
Route Discovery in Private Payment Channel
Networks

Zeta Avarikioti1, Mahsa Bastankhah2, Mohammad Ali Maddah-Ali2, Krzysztof
Pietrzak1, Jakub Svoboda1, and Michelle Yeo1

1 IST Austria
{zetavar, krzysztof.pietrzak, jakub.svoboda, michelle.yeo}@ist.ac.at

2 Sharif University of Technology, Iran
mahsa.bastankhah@ee.sharif.edu, Maddah ali@sharif.edu

Abstract. In this work, we are the first to explore route discovery in
private channel networks. We first determine what “ideal” privacy for a
routing protocol means in this setting. We observe that protocols achiev-
ing this strong privacy definition exist by leveraging (topology hiding)
Multi-Party Computation but they are (inherently) inefficient as route
discovery must involve the entire network. We then present protocols
with weaker privacy guarantees but much better efficiency. In particu-
lar, route discovery typically only involves small fraction of the nodes
but some information on the topology and balances – beyond what is
necessary for performing the transaction – is leaked. The core idea is
that both sender and receiver gossip a message which then slowly prop-
agates through the network, and the moment any node in the network
receives both messages, a path is found. In our first protocol the mes-
sage is always sent to all neighbouring nodes with a delay proportional
to the fees of that edge. In our second protocol the message is only sent
to one neighbour chosen randomly with a probability proportional to its
degree. While the first instantiation always finds the cheapest path, the
second might not, but it involves a smaller fraction of the network. We
also discuss some extensions to further improve privacy by employing
bilinear maps.
Simulations of our protocols on the Lightning network topology (for ran-
dom transactions and uniform fees) show that our first protocol (which
finds the cheapest path) typically involves around 12% of the 6376 nodes,
while the second only touches around 18 nodes (< 0.3%), and the cost
of the path that is found is around twice the cost of the optimal one.

Keywords: Payment Channel Networks · Privacy · Bitcoin · Route Dis-
covery

1 Introduction

Payment channel networks (PCNs) are one of the most promising approaches in
making cryptocurrencies scalable. They allow any pair of users to set up a pay-
ment channel between them, thereby enabling an unlimited number of costless



2 Z. Avarikioti et al.

transactions between them without requiring consensus on the blockchain. Users
who are not directly connected to each other with a payment channel can still
transact with each other by routing the transaction through intermediate nodes
in the network. These intermediate nodes typically charge a fee for forwarding
these transactions. There are several PCN proposals [27,10,21,9,13,12,4,11,17];
two of the most widely used are the Bitcoin Lightning Network [21] and Raiden
[2] for Ethereum.

The route discovery problem is the problem of discovering “short” (i.e. low-
cost) routes in the network. This is a well-researched problem with several ex-
isting solutions [22,15,25,26,28,20]. However all these solutions assume that the
entire topology of the payment network is known by at least one party (for in-
stance the users who download the entire network [29] or trampoline nodes [22]).

Unknown Network. In this work we consider the problem of route discovery
in PCNs where the capacities, fees and even the mere existence of channels can
be partially unknown. This is motivated by the fact that in a PCN the topol-
ogy and capacities of a payment network constantly change. Moreover the exact
capacities are typically kept private as an adversary who can observe the exact
channel capacities could easily reconstruct what payments happened in the net-
work [19]. The Lightning Network will soon allow private channels using taproot
[7]. The basic idea is to use Schnorr signatures [16] to aggregate public keys and
signatures, making a transaction involving multiple users indistinguishable from
a transaction involving just two users on the blockchain.

Efficiency and Privacy of Route Finding. The route discovery protocols
we propose do not assume any knowledge about the network other than the
minimal requirement that nodes know about their own channels. In this setting,
the only thing a sender and receiver can do to find an (optimal) route is to send
exploratory messages through the network.

Our goal is to construct protocols that are efficient, private and find a path
whose fees are minimal, or at least close to it. An important metric is the fraction
of the network that may typically be involved in any route finding attempt as few
involved nodes directly translate into better efficiency and also better privacy.
Concerning privacy, even the users that are involved in the path finding process
should learn as little as possible about senders, receivers and amounts of route
finding attempts. Moreover nodes that end up in a payment path should ideally
not learn any information beyond the amount and the nodes right before and
after them in the path, even the sender and receiver jointly should not learn the
users on a path other than their direct neighbours.

Our Contribution. To the best of our knowledge, this is the first work which
considers private route discovery in a PCN with private channels. Our work
makes the following contributions:



Route Discovery in Private Payment Channel Networks 3

– (Ideal Notion) We put forward a security notion for private route discov-
ery and give a feasibility result using multi-party computation (MPC). Our
notion is inspired by security notions from topology hiding MPC. This so-
lution is inefficient, not just because MPC computations are expensive, but
also because it must involve the entire network (and this inherent for any
protocol achieving our ideal notion).

– (Practical Protocols) We present a family of route discovery protocols on pri-
vate PCNs that are much more efficient and in particular only touch a small
fraction of the network. These protocols work by propagating exploratory
messages from the sender and receiver through the PCN. When an inter-
mediary node receives both messages, a path is found. The first protocol we
propose is Forward-to-All where nodes forward messages on all their edges but
one every edge, with a delay that is proportional to the fee on that edge. In
our second protocol Degree-Proportional Random Walk nodes just send mes-
sages to one neighbour, chosen randomly with a probability proportional to
their degree. Forward-to-All always finds the shortest path, but it involves a
larger fraction of the network than Degree-Proportional Random Walk.

– (Simulations) We simulated our protocols on the Lightning Network and
a certain class of graphs (Barabási–Albert) that are used to model PCNs.
Our simulation show that Forward-to-All typically involves around 800 of
the 6000 nodes in Lightning, while Degree-Proportional Random Walk only
involves around 20, and the paths that are found are around twice as long
as the optimal ones.

– (Analysis) We prove some analytical bounds for our algorithms on particular
classes of graphs.

