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Abstract FrodoKEM is a lattice-based key encapsu-
lation mechanism, currently a semi-finalist in NIST’s
post-quantum standardization effort. A condition for
these candidates is to use NIST standards for sources
of randomness (i.e., seed-expanding), and as such most
candidates utilize SHAKE, an XOF defined in the SHA-
3 standard. However, for many of the candidates, this
module is a significant implementation bottleneck. Triv-
ium is a lightweight, ISO standard stream cipher which
performs well in hardware and has been used in pre-
vious hardware designs for lattice-based cryptography.
This research proposes optimized designs for FrodoKEM,
concentrating on high throughput by parallelising the
matrix multiplication operations within the cryptographic
scheme. This process is eased by the use of Trivium due
to its higher throughput and lower area consumption.
The parallelisations proposed also complement the ad-
dition of first-order masking to the decapsulation mod-
ule. Overall, we significantly increase the throughput of
FrodoKEM; for encapsulation we see a 16x speed-up,
achieving 825 operations per second, and for decapsu-
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lation we see a 14x speed-up, achieving 763 operations
per second, compared to the previous state-of-the-art,
whilst also maintaining a similar FPGA area footprint
of less than 2000 slices.

1 Introduction

The future development of a scalable quantum com-
puter will allow us to solve, in polynomial time, several
problems which are considered intractable for classical
computers. Certain fields, such as biology and physics,
would certainly benefit from this “quantum speed up”,
however this could be disastrous for security. The se-
curity of our current public-key infrastructure is based
on the computational hardness of the integer factoriza-
tion problem (RSA) and the discrete logarithm prob-
lem (ECC). These problems, however, will be solved
in polynomial time by a machine capable of executing
Shor’s algorithm [29].

To promptly react to the threat, the scientific com-
munity started to study, propose, and implement public-
key algorithms, to be deployed on classical comput-
ers, but based on problems computationally difficult to
solve also using a quantum or classical computer. This
effort is supported by governmental and standardiza-
tion agencies, which are pushing for new and quantum
resistant algorithms. The most notable example of these
activities is the open contest that NIST [20] is running
for the selection of the next public-key standardized al-
gorithms. The contest started at the end of 2017 and is
expected to run for 5 to 7 years.

Approximately seventy algorithms were submitted
to the standardization process, with the large majority
of them being based on the hardness of lattice problems.
Lattice-based cryptographic algorithms are a class of
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algorithms which base their security on the hardness
of problems such as finding the shortest non-zero vec-
tor in a lattice. The reason for such a large number of
candidates is because lattice-based algorithms are ex-
tremely promising: they can be implemented efficiently
and they are extremely versatile, allowing to efficiently
implement cryptographic primitives such as digital sig-
natures, key encapsulation, and identity-based encryp-
tion.

As in the past case for standardizing AES and SHA-
3, the parameters which will be used for selection in-
clude the security of the algorithm and its efficiency
when implemented in hardware and software. NIST have
also stated that algorithms which can be made robust
against physical attacks in an effective and efficient way
will be preferred [21]. Thus, it is important, during
the scrutiny of the candidates, to explore the poten-
tial of implementing these algorithms on a variety of
platforms, and to assess the overhead of adding coun-
termeasures.

To this end, this paper concentrates on FrodoKEM,
a key encapsulation mechanism submitted to NIST as
a potential post-quantum standard. FrodoKEM is a
conservative candidate due to its hardness being based
on standard lattices, as opposed to Ring/Module-LWE,
thus having limited practical evaluations. Thus, we ex-
plore the possibility to efficiently implementing it in
hardware and estimate the overhead of protection against
power analysis attacks using first-order masking. To
maximize the throughput, we rely on a parallelised im-
plementations of the matrix multiplication. Although
we do not utilise specialised techniques for parallelising
the matrix multiplication, there exists a lot of prior art
in this area of research [14,24]. We also aim to have a
relatively low FPGA area consumption. To be paral-
lelised, however, the matrix multiplication requires the
use of a smaller and more performant pseudo-random
number generator. We propose to achieve the perfor-
mance required for the randomness generation by us-
ing Trivium, an international standard under ISO/IEC
29192-3 [13] and selected as part of the eSTREAM
project, specifically selected for its hardware perfor-
mance1. We utilize this instead of AES or SHAKE, as
per the FrodoKEM specifications. We do this as a de-
sign exploration study and not (per se) as a recommen-
dation; other alternative ciphers or hash functions with
similar security arguments and performance profiles in
hardware could equally be applied.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the background and the related works.
Section 3 introduces the proposed hardware architec-
tures and the main design decisions. Section 4 reports

1 https://www.ecrypt.eu.org/stream/e2-trivium.html

the results obtained while synthesizing our design on re-
configurable hardware and compares our performance
against the state-of-the-art. We conclude the paper in
Section 5.

