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Abstract. COMETv1, by Gueron, Jha and Nandi, is a mode of op-
eration for nonce-based authenticated encryption with associated data
functionality. It was one of the second round candidates in the ongoing
NIST Lightweight Cryptography Standardization Process. In this pa-
per, we study a generalized version of COMETv1, that we call gCOMET,
from provable security perspective. First, we present a comprehensive
and complete security proof for gCOMET in the ideal cipher model. Sec-
ond, we view COMET, the underlying mode of operation in COMETv1, as
an instantiation of gCOMET, and derive its concrete security bounds. Fi-
nally, we propose another instantiation of gCOMET, dubbed COMETv2,
and show that this version achieves better security guarantees as well as
memory-efficient implementations as compared to COMETv1.

Keywords: COMET, ICM, provable security, rekeying, lightweight, AEAD

1 Introduction

Lightweight cryptography has seen a sudden surge in demand due to the re-
cent advancements in the field of Internet of things (IoT). The NIST lightweight
cryptography standardization project [1], henceforth referred as the NIST LwC
project, intends to address this demand by standardizing lightweight authenti-
cated encryption (AE) and cryptographic hash schemes.

The first round of NIST LwC project had 56 candidates, of which 32 were
selected to continue to second round. Among these 32 candidates around 15
schemes were based on (tweakable) block ciphers. In this paper we focus on one
particular block cipher based candidate, called COMET [2,3] by Gueron et al.,
that uses nonce and position based re-keying and a COFB [4] or Beetle [5] like
feedback operation.

COMET can be viewed as an ideal cipher based alternative for Beetle [5] and
COFB [4]. Indeed, the designers state that the mode of operation can be viewed
as a mixture of CTR [6] and Beetle. COMET is parameterized by the block size of
the underlying block cipher. Accordingly, COMET-n means COMET with block
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size n. It has two versions, one with n = κ, and the other with n = κ/2, where κ
denotes the key size of the block cipher. The concrete submissions using COMET
mode are based on AES-128/128 [7], Speck-64/128 [8,9], CHAM-128/128 [10], and
CHAM-64/128 [10]. Some of the standout features of COMET are as follows:
1. Design Simplicity: The design of COMET is extremely simple. Apart from

the block cipher evaluations, it only requires simple shift and XOR opera-
tions.

2. Small State Size: Theoretically, COMET requires only (n+κ)-bit internal
state, which makes it one of the smallest AEAD candidate in the ongoing
NIST LwC project.

3. Efficiency: COMET is single-pass, which makes it quite efficient in both
hardware and software. Apart from the block cipher call, only 1 shift and at
most 2 XOR operations are required per block of input. This places COMET
among the fastest candidates in the ongoing NIST LwC project. In fact, ac-
cording to the publicly available software implementation and benchmarking
by Weatherley [11], COMET outperforms all other candidates by a significant
margin.

1.1 Motivations and Related Works

In this paper, we concentrate on the provable security of the COMET mode of
operation. The designers made the following claims with respect to the security
of COMET:
– COMET-128 is secure while the data complexity, denoted D, is at most 264

bytes, and the time complexity, denoted T , is at most 2119.
– COMET-64 is secure while D < 245 bytes, and T < 2112.

Note that, the designers make a better claim with respect to the privacy of
COMET-64. However, for the sake of uniformity, we mention the more conser-
vative bound claimed for the integrity of COMET-64. In [12], Khairallah pre-
sented the first cryptanalytic work on COMET. Later, as noted by the designers
[13], Bernstein, Henri and Turan [14] shared two observations on the security
of COMET-64. While these works do not invalidate the security claims due to a
breach in the data complexity limit, they do demonstrate a possible tightness of
the security claims. Shortly after Khairallah’s work, at NIST Lightweight Cryp-
tography Workshop 2019, the designers presented a brief sketch of the security
proof [13] for COMET-128. However, their proof approach was not applicable to
COMET-64. In this paper, we aim to give a comprehensive proof of security for
the COMET mode of operation.

1.2 Our Contributions

Our contributions are twofold:
1. We propose a generalization of COMET, dubbed as gCOMET (see section 3).

We intend to employ the recently introduced proof strategy of Chakraborty
et al. [15] to prove the security of gCOMET. Consequently, in section 4 and
5, we extend the tools and results used in [15]. We give a detailed security
proof for gCOMET in section 6.
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Table 1.1: Summary of security bounds for COMET and COMETv2 as per the results
in this paper.

Submissions Data (D) Time (T ) Data-Time (DT ) Trade-off

COMET-128 263 bytes 2125.19 2184.24

COMET-64 242 bytes 2112 2152.24

COMETv2-128 264 bytes 2125.19 2184.24

COMETv2-64 263 bytes 2121.58 2152.24

2. We view COMET as an instance of gCOMET and obtain concrete security
bounds for both versions of COMET. Specifically, we show that
– COMET-128 is secure while: D < 263 bytes and T < 2125.19 and DT <

2184.24.
– COMET-64 is secure while: D < 242 bytes and T < 2112 and DT <

2152.24.
Further, we observe that two simple changes in the design of COMET, im-
proves the performance and increases the security (by avoiding the attacks in
[12,14]). We call this new version, COMETv2. In terms of security, we show
that
– COMETv2-128 is secure while: D < 264 bytes and T < 2125.19 and DT <

2184.24.
– COMETv2-64 is secure while: D < 263 bytes and T < 2121.58 and DT <

2152.24.
We summarize the concrete security bounds for different variants of COMET
and COMETv2 in Table 1.1. Our security bounds validate the security claims
for COMET-128, as given in [3]. For COMET-64, our bounds are slightly lower
than the ones claimed by the designers. However, we note that we could not
find any matching attacks. So, the exact security of COMET-64 is still an
open problem.

2 Preliminaries

Notational Setup: Let N denote the set of all natural numbers and N0 :=
N ∪ {0}. Fix some n ∈ N. We write (n] to denote the set {0, . . . , n − 1}. For
m, k ∈ N0, such that m ≥ k, we define the falling factorial (m)k := m!/(m− k)!.
Note that, (m)k ≤ mk. For m,n ∈ N, Am×n denotes an m × n binary matrix
(or simply An, when m = n). The identity matrix of dimension n is denoted In
and the null matrix of dimension m× n is denoted 0m×n. We write rank(An) to
denote the rank of An. For any square matrix An, we define the period of An,
denoted cycle(An), as the smallest integer k such that Akn = In. We drop the
dimensions of the matrix, whenever they are understood from the context.

We use {0, 1}n and {0, 1}+ to denote the set of all n-bit strings, and non-
empty binary strings, respectively. ε denotes the empty string and {0, 1}∗ :=
{0, 1}+ ∪ {ε}. For any string B ∈ {0, 1}+, |B| denotes the number of bits in B,
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also referred as the length or size of B. We use little-endian format of index-
ing, i.e., for any B ∈ {0, 1}+, we write and view B as a |B|-bit binary string
b|B|−1 · · · b0, i.e., the most significant bit b|B|−1 lies on the left. For B ∈ {0, 1}+,

(B`−1, . . . , B0)
n←− B, denotes the n-bit block parsing of B into (B`−1, . . . , B0),

where |Bi| = n for 0 ≤ i ≤ ` − 2, and 1 ≤ |B`−1| ≤ n. For A,B ∈ {0, 1}+,
and |A| = |B|, A ⊕ B denotes the “bitwise XOR” operation on A and B. For
A,B ∈ {0, 1}∗, A‖B denotes the “string concatenation” operation on A and B.
For A,B ∈ {0, 1}∗ and X = A‖B, A and B are called the prefix and suffix of
X, respectively.

For q ∈ N, Xq denotes the q-tuple (X0, . . . , Xq−1). For q ∈ N and any set X
such that |X | ≥ q, we write (X )q to denote the set of all q-tuples with pairwise
distinct elements from X , i.e., |(X )q| = (|X |)q. For a finite set X , Xq ←$X
denotes the uniform at random sampling of q variables X0, . . . ,Xq−1 from X in
with replacement fashion.

2.1 Authenticated Encryption: Definition and Security Model

Authentication Encryption with Associated Data: An authenticated
encryption scheme with associated data functionality, or AEAD in short, is a
tuple of algorithms AE = (E,D), defined over the key space K, nonce space N ,
associated data space A, plaintext space P, ciphertext space C, and tag space T ,
where:

E : K ×N ×A×P → C × T and D : K ×N ×A× C × T → P ∪ {⊥}.

Here, E and D are called the encryption and decryption algorithms, respec-
tively, of AE. Further, it is required that D(K,N,A,E(K,N,A,M)) = M for
any (K,N,A,M) ∈ K × N × A × P. For all key K ∈ K, we write EK(·) and
DK(·) to denote E(K, ·) and D(K, ·), respectively.

Ideal Block Cipher: For n ∈ N, let Perm(n) denote the set of all permu-
tations of {0, 1}n. For n, κ ∈ N, ICPerm(κ, n) denotes the set of all families of
permutations πK := π(K, ·) ∈ Perm(n) over {0, 1}n, indexed by K ∈ {0, 1}κ.
A block cipher with key size κ and block size n is a family of permutations
IC ∈ ICPerm(κ, n). For K ∈ {0, 1}κ, we denote ICK(·) = IC+

K(·) := IC(K, ·), and
IC−K(·) := IC−1(K, ·). Throughout this paper, we denote the key size and block
size of the block cipher by κ and n, respectively. In this context, a binary string
X, with |X| ≤ n, is called a full block if |X| = n, and partial block otherwise. A
block cipher is said to be an ideal cipher if for all K ∈ {0, 1}κ, ICK ←$ Perm(n).