2 Model and Definitions

We model a payment channel network (PCN) as a directed graph G = (V,E)
where each node in the set V represents a user in the PCN and an edge (u, v) in
the set E indicates an open channel between the users u and v in V . We denote
with fu,v(.) the fee function, i.e., u charges fu,v(x) to transfer x coins over the
channel (u, v). In existing PCNs like the Lightning Network, fu,v(.) is set by u.

The route discovery problem in a PCN represents the task of finding the
path with the smallest aggregated fees, or the cheapest path, in a PCN for
a given pair of sender/receiver nodes us, ur ∈ V and amount x, i.e., a path
(u0 = us, u1, . . . , u` = ur), minimizing the aggregated fees, as

∑̀
i=1

fui−1,ui
(x+ φi−1).

In above formula, φi, i = 0, . . . , `− 1, is the aggregated fees that nodes
ui+1, ui+2, . . . , u`−1 charge. More precisely,

φi−1 = φi + fui,ui+1
(x+ φi).



4 Z. Avarikioti et al.

Since the receiver u` is the last node in the path, φ`−1 = 0. We use the notation
shortestPathG(us, ur, x) 7→ {u0 = us, u1, . . . , u`−1, u` = ur} to describe the func-
tionality that takes two nodes us and ur and a transaction amount x as inputs
and outputs the cheapest path between those two nodes.

3 Ideal Privacy

In this section we define an ideal notion of privacy for route discovery and outline
how to construct protocols achieving this notion, albeit very impractical ones.

Privacy is ideal, this means that each party only learns the bare minimum
information required to participate in the transaction: its predecessor and suc-
cessor on the payment path and the amount to be transferred. This information
is minimal, if we assume that users know at the very least the current balances
on their own channels (as in Lightening Network). In this case they learn the pre-
decessor, successor, and amount of a transaction they were involved in by simply
comparing the balances on their channels before and after the transaction.

For our ideal security, we only consider path finding protocols Π, which
always find the cheapest path. Defining ideal privacy for protocols, which output
a not necessarily cheapest path seems more complicated, as the privacy loss
depends on the path that was found. We also only consider passive adversaries,
that is, an adversary can corrupt users and learn their internal state, but not
make them deviate from honestly executing the protocol (say, by providing wrong
or inconsistent input).

Let us stress that we only consider the route discovery process. Once a path is
found, execution of the transaction itself using hash lock time contracts (HTLCs)
will inevitably leak some more information (on the position of the corrupted users
in the cheapest path).

Our privacy notion is inspired by the Indistinguishability under Chosen
Topology Attack (IND-CTA) security definition from work on topology-hiding
multiparty computation [18].

We consider an adversary that initially chooses two networks and a transac-
tion for each of them, and also a subset of nodes to corrupt. We then require that
given the view of the corrupted nodes after the path finding protocols has been
executed on one of the two networks, an adversary cannot determine which. Of
course we must require that the adversary chooses the networks, transactions,
and corrupted nodes such that the corrupted nodes have the same neighbours
and fee functions, and the final output of the corrupted nodes (either they are
not on the path, and if, they learn their predecessor, successor and amount to
be transferred) is identical in both cases, otherwise distinguishing is trivial for
any protocol as one can distinguish using just the initial view and final output
of the protocol. We give a more formal definition below.

The Ideal Privacy Security Game. We consider a security game involving
an adversary A against a path-finding protocol Π. The protocol is run by the



Route Discovery in Private Payment Channel Networks 5

players V on a network G = (V,E). Each player initially gets as inputs its
neighbours and fee functions.

When the protocol starts, two players us, ur get as extra input (us, ur, x)
informing them they are, respectively, the sender and the receiver of some
amount x. The correctness we require from our protocol is that every u 6∈
shortestPathGb(ubs, u

b
r, x) which is not on the cheapest path outputs ⊥, while

every u on the path outputs its predecessor, successor and amount they transfer
in this optimal path. The security game goes as follows:

– A chooses the following for i ∈ {0, 1}:
1. A network (directed graph) Gi = (V i, Ei), where every edge (u, v) is

labelled with a fee function f iu,v(.).

2. A sender and receiver pair (uis, u
i
r) and amount x.

A choses a subset S ⊂ V0 ∩ V1 of nodes to corrupt. These nodes must have
the same neighbourhood and fee functions in both networks, and their final
output (predecessor, successor and amount) must be identical.

– We choose a random bit b ∈ {0, 1} and run Π on Gb (with input (ubs, u
b
r, x)).

– A gets the transcripts of the corrupted nodes.
– A outputs a bit b′. If b′ = b, A wins the game.

Let us call a path finding protocol Π ε-private if A wins the above game with
probability at most 1/2 + ε, and private if it is ε secure for some negligible ε.

Protocols with Ideal Privacy from MPC. If we assume a trusted third
party T (that cannot be corrupted by the adversary and has a channel to every
node in the network) we can trivially get a private path-finding protocol by
simply letting each party in the network send their data to T , which will then
locally compute the cheapest path and send the output, i.e., either ⊥ or the
amount, successor and predecessor in the cheapest path, to every node.

To get an actual protocol without a trusted third party, we can instantiate
T using a multi-party computation (MPC) protocol. MPC is a protocol between
N users u1, . . . , uN who agree on some outputs functions f1, . . . , fN . Every user
ui holds an input xi, and at the end user ui learns some output fi(x1, . . . , xN ).
The security requirement is that any coalition of users learns nothing about the
inputs of the other users beyond what is revealed through their own outputs.
As here the users need to share pairwise channels, they need to know about the
other participants, which means in our security definition we need the users V 1

and V 2 in the two notworks to be identical V 1 ≡ V 2.
Our security notion is inspired by notions from topology-hiding MPC. While

there the goal was to hide the topology of the communication channels, we
assume pairwise channels but want to hide the topology of the payment network.
But of course we could also use a topology-hiding MPC to instantiate T , in
which case we would only require communication channels between users that
share a channel. In this setting one could potentially also achieve security in
settings where V 1 6= V 2 as nodes would only talk to their neighbours, and for
the corrupted nodes these are identical.