2 Background and Related Work

In this section we provide some background on pre-
vious hardware implementations post-quantum crypto-
graphic schemes, focusing on those which are candidates
of NIST’s standardization effort. We will also elaborate
more on FrodoKEM and its implementations as well as
recalling the principles of masking.

2.1 Previous post-quantum hardware implementations

In order to provide a reference point on the state-of-the-
art in hardware designs of post-quantum candidates,
we provide a brief summary here. Table 1 shows the
area and throughput performances of candidates, sepa-
rated by their post-quantum hardness type. Firstly, it is
quite clear that SIKE is the largest and slowest of the
schemes, consuming quite a large portion of the (ex-
pensive) FPGA they benchmark on. Hash-based and
code-based schemes on the other hand, whilst requir-
ing similarly large FPGA resources, makes up for this
and provides a high throughput. Lattice-based schemes
generally enjoy the best-of-both-worlds in terms of area
consumption and performance, having a relatively small
FPGA area consumption and a relatively high through-
put. Not only is this seen in Table 1, but this is also
true for other lattice-based schemes, pre NIST’s post-
quantum competition. Within the lattice-based candi-
dates, the ideal lattice schemes are, as expected, much
more efficient in terms area throughput performance
compared to standard lattices. This is essentially be-
cause of the complexity of their respective multiplica-
tions; in standard lattice schemes the matrix multiplica-
tions have O(n2) complexity, whereas ideal and module
schemes are able to use a NTT polynomial multiplier,
reducing the complexity to O(n log n).

2.2 Implementations of FrodoKEM

FrodoKEM [19] is a key encapsulation mechanism (KEM)
based on the original standard lattice problem learning
with errors (LWE) [25]. FrodoKEM is a family of IND-
CCA secure KEMs, the structure of which is based on a
key exchange variant FrodoCCS [7]. FrodoKEM comes
with two parameter sets FrodoKEM-640 and FrodoKEM-
976, a summary of which is shown in Table 2. FrodoKEM

https://www.ecrypt.eu.org/stream/e2-trivium.html
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Table 1: A summary of the current state-of-the-art of hardware designs of NIST post-quantum candidates, implemented on FPGA.

Crypto. Implementation Device LUT FF Slice DSP BRAM MHz Ops/Sec

C
od

e Niederreiter KeyGen [30] Stratix-V − − 39,122 − 827 230 75
Niederreiter Encrypt [30] Stratix-V − 6,977 4,276 − 0 448 50,000
Niederreiter Decrypt [30] Stratix-V − 48,050 20,815 − 88 290 12,500

Is
og

en
y SIKE 3-cores (Total) [17] Virtex-7 27,713 38,489 11,277 288 61 205 27

SIKE 6-cores (Total) [17] Virtex-7 50,084 69,054 19,892 576 55 202 32
SIKE 3-cores (Total) [26] Virtex-7 49,099 62,124 18,711 294 23 226 32

La
tt
ic
e

NewHope KEX Server [18] Artix-7 20,826 9,975 7,153 8 14 131 13,699
NewHope KEX Client [18] Artix-7 18,756 9,412 6,680 8 14 133 12,723
NewHope KEX Server [22] Artix-7 5,142 4,452 1,708 2 4 125 731
NewHope KEX Client [22] Artix-7 4,498 4,635 1,483 2 4 117 653
FrodoKEM-640 KeyGen [12] Artix-7 3,771 1,800 1,035 1 6 167 51
FrodoKEM-640 Encaps [12] Artix-7 6,745 3,528 1,855 1 11 167 51
FrodoKEM-640 Decaps [12] Artix-7 7,220 3,549 1,992 1 16 162 49

H SPHINCS-256 (Total) [3] Kintex-7 19,067 3,132 7,306 3 36 525 654

O
W

F Picnic-L1 Sign [15] Artix-7 76,472 21,061 − − 53 125 3,994
Picnic-L1 Verify [15] Artix-7 68,614 16,821 − − 34 125 4,223

Table 2: Implemented FrodoKEM parameter sets.