AEAD Security in the Ideal Cipher Model (ICM): Let AEIC be an
AEAD scheme, based on the ideal cipher IC, defined over (K,N ,A,P, C, T ). In
this paper, we fix K = {0, 1}κ, N = {0, 1}η, T = {0, 1}τ , and C = P = A =
{0, 1}∗, for some fixed κ, η, τ ∈ N. Accordingly, we denote the key size, nonce
size, and tag size by κ, η, and τ , respectively. Let

Func := {f : N×A×P → C×T : ∀(N,A,M) ∈ N×A×P, |f(N,A,M)| = |M |+τ},
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and Γ←$ Func. Let ⊥ denote the degenerate function from (N ,A,P, T ) to {⊥}.
For brevity, we denote the oracle corresponding to a function by the function
itself, and bidirectional access to IC is denoted by the superscript ±.

Definition 2.1. The AEAD advantage of any adversary A against AEIC is de-
fined as,

Advaead
AEIC

(A ) :=

∣∣∣∣∣∣ Pr
K←$K

IC±

[
A EK,DK,IC

±
= 1
]
− Pr

Γ,IC±

[
A Γ,⊥,IC± = 1

]∣∣∣∣∣∣ , (1)

where A EK,DK,IC
±

and A Γ,⊥,IC± denote A ’s response after its interaction with
(EK,DK, IC

±) and (Γ,⊥, IC±), respectively.

In this paper, we assume that the adversary is non-trivial and nonce respecting,
i.e., it never makes a duplicate query, it never makes a query for which the
response is already known due to some previous query, and it does not repeat
nonce values in encryption queries. Throughout, we use the following notations
to parametrize adversary’s resources:
– qe and qd denote the number of queries to EK and DK, respectively. σe and σd

denote the sum of input (associated data and plaintext/ciphertext) lengths
across all encryption and decryption queries, respectively. We also write qc =
qe+qd and σc = σe+σd to denote the combined construction query resources.

– qp denotes the number of primitive queries.
An adversary A that abides by the above resources is referred as a (qe, qd, σe, σd, qp)-
adversary. We remark here that qc and σc correspond to the online complexity
(grouped under data complexity D = qc + σc), and qp corresponds to the offline
complexity (grouped under time complexity T = qp) of the adversary.

2.2 Expectation Method

We discuss the expectation method by Hoang and Tessaro [16] in context of
AEAD security in the ideal cipher model. Consider a computationally unbounded
and deterministic adversary A that tries to distinguish the real oracle R :=
(EK,DK, IC

±) from the ideal oracle I := (Γ,⊥, IC±). We denote the query-
response tuple of A ’s interaction with its oracle by a transcript ω. Sometime
this may also include any additional information the oracle chooses to reveal
to the adversary at the end of the query-response phase of the game. We will
consider this extended definition of transcript.

Let R (res. I) denote the random transcript variable when A interacts with
R (res. I). The probability of realizing a given transcript ω in the security game
with an oracle O is known as the interpolation probability of ω with respect to
O. Since A is deterministic, this probability depends only on the oracle O and
the transcript ω. A transcript ω is said to be attainable if Pr [I = ω] > 0.

Theorem 2.1 (Expectation method [16]). Let Ω be the set of all transcripts.
For some εbad ≥ 0 and a non-negative function εratio : Ω → [0,∞), suppose there
is a set Ωbad ⊆ Ω satisfying the following:
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– Pr [I ∈ Ωbad] ≤ εbad;
– For any ω /∈ Ωbad, ω is attainable, and

Pr [R = ω]

Pr [I = ω]
≥ 1− εratio(ω).

Then, for any adversary A , we have

Advaead
AEIC

(A ) ≤ εbad + Ex [εratio(I)].

A proof of this theorem is available in multiple papers including [16,17]. The
H-coefficient technique due to Patarin [18,19] is a simple corollary of this result,
where εratio is a constant function.

3 Generalized COMET Mode of Operation

COunter Mode Encryption with authentication Tag, or COMET in abbreviation,
is a block cipher mode of operation by Gueron, Jha and Nandi [2,3] that provides
authenticated encryption with associated data functionality. At a very high level,
it can be viewed as a mixture of CTR [6], Beetle [5], and COFB [4] modes of
operation. In this section, we provide a slightly generalized description of the
COMET mode of operation, that we call gCOMET.

3.1 Parameters and Building Blocks

The gCOMET mode of operation is based on a block cipher IC with n-bit block
and κ-bit key size.

Parameters: In the following, we describe various parameters used in gCOMET
along with their limits:
1. Block size: The block size n of IC also denotes the block size of gCOMET. It

is analogous to the rate parameter used in Sponge-based schemes [20,5].
2. Key size: The key size κ is simply the key size of the underlying block cipher

IC, that follows κ ≥ n.
3. State size: The (n+κ)-bit input size of the underlying block cipher IC denotes

the state size s of gCOMET.
4. Control and Invariant-prefix size: gCOMET uses a small number of bits,

called control bits (or, control) for separating the various phases of execu-
tion, such as associated data (AD) processing and plaintext processing, and
identifying full and partial block data. We denote the control size by c and
it follows c � κ. In fact, the control bits can be described in very few bits.
For instance, COMET [2,3] uses c = 5.
On a related note, we also use an auxiliary parameter c′, called the invariant-
prefix size, following the relation c′ ≥ c. For example, COMET uses c′ = κ/2.

5. Nonce size: The nonce size η follows the relation:

η ≤ n if n = κ,
η ≤ κ− c if n < κ.

(2)
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6. Tag size: The tag size τ follows the relation τ ≤ n.
From the above discussion, one can see that gCOMET is primarily parameterized
by the block size n and the key size κ, and all other parameters are bounded in
terms of these two. Accordingly, we write fatCOMET and tinyCOMET to denote
gCOMET with n = κ and n < κ, respectively. In each case, the nonce size η
is a fixed number that follows the condition given in Eq. (2). For the sake of
simplicity, we assume η = n for fatCOMET and η = κ− c for tinyCOMET.

Building Blocks: Apart from the block cipher IC, gCOMET has three more
components that are described below:

Control sequence generator: We define the control sequence generator as the
function ∆ : N0 × N0 → ({0, 1}c)+

such that |∆(a,m)| = (a + m + 2)c for all
a,m ∈ N0.

Feedback functions: Let Φ be an invertible linear map over {0, 1}n and Φ′ :=
Φ⊕I, the pointwise sum of Φ and I, where I denotes the identity map over {0, 1}n.
We define the feedback functions as follows:
– Lad : {0, 1}n × {0, 1}n → {0, 1}n is defined by the mapping

(X,A) 7−→ X ⊕A.

– Lpt : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n is defined by the mapping

(X,M) 7−→ (X ⊕M,Φ(X)⊕M).

– Lct : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n is defined by the mapping

(X,C) 7−→ (Φ′(X)⊕ C,Φ(X)⊕ C).

Key-update function: Let Ψ be an invertible linear map over {0, 1}κ−c′ . We
define the update function U : {0, 1}κ → {0, 1}κ by the binary matrix

U :=

[
Ic′ 0c′×κ−c′

0κ−c′×c′ Ψ

]
,

where Ψ is viewed as a (κ − c′) square matrix with elements from {0, 1}. The
above definition implies that c′ controls the prefix size of the key that remains
unchanged in the key updation. This motivates our nomenclature for c′ as the
invariant-prefix size parameter.

3.2 Description of gCOMET

In the following, we describe the main phase of gCOMET’s encryption/decryption
algorithm for a tuple of input (K,N,A, I) where K, N , A, and I denote the key,
nonce, associated data and plaintext (ciphertext in case of decryption), respec-
tively:

Initialization phase: This phase computes the initial state for the algorithm.
This is the only phase where the two gCOMET versions, namely fatCOMET and
tinyCOMET differ. Specifically,
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In fatCOMET, we have

initn,κ(K,N,A, I) :

1: a←
⌈
|A|
n

⌉
, m←

⌈
|I|
n

⌉
, ` = a+m

2: δ`+2 ← ∆(a,m)

3: Y0 ← K

4: Z′0 ← IC+
K(N)⊕ δ0‖0κ−c

5: return (Y0, Z
′
0, δ

`+2, a,m, `)

In tinyCOMET, we have

initn,κ(K,N,A, I) :

1: a←
⌈
|A|
n

⌉
, m←

⌈
|M|
n

⌉
, ` = a+m

2: δ`+2 ← ∆(a,m)

3: Y0 ← IC+
K(0n)

4: Z′0 ← K ⊕ δ0‖N

5: return (Y0, Z
′
0, δ

`+2, a,m, `)

Data processing phase: This phase consists of two modules corresponding to
associate data processing, denoted proc ad, and plaintext/ciphertext processing,
denoted proc pt/proc ct. Each of these modules only execute for non-empty data.
The modules are identical except for the feedback functions. For non-empty data
the processing is as follows:

proc ad(Y0, Z
′
0, A, δ

`+2):

1: (Aa−1, . . . , A0)
n←− A

2: for i = 0 to a− 1 do

3: Zi ← U(Z′i)

4: Xi ← IC+

Z′
i
(Yi)

5: Yi+1 ← Lad(Xi, Ai)

6: Z′i+1 ← Zi ⊕ δi+1‖0κ−c

7: return (Ya, Z
′
a)

proc pt(Ya, Z
′
a, I, δ

`+2):

1: (Im−1, . . . , I0)
n←− I

2: for j = 0 to m− 1 do

3: k ← a+ j

4: Zk ← U(Z′k)

5: Xk ← IC+
Zk

(Yk)

6: (Yk+1, Oj)← Lpt(Xk, Ij)

7: Z′k+1 ← Zk ⊕ δk+1‖0κ−c

8: O ← (Om−1, . . . , O0)

9: return (Y`, Z
′
`, O)

proc ct(Ya, Z
′
a, I, δ

`+2):

1: (Im−1, . . . , I0)
n←− I

2: for j = 0 to m− 1 do

3: k ← a+ j

4: Zk ← U(Z′k)

5: Xk ← IC+
Zk

(Yk)

6: (Yk+1, Oj)← Lct(Xk, Ij)

7: Z′k+1 ← Zk ⊕ δk+1‖0κ−c

8: O ← (Om−1, . . . , O0)

9: return (Y`, Z
′
`, O)

Tag generation phase: This is the final step and generates the tag.

proc tg(Y`, Z
′
`, δ`+1):

1: Z′` ← Z′` ⊕ δ`+1‖0κ−c

2: Z` ← U(Z′`)

3: T := X` ← IC+
Z`

(Y`)

4: return T

Algorithm 3.1 gives the complete algorithmic description of gCOMET, and figure
3.1 illustrates the major components of the encryption/decryption process.