6 Z. Avarikioti et al.

Executing the Transaction. After the cheapest path is found, the users
need to execute the transaction. This can be achieved using HTLCs and MAP-
PCN [29], but it will reveal a bit of extra information (beyond the minimal infor-
mation revealed through the path discovery protocol) to users on the cheapest
path (and thus to the adversary should this node be corrupted). This additional
information is about the position on the payment path. To illustrate this, assume
in the security game the two cheapest paths were us → a → b → c → ur and
us → a→ c→ ur and the adversary corrupted us and ur. If us, ur now imitate
the transaction using HTLCs, messages must be passed along the path, and this
will take longer in the first network as there the path is longer. Thus, by simply
looking at the timing the HTLC needs to pass through the network an adversary
can distinguish whether it is in the first or second case, even though it could not
do so after the path finding algorithm was executed.

4 A Family of Protocols

Consider a sender us ∈ V who wants to transfer x coins to a receiver ur ∈ V and
thus needs to know a path for the transaction, ideally the cheapest one. In this
section, we present a family of exploratory route discovery protocols that provide
solutions to this problem. At its core, these protocols employ local probing: nodes
send exploratory messages (originating at the sender and receiver nodes) to their
neighbours who in turn propagate them. Our protocols only require nodes to
know their incident channels, and some also require a degree estimate of each
neighbour.

The protocols run in three phases, (1) exploration, which runs until the first
node receives both messages, i.e., the one originating at the sender and the re-
ceiver. (2) notification, where the relevant nodes are informed that a path was
found and (3) stopping, where the nodes currently participating in the explo-
ration phase are informed so they do not propagate messages further. Phase (1)
is running slow, i.e., messages are propagated with some delay which should be
significantly larger than the typical network delay, while in phase (2) and (3)
messages are relayed immediately. The main reasons why we need Phase (1) to
be slow is so the messages in the stopping phase can easily “catch up” to the
nodes which are in the exploration phase. We will also mention how this helps
to improve correctness and even privacy.

On one extreme, we have Forward-to-All that involves nodes sending these
exploratory messages to all their neighbours, where each message is delayed for
some time proportional to the fees (which guarantees that the first path that
is found is also the cheapest one). On the other end of the spectrum, we have
a more parsimonious protocol, namely Degree-Proportional Random Walk, that
only involves sending messages to a few neighbours. As the protocols in the
family are similar, mostly differing in the rule on when and to whom to forward
the exploratory messages, we first present a generic overview of Forward-to-All,
before briefly describing how to modify Forward-to-All to get Degree-Proportional



Route Discovery in Private Payment Channel Networks 7

Random Walk. We then suggest some improvements to boost the privacy of this
family of protocols.

Forward-to-All Exploration Phase. In this protocol, both the sender us and
receiver ur create messages with a special identifier (so intermediate nodes who
receive messages from us and ur can associate them together), an amount x
that us wants to send to ur, as well as a tag Sender or Receiver which specifies
whether they are sending or receiving the transaction. The sender and receiver
then propagate these messages through the graph by sending these messages
to all their neighbours who then in turn propagate the message to all their
neighbours. At every step of the propagation, the nodes update the transaction
amount with fees to reflect the amount they would want to get by forwarding
the transaction, and they also wait before forwarding for some time that is linear
in those fees. All nodes store the messages they received, as well as an id (not to
be confused with identifier) of the node that sent them the message. The precise
rule and fee computation differs, however, depending on whether a node gets a
message from the sender or the receiver.

Fee computation for messages from receiver Apart from the receiver, each inter-
mediate node ui upon receiving a message with the Receiver tag from another
node ui+1, updates the transaction amount to add a fee for sending the transac-
tion amount along the channel (ui, ui+1). This is to reflect the fee ui would charge
for forwarding the transaction to ui+1. Figure 1 illustrates this process where the
receiver ur sends a message with the transaction amount x to all of ur’s neigh-
bours. Upon receiving the message from ur, ui+1 adds a fee of fui+1,ur (x) to the
transaction x. Messages with this updated transaction amount of x+fui+1,ur (x)
would be sent to all of ui+1’s neighbours.

Fee computation for messages from sender The fee computation for the sender
and the nodes that receive messages with the Sender tag is trickier. Although the
sender knows the transaction amount x, they do not know the total amount they
would have to send at the end of the protocol as it would include the fees along
the path which is still unknown. Thus the sender would have to add an estimate
of the total fee of the path, δ, to the transaction amount in their initial message.
Each node that receives a message with the Sender tag, updates the transaction
amount to subtract a fee for each edge they propagate the message to. This is to
account for the fees the node will charge to forward the transaction. For instance
in Figure 1, the node ui−1, upon receiving a message with transaction amount
x + δ, subtracts fui−1,v(x + δ) from the transaction amount before forwarding
the message with this new transaction amount to the node v. The node ui−1
does the same but subtracts fui−1,ui

(x+ δ) from the transaction amount before
sending the message to ui.

Delay time computation Let d be a publicly available delay function that maps
fees to delay times. Let du,v denote the delay time for the total fee for sending



8 Z. Avarikioti et al.

us ur
ui−1 ui

x

x

x

ui+1

x+ fui+1,ur (x)

x+ fui+1,ur (x)
x+ δ

x+ δ

x+ δ

x+ δ − fui−1,ui
(x+ δ)

vx+ δ − fui−1,v(x+ δ)

Fig. 1: Propagating exploratory messages from sender and receiver in the
Forward-to-All protocol. Each directed edge (u, v) is labelled with the transaction
amount in the message that u sends to v.

an arbitrary but fixed amount x over the channel (u, v), i.e. du,v = d(fu,v(x)).
Every node (except the sender and receiver) computes a delay time with the
delay function d and the fees computed as described above. In Figure 1 for
instance, since the sender us and receiver ur do not have fees, us and ur will
send their exploratory messages immediately. The node ui+1 will wait dui+1,ur

before forwarding the message to ui, and ui−1 will wait dui−1,ui
before forwarding

the message to ui.