Security n q σ Ciphertext Size
FrodoKEM-640 128-bit 640 215 2.8 9,720 Bytes
FrodoKEM-976 192-bit 976 216 2.3 15,744 Bytes

key generation is shown in Algorithm 1, encapsulation
is shown in Algorithm 2, and decapsulation is shown in
Algorithm 3. The most computationally heavy opera-
tions in FrodoKEM are in Line 7 of Algorithm 1, Line
7 of Algorithm 2, and Line 11 of Algorithm 3, that
is the matrix multiplication of two matrices, sampled
from the error sampler and PRNG, respectively. The
LWE instance is then completed by adding an ‘error’
value (as in Equation 1). Some smaller operations such
as message encoding is also required. The ciphertexts
are the output of these calculations and are used to cal-
culate a shared secret (ss) via SHAKE. The matrices
generated heavily utilize the randomness sources, sug-
gested by the authors via AES or SHAKE. The output
of these algorithms have nice statistical properties, but
the overhead required to achieve this is high.

Naehrig et al. [19] report the results of the imple-
mentation on a 64-bit ARM Cortex-A72 (with the best
performance achieved by using OpenSSL AES imple-
mentation, that benefits from the NEON engine) and
an Intel Core i7-6700 (x64 implementation using AVX2
and AES-NI instructions). Employing modular arith-
metic (q ≤ 216) results in using efficient and easy to
implement single-precision arithmetic. The sampling of

Algorithm 1 FrodoKEM key pair generation

1: procedure KeyGen(1ℓ)
2: Generate random seeds s||seedE||z←$ U({0, 1}128)
3: Generate pseudo-random seedA ← H(z)
4: Generate A ∈ Zn×n

q via A← Frodo.Gen(seedA)
5: Generate S← Frodo.SampleMatrix(seedE, n, n̄, Tχ, 1)
6: Generate E← Frodo.SampleMatrix(seedE, n, n̄, Tχ, 2)
7: Compute B← AS+E
8: return public key pk ← seedA||B and secret key

sk′ ← (s||seedA||B,S)
9: end procedure

Algorithm 2 FrodoKEM encapsulation

1: procedure Encaps(pk = seedA||b)
2: Choose a uniformly random key µ← U({0, 1}lenµ)
3: Generate pseudo-random values seedE||k||d← G(pk||µ)
4: Generate S′ ← Frodo.SampleMatrix(seedE, m̄, n, Tχ, 4)
5: Generate E′ ← Frodo.SampleMatrix(seedE, m̄, n, Tχ, 5)
6: Generate A ∈ Zn×n

q via A← Frodo.Gen(seedA)
7: Compute B′ ← S′A+E′

8: Compute c1 ← Frodo.Pack(B′)
9: Generate E′′ ← Frodo.SampleMatrix(seedE, m̄, n̄, Tχ, 6)
10: Compute B← Frodo.Unpack(b, n, n̄)
11: Compute V← S′B+E′′

12: Compute C← V+ Frodo.Encode(µ)
13: Compute c2 ← Frodo.Pack(C)
14: Compute ss← F (c1||c2||k||d)
15: return ciphertext c1||c2||d and shared secret ss
16: end procedure

the error term (16 bits per sample) is done by inversion
sampling using a small look-up table which corresponds
to the discrete cumulative density functions (CDT sam-
pling).
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Algorithm 3 The FrodoKEM decapsulation

1: procedure Decaps(sk = (s||seedA||b,S), c1||c2||d)
2: Compute B′ ← Frodo.Unpack(c1)
3: Compute C← Frodo.Unpack(c2)
4: Compute M← C−B′S
5: Compute µ′ ← Frodo.Decode(M)
6: Parse pk ← seedA||b
7: Generate randomness seed′

