non-linear layers (upto
220 nodes). Moreover, replacing our OT extension based on
KOS [26] with Silent-OT extension techniques [6, 54] will
further improve the communication, and lead to better perfor-
mance in low bandwidth settings. Finally, SIMC is along the
same lines of work as SecureML [37], Gazelle [24], DELPHI
and MUSE that use garbled circuits for their generality to
handle all non-linear functions. We leave the exploration of
design of specialized non-linear layer protocols in the client
malicious setting along the lines of the state-of-the-art work
in semi-honest setting, CrypTFlow2 [42], as future work.
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A Performance in Preprocessing Model

Table 6 shows performance of SIMC++ and MUSE in the
EAN setting.

Benchmark A Benchmark B
Protocol MUSE SIMC++ MUSE SIMC++

Preprocessing Phase 117.64 23.95 1758.12 238.76
Online Phase 3.45 3.45 25.21 25.21

Total 121.09 27.40 1782.92 263.97

Table 6: Latency (in seconds), of MUSE and SIMC++ on
benchmarks A and B in preprocessing model [EAN setting].

B Threat Model

Formal Security. We formalize security using the simulation
paradigm [9,33]. Security is modeled by defining two interac-
tions: a real interaction where P0 and P1 execute the protocol
in the presence of an adversary A and the environment Z and
an ideal interaction where the parties send their inputs to a
trusted functionality that performs the computation faithfully.
Security requires that for every adversary A in the real inter-
action, there is an adversary S (called the simulator) in the
ideal interaction, such that no environment Z can distinguish
between real and ideal interactions, which we formally define
below. Let f = ( f0, f1) be a two party functionality such that
P0 and P1 invoke f on inputs a and b to learn f0(a,b) and
f1(a,b) respectively. A protocol π securely realizes f in the
client malicious paradigm if the following properties hold.

• Correctness: If P0 and P1 were honest, then P0 learns
f0(a,b) and P1 learns f1(a,b) from the execution of π on
inputs a and b respectively.

• Semi-honest Server Security: For semi-honest adversary
A controlling P0, ∃ a simulator S such that for any (a,b),

Viewπ

A(a,b)≈ S(a, f0(a,b))

where Viewπ

A(a,b) denotes view of A during the execution
of the protocol π with P0’s input a and P1’s input b.

• Malicious Client Security: For any malicious adversary A
controlling P1, there exists a simulator S such that for any
input a from P0,

OutP0 ,Viewπ

A(a, ·)≈ ˆOut,S f (a,·)

where Viewπ

A(a, ·) denotes the view of A during the ex-
ecution of the protocol π with P0’s input being a. OutP0
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Preamble. Recall the neural network from Section 4.2. Let v0 be the input vector of P1. P0 holds a MAC key α and
M1, · · · ,M`. For any non-linear function f , let C f be the boolean circuit that takes d,〈s〉0,〈s〉1,c ∈ Fp as input and outputs
(s,c, f (s)− d− c). During secure evaluation of C f in the below protocol, P0 holds the inputs (d,〈s〉0) and P1 holds the
inputs (〈s〉1,c) of C f . Let d0 = 0n0 . Let si and vi denote the intermediate inference vectors obtained after the ith linear layer
and non-linear layer evaluation respectively.

Data from preprocessing phase for:

• Linear layer i ∈ [`]: Pb learns 〈ŝi〉b,〈t̂i〉b,〈yi〉b, where ŝi = Mici, t̂i = αŝi,yi = α2ci (for ci uniformly chosen from Fni−1
p

by P1) using additive homomorphic encryption, similar to the functionality FLin.

• Non-linear layer i ∈ [`−1]: P0 computes a garbled circuit (for C fi) GCi along with pairs of input and outputs labels. P1
learns labels corresponding to its input 〈ŝi〉1,ci+1 (to C fi ) by invoking the oblivious transfer functionality with P0. P0 then
sends the labels corresponding to its input di (uniformly chosen from Fni

p ) and an encryption of GCi to P1.