Forward-to-All Notification Phase. Upon receiving a new message, a node
checks its identifier with the identifiers of the stored messages to see if the mes-
sage identifiers can be associated together. When a node ui finds an association
of identifiers that indicate two messages are from the sender and receiver of a
given sender-receiver pair, ui begins a process of notifying the sender and the
receiver that a path exists between them. We denote the two nodes that sent
ui the associated sender and receiver messages by ui−1 and ui+1 respectively.
We also denote the transaction amounts in these messages as xs and xr respec-
tively. Then, ui immediately sends ui−1 a message with the message identifier
and amount xs (resp. xr to ui+1). Both ui−1 and ui+1 then search for the nodes
that sent them the messages with the same identifier and forward these messages
to these nodes. Refer to Figure 2 for an illustration of the process.

uius

ur

ui receives both messages from the sender and the receiver

ui−1

ui+1

NotificationNotification Notification

NotificationNotification

Notification

Fig. 2: Sending informative messages back to sender and receiver.

This process repeats itself until the sender and receiver get the message. At
this point, the sender has enough information to proceed with the transaction. In



Route Discovery in Private Payment Channel Networks 9

particular, the sender can easily compute the total fee of the path from x, x+δ, xs
and xr (communicated by the receiver).

Optimality of the discovered route Using delay times guarantees that in Forward-
to-All, either the notification message corresponding to the shortest path (subject
to the accuracy of the fee estimation of the sender) always reaches the sender
first, or the sender can find out if someone on the path deviated from the delay
protocol. For example, let L∗ be the optimal path from us to ur and L′ be a
strictly more expensive path. Suppose several adversarial nodes on L′ immedi-
ately forward messages without delay and as a result, us receives the notification
message from an intermediate node on L′ first. Since us knows the time they sent
the first exploratory messages, us can extract the fees from the message received
and check if the total delay time on this path is larger than the difference of the
current time and the time us sent the first exploratory messages.

Forward-to-All Stopping Phase. When both sender and receiver are aware
that a path exists between them and the sender is satisfied with the cost of the
path, both sender and receiver can stop the protocol by sending a stop message
with their identifiers to the nodes they sent the exploratory messages to. Nodes
that have not yet sent the exploratory message to their neighbours would, upon
receiving the stop message with the identifier, cancel the sending of the message.
Nodes that have already send the exploratory messages would forward the stop
message to the neighbours they sent the exploratory message to. This process is
fast and thus will reach the slow propagation of the exploratory messages.

Degree-Proportional Random Walk. The Degree-Proportional Random Walk
protocol is analagous to the Forward-to-All protocol with the exception that each
node only forwards the message to one neighbour. Specifically, each node chooses
a neighbour to forward the message to randomly with probability proportional to
its degree. Thus, the messages are propagated according to two weighted random
walks on the network, one starting from the sender and the other from the
receiver, with the weight of any directed edge (u, v) corresponding to the degree
of v. We observe that due to the probabilistic nature of Degree-Proportional
Random Walk, optimality of the discovered path is not guaranteed unlike in the
case of Forward-to-All.

Improving Privacy. From the messages that originate at the sender and re-
ceiver and propagate through the network we only need the property that one
can efficiently recognize once a message from both is received. The simplest so-
lution is to simply sample some random nonce I and propagate it together with
a one bit tag specifying whether it is a sender or receiver originating message.

These messages are completely linkeable, this is unfortunate as it means
that even if many path finding protocols are executed over the network at the
same time, a potential adversary that controls some nodes in the network will



10 Z. Avarikioti et al.

still recognize with certainty which messages belong to the same path finding
request, thus we do not leverage the fact that many protocols are running at the
same time to improve privacy.

Making messages unlinkeable using bilinear maps. We can improve this situation
a bit by using a bilinear map [14] e : G1 × G2 → GT (such a map allows
“for one multiplication in the exponent” as e(ga1 , g

b
2) = ga·bT where g1, g2, gT are

generators of G1, G2, GT ) for a group where the DDH assumption holds in G1

and G2. Concretely, the sender and receiver sample a random x and then the
sender for every outgoing edge samples a random r and propagates (gx·r1 gr1) as

the identifier, while the receiver propagates (g
x/r′

2 , gr
′

2 ).

A node that receives (gx·r1 , gr1) (similarly for the receiver tuples) propagates
it only after re-randomizing it by exponentiating both elements with some fresh
r′ which gives a tuple (gx·r

′′

1 , gr
′′

1 ) where r′′ = r · r′. This way an adversary (who
does not know x) will not be able to distinguish a pair of tuples of the form
(gx·r1 , gr1), (gx·r

′

1 , gr
′

1 ) from random, and thus cannot decide whether they belong
to the same instantiation of the path finding protocol. Let us stress that the
unlinkeability is limited as it only holds if the adversary gets to see either only
messages originating at the sender or at the receiver, and this in inherent as we
need parties who receive tuples (a, b) and (a′, b′) originating at both to efficiently
recognize this. This can be done by checking whether e(a, a′) = e(b, b′) as

(a, b) = (gx·r1 , gr1), (a′, b′) = (g
r′/x
2 , gr

′

2 )⇒ e(a, a′) = e(b, b′) = gr·r
′

T

Quantising the transaction and encrypting the fees. Messages that contain the
exact transaction amount are also linkeable, even when fees are added, as the
fees are typically miniscule compared to the transaction amount. To reduce this
linkeability (at the cost of accuracy in fee estimation), the sender and receiver can
quantise the amount of the transaction by rounding it up to a predefined value
(for instance, a power of 2). Then, instead of adding the fees to the quantised
transaction amount, nodes encrypt their fees using an additive homomorphic
encryption scheme like additive ElGamal encryption.