4 Expected Maximum Multicollision Sizes

We briefly revisit some results on the expectation of maximum multicollision size
in a random sample. These results are largely based on the extensive analysis
already given in [15]. We mostly reuse the strategy from [15] to derive some new
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Algorithm 3.1 Encryption/Decryption algorithm in gCOMET.

1: function gCOMET[IC].E(K,N,A,M)

2: C ← ⊥

3: (Y0, Z
′
0, δ

`+2, a,m, `)← initn,κ(K,N,A,M)

4: if a 6= 0 then

5: (Ya, Z
′
a)← proc ad(Y0, Z

′
0, A, δ

`+2)

6: if m 6= 0 then

7: (Y`, Z
′
`, C)← proc pt(Ya, Z

′
a,M, δ`+2)

8: T ← proc tg(Y`, Z
′
`, δ`+1)

9: return (C, T )

1: function gCOMET[IC].D(K,N,A,C, T )

2: (Y0, Z
′
0, δ

`+2, a,m, `)← initn,κ(K,N,A,C)

3: if a 6= 0 then

4: (Ya, Z
′
a)← proc ad(Y0, Z

′
0, A, δ

`+2)

5: if m 6= 0 then

6: (Y`, Z
′
`,M)← proc ct(Ya, Z

′
a, C, δ

`+2)

7: T ′ ← proc tg(Y`, Z
′
`, δ`+1)

8: if T ′ = T then

9: is auth← 1

10: else

11: is auth← 0, M ← ⊥

12: return (is auth,M)

results required in case of COMET. For space limitation, we postpone the proofs
of all the propositions in this section to supplementary material A.

Before delving into the results we state a simple observation (also given
in [15]) that will be useful in bounding the expectation of any non-negative
random variable. For any non-negative random variable Y bounded above by q,
and ρ ∈ N, we have

Ex [Y] ≤ ρ− 1 + q × Pr [Y ≥ ρ]. (3)

4.1 For Uniform Random Sample

For n ≥ 1, let Xq ←$ {0, 1}n. We define the maximum multicollision size random
variable, denoted Θq,n, for the sample Xq as follows

Θq,n := max
a∈{0,1}n

|{i ∈ (q] : Xi = a}| ,

and write µ(q, n) to denote Ex [Θq,n].

Proposition 4.1. For n ≥ 2,

µ(q, n) ≤


3 if q ≤ 2

n
2 ,

4n
log2 n

if 2
n
2 < q ≤ 2n,

5n
⌈

q
n2n

⌉
if q > 2n.

For Ideal Cipher Samples Let (z0, y0), . . . , (zq−1, yq−1) be a q-tuple of distinct
pairs of key and input to an ideal cipher IC with n-bit input block, such that
zi 6= zj for all i 6= j. For i ∈ (q], let Xi = ICzi(yi). We define

Θ̂q,n := max
a∈{0,1}n

|{i ∈ (q] : Xi = a}| ,

9



N

K

IC Y0

Z′0⊕

δ0‖0κ−c

initn,κ in fatCOMET

0n

K

IC Y0

⊕

δ0‖N

Z′0

initn,κ in tinyCOMET

Y0

Z′0

IC

U

Lad

Ai

⊕

δi+1‖0κ−c

proc ad

Zi

Zi

Xi
Yi+1

Z′i+1

Ya

Z′a

IC

U

Lpt (Lct)

Mj (Cj)

Cj (Mj)

⊕

δk+1‖0κ−c

proc pt (proc ct)

Zk

Zk

Xk
Yk+1

Z′k+1

Y`

Z′`

IC

U⊕

δ`+1‖0κ−c

T

proc tg

Z`

X`

Fig. 3.1: Various phases in the encryption/decryption algorithm of gCOMET. Here,
i ∈ (a], j ∈ (m] and k = a+ j.

and write µ̂(q, n) to denote Ex
[
Θ̂q,n

]
. Since all the keys are pairwise distinct,

the sample Xq is statistically indistinguishable from a sample following uniform
distribution. Thus, using Proposition 4.1, we get the following proposition for
ideal cipher generated samples.

Proposition 4.2. For n ≥ 2,

µ̂(q, n) ≤

{
4n

log2 n
if q ≤ 2n

5n
⌈

q
n2n

⌉
if q > 2n.

Note that, identical result holds for samples generated through inverse calls to
the ideal cipher as well.

For Linear Post-processing: Consider a variant of the above given problem,
where we are interested in multicollisions on (L(Xi))i∈(q] for some linear map L
over {0, 1}n with rank(L) = r. Obviously, r ≤ n. We define

Θ̂′q,n,r := max
a∈{0,1}n

|{i ∈ (q] : L(Xi) = a}| ,

and write µ̂′(q, n, r) to denote Ex
[
Θ̂′q,n,r

]
.
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Proposition 4.3. For n ≥ 2,

µ̂′(q, n, r) ≤

{
4n

log2 n
if q ≤ 2r

5n
⌈
q
n2r

⌉
if q > 2r.

4.2 Sum of Ideal Cipher Sample

Let (z0, y0, x
′
0), . . . , (zq−1, yq−1, x

′
q−1) be a q-tuple such that (zi, yi) are pairwise

distinct and (zi, x
′
i) are pairwise distinct, where zi ∈ {0, 1}κ and yi, x

′
i ∈ {0, 1}n.

Let L be a linear map over {0, 1}n with rank(L) = r. For i ∈ (q], let z′i = U(zi)
and Ci = L(IC+

zi(yi))⊕ IC−z′i
(x′i). We define

Θ′q,n,r := max
a∈{0,1}n

|{i ∈ (q] : Ci = a}|,

and write µ′(q, n, r) to denote Ex
[
Θ′q,n,r

]
. We want to bound µ′(q, n, r).

Proposition 4.4. For n ≥ 4, we have

µ′(q, n, r) ≤ 2n

⌈
22nq

2r

⌉
.

5 Super-Chain Structure

In [15], Chakraborty et al. proposed the multi-chain structure. They use this
tool to give a tight security bound for Sponge-type AEAD constructions like
Beetle [5] and SpoC [21]. In this section, we give an extension of the multi-chain
structure in our notations. This extended tool will be used later in the security
analysis of gCOMET.

Labeled Directed Graph: Let L = {(zi, yi, xi) : i ∈ (q]} be a list of triples
such that (zi, yi) 6= (zj , yj) and (zi, xi) 6= (zj , xj) for all i 6= j ∈ (q], where zi ∈
{0, 1}κ and xi, yi ∈ {0, 1}n for all i ∈ (q]. We write range(L) = {(zi, xi) : i ∈ (q]}.
Let L be a linear map over {0, 1}n. To L and L, we associate a labeled directed
graph GL

L = (range(L), E) over the set of vertices range(L) with edge set E . For

all edge ((z, x), (z′, x′)) ∈ E with label c ∈ {0, 1}n, denoted (z, x)
c→ (z′, x′), we

have L(x) ⊕ c = y′ and U(z) = z′. By extending the notation, a labeled walk

W = (w0, . . . , wk) with label ck is defined as W : w0
c0→ w1

c1→ w2 · · ·wk−1
ck−1−→

wk. We usually write it as w0
ck−→ wk, where k is referred as the length of the

walk. We simply write G, dropping the list L and linear function L, whenever
they are understood from the context.

Definition 5.1 (Chain). A chain, denoted C(ck+1), with label ck+1 in GL
L is

simply a labeled walk (zi0 , xi0)
ck−→ (zik , xik) with an additional parameter called

sink, denoted sink[C(ck+1)], and defined as follows

sink[C(ck+1)] :=

{
xik if ck = ε

L(xik)⊕ ck if ck 6= ε.

11



We call C(ck+1) a complete (resp. partial) chain if ck = ε (resp. ck 6= ε). We
define the source and key of the chain as src[C(ck+1)] := xi0 and key[C(ck+1)] :=
zi0 , respectively. Length of C(ck+1), denoted #C(ck+1), is simply the length of
the walk, i.e., k.

In context of this work, a chain is a graphical representation of (a part of) an
execution of gCOMET encryption/decryption process, where the label of the
chain plays the role of the input string, the key and source of the chain denote
the starting point in the execution and the sink denotes the end point. Looking
ahead momentarily, in our analysis we will need a special collection of chains
starting from a common source and ending in (possibly) distinct sinks.

Definition 5.2 (Super-chain). A t-sink super-chain, denoted S(ck+1), with
label ck+1 in GL

L is a set of chains {C0(d0), . . . , Cl−1(dl−1)} such that
– for i ∈ (k], ci ∈ {0, 1}n and ck = ε.
– for i ∈ (l], di = cj+1 for some j ∈ (k + 1].
– for distinct i, j ∈ (l], src[Ci(di)] = src[Cj(dj)] and key[Ci(di)] 6= key[Cj(dj)].
– |{(sink[Ci(di)],#Ci(di)) : i ∈ (l]}| = t.