E||k′||d′ ← G(pk||µ′)
8: Generate S′ ← Frodo.SampleMatrix(seed′

E, m̄, n, Tχ, 4)
9: Generate E′ ← Frodo.SampleMatrix(seed′

E, m̄, n, Tχ, 5)
10: Generate A ∈ Zn×n

q via A← Frodo.Gen(seedA)
11: Compute B′′ ← S′A+E′

12: Generate
E′′ ← Frodo.SampleMatrix(seed′

E, m̄, n, Tχ, 6)
13: Compute V← S′B+E′′ + Frodo.Encode(µ′)
14: if B′||C = B′′||C′ and d = d′ return

ss← F (c1||c2||k′||d)
15: else return ss← F (c1||c2||s||d)
16: end procedure

There has been a number of software and hardware
optimizations of FrodoKEM. Howe et al. [12] report
both software and hardware designs for microcontroller
and FPGA. The hardware design focuses on a plain im-
plementation by using only one multiplier in order to
fairly compare with previous work and the proposed
software implementation. Due to their use of cSHAKE
for randomness, they have to pre-store a lot of the ran-
domness into BRAM and then constantly update these
values. Due to this, the implementations do not have
the ability to parallelize multipliers and incurs high
memory costs.

So far there has been little investigation of side-
channel analysis for FrodoKEM other than ensuring the
implementations run in constant-time [12]. Bos et al. [8]
have investigated FrodoKEM in terms of its resistance
against power analysis. They find that the secret-key is
recoverable for a number of different scenarios, requir-
ing a small amount of traces (< 1000) for any of the pa-
rameter sets. They propose a simple countermeasure to
twart their attack by changing the order during the in-
ner product multiplication. A previous attack on Frodo
by Aysu et al. [4] also suggests using random shuffling
or by adding dummy instructions.

Thus, to counter this type of attack, it is important
for masking to be investigated, and evaluated in terms
of its practical performance. NIST have also stated many
times that masking and countermeasures are an impor-
tant evaluation criteria for analysing these post-quantum
candidates [21,2].

2.3 SHAKE as a Seed Expander

The pqm4 project nicely summarises the percentage of
time each post-quantum candidate spends using SHAKE
in software [16, Section 5.3]. This shows that Kyber,
NewHope, Round5, Saber, and ThreeBears spend up-
wards of 50% of their total runtimes using SHAKE in
some form or another. For signature schemes, this value
can reach upwards of 70% in some cases.

There has been previous investigations of using al-
ternatives to SHAKE in software for NIST post-quantum
standardisation candidates. Bos et al. [9] recently im-
proved the throughput of software implementations of
FrodoKEM by leveraging a different randomness source
for generating the matrix A; xoshiro128**, increasing
the throughput by 5x. Round5 has also been shown to
improve its performance using an alternative random-
ness source [27], instead using a candidate from NIST’s
lightweight competition, which shows a performance
improvement by 1.4x. SPHINCS+, using Haraka, has
also been shown to have a 5x speed-up when considered
instead of SHAKE [5]. These recent reports show there
is room for further investigations (in hardware) for us-
ing SHAKE in post-quantum cryptographic schemes.
Moreover, alternative random sources may be required
for these NIST PQC schemes once they are integrated
into the real-world; e.g. in a Hardware Security Module
(HSM) which require randomness from physical pro-
cesses, i.e. a True Random Number Generator (TRNG).
Despite these investigations into alternative random-
ness sources, utilising sources not specified in the scheme’s
specifications may break compatibility, which would be
the case for FrodoKEM which only considers AES and
SHAKE.

2.4 Side-Channel Analysis

In their call for proposals, NIST specified that algo-
rithms which can be protected against side-channel at-
tacks in an effective and efficient way are to be pre-
ferred [21]. To provide a whole picture about the per-
formance of a candidate, it is thus important to evalu-
ate also the cost of implementing “standard” counter-
measures against these attacks. In FrodoKEM specifica-
tions, cache and timing attacks can be mitigated using
well known guidelines for implementing the algorithm.
For timing attacks, these include to avoiding use of data
derived from the secret to access the addresses and in
conditional branches. To counteract cache attacks it is
necessary to ensure that all the operations depending
on secrets are executed in constant-time.