• Consistency Check: For each i ∈ [`−1], P0 samples 〈ui〉0,〈gi+1〉0 uniformly (where ui = αsi, gi+1 = α2ci+1). For each
i ∈ [`−1], P1 receives from P0, the ciphertexts computed using the output labels of GCi necessary to recover 〈ui〉1,〈gi+1〉1.
These ciphertexts are computed by P0 using techniques similar to the authentication phase of protocol π

f
Non-lin (in Figure 2).

Online Phase:

• For every linear layer i ∈ [`]: P1 sends vi−1−di−1− ci to P0 and sets 〈si〉1 = 〈ŝi〉1,〈ti〉1 = 〈t̂i〉1. P0 computes 〈si〉0 =
〈ŝi〉0 +Mi(vi−1− ci),〈ti〉0 = 〈t̂i〉0 +αMi(vi−1− ci).

• For every non-linear layer i ∈ [`−1]: P0 sends labels corresponding to its input (to C fi) 〈si〉0 and the decryption key to
recover GCi (from its encryption) to P1 . P1 decrypts and evaluates GCi using the labels it received from P0 and the labels
for the inputs di,〈si〉1,ci+1 (learnt in the preprocessing phase) to learn vi−di− ci+1 and the shares 〈ui〉1,〈gi+1〉1 (recall,
ui = αsi, gi+1 = α2ci+1 and note that vi = fi(si)).

• Consistency Check Phase: Both parties locally compute shares of a random linear combination (similar to the consistency
check phase of πInf in Figure 5) of the values (ti−ui + yi+1− gi+1) for i ∈ [`− 1], where randomness of this linear
combination is chosen by P0 and sent to P1. Then both parties reconstruct these shares and P0 aborts if the reconstruction
is non-zero. P1 also sends a hash of the output labels that let it recover vi−di− ci+1 for all i ∈ [`− 1] to P0. P0 cross
checks this hash with the vectors vi−di− ci+1 sent by P1 in the (i+1)th online linear layer evaluation (for i ∈ [`−1])
and aborts if the check fails.

• Output Phase: If the consistency checks pass, P0 sends 〈s`〉0 to P1, who reconstructs and outputs s`.

Figure 8: Secure Inference Protocol in the Preprocessing Model π
Prep
Inf

represents the output of P0 in the same protocol execution.
ˆOut and S f (a,·) denote the output of P0 and S in an ideal

interaction with the functionality f , where P0 inputs a.

C Protocol in the Preprocessing Model

We describe the protocol in Figure 8. Remarks analogous to
Remarks 3.1, 3.2, 3.3, 4.1, 4.2 also hold for this protocol.

D Extension for General Neural Networks

Our secure inference protocol πInf (Figure 5) can be easily
tailored for neural networks that don’t necessarily have alter-
nate linear and non-linear layers. Though consecutive linear
(resp., non-linear) layers can be composed into a single lin-
ear (resp., non-linear) layer, for efficiency reasons during the
implementation phase it might be preferred to avoid this com-

position. If say for some i, the linear layers i and i+ 1 are
consecutive, consider an imaginary non-linear layer i between
them. Then, after computation of shares of si, ti,zi in the ith

linear layer evaluation as per πInf , parties locally compute
shares of ui = ti,vi = si,wi = ti. Next, they input shares of
(vi,wi) to the (i+1)th linear layer evaluation of πInf and use
ui in the consistency check phase. If non-linear layers i and
i+ 1 are consecutive, consider an imaginary linear layer i
between them. After computing shares of ui,vi,wi, parties
locally compute shares of si+1 = vi, ti+1 = wi and zi+1 = 0.
They use shares of si+1 as input to the (i+ 1)th non-linear
layer evaluation in πInf and shares of zi+1 in the consistency
check.
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