Specifically, the sender and receiver use the exact (not quantised) transaction
amount x as their secret key and gx as their public key, where g is the generator
of a cyclic group of order p. Intermediary nodes would compute their fee using
the quantised amount xq. In this way the sender and receiver can guarantee that
the path found would have sufficient capacity to forward the transaction x since
x ≤ xq. If a lot of protocols are running simultaneously, nodes would see a lot
of messages with the same quantised transaction amount and so linkeability is
reduced. The accuracy of the fee estimate would depend on how close x is to xq.
However, since the transaction amount is typically a lot larger than the fees, we
argue that making such an estimate is plausible.



Route Discovery in Private Payment Channel Networks 11

5 Protocol Details

In this section we describe Forward-to-All in detail. We leave out the details
of Degree-Proportional Random Walk as it is analogous. In the Forward-to-All
protocol:

1. us picks a random identifier I from Zp

2. us sends I to the receiver ur through a secure communication channel.
3. us and ur both send path discovery requests (PDRs) to all their neighbours.

The PDR that us sends is PDRs := (identifier : I,amount : x+ δ, tag : Sender)
and the PDR that ur sends is PDRr := (identifier : I,amount : x, tag : Receiver).

Both PDRs and PDRr are gossiped through the network. Nodes execute either
Protocol 1 or Protocol 2 depending on whether they receive PDRs or PDRr respec-
tively. Note that a node ui may receive several PDRs (resp. PDRr) with the same
identifier. In this case ui should not forward the message, unless it has a lower fee
than the previously forwarded one (in an ideal network with honest parties this
case will never happen as the cheaper message will arrive first, in practice this
could happen due to network delays or because some parties propagate too fast).
In Degree-Proportional Random Walk the situation is different, here receiving the
request a second time means the path closed a cycle, so it should be forwarded.

The moment a node ui receives two matching PDRs and PDRr (from say ui−1
and ui+1), ui waits for a delay time denoted by ∆. The delay time ∆ is calculated
based on the following rule:

1. If PDRs arrives first, or both messages arrive at the same time, ∆ = dui,ui+1

2. If PDRr arrives first, ∆ = min(dui,ui+1 , t) where t is the time the PDRs arrives
starting from the time ui receives the receiver message. If t < dui,ui+1 , i.e.
the message from the sender arrives while ui is still in the middle of the

delay, then ui truncates the remaining delay period to ∆ =
dui,ui+1

−t
2 .

The reason why ui should incorporate a delay time of ∆ before forwarding the
notification messages is to account for the fees of ui’s channels. After the delay,
ui creates and sends a path found message (PFM) to these nodes. Specifically,
ui sends PFMs = (Identifier, amounts,Sender,Path found message) to ui−1 and
PFMr = (Identifier, amountr,Sender,Path found message) to ui+1. This is detailed
in Protocol 3. Finally, Protocol 4 shows how the nodes that receive PFMs can
update their information about the found path and continue forwarding PFMs
until it reaches the sender. The protocol for PFMr is essentially analogous to
Protocol 4 but in the opposite direction towards the receiver and hence we omit
describing it.

Upon receiving the PFMs, both sender and receiver should send a stopping
request SR to all their neighbours to halt the PDR forwarding procedure. The
stopping request is of the form SR := (identifier : I, tag : Stopping Request).
Upon first receiving a SR, a node ui immediately stops sending all PDRs. Then
ui retrieves all the PDRs with the same identifier and forwards the SR to all
neighbours that are saved as either a previousNode or nextNode in the PDR.
In this way, every node that is involved in the protocol gets notified that a path
exists and so stops forwarding messages corresponding to this transaction.



12 Z. Avarikioti et al.

6 Evaluation

6.1 Efficiency

Our efficiency metric in this work is the average number of involved nodes in one
route discovery attempt, i.e., the number of nodes who receive at least one PDRs
or PDRr. To compare the efficiency of Forward-to-All and Degree-Proportional Ran-
dom Walk, we chose 100 random pairs of sender and receivers in a recent snapshot
of the Lightning Network downloaded from [8], and ran both protocols (we used
NetworkX [1], a python library for analysing complex networks). Figure 3a and
Figure 3b shows the percentile distribution plot of the number of involved nodes
in Forward-to-All and Degree-Proportional Random Walk respectively. As we can
see from the plots, there is a significant difference between the efficiency of these
two protocols. In Forward-to-All for instance, around 800 nodes out of 6376 nodes
are involved on average while in Degree-Proportional Random Walk in Figure 3b,
the average is around 18 nodes.

0 20 40 60 80 100
Percentile

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f I
nv

ol
ve

d 
N

od
es

 p
er

 O
ne

 A
tte

m
pt

Forward-to-All Protocol

(a)

0 20 40 60 80 100
Percentile

5

10

15

20

25

30

35

N
um

be
r o

f I
nv

ol
ve

d 
N

od
es

 p
er

 O
ne

 A
tte

m
pt

Degree-Proportional Random Walk Protocol

(b)

Fig. 3: Comparison of the percentile distribution plot of the number of involved
nodes in Forward-to-All and Degree-Proportional Random Walk. We picked 100
sender-receiver pairs randomly and ran both protocols to find a route. The y-axis
shows the number of involved nodes for each attempt and the x-axis corresponds
to the percentile.

Length of the Path The fee-proportional delay function that we described in
the Notification Phase of Section 4 guarantees that the first PFM that reaches
the sender and the receiver corresponds to the shortest path in Forward-to-All.
There is no such guarantee, however, for Degree-Proportional Random Walk due to
its probabilistic nature. We compare the average path length found by Degree-
Proportional Random Walk in the 100 runs as described above to the average



Route Discovery in Private Payment Channel Networks 13

actual shortest path length. As we see in Figure 4, in 80% of the runs the length
of the path in Degree-Proportional Random Walk is a 2 approximation of the
shortest path.