Size of S(ck+1), denoted |S(ck+1)|, is simply the cardinality of S(ck+1), i.e., l.

A super-chain can be viewed as a collection of parallel chains starting at a com-
mon decryption query block (source of the super-chain), albeit with different
keys, and ending at any one of the possible encryption query blocks or the com-
mitted tag value. If an adversary succeeds in generating a super-chain of signifi-
cant size for a sequence of ciphertext blocks, then it can herd the corresponding
decryption query to a desired tag value (or intermediate encryption query block)
with significantly high probability. Simply put, a non-trivial1 forgery would im-
ply that the adversary succeeds in herding a decryption query to one of the
chains in the super-chain. As a consequence, we aim to upper bound the size of
the super-chain. Note that the multi-chain structure of [22,15] is a special case
of super-chain structure, where t = 1 and for all i ∈ (l], di = ck+1. These extra
conditions imply that all the chains are of length k, and they end in a common
sink.

5.1 Maximum Size of t-Sink Super-Chain of Length k

Consider a non-trivial adversary A interacting with an ideal cipher oracle IC±.
Suppose, A makes q queries to IC±. For i ∈ (q], let (Ẑi, Ŷi, X̂i, d̂i) denote the

i-th query-response tuple, where Ẑi ∈ {0, 1}κ, Ŷi, X̂i ∈ {0, 1}n, and d̂i ∈ {0, 1}.
If d̂i = 0, A queries (Ẑi, Ŷi) and gets response X̂i := IC+(Ẑi, Ŷi) (forward

query), else it queries (Ẑi, X̂i) and gets response Ŷi := IC−(Ẑi, X̂i) (backward
query). We store the q query-response tuples in a list L. Sometimes, we also

write L′ := ((Ẑ0, Ŷ0, X̂0), . . . , (Ẑq−1, Ŷq−1, X̂q−1)) which drops information about
query direction. Fix a linear map L over {0, 1}n and consider the graph GL

L′ . Let

1 A forgery attack that does not involve exhaustive guessing of internal state or key.
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Wt,k(L′) denote the maximum over the size of all t-sink super-chains of length
k in GL

L′ . Then, Wt,k(L) is a random variable where the randomness is induced
by IC.

Lemma 5.1. Let ν := max
i∈(q]

∣∣∣{j : Ẑj = U(Ẑi)}
∣∣∣. For any non-trivial adversary A

and an ideal cipher IC, we have

Ex [Wt,k(L)] ≤ 2µ̂(q, n) + (t− 1) · µ̂′(q, n, rank(L)) + k · µ′(qν, n, rank(L)).

The proof of this lemma is postponed to supplementary material B.

6 Security of gCOMET

In this section, we give a detailed security analysis of gCOMET. Theorem 6.1
gives the combined AEAD security of gCOMET in the ideal cipher model.

Theorem 6.1. For N, r > 0, let cycle(Ψ) = N and rank(Φ′) = r. Then, for
n, νed > 0, σc < min

{
N, 2n−2

}
, qp < 2κ−2 and (qe, qd, σe, σd, qp)-adversary A ,

we have

Advaead
gCOMET(A ) ≤

(
2qp
2κ

+
6σc

2κ−c′
+

4σd
2κ−c′+n

)
µ(σc, n) +

4qd
2κ

µ̂(qp, n) +
qc

2κ−c′

+ min

{
2σdσe

2κ
µ̂′(qp, n, r),

2σdσe
2κ−c′

+
2σd
2κ

µ̂′(qp, n, r)

}
+
qp + σc

2κ

+
2σd
2κ

µ′(qpνed, n, r) +
qpσc
νed2κ

+
2qd(σe + qe)

2κ−c′+n
+

4qpσd
2κ+n

+
2qd
2n

. (4)

The proof is given in the rest of this section. In relation to the expectation
method (high level tool used in the proof), we largely reuse the definitions and
notations from section 2.2.

6.1 Initial Setup and Description of Oracles

We denote the query-response tuple of A ’s interaction with its oracle by a tran-
script ω = {ωe, ωd, ωp}, where ωe := {(Ni,Ai,Mi,Ci,Ti) : i ∈ (qe]}, ωd :=

{(N̄j , Āj , C̄j , T̄j , D̄j) : j ∈ (qd]}, and ωp := {(Ẑk, Ŷk, X̂k, d̂k) : k ∈ (qp]}. Here,
– (Ni,Ai,Mi,Ci,Ti) denotes the i-th encryption query-response tuple, where

Ni, Ai, Mi, Ci, and Ti, denote the nonce, associated data, message, cipher-

text, and tag, respectively. Let
⌈
|Ai|
n

⌉
= ai,

⌈
|Ci|
n

⌉
=
⌈
|Mi|
n

⌉
= mi, and

`i = ai +mi.
– (N̄j , Āj , C̄j , T̄j , D̄j) denotes the j-th decryption query-response tuple, where

N̄j , Āj , C̄j , T̄j , and D̄j , denote the nonce, associated data, ciphertext, tag,
and the authentication result, respectively. D̄j equals to a message M̄j when

authentication succeeds, and ⊥ otherwise. Let
⌈
|Āi|
n

⌉
= āj and

⌈
|C̄i|
n

⌉
= m̄j ,

and ¯̀j = āj + m̄j .
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– (Ẑk, Ŷk, X̂k, d̂k) denotes the k-th primitive query-response tuple, where Ẑk,

Ŷk, X̂k, and d̂k, denote the key, input, output, and direction of query, re-
spectively. d̂k = 0 if the k-th query is forward, and d̂k = 1 if the k-th query
is backward.

In addition, for all (i, j) ∈ (qe]× (`i + 1] and (i′, j′) ∈ (qd]× (¯̀i + 1], (Zij ,Y
i
j ,X

i
j)

and (Z̄i
′

j′ , Ȳ
i′

j′ , X̄
i′

j′) are defined analogous to Figure 3.1 and Algorithm 3.1.

Ideal Oracle Description: The ideal oracle works as follows:
– For the i-th primitive query:

return X̂i = IC+(Ẑi, Ŷi) if d̂i = 0, and return Ŷi = IC−(Ẑi, X̂i) otherwise.
– For the i-the encryption query:
• (Xi0, . . . ,X

i
`i)←$ {0, 1}n.

• for j ∈ (mi] and k = ai + j, set (Yik+1,C
i
j) = Lpt(Xik,M

i
j) and Ti = Xi`i .

• for j ∈ (ai], set Yij+1 = Lad(Xij ,A
i
j).

• return (Ci,Ti).
– For the i-th decryption query: simply return ⊥.

Note that, the sampling mechanism in the ideal world is slightly indirect in
nature. We compute ciphertext and tag outputs by first sampling X values and
then using operations identical to gCOMET. However, owing to the invertibility
of Φ, the marginal distribution of (C,T) is identical to the case where they are
sampled uniform at random.

Real Oracle Description: The real oracle faithfully responds to A ’s en-
cryption, decryption, and primitive queries using IC±.

Releasing additional information: After the query-response phase is over, the
oracles additionally release (Xi0, . . . ,X

i
`i) to the adversary. We add (Xi0, . . . ,X

i
`i)

to the encryption transcript, i.e. Ie in case of ideal oracle and Re in case of real
oracle. Note that, A, M, X tuples completely define (Yi1, . . . ,Y

i
`i

).

Decryption blocks information from encryption blocks: Consider a decryption
query i ∈ (qd]. If N̄i 6= Ni

′
, for all i′ ∈ (qe], then we define the index of longest

common prefix, denoted pi as −1. If there exists a unique index i′ ∈ (qe], such
that N̄i = Ni

′
, then we have

pi :=

{
max{j : (Āi0, . . . , Ā

i
j−1) = (Ai

′

0 , . . . ,A
i′

j−1)} if Āi 6= Ai
′
,

max{āi + j : (C̄i0, . . . , C̄
i
j−1) = (C̄i

′

0 , . . . , C̄
i′

j−1)} otherwise.

It is clear that whenever pi ≥ 0, then (Z̄i0, Ȳ
i
0) = (Zi

′

0 ,Y
i′

0 ). Further, Ȳij , and

X̄ij are determined for all j ∈ (pi + 1], due to Yi
′

j , Xi
′

j , and C̄ij . Note that, this
holds in both the real and ideal world due to the way we define the ideal oracle
responses.

At this point, the transcript random variables, viz. R and I, are completely de-
fined. For the sake of notational simplicity, we use the same notation to represent
the constituent random variables in the transcripts of both the world. However,
they can be easily separated via their probability distribution which will be de-
termined from their exact definitions in the two worlds. For any transcript ω,
we define
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– θbe := max
c∈{0,1}n

|{(i, j) ∈ (qe]× (mi + 1] : Yij = c}|.

– θfe := max
c∈{0,1}n

|{(i, j) ∈ (qe]× (mi + 1] : Xij = c}|.

Definition 6.1 (Useful index and transcript set). For ν > 0, the ν-useful
index set corresponding to some primitive transcript ωp, is defined as the max-

imal set I, such that for all i ∈ I we have
∣∣∣{j ∈ (qp] : Ẑj = Ẑi}

∣∣∣ ≤ ν, and the

ν-useful transcript set is defined as Qν := {(Ẑi, Ŷi, X̂i) : i ∈ I}.

A useful set signifies the keys that do not occur often in primitive queries. Specif-
ically, our aim is to bound the number of keys that appear in both primitive and
construction queries. Since, the construction key is not released to the adversary
one can get good bounds on ν. Looking ahead momentarily, a useful set will rep-
resent the subset of primitive queries that the adversary can use to herd some
decryption query to the desired tag value.

6.2 Ratio of Interpolation Probabilities

Fix a transcript ω := (ωe, ωd, ωp). Since the transcript is attainable, we must
have ωd = ⊥qd . Analogous to the transcript (ωe, ωd, ωp), we also view I and R

as (Ie, Id, Ip) and (Re, Rd, Rp), respectively.