Power analysis attacks can be addressed using mask-
ing and hiding. Masking is one of the most widespread
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and better understood techniques to protect against
passive side-channel attacks. In its most basic form, a
mask is drawn uniformly from random and added to
the secret. The resulting masked value, which is effec-
tively a one-time-pad, and the mask are jointly called
shares: if taken singularly they are statistically inde-
pendent from the secret, and they must be combined
to obtain the secret back.

Any operation that previously involved the secret
has to be turned into an operation over its shares. As
long as they are not combined, any leakage from them
will be statistically independent of the secret too. In
our context, we show how masking can easily be ap-
plied to FrodoKEM at a very low cost. We therefore
argue the overhead that a masked implementation of
FrodoKEM in hardware incurs is minimal, hence mak-
ing it a strong candidate when side-channel analysis is
a concern. In FrodoKEM the only operation using the
secret matrix S is the computation of the matrix M

as C − B′S during decapsulation. When S is split in
two (or more) shares Si using addition modulo q, the
above multiplication by B′ can be simply applied to
all shares independently. Results are then subtracted
by C one-by-one, so that computations never depend
on both shares simultaneously. More precisely, in a two
share scenario the flow of computation would be that
first B′S1 is generated and subtracted from C to pro-
duce the first share of M as M1 = C − B′S1; then
the actual value of M is derived via M = M1 −B′S2.
All intermediate steps operate on values where at least
one element is unknown to the adversary and thus no
classical DPA style attack can succeed.

Masking can only be successful if an implementa-
tion features a low enough signal to noise ratio. Other-
wise, single trace attacks, i.e. attacks where secrets can
be extracted by analysing each trace individually, will
succeed. Masking in itself cannot overcome this threat.
Either an implementation has sufficient parallelism to
ensure that the signal to noise ratio is sufficiently low,
or, hiding countermeasures need to be deployed. Hid-
ing countermeasures in hardware can take advantage
of “unused” circuitry, e.g. it is possible to ensure parts
of the circuit are always active; in our implementation
we try to achieve this anyway to ensure high through-
put. Other hiding countermeasures often increase the
noise for the adversary by reordering of operations or
the addition of dummy operations. E.g. in the context
of matrix multiplications, one can, with minimal over-
head, change the ordering of the processing of rows/-
columns and even the ordering of the computation of
the partial products. Such measures typically imply a
small amount of extra circuitry when implemented in
hardware, but they do not result in a different architec-

ture for the matrix multiplication across different other
choices.

3 Hardware Design

Our main design goal is to improve the throughput of
the lattice-based key encapsulation scheme FrodoKEM
[19] when implemented in hardware. As described in
Section 2, FrodoKEM is one of the leading conservative
candidates submitted to the NIST post-quantum stan-
dardisation effort [20], currently a semi-finalist in the
process. Moreover, it has been shown to have appealing
qualities which make it an ideal candidate for hard-
ware implementations; such as having a power-of-two
modulus and significantly easier parameter selection.
However, a complete exploration of the possible hard-
ware optimizations applicable to FrodoKEM has yet to
be done. For instance, previous implementations do not
consider parallelisations or other design alternatives ca-
pable of significantly improving the throughput.

As described in Section 2, FrodoKEM requires heavy
use of randomness generation and/or seed expanding.
In the algorithm specifications, it is suggested to use
either SHAKE or AES. In particular, the most compu-
tationally intensive operations, such as Line 11 of Al-
gorithm 3, require 410k or 953k 16-bit pseudo-random
values, depending on the parameter set used. In order
for the generation of randomness not to be the bottle-
neck it needs to achieve a very high throughput (ideally
with relatively low area consumption) typically in the
range of 16 bits per clock cycle. In a previous hardware
design, proposed by Howe et al. [12], high throughput
for the PRNG was achieved by pre-calculating random-
ness and storing it in BRAM. Random data newly cal-
culated was then written into the memory, overwriting
the random data previously stored. This is an efficient
approach, however a more efficient PRNG that would
not require BRAM usage, potentially increasing the op-
erating frequency of the design, and thus improve its
throughput. Moreover, parallelisations were not possi-
ble for this design, as this would either require a faster
SHAKE design, increasing the area consumption by 3-
8x [6] or worse still having several SHAKE instances, in-
curring an even worse resource consumption overhead.
The area consumption of SHAKE (or AES) was an is-
sue with the previous hardware design. For example,
cSHAKE used within FrodoKEM-640 Encaps occupies
42% of the overall hardware resources [12].