6.2 Privacy

The number of involved nodes is also a good measure of the privacy of our proto-
cols, as nodes that receive messages can glean information from timings and the
transaction amount. We note that the significantly smaller number of involved
nodes in Degree-Proportional Random Walk can certainly be construed as an im-
provement of privacy compared to Forward-to-All. However, in a majority of the
runs in our simulation of Degree-Proportional Random Walk, the involved nodes
tend to be the same set of high degree nodes. Thus, if an adversary corrupts
some of these nodes, they could potentially gain access to a lot more informa-
tion compared to Forward-to-All. To mitigate this issue, nodes can “soften” the
distribution of neighbouring nodes to select from (for instance, reducing the scale
of the dependency on the degree from linear to logarithmic). This reduces the
probability of always selecting nodes with high degrees.

6.3 Barabási–Albert Model

The Barabási–Albert model [6] (denoted by BA(n,m)) is a popular algorithm
to create scale free networks using a preferential attachment mechanism (for
details on the algorithm, see Appendix A). The number of nodes in the final
network is n and m is the preferential attachment parameter. Many real world
networks [5], including the Lightning Network [23], are characterized as scale-
free. We run our protocols on Barabási–Albert graphs of varying sizes to see how
these protocols would scale if the Lightning Network grows in the future. We
used BA(n, 1) because our implementation shows that the graph generated by
BA(n, 1) is more similar to the actual Lightening Network.

Figure 5 compares the number of involved nodes when running Forward-to-
All and Degree-Proportional Random Walk on Barabási–Albert graphs with the
number of vertices n ranging from 2000 to 20000. Since the y-axis is logarithmic
in Figure 5, we see that the number of involved nodes in Degree-Proportional
Random Walk is an order of magnitude lower than in Forward-to-All. Indeed, in
Section 8 we prove that the number of involved nodes in Degree-Proportional
Random Walk grows sub-linearly with the number of nodes in the graph.

7 Discussion: Optimality and Efficiency Trade-off

In Forward-to-All, nodes forward PDRs to all their neighbours, and as a result a
large fraction of the network is involved in the route-discovery process. On the
other hand, reaching every node is the only way to guarantee the shortest path is
always found. In Degree-Proportional Random Walk, each node just forwards PDRs
to one neighbour and thus only a very small fraction of the graph is involved.



14 Z. Avarikioti et al.

0 20 40 60 80 100
Percentile

5

10

15

20

25

Le
ng

th
 o

f T
he

 P
at

h

Mean of Shortest Path's Length Mean of Found Path's Length

Fig. 4: Comparison between length of
the shortest path and length of the
path found using Degree-Proportional
Random Walk. The x-axis is the per-
centile and the y-axis is path length.

2500 5000 7500 10000 12500 15000 17500 20000
The network size

102

103

M
ea

n 
Nu

m
be

r o
f I

nv
ol

ve
d 

No
de

s

Forward-to-All Protocol Degree-proportional Random Walk Protocol

Fig. 5: Comparison of efficiency of
Forward-to-All and Degree-Proportional
Random Walk on Barabási–Albert
graphs. The x-axis is the number of
vertices in the graph. The y-axis is the
mean number of involved nodes (loga-
rithmic scale).

However, there is no a guarantee that the algorithm finds the shortest path and,
as we show in Section 6.1, the paths are twice as long on average. We note that
one can trade off between optimality and efficiency/privacy by running a protocol
that is somewhere in between these two extreme protocols. For example, nodes
can send PDRs to an α fraction of their neighbours (rounded up to the nearest
whole neighbour) based on their degrees, where α ∈ (0, 1]. By tweaking this
parameter α, one moves across the range of efficiency/privacy and optimality in
our family of protocols.

8 Analysis

Consider a Barabási–Albert graph G generated by BA(n, 1). We select two ver-
tices randomly to be the sender and receiver. Consider the truncated Degree-
Proportional Random Walk protocol that stops immediately when any node re-
ceives messages from both sender and receiver. Theorem 1 (proof in Appendix B)

shows an upper bound of O(
√
n · log2 n

log logn ) on the expected number of nodes in-
volved in the truncated Degree-Proportional Random Walk protocol.

Theorem 1. The expected number of involved nodes in the truncated Degree-

Proportional Random Walk protocol on G is O(
√
n · log2 n

log logn ).

9 Related Work

Existing work on route discovery in PCNs can be broadly classified into two cat-
egories: solutions which focus on efficiency, and solutions which focus on privacy.



Route Discovery in Private Payment Channel Networks 15

Efficiency-oriented approaches Flare [22] and SilentWhispers [15] route pay-
ments through highly connected nodes to improve the scalability of route dis-
covery. SpeedyMurmurs [25] and VOUTE [24] employ a similar routing technique
called prefix embeddings, which makes the process even faster. These solutions
require nodes to have global knowledge of the network (or at least knowledge of
these highly connected nodes), whereas nodes in our protocols only need local
knowledge of their neighbours and degrees. Spider Network [26] splits payments
into smaller units and routes them over multiple paths using waterfilling. How-
ever, this does not guarantee the discovery of an optimal path, whereas our
protocol guarantees optimality by adding a fee-proportional delay in the path
discovery process. Flash [30] uses a modified max-flow algorithm to find the opti-
mal path, but requires nodes to have global knowledge of the network. Perun [13]
avoids routing through intermediaries altogether by introducing the notion of
virtual channels. However, this does not solve the route discovery problem.

Privacy-oriented approaches MAPPCN [29] focuses on anonymity and privacy
during transaction execution, but does not address the issue of route discovery
as users are required to know the payment path. LightPIR [20] uses private
information retrieval to perform private route discovery efficiently, but does not
account for optimality of the route in the case of private channels. In contrast,
our protocols employ local probing, thus our solutions are still optimal even with
private channels.

Topology hiding computation The notion of privacy in our work is heavily in-
spired by topology hiding MPC [18,3]. These techniques are inefficient as the
whole network is involved in the route discovery process. Our protocols, in con-
trast, involve a much smaller fraction of the network at the cost of less privacy.