Ideal World: With respect to the encryption transcript, the ideal oracle
samples exactly σe + qe mutually independent blocks uniformly at random. The
decryption transcript holds with probability 1 as the ideal oracle always responds
with ⊥. Using the independence of construction and primitive transcripts in ideal
world, we have

Pr [I = ω] = Pr [Ie = ωe, Id = ωd, Ip = ωp] = Pr [Ip = ωp]×
1

2n(σe+qe)
. (5)

Consider the multiset, Zp := {Ẑi : i ∈ (qp]}. Let (L0, . . . , Ls−1) denote the tuple
of distinct keys in Zp and λpi be the multiplicity of Li in Zp for all i ∈ (s]. Then,
in Eq. (5) we have

Pr [I = ω] =
1∏

i∈(s](2
n)λpi

× 1

2n(σe+qe)
. (6)

Real World: The interpolation probability of ω with respect to the real oracle
R is slightly involved. In particular, we bound the interpolation probability for
a special class of values for the internal transcript (i.e. K, Y0, Z and Z̄) that are
compatible with ω. Loosely, the quadruple (K,Y0,Z, Z̄) is incompatible when
it might result in some inconsistent input/output relations for the underlying
ideal cipher. Formally, we say that (K,Y0,Z, Z̄) is incompatible with the external
transcript ω, if one of the following events hold:

B0 : ∃i ∈ (qp], such that K = Ẑi.
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B1 : ∃(i, j) ∈ (qe]× (`i + 1], such that K = Zij .

B2 : ∃(i, j) ∈ (qd]× (¯̀i + 1], such that K = Z̄ij .

B3 : ∃i ∈ (qe], such that Zi0 = ∗‖0κ−c′ .
B4 : ∃i ∈ (qd], such that Z̄i0 = ∗‖0κ−c′ .
B5 : ∃(i, j) ∈ (qe] × (`i + 1], (i′, j′) ∈ (qe] × (`i

′
+ 1], such that (Zij ,Y

i
j) =

(Zi
′

j′ ,Y
i′

j′).

B6 : ∃(i, j) ∈ (qe] × (`i + 1], (i′, j′) ∈ (qe] × (`i
′

+ 1], such that (Zij ,X
i
j) =

(Zi
′

j′ ,X
i′

j′).

B7 : ∃(i, j) ∈ (qe]× (`i + 1], i′ ∈ (qp], such that (Zij ,Y
i
j) = (Ẑi

′
, Ŷi

′
).

B8 : ∃(i, j) ∈ (qe]× (`i + 1], i′ ∈ (qp], such that (Zij ,X
i
j) = (Ẑi

′
, X̂i

′
).

B9 : ∃(i, j) ∈ (qe]× (`i + 1] such that |{j ∈ (qp] : Ẑj = Zi}| ≥ νed.
B10 : ∃(i, j) ∈ (qd]× (¯̀i + 1] such that |{j ∈ (qp] : Ẑj = Z̄i}| ≥ νed.

For brevity we accumulate the incompatibility events in certain compound events
as follows:

Kcoll : B0 ∪ B1 ∪ B2 ∪ B3 ∪ B4.

EEmatch : B5 ∪ B6.

EPmatch : B7 ∪ B8.

PKcount : B9 ∪ B10.

The Kcoll event handles all the scenarios which might lead to key recovery or
internal key collisions. EEmatch handles the event that two encryption query
block states collide, and EPmatch handles a similar scenario for an encryption
query block and a primitive query. The event PKcount is more of a technical
requirement that accounts for the adversarial strategy of exhausting a particular
encryption/decryption block key via primitive queries. If this happens, then the
adversary can guess the block cipher outputs (or inputs) with higher probability.
Let

Comp := ¬ (Kcoll ∪ EEmatch ∪ EPmatch ∪ PKcount) .

Then, in the real world we have

Pr [R = ω] ≥ Pr [R = ω, Comp]

≥
(

1− Pr [¬Comp]
)
× Pr [R = ω | Comp]

≥
(

1− Pr [¬Comp]
)
× Pr [Rp = ωp | Comp]

× Pr [Re = ωe | Comp ∧ Rp = ωp]

× Pr [Rd = ωd | Comp ∧ (Rp, Re) = (ωp, ωe)]. (7)

For any compatible quadruple (K,Y0,Z, Z̄), in addition to the multiset Zp, con-
sider the following two multisets,

Ze := {Zij : i ∈ (qe]× (mi]} Zd := {Z̄ij : i ∈ (qd]× (m̄i]}
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We extend (L0, . . . , Ls−1) to (L0, . . . , Ls−1, . . . , Ls′−1) for some s′ ≥ s to denote
the tuple of distinct keys in Zp ∪ Ze and let λti be the multiplicity of Li in Zt
for all t ∈ {p, e} and i ∈ (s′]. Then, by continuing Eq. (7) we have

Pr [R = ω] ≥
(

1− Pr [¬Comp]
)
× 1∏

i∈(s′](2
n)λpi

× 1∏
i∈(s′](2

n − λpi )λei
× Pr [Rd = ωd | Comp ∧ (Rp, Re) = (ωp, ωe)]

(∗)
≥
(

1− Pr [¬Comp]
)
× 1∏

i∈(s](2
n)λpi

× 1

2n(σe+qe)

×
(

1− Pr [Rd 6= ωd | Comp ∧ (Rp, Re) = (ωp, ωe)]
)

Pr [R = ω]

Pr [I = ω]

(∗∗)
≥
(

1− Pr [¬Comp]− Pr [Rd 6= ωd | Comp ∧ (Rp, Re) = (ωp, ωe)]
)
.

(8)

At inequality (∗) we use two facts. First, ωp contains only s distinct keys, and
second,

∑
i∈(s′] λ

e
i = σe + qe. Inequality (∗∗) follows from Eq. (6). In Lemma

6.1 and 6.2 we bound Pr [¬Comp] and Pr [Rd 6= ωd | Comp ∧ (Rp, Re) = (ωp, ωe)],
respectively.

Lemma 6.1. For σc < min
{
N, 2n−2

}
and qp ≤ 2κ−2, we have

Pr [¬Comp] ≤ qp + σc + qp(θ
b
e + θfe )

2κ
+
qc + 2σe(θ

b
e + θfe )

2κ−c′
+

qpσc
νed2κ

.

The proof of this lemma is postponed to supplementary material C.

Lemma 6.2. Let E denote the event Comp ∧ (Rp, Re) = (ωp, ωe). For σc <
min

{
N, 2n−2

}
and qp ≤ 2κ−2, we have

Pr [Rd 6= ωd | E] ≤ 2qd(σe + qe) + 4θbeσd
2κ−c′+n

+
2θbeqd
2κ−c′

+
4qpσd
2κ+n

+
2qd
2n

+
∑
i∈(qd]

min

{
2W¯̀iσe,¯̀i(Qνed)

2κ
,

2¯̀iσe
2κ−c′

+
2W¯̀i,¯̀i(Qνed)

2κ

}
.

The proof of this lemma is postponed to supplementary material D.

On substituting these bounds in Eq. (8), and applying Theorem 2.1, we get

Advaead
gCOMET(A ) ≤

(
qp
2κ

+
4σc

2κ−c′
+

4σd
2κ−c′+n

)
Ex
[
θbe

]
+

(
qp
2κ

+
2σe

2κ−c′

)
Ex
[
θfe

]
+
∑
i∈(qd]

min

{
2Ex

[
W¯̀iσe,¯̀i(Qνed)

]
2κ

,
2¯̀iσe
2κ−c′

+
2Ex

[
W¯̀i,¯̀i(Qνed)

]
2κ

}

+
qp + σc

2κ
+

qc
2κ−c′

+
qpσc
νed2κ

+
2qd(σe + qe)

2κ−c′+n
+

4qpσd
2κ+n

+
2qd
2n

. (9)
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Note that, θbe and θfe correspond to Θσe,n and Θσd,n respectively (see section
4.1). Thus, Ex

[
θbe
]
,Ex

[
θfe
]
≤ µ(σc, n). Further, |Qνed×Qνed | ≤ qpνed, as Qνed is

a νed-useful transcript set. The result follows from these facts and the application
of Lemma 5.1.

6.3 Desired Properties from Ψ and Φ′ Matrices

Theorem 6.1 sheds some light on the properties required from Ψ and Φ′ in order
to get a secure gCOMET instance. Specifically, in a secure gCOMET instance we
must have:
– Large period for Ψ matrix : Let ` denote the maximum permissible message

length. For any i > j ∈ (`], and some non zero Z ∈ {0, 1}κ, we want to avoid
Ui(Z) = Uj(Z). In words, this roughly translates to key repetition within
an encryption/decryption query. We can rewrite it as Ui−j = I. Clearly,
if cycle(U) ≥ `, then we are done. Now, due to the nature of U, we have
cycle(U) = cycle(Ψ). Hence, the property cycle(Ψ) ≥ ` helps in avoiding key
repetitions within a query.

– Small value for c′: As evident from Theorem 6.1, the value of c′ directly
affects the security bound, as rank(Ψ) = κ− c′. In other words, smaller the
value of c′, higher the rank of Ψ, which directly translates to better security
guarantee for gCOMET.

– High rank for Φ′ matrix : In decryption phase, the rank of Φ′ function quan-
tifies the effect of the previous block cipher output on the next block cipher
input. For example, if Φ′ = 0 (possible when Φ = I), the next input is inde-
pendent of previous output. In other words, the adversary can fully control
the next input. In particular, the adversary can collide the input of a large
number of blocks. This can be verified from Theorem 6.1 as well, where some
multicollision bounds are inversely proportional to rank(Φ′).