To improve the parallelism of our implementation,
we further the discussions in Section 2.3. That is, we
further the investigations that research alternative sources
of randomness in post-quantum cryptographic schemes
and translate this into hardware. As with other design
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explorations, this means we do not completely comply
with the specifications (and test vectors) by not using
a NIST standard. However, their security arguments
that AES is an ‘ideal cipher’ for use as an seed ex-
pander still apply as we replace this with Trivium, as
it has analogous security properties of being indistin-
guishable from random. Trivium does not provide the
same level of classical security as AES or SHAKE, how-
ever it is used to randomly generate a public element
and suffices to eliminate the possibility of backdoors
and all-for-the-price-of-one attacks [19]. Moreover, with
NIST’s lightweight competition happening in parallel,
it is likely that there will be future NIST standards that
are more efficient than SHAKE. We may also see spe-
cific use-cases where an alternative PRNG is preferred
to SHAKE. Thus, considering alternative PRNGs as a
design exploration is an important contribution to the
standardisation process.

We explored several options for the randomness source
used in the Frodo.Gen operation, that is, sampling the
matrix A, and we decided to integrate an unrolled x32
Trivium [10] implementation into our design. The use of
alternative PRNG sources is discussed in the FrodoKEM
specifications, specifically they state that “the distribu-
tion of matrix A from a truly uniform distribution to
one generated from a public random seed in a pseudo-
random fashion does not affect the security of FrodoKEM
or FrodoPKE, provided that the pseudorandom gener-
ator is modeled either as an ideal cipher (when using
AES128) or a random oracle (when using SHAKE128)”,
thus we use Trivium as our ‘ideal cipher’, which also
maintains good statistical pseudo-randomness proper-
ties as well as the high throughput performances we
need for our designs.

3.1 Hardware Optimisations

In order to fully explore the potential of FrodoKEM
in hardware, we propose several architectures charac-
terized by different design goals (in terms of through-
put). We use the proposed architecture to implement
key generation, encapsulation, and decapsulation, on
two sets of parameters proposed in the specifications:
FrodoKEM-640 and FrodoKEM-976. Our designs use
1x, 4x, 8x, and 16x parallel multiplications during the
most computationally intensive parts in FrodoKEM.
These operations are the LWE matrix multiplications
of the form:

B = SA+E, (1)

required in key generation, encapsulation, and decap-
sulation. In the previous hardware implementations of

Arithmetic

PRNGs Error Sampling Outputs

DSP1

Triv 1

Triv 2

Triv P

DSP-k

DSP-2

DSP-1

...

Gaussian

Encode(µ)

...

MAC +

ss

+

Small
SHA-3

...

/k
2

c1

c2

Fig. 1: A high-level overview of the proposed hardware de-
signs for FrodoKEM for k parallel multipliers. The architec-
ture is split into sections ‘PRNGs’ for Trivium modules, ‘Error
Sampling’ for the Gaussian sampler, ‘Arithmetic’ for the LWE
multiplier, and ‘Outputs’ for the shared-secret and ciphertexts.

FrodoKEM, the operations of the type of Equation 1
took approximately 97.5% of the overall run-time of the
designs [12]. As in the literature, we exploit DSP slices
on the FPGA for the multiply-and-accumulate (MAC)
operations required for matrix multiplication. Hence,
each parallel multiplication of the proposed designs re-
quires its own DSP slice. The LWE matrix multiplica-
tion component incurs a large computational overhead.
Because of this, it is an ideal target for optimizations,
and for our optimizations we heavily rely on paralleli-
sations. Firstly we describe the basic LWE multiplier,
that includes just one multiplication component. Then
we describe how this core is parallelised, allowing us to
significantly improve the throughput.