10 Conclusion

In this work, we study the route discovery problem for private PCNs. We for-
malise an ideal notion of privacy and then show the ideal notion of privacy is
feasible but inefficient. We then present a family of practical route discovery
protocols which trade off between optimality and efficiency/privacy. We vali-
date our approach on both the Lightning Network and Barabási–Albert graphs.
Finally, we prove an upper bound on the number of involved nodes for the
Degree-Proportional Random Walk protocol on Barabási–Albert graphs that is
sublinear in the number of vertices.

References

1. Software for complex networks. https://networkx.org/documentation/stable/index.html,
accessed: 2020-07-27

2. Raiden network. https://raiden.network/ (2017), accessed: 2021-09-08



16 Z. Avarikioti et al.

3. Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all graphs.
J. Cryptology pp. 176–227 (2020). https://doi.org/10.1007/s00145-019-09318-y

4. Avarikioti, Z., Kogias, E.K., Wattenhofer, R., Zindros, D.: Brick:
Asynchronous incentive-compatible payment channels. In: FC (2021),
https://fc21.ifca.ai/papers/168.pdf

5. Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random net-
works: the topology of the world-wide web. Physica A: statistical mechanics and
its applications pp. 69–77 (2000)

6. Barabási, A.L., Pósfai, M.: Network science. Cambridge University Press, Cam-
bridge (2016), http://barabasi.com/networksciencebook/

7. Bitcoin community: Bitcoin core 0.21.0-based taproot client 0.1.
https://bitcointaproot.cc/ (2021)

8. Decker, C.: Lightning network research; topology, datasets.
https://github.com/lnresearch/topology, accessed: 2020-10-01

9. Decker, C., Russell, R., Osuntokun, O.: eltoo: A simple layer2 protocol for bitcoin.
https://blockstream.com/eltoo.pdf (2018)

10. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin du-
plex micropayment channels. In: Stabilization, Safety, and Security of Distributed
Systems. pp. 3–18. Springer (2015)

11. Dong, M., Liang, Q., Li, X., Liu, J.: Celer network: Bring internet scale to every
blockchain (2018)

12. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party virtual
state channels. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. pp. 625–656. Springer (2019)

13. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment
hubs over cryptocurrencies. In: IEEE Symposium on Security and Privacy. pp.
327–344 (2017)

14. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptog-
raphers. Discrete Applied Mathematics 156(16), 3113–3121 (2008).
https://doi.org/https://doi.org/10.1016/j.dam.2007.12.010

15. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: Silentwhispers: Enforcing
security and privacy in decentralized credit networks. In: NDSS (2017)

16. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures
with applications to bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019).
https://doi.org/10.1007/s10623-019-00608-x

17. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: International Con-
ference on Financial Cryptography and Data Security. pp. 508–526 (2019)

18. Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In: Theory of
Cryptography Conference. pp. 159–181. Springer (2015)

19. Nisslmueller, U., Foerster, K., Schmid, S., Decker, C.: Toward active and passive
confidentiality attacks on cryptocurrency off-chain networks. In: ICISSP. pp. 7–14
(2020). https://doi.org/10.5220/0009429200070014

20. Pietrzak, K., Salem, I., Schmid, S., Yeo, M.: Lightpir: Privacy-preserving route
discovery for payment channel networks. In: Proc. IFIP Networking (2021)

21. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

22. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: An
approach to routing in lightning network. White Paper (2016)



Route Discovery in Private Payment Channel Networks 17

23. Rohrer, E., Malliaris, J., Tschorsch, F.: Discharged payment channels: Quantifying
the lightning network’s resilience to topology-based attacks. In: 2019 IEEE Euro-
pean Symposium on Security and Privacy Workshops (EuroS&PW). pp. 347–356.
IEEE (2019)

24. Roos, S., Beck, M., Strufe, T.: Voute-virtual overlays using tree embeddings. arXiv:
1601.06119 (2016), http://arxiv.org/abs/1601.06119

25. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast
and private: Efficient decentralized routing for path-based transactions. arXiv:
1709.05748 (2017), https://arxiv.org/abs/1709.05748

26. Sivaraman, V., Venkatakrishnan, S.B., Alizadeh, M., Fanti, G., Viswanath, P.:
Routing cryptocurrency with the spider network. In: Proc. 17th ACM Workshop
on Hot Topics in Networks. pp. 29–35 (2018)

27. Spilman, J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2013-April/002433.html, accessed: 2020-11-22

28. Tochner, S., Zohar, A., Schmid, S.: Route hijacking and dos in off-chain networks.
In: Proc. ACM Conference on Advances in Financial Technologies (AFT) (2020)

29. Tripathy, S., Mohanty, S.K.: Mappcn: Multi-hop anonymous and privacy-
preserving payment channel network. In: International Conference on Financial
Cryptography and Data Security. pp. 481–495. Springer (2020)

30. Wang, P., Xu, H., Jin, X., Wang, T.: Flash: Efficient dynamic routing for offchain
networks. In: International Conference on Emerging Networking Experiments And
Technologies. p. 370–381 (2019). https://doi.org/10.1145/3359989.3365411

A Barabási–Albert Network Creation Algorithm

The Barabási–Albert algorithm to create a graph with n vertices and preferential
attachment parameter 1 has the following steps:

1. We add the first node.
2. Each new node is connected to 1 existing nodes with a probability propor-

tional to the degree that the existing nodes has. Formally the probability of
connecting to node i is :

ki∑n
j=1 kj

where ki is the degree of node i.

Note that the second step is done sequentially for the n− 1 nodes.

B Proof of Theorem 1

Proof. Let G be the graph formed by the BA(n, 1) algorithm. Label the vertices
in G by the order in which they join the graph according to the BA(n, 1) algo-
rithm [6]. Thus, the initial vertex is labelled v1, the second vertex v2, and the
last vertex vN . We show that if two random nodes on the network, start sending
two matching packets based on Degree-Proportional Random Walk protocol, after

O(
√
n · log2 n

log logn ) steps the probability that v1 haven’t received both packets is
bounded.