7 Instantiating gCOMET

For any S ∈ {0, 1}+ and s ∈ (|S|], S ≫ s denotes the “circular right shift by s”
operation on S. The set {0, 1}κ−c′ can be viewed as the Galois field GF(2κ−c

′
)

consisting of 2κ−c
′

elements. Let f(x) denote the primitive polynomial used to
represent the field GF(2κ−c

′
), and αf denote a fixed primitive element in this

representation. The set {0, 1}κ−c′ can also be viewed as a (κ − c′)-dimensional
vector space over GF(2). In this context, αf can be viewed as an invertible linear

map over {0, 1}κ−c′ . By a slight abuse of notation, we denote the binary matrix
associated with αf by αf itself. It is well-known that cycle(αf ) = 2κ−c

′ − 1.

7.1 COMETv1 and Its Security

The NIST LwC candidate COMET, hereafter referred as COMETv1, can be easily
obtained from gCOMET in the following manner:
– Key size, κ is set to 128.
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Algorithm 7.1 Control sequence generator for COMETv1 (left) and COMETv2
(right).

1: function ∆(A, I)

2: a←
⌈
|A|
n

⌉
, m←

⌈
|I|
n

⌉
, ` := a+m

3: δ`+2 ← (05)`+2

4: if a 6= 0 then

5: δ0 ← δ0 ⊕ 00001

6: if n - |A| then δa−1 ← δa−1 ⊕ 00010

7: if m 6= 0 then

8: δa ← δa ⊕ 00100

9: if n - |I| then δ`−1 ← δ`−1 ⊕ 01000

10: δ`+1 ← δ`+1 ⊕ 10000

11: return (a,m, `, δ`+2)

1: function ∆(A, I)

2: a←
⌈
|A|
n

⌉
, m←

⌈
|I|
n

⌉
, ` := a+m

3: δ`+2 ← (05)`+2

4: if a 6= 0 then

5: δ1 ← δ1 ⊕ 00001

6: if n - |A| then δa ← δa ⊕ 00010

7: if m 6= 0 then

8: δa+1 ← δa+1 ⊕ 00100

9: if n - |I| then δ` ← δ` ⊕ 01000

10: δ`+1 ← δ`+1 ⊕ 10000

11: return (a,m, `, δ`+2)

– Block size, n is set to 128 and 64 in fatCOMETv1 and tinyCOMETv1, respec-
tively.

– The control size c is set to 5 and the invariant-prefix size c′ is set to κ/2 = 64.
– ∆ is defined in Algorithm 7.1 (left).
– Φ is defined by the mapping (X3, X2, X1, X0) 7−→ X1‖X0‖(X2 ≫ 1)‖X3,

where (X3, X2, X1, X0)
n/4←− X. One can verify that rank(Φ′) = n− 1.

– The Ψ function is defined as the binary matrix αf , where αf denotes the
primitive element of GF(264) with respect to f(x) = x64 + x4 + x3 + x+ 1.

In Corollary 7.1, we apply Theorem 6.1 and relevant multicollision bounds
from Propositions 4.1-4.4, to obtain security bounds for fatCOMETv1 and tiny-
COMETv1.

Corollary 7.1. For n ≥ 4, qp < 2126, and any (qe, qd, σe, σd, qp)-adversary A ,
we have
1. For σc < 264, and νed = 255

√
11

:

Advaead
fatCOMETv1(A ) ≤ qp

2125.19
+

σc
259.75

+
σdσe
2120.8

+
qpσc

2180.24
.

2. For σc < 239, and νed = 224
√

11
:

Advaead
tinyCOMETv1(A ) ≤ qp

2121.58
+

σc
255.98

+
σdσe
2126

+
qpσd

2149.24
+
qpσeσd
2188.68

.

Corollary 7.1 clearly shows that fatCOMETv1 (or the NIST submission COMET-
128) is secure while σc < 263.75 bytes2 (data complexity), qp < 2125.19 (time com-
plexity), and qpσc < 2184.24 (data-time trade-off). Similarly, under the assump-
tion that σc < 242 bytes3 (data complexity), tinyCOMETv1 (or the NIST submis-

2 Each block of fatCOMETv1 is built of 16 bytes.
3 Each block of tinyCOMETv1 is built of 8 bytes.
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sion COMET-64) is secure while qp < 2112 (time complexity) and qpσc < 2152.24

(data-time trade-off).
In supplementary material E, we summarize the two known cryptanalytic

works [12,14] on COMETv1. Although these works are largely inconsequential in
relation to the validity of COMETv1’s security claims, they show that large value
of c′ can lead to a large class of weak keys. We observe that the value of c′ can
be reduced significantly without much degradation in performance. Particularly,
we observe that the Ψ function can be defined over a larger field which avoids
the above given strategies. In fact, a similar remedy has been also offered in [12].

7.2 COMETv2 and its Security

We describe a variant of COMETv1, called COMETv2, that differs in the following
components:

– The control size c is set to 5 and the invariant-prefix size c′ is set to 8.
– The ∆ function is defined in Algorithm 7.1 (right).
– The Ψ function is defined as the binary matrix αf , where αf denotes the

primitive element of GF(2120) with respect to f(x) = x120 +x9 +x6 +x2 +1.

From the above discussion, it is clear that COMETv2 differs from COMETv1 in
just two components, namely ∆ and Ψ functions. The modified ∆ function helps
in reducing the hardware footprint as the earlier version required an additional
n-bit of memory. Further, the strategies from [12,14] have significantly higher
data/time complexity against COMETv2 due to the small value of c′ and the
updated Ψ function.

In Corollary 7.2, we apply Theorem 6.1 and relevant multicollision bounds
from Propositions 4.1-4.4, to obtain security bounds for fatCOMETv2 and tiny-
COMETv2.

Corollary 7.2. For n ≥ 4, qp < 2126, and any (qe, qd, σe, σd, qp)-adversary A ,
we have

1. For σc < 264, and νed = 255
√

11
:

Advaead
fatCOMETv2(A ) ≤ qp

2125.19
+

σc
2115.62

+
σdσe
2120

+
qpσc

2180.24
.

2. For σc < 262, and νed = 224
√

11
:

Advaead
tinyCOMETv2(A ) ≤ qp

2121.58
+

σc
263

+
σdσe
2120

+
qpσd

2149.24
.

On the Benefits of fatCOMETv2 over fatCOMETv1: Note that the advan-
tage expressions for the two versions look similar. However, fatCOMETv2 has
subtle advantages over fatCOMETv1. For instance, when we restrict qp < 2119

(NIST prescribed), the dominating terms are

– for v1: σdσe/2
120 + σc/2

59

– for v2: σdσe/2
120
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In fact, the additional term σc/2
59 for v1, is not just an artifact of the proof.

Indeed, the previous works by Khairallah [12] and Bernstein et al. [14] (although
violate the designers’ prescribed limits) achieve a lower bound which almost
matches this term using encryption queries only. On the other hand, our security
proofs guarantee that even such strategies do not work against v2. Clearly, when
σe ≈ 260, σd � 260 and qp � 2119, v2 has much better security than v1. This
is an improved security feature of v2, in addition to the fact that it has obvious
implementation advantages. Note that, for qp > 2119 or σe, σd ≈ 260, the two
versions enjoy similar security guarantees.

8 Conclusion

In this paper, we proposed a generalization of the COMET mode of opera-
tion, called gCOMET, and gave a detailed security proof of gCOMET. We view
COMET as an instance of gCOMET and derive its security bounds. Finally, we
propose a refinement of COMET, called COMETv2, that seems to have better
performance and security as compared to COMET. We note that our security
proofs are not complemented with matching attacks, and it is possible that the
security bounds can be improved, particularly for the COMET-64 versions.
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Supplementary Material

A Proofs Related to the Multicollision Results

A.1 Proof of Proposition 4.1

For any integer ρ ≥ 2, we have

Pr [Θq,n ≥ ρ] ≤ 2n ×
(
qe

ρ2n

)ρ
. (10)

See [15] for a justification for Eq. (10). Using Eq. (3) and (10), we get Proposition
4.1 by plugging in some suitable value for ρ.

It is sufficient to upper bound q2n×
(
qe
ρ2n

)ρ
. Consider q ≤ 2

n
2 . Taking ρ = 3,

we have

q2n ×
(
qe

ρ2n

)ρ
≤ 2

3n
2 ×

(
1

2
n
2

)3

≤ 1.

Consider 2
n
2 < q ≤ 2n. Taking ρ = 4n

log2 n
, we have

q2n ×
(
qe

ρ2n

)ρ
≤ 22n ×

(
1√
n

) 4n
log2 n

≤ 1,

where the first inequality follows from n ≥ 2. Consider 2n < q ≤ n2n. Taking
ρ = 4n, we have

q2n ×
(
qe

ρ2n

)ρ
≤ n22n ×

(e

4

)4n

≤ n.

Now, using Eq. (3), we get the desired bound for q ≤ n2n. For q ≥ n2n, we
divide the queries into groups of size n2n (add additional queries, if required),
and apply the above argument to each group. The result follows by accumulating
the bounds for all the groups. ut

A.2 Proof of Proposition 4.3

For ρ ≥ 2, we have

Pr
[
Θ̂′q,n,r ≥ ρ

]
≤

∑
a∈{0,1}n

Pr [|{i : L(Xi) = a}| ≥ ρ]

(∗)
≤ 2n ×

(
q
ρ

)
2rρ
≤ 2n × qρ

2rρρ!

(∗∗)
≤ 2n ×

(
qe

ρ2r

)ρ
, (11)
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where at inequality (∗) we use the fact that the number of solutions for L(Xi) = a
is bounded by at most 2r since rank of L is r, and at inequality (∗∗) we use the

simple observation that eρ =
∑
i≥0

ρi/i! ≥ ρρ/ρ!.

Now, the proof is identical to the proof of Proposition 4.1, and follows from
Eq. (3) and (11). ut

A.3 Proof of Proposition 4.4

For ρ ≥ 2 and distinct i0, . . . , iρ−1 ∈ (q], first consider Pr
[
Ci0 = a, . . . ,Ciρ−1

= a
]
.

For brevity, we write k for ik for all k ∈ (ρ]. Without loss of generality, we can
assume a = 0n. Since otherwise, we can consider IC′z(y) = IC+

z (y ⊕ a), which is
an equivalent problem if we consider ȳi = yi ⊕ a instead of yi for all i ∈ (ρ]. So,
it is sufficient to consider

Pr [Ci = 0, . . . ,Ci = 0 : i ∈ (q]] =
∑
xρ

Pr
[
ICzi(yi) = xi, ICz′i(L(xi)) = x′i : i ∈ (q]

]
.

For i ∈ (q], let y′i = L(xi). We say that xρ is valid if (z′i, y
′
i) = (zj , yj) if and only

if (zj , xj) = (z′i, x
′
i) for all i, j(q]. The set of all such valid tuples is denoted as

V . For any valid xρ, we define

S := {(zi, yi) : i ∈ (ρ]} ∪ {(z′i, y′i) : i ∈ (ρ]}.

Then, we have ρ ≤ |S| ≤ 2ρ. Suppose S contains t ≤ 2ρ many distinct keys
(ẑ0, . . . , ẑt−1) and βj denotes the number of occurrences of key ẑj in some tuple
in S. Then,

Pr
[
ICzi(yi) = xi, ICz′i(y

′
i) = x′i : i ∈ (q]

]
=

1∏
j∈(t](2

n)βj
.

On the other hand, the above probability is zero for an invalid xρ. Let Vs denote
the number of valid tuples for which |S| = s.

We say that (z′i, y
′
i) is old if (z′i, y

′
i) = (zj , xj) for some i, j ∈ (ρ]. If |S| = 2ρ−k,

then we must have exactly k old y′i values. The number of ways these k old
y′i values can be chosen is bounded by at most ρ2k. The number of xi values
corresponding to old y′i values is bounded by at most ρ2k2k(n−r), since for each
y′i there are at most 2n−r choices for xi such that L(xi) = y′i.

Now, we have to choose the remaining xi values corresponding to new y′i val-
ues. We choose these values one at a time in lexicographic order, saym0, . . . ,mρ−k.
y′ml can be chosen in at most (2n − γml), where γml denotes the number of pre-
vious indices (including the old ones) sharing the same key as ml. By applying
this to all the remaining indices, the number of ways to choose the remaining
y′i is (2n − γm0

) · · · (2n − γmρ−k), whence the number of ways to choose the

remaining xi values is at most 2(ρ−k)(n−r)(2n − γm0
) · · · (2n − γmρ−k). Hence,
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V2ρ−k ≤ ρ2k2ρ(n−r)
∏l
i=0(2n − γmi).

Pr [C0 = 0, . . . ,Cρ−1 = 0] =

2ρ∑
s=ρ

∑
xρ∈Vs

Pr
[
ICzi(yi) = xi, ICz′i(y

′
i) = x′i : i ∈ (ρ]

]
≤

ρ∑
k=0

|V2ρ−k|∏
i∈(t](2

n)βi
≤

ρ∑
k=0

ρ2k2ρ(n−r)
∏
j∈(l](2

n − γmj )∏
i∈(t](2

n)βi

≤
ρ∑
k=0

ρ2(ρ−k)2ρ(n−r)

(2n − 2ρ)ρ
≤ 2

(
ρ22n−r

2n − 2ρ

)ρ
.

The number of ways we can choose the ρ indices is
(
q
ρ

)
, and the number of choices

for a is 2n. So, we have

Pr
[
Θ′q,n,r ≥ ρ

]
≤ 2n+1

(
qeρ2n−r

2n − 2ρ

)ρ
. (12)

Consider q ≤ 2r

22n . Taking ρ = n, we have

q2n+1 ×
(
qeρ2n−r

2n − 2ρ

)ρ
= q2n+1 ×

(
qen2n−r

2n − 2n

)n (∗)
≤ q2n+1 ×

(
2qen

2r

)n
(∗∗)
≤ 22n+1 ×

(
1

4

)n
≤ 2,

where we use n ≥ 4 at (∗) and (∗∗) follows from the bound on q. Then, using
Eq. (3), we have µ′(q, n, r) ≤ ρ+ 1 < 2ρ for q ≤ 2r

22n . For q > 2r

22n , we apply the
grouping argument to obtain the desired bound. ut

B Proof of Lemma 5.1

We will bound Ex [Wt,k(L)] in terms of four multicollision random variables
defined below:
For a ∈ {0, 1}n,

1. let Wbck,a :=
∣∣∣{i : d̂i = 1 ∧ Ŷi = a}

∣∣∣.
2. let Wfwd,a :=

∣∣∣{i : d̂i = 0 ∧ X̂i = a}
∣∣∣, and Wfwd′,a :=

∣∣∣{i : d̂i = 0 ∧ L(X̂i) = a}
∣∣∣.

3. let Wmitm,a :=
∣∣∣{{i, j} : d̂i = 1⊕ d̂j ∧ L(X̂i)⊕ Ŷj = a ∧ U(Ẑi) = Ẑj}

∣∣∣.
We define: Wbck := max

a
Wbck,a, Wfwd := max

a
Wfwd,a, Wfwd′ := max

a
Wfwd′,a, and

Wmitm := max
a

Wmitm,a.

Now, we can divide the set of multi-chains into three sets:
– Backward-only chains: Each chain is constructed by IC− queries only. By

definition, the number of such chains is at most Wbck, as all the chains share
a common source.
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– Forward-only chains: Each chain is constructed by IC+ queries only. Now,
by definition of t-sink super-chain, we know that there are exactly t distinct
sinks, out of which t−1 sinks can occur only in partial chains. By definition,
the number of such chains is at most (t− 1) ·Wfwd′ . Further, the remaining
sink occurs in complete chains. By definition, the number of such chains
is at most Wfwd. In total, the number of forward-only chains is given by
(t− 1)Wfwd′ + Wfwd.

– Forward-backward chains: Each chain is constructed by using both IC+ and
IC− queries. Let us denote the number of such chains by Wfwd-bck.

Combining the three cases, we have

Wt,k(L) ≤Wbck + (t− 1)Wfwd′ + Wfwd + Wfwd-bck.

We claim that Wfwd-bck ≤ k·Wmitm. This can be shown using pigeonhole principle.
Suppose Wfwd-bck = N . For each of the individual chain C constructed using both
IC+ and IC− queries, we have at least one index j ∈ (k] such that d̂j = 1⊕ d̂j+1.
Although the chains could be of different lengths, the preceding condition holds
for any chain that contains both IC+ and IC− queries. We put the i-th chain
in a bucket labeled j, if d̂j = 1 ⊕ d̂j+1. As there are k buckets and N chains,
by pigeonhole principle, we must have at least one4 bucket j ∈ (k], such that it
holds at least

⌈
N
k

⌉
chains. Thus, we have Wfwd-bck ≤ k ·Wmitm.

Using the preceding discussion and linearity of expectation, we have

Ex [Wt,k(L)] ≤ Ex
[
Wbck

]
+ (t− 1) · Ex

[
Wfwd′

]
+ Ex

[
Wfwd

]
+ k · Ex

[
Wmitm

]
≤ 2µ̂(q, n) + (t− 1) · µ̂′(q, n, rank(L)) + k · µ′(qν, n, rank(L)).

Observe that Wfwd and Wbck correspond to Θ̂q,n (see section 4.1), and Wfwd′

corresponds to Θ̂′q,n,rank(L) (see section 4.1). Further, using the fact that all the

chains have distinct keys, we can conclude that Wmitm ≤ Θ′qν,n,rank(L). This jus-
tifies the last inequality. ut

C Proof of Lemma 6.1

We have

Pr [¬Comp] = Pr [Kcoll ∪ EEmatch ∪ EPmatch ∪ PKcount]

≤ Pr [Kcoll] + Pr [EEmatch|¬Kcoll]

+ Pr [EPmatch|¬Kcoll] + Pr [PKcount] (13)

We bound the right hand side as follows:

4 In fact, it is possible that the i-th chain can co-exist in multiple buckets. But more
importantly, it will exist in at least one bucket.
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1. Bounding Pr [Kcoll]: First, Pr [B0] is bounded to at most qp2
−κ since K is

sampled uniformly at random. Second, Pr [B1] is bounded to at most σe2
−κ.

This can be argued as follows: fix an encryption query index i. Consider two
cases, pertaining to the two variants of gCOMET, namely fatCOMET and
tinyCOMET:
– For fatCOMET: We have the equation K = Zij = Uj+1

(
IC+

K (Ni)
)
. Con-

ditioned on some arbitrary choice K = K, the preceding equation holds
with 2−κ probability as IC+

K is a random permutation. Since the condi-
tional probability is independent of the choice of K, the joint event holds
with identical probability.

– For tinyCOMET: We have the equation K = Uj+1
(
K⊕ Ni

)
. Since U is

linear and K is sampled uniformly at random, the preceding equation
holds with at most 2−κ probability.

So, for a fixed encryption query block, the probability is at most 2−κ. Sum-
ming over all choices we get the desired bound. Similarly, Pr [B2] is bounded
by at most σd2

−κ. Following a similar line of argument as used in case of
B1, we also bound Pr [B3] and Pr [B4] to qe2

c′−κ and qd2
c′−κ, respectively.