18 Z. Avarikioti et al.

From [6], for j > i, the degree of a vertex vi at time j is
√

j
i . At any time

step i, the sum of degree of all the vertices in the graph is 2i as there are i edges
at time i. Thus,

P[vi connects to v1] =

√
i
1

2i
=

1

2
√
i

Now we will compute the probability of any vertex vi passing a message to
v1 given that there is an edge between vi and v1. The degree of v1 at the end
of the graph creation process is

√
n
1 =

√
n. If vi is connected to v1 then since

m = 1 we know that other neighbours of vi were added to the graph after vi, i.e.

If vj is vi’s neighbour and j 6= 1⇒ j > i⇒
√
n

j
<

√
n

i

Thus, ∑
vj∈N(vi)

deg(vj) <
√
n+

√
n

i
·
√
n

i

Since in Degree-Proportional Random Walk, nodes choose one of their neighbours
proportional to the degree:

P[vi passes a message to v1 | vi is connected to v1] ≥
√
n

√
n+

√
n
i

2 =
i

i+
√
n

So if vi is a random node, the probability that following the Degree-Proportional
Random Walk vi forwards the message to v1 is:

P[vi passes a message to v1] =

P[vi passes a message to v1 | vi is connected to v1] · P[vi is connected to v1] ≥

i

i+
√
n
· 1

2
√
i
>

√
i

2(i+
√
n)

>
1

4
√
n

We know that the diameter of BA(n, 1) is logn
log logn and after visiting nx nodes,

the number of edges incident to them is below n
1+x
2 . That means that in logn

log logn

steps we visit a not visited vertex with probability at least n−n
1+x
2

n .
Imagine that vi initiates a Degree-Proportional Random Walk. After visiting

t different vertices the probability that the message has not met v1 is:

P[v1 did not get the message after s steps] < (1− 1

4
√
n

)t

Now consider the bidirectional Degree-Proportional Random Walk that we de-
scribed in section 4, if both the sender and the receiver send the message, the
probability that after visiting t different vertices, at least one of their message



Route Discovery in Private Payment Channel Networks 19

has not reached to v1 we say that the protocol is not successful. Using union
bound we say:

P[no success after t vertices] < 2 · (1− 1

4
√
n

)t

If we put t = 4
√
nlog n, the probability of not being successful when n is large

(using 1− x ≤ e−x) is :

2 · (1− 1

4
√
n

)4
√
n logn <

2

n

And to visit t = 4
√
n log n unvisited nodes, we need 4

√
n log2 n

log logn steps.

C Forward-to-All Protocol Algorithms

Protocol 1: On receiving a new PDRs(Exploration Phase)

/* Here we consider node ui on receiving a PDRs from ui−1 */

Input: {PDRs}
1 Goal Forwarding the PDRs or finding a matched PDRr for it.

2 ui Parses PDRs as PDRs = (Identifier, amount,Sender)

3 ui searches for a path discovery data (PDDr) with the same Identifier. If

he found he skips the next steps and does the protocol 3 otherwise he

does the next steps.

4 ∀ v ∈ {neighbours[ui] | c (ui, v) ≥ amount , v 6= ui−1} ui waits dui,v

and then sends (Identifier, amount− fui,v(amount),Sender) to v.

5 ui saves the following path discovery data PDDs on storage :

PDDs := {PDR : (Identifier, amount,Sender) ,previousNode :

ui−1,nextNode : −}



20 Z. Avarikioti et al.

Protocol 2: On receiving a new PDRr(Exploration Phase)

/* Here we consider node ui on receiving a PDRr from ui+1 */

Input: {PDRr}
1 Goal Forwarding the PDRr or finding a matched PDRs for it.

2 ui Parses PDRr as PDRr = (Identifier, amount,Receiver)

3 ui searches for a PDDs with the same Identifier. If he found he skips the

next steps and does the protocol 3 otherwise he does the next steps.

4 ∀ v ∈ {neighbours[ui] | c (v, ui) ≥ amount , v 6= ui+1} ui waits dui,ui+1

and sends
(
Identifier, amount+ fui,ui+1

(amount),Receiver
)

to v.

5 ui saves the following path discovery data PDDr on storage :

PDDr := {PDR : (Identifier, amount,Receiver) ,previousNode :

−,nextNode : ui+1}

Protocol 3: On finding a matching PDRs and PDRr(Exploration Phase)

/* Here we assume that ui has received a new PDRr from ui+1 that

has the same identifier as a PDDs that ui has stored before. In

the case that ui receives PDRs the same protocol should be run

with very minor differences. */

Input: {PDRr, PDDs, ∆}
/* the ∆ can be calculated using the timing of PDRs and PDRr by ui

*/

1 Goal Matching the path discovery requests sent from the sender and

the receiver.

2 ui parses PDRr and PDDs as follow: PDDs = {PDR :

(Identifier, amounts,Sender) ,previousNode : ui−1,nextNode : −}
and PDRr = (Identifier, amountr,Receiver)

3 Step 2: ui waits ∆

4 Step 3: ui sends a

PFMs = (Identifier, amounts,Sender,Path found message) to ui−1 and a

PFMr = (Identifier, amountr,Sender,Path found message) to ui+1

5 Step 4: ui completes the nextNode item of the PDDs with ui+1.



Route Discovery in Private Payment Channel Networks 21

Protocol 4: On receiving a new PFMs(Notification Phase)

/* Here we consider node with ui on receiving a PFMs from ui+1 */

Input: {PFMs}
1 Goal Notifying the sender and the receiver that a path exists.

2 ui Parses PFMs as

PFMs = (Identifier, amounts,Sender,Path found message)

3 ui retrieves the corresponding PDRs as PDRs = {PDR :

(Identifier, amounts,Sender) ,previousNode : ui−1,nextNode : −}
and completes the nextNode item with ui+1

4 ui forwards the PFMs to ui−1