Using union bound, we have

Pr [Kcoll] ≤ qp + σc
2κ

+
qc

2κ−c′
. (14)

2. Bounding Pr [EEmatch|¬Kcoll]: We will bound Pr [B5], while Pr [B6] can be

bounded in a similar fashion. Fix (i, j) 6= (i′, j′). We must have Zij = Zi
′

j′ .

Now, i = i′ and Zij = Zi
′

j′ implies Uj
′−j = Iκ−c′ (since ¬(B3∪ B4) holds). But

this is not possible, due to the assumption that j′ ≤ σc < min{N, 2n−2}.
Hence, i 6= i′. Now, we consider two cases:

– For fatCOMET: We have the equation Uj+1
(
ICK(Ni)

)
= Uj

′+1
(

ICK(Ni
′
)
)

,

which holds with at most 1/(2κ − 1) probability.

– For tinyCOMET: We have the equation Uj+1
(
K⊕ Ni

)
= Uj

′+1
(

K⊕ Ni
′
)

,

which holds with at most 1/2κ−c
′−1 probability (since ¬(B3∪B4) holds).

Thus, for a fixed pair of encryption query blocks, the probability is at most
1/2κ−c

′−1. Now, for a fixed (i, j) we have at most θbe choices for (i′, j′).
Summing over all choices we get an upper bound of 2σeθ

b
e/2

κ−c′ . Finally, we
have

Pr [EEmatch|¬Kcoll] ≤ 2σe(θ
b
e + θfe )

2κ−c′
. (15)

3. Bounding Pr [EPmatch|¬Kcoll]: We will bound Pr [B7] here, while Pr [B8]

can be bounded similarly. For fixed (i, j) and i′ the event holds with at most
2−κ probability. This can be argued as in the previous cases. So, we have

Pr [EPmatch|¬Kcoll] ≤ qp(θ
b
e + θfe )

2κ
. (16)

4. Bounding Pr [PKcount]: We consider Pr [B9], whereas Pr [B10] is bounded
similarly. B9 accounts for the possibility of exhausting a particular encryption
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block key via primitive queries. Let L denote the set of all primitive queries
which are repeated at least νed times. Then, we must have |L| ≤ qp/νed.
Thus, some encryption block key falls in L with at most qp/νed2

κ probability,
whence we have

Pr [PKcount] ≤ qpσc
νed2κ

. (17)

The result follows by accumulating bounds from Eq. (14)-(17) in Eq. (13).

D Proof of Lemma 6.2

Let Rid denote the output of the i-th decryption attempt in the real world. Then,
we have

Pr [Rd 6= ωd | E] ≤
∑
i∈(qd]

Pr
[
Rid 6= ⊥ | E

]
. (18)

Fix a decryption query index i. Now, there are two situations that lead to Rid 6= ⊥.

Forgery due to chains: First, suppose the i-th decryption query is completely
determined via the primitive and encryption queries. In other words, one can
construct a chain using primitive and encryption query blocks, such that a suffix
of the decryption query matches with this chain. Let p′i denote the largest block
index such that (Z̄ipi+1, Ȳ

i
pi+1), . . . , (Z̄ip′i

, Ȳip′i
) is in ωp. If (Z̄ipi+1, Ȳ

i
pi+1) /∈ ωp,

then p′i = pi. A forgery in this case implies that one of the following events
occur:

B11 : ∃(i′, j′) ∈ (qe]× (mi′ + 1], such that

(N̄i, pi + 1) 6= (Ni
′
, j′) and (Z̄ipi+1, Ȳ

i
pi+1) = (Zi

′

j′ ,Y
i′

j′).

B12 : 0 ≤ pi < p′i = ¯̀
i and X̄i¯̀i = T̄i.

B13 : ∃(i′, j′) ∈ (qe]× (`i
′
+ 1], such that

0 ≤ pi < p′i <
¯̀i and (Z̄ip′i+1, Ȳ

i
p′i+1) = (Zi

′

j′ ,Y
i′

j′).

Let Chain := B11 ∪ B12 ∪ B13. First, we upper bound Pr [B11|E]. We consider
two cases:
– Case 1: pi = −1 or j = 0. Note that, this condition is exclusive in nature,

i.e., pi = −1 and j = 0 is not possible (since initialization is injective for
distinct tweaks). Using previously used arguments, we can upper bound the
probability in this case to 2(σe + qe)/2

κ−c′+n.
– Case 2: pi ≥ 0 and j > 0. In this case, we have at most θbe choices for (i′, j′)

and the probability for each choice is bounded by at most 2/2κ−c
′
, resulting

in an upper bound of 2θbe/2
κ−c′ .

On combining the two cases, we have

Pr [B11|E] ≤ 2(σe + qe)

2κ−c′+n
+

2θbe
2κ−c′

.
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We are left with Pr [B12 ∪ B13|¬B11 ∧ E]. We use the super chain structure (see
section 5) to bound this probability. Note that, the chains constructed via Qνed
(see Definition 6.1), are the only chains that can match with some decryption
query (since ¬PKcount holds).

Now, B12 ∪ B13 implies that the decryption query is completed via a chain
with starting node (Z̄ipi+1, Ȳ

i
pi+1) and any prefix of (C̄ipi+1, . . . , C̄

i
m̄i) as label.

Recall, from section 5.1, that the number of such chains is upper bounded by
Wt,k(Qνed), where t denotes the number of distinct sinks (see section 5) and k
denotes the length of the longest possible chain, i.e., k ≤ ¯̀i − pi. In order to
bound t, we can use one of the two approaches:
1. A trivial bound on t is at most (¯̀i−pi)σe since any useful partial chain must

end in a sink that collides with some encryption query block, and there are
at most σe such blocks. Now, using the randomness of Z̄ipi+1, we have

Pr [B12 ∪ B13|¬B11 ∧ E] ≤
2W(¯̀i−pi)σe,(¯̀i−pi)(Qνed)

2κ
,

2. In case κ− c′ is sufficient enough, we can bound t to at most (¯̀i − pi) con-
ditioned on another auxiliary event. Let

B5′ : ∃j ∈ (¯̀i], (i′, j′) ∈ (qe]×(`i+1], such that (N̄i, j) 6= (Ni
′
, j′) and Z̄ij = Zi

′

j′ .

It can be easily seen that conditioned on the event ¬B5′, t is bounded to at
most (¯̀i − pi), since now any useful partial chain must end in a sink that
collides with a unique encryption query block. Further, Pr [B5′|¬B11 ∧ E] ≤
¯̀iσe2

c′−κ+1. So, we have

Pr [B12 ∪ B13|¬B11 ∧ E] ≤ 2¯̀iσe
2κ−c′

+
2W(¯̀i−pi),(¯̀i−pi)(Qνed)

2κ
,

Taking the minimum of the two bounds, we have

Pr [Chain|E] ≤ 2(σe + qe)

2κ−c′+n
+

2θbe
2κ−c′

+ min

{
2W¯̀iσe,¯̀i(Qνed)

2κ
,

2¯̀iσe
2κ−c′

+
2W¯̀i,¯̀i(Qνed)

2κ

}
.

(19)

Forgery due to guessing: Suppose ¬Chain happens, i.e., (Z̄ip′i+1, Ȳ
i
p′i+1) is not in

ωp∪ωe. Then, (Z̄ip′i+2, Ȳ
i
p′i+2) may collide with some primitive or encryption query

block with probability at most
4qp
2κ +

4θbe
2κ−c′ . Applying this argument for all the

successive blocks indices till the last one, we bound the probability that any one

of them collide with some encryption or primitive query by
4qp(¯̀i−p′i)

2κ+n +
4θbe(

¯̀i−p′i)
2κ−c′+n .

The conditional probability that the tag matches given that the tag generation
input is fresh is bounded by 2/2n. Finally, we have

Pr
[
Rid 6= ⊥|¬Chain ∧ E

]
≤ 4qp ¯̀i

2κ+n
+

4θbe
¯̀i

2κ−c′+n
+

2

2n
. (20)

The result follows by combining Eq. (18)-(20).
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E Related Cryptanalytic Work on COMETv1

We briefly discuss two related cryptanalytic results on COMETv1. Although
these results do not threaten the security claims of COMETv1, they show why
the large value of c′ is not desirable. Further, their data and time complexity
greatly endorse our conjecture on the security of tinyCOMETv1.

Khairallah’s Work [12]: Khairallah [12] studied fatCOMETv1 under the
weak key model. While the author also presents a multi-key analysis, here we only
concentrate on the single-key analysis. The main observation behind Khairallah’s
work is based on the bad events B3 and B4 given in the proof of gCOMET (see
section 6.2). Recall that,

B3 : ∃i ∈ (qe], such that Zi0 = ∗‖0κ−c
′
.

If there exists an encryption query that satisfies B3, then all the block keys within
this query will collide since Ψ applies on input value 0. This can be used to
construct forgery and key recovery adversaries against fatCOMETv1. We remark
that similar strategy also works against tinyCOMETv1. However, as evident from
the proof of Lemma 6.1 (see supplementary material C), Pr [B3] ≤ qc2

κ−c′ . In
other words, the adversary requires about 268 bytes of data in order to get an
appreciable advantage. However, the data complexity limit for fatCOMETv1 is
capped at about 263 bytes.

Observations of Bernstein, Gilbert and Turan [14]: In [13], Gueron et
al. referred to a private communication in which Bernstein, Gilbert and Turan,
proposed two observations on the security of tinyCOMETv1. The first observation
builds upon Khairallah’s work (and hence covered under B3), by constructing
an encryption query only adversary. However, the data complexity of their ad-
versary is worse than the previous one. Specifically, it requires about 299 bytes
of data. The second observation leads to a slide attack that tries to match two
separate encryption query states (key and input). This strategy is covered under
EEmatch = B5 ∪ B6 (see section 6.2), and requires data complexity about 268

bytes, which again goes beyond the data complexity limit of COMETv1.
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