Figure 1 shows a high-level overview of the hardware
architecture and the following descriptions will link to
the design overview. The Arithmetic part of the LWE
core is essentially made by vector-matrix multiplication
(that is, S[row]×A), addition of a Gaussian error value
(that is, E[row, col]), and, when needed, an addition of
the Encoding of message data. Since the matrix S con-
sists of a large number of column entries (either 640 or
976) but only 8 row entries (for both parameter sets),
we decided to implement a vector-matrix multiplier, in-
stead of (a larger) matrix-matrix one. By doing this, we
can reuse the same hardware architecture for each row
of S, saving significant hardware resources. Each run
of the row-column MAC operation exploits a DSP slice
on the FPGA, which fits within the 48-bit MAC size of
the FPGA. The DSP slice is ideal for these operations,
but it also ensures constant computational run-time,
since each multiplication requires one clock cycle. Once
each row-column MAC operation is completed, an error
value is added from the CDT sampler. These outputted
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…

DSP1 DSP2 DSP3 DSP4

… … … …

… … … …

Fig. 2: Parallelising matrix multiplication, for S × A, used
within LWE computations for an example of k = 4 parallel
multiplications, using k = 4 DSPs on the FPGA.

ciphertext values are also consistently added into an in-
stantiation of SHAKE, which is required to calculate
the shared secret. This process is pipe-lined to ensure
high throughput and constant run-time.

To avoid using BRAM (for pre-computing some of
the matrixA) and while keeping the throughput needed
by the MAC operations of the matrix multiplications,
the designs require 16 bits of pseudo-randomness per
multiplication per clock cycle. Thus, for every two par-
allel multiplications we require one Trivium instantia-
tion, whose 32-bit output per clock cycle is split up to
form two 16-bit pseudo-random integers2. This is shown
in PRNGs part of Figure 1. This pseudo-randomness
forms the matrix A in Equation 1, whereas the ma-
trix S and E require randomness taken from Gaussian
sampler. The cumulative distribution table (CDT) sam-
pler technique has been shown to be the most suitable
one for hardware [11] and thus we use it in our designs.
However, compared with previous works, we replace the
use of AES as a pseudo-random input with Trivium.
This ensures the same high throughput, but requires
significantly less area on the FPGA.

The technique we use to parallelise Equation 1 is to
vertically partition the matrix A into k equal sections,
where k is the number of parallel multiplications, and
DSPs, used. This is shown in Figure 2 for k = 4 parallel
multiplications, utilizing 4 DSP slices for MAC. Each
vector on the LHS of Figure 2 remains the same for each
of the k operations. We repeat this vector-matrix opera-
tion for the n̄ = 8 rows of the matrix S. This technique
is used across all designs for the three cryptographic
modules to ensure consistency.

In order to produce enough randomness for these
multiplications to have no delays, we need one instance
of our PRNG, Trivium, for every two parallel multipli-

2 For comparison, the AES implementation used in [23] gen-
erates 128 bits of randomness in 13 cycles and requires 349 slices
and 2 BRAMs on the FPGA. This makes Trivium 3.25x faster
than AES whilst required less hardware resources.

cations. This because each element of the matrix A is
set to be a 16-bit integer and each output from Trivium
is 32 bits, that is, two 16-bit integers. As the Trivium
modules are relatively small in area consumption on the
FPGA (169 slices), an increase in k is fairly scalable as
an impact on the overall design.

3.2 Efficient First-Order Masking

We implement first-order masking scheme (discussed
in Section 2.4) to the decapsulation operation M =

C −B′S, as this is the only instance where secret-key
information is used. Our design allows us to implement
this masking schema without affecting the area con-
sumption or throughput. Essentially this is achieved by
re-using the parallelised matrix multiplier used through
the proposed hardware design for FrodoKEM. The ma-
trix S is split using the same technique from Figure 2
and our secret shares are generated by using the Triv-
ium modules as a PRNG source. By computing these
calculations in parallel, the masked calculation of M

has the same run-time as the one needed to complete
the calculation when masking is not used. We ensure
that the same row-column operation during the matrix
multiplication is not computed in each parallel opera-
tion, to circumvent any attack that might combine the
power traces and essentially remove the masking. To
ensure this countermeasure operates effectively and has
no implementation mistakes, one should further this by
performing TVLA analysis.

3.3 A note on Software Implementations

The reason the performance of Trivium was investi-
gated for use within FrodoKEM is due to Trivium’s out-
standing performance specifically in hardware, which
was the reason it was chosen for the eSTREAM project.
However, one should not expect a similar performance
gain by using Trivium in FrodoKEM in software. To
demonstrate, we can take the performance of the AES
implementation [28] used by pqm4 [16] which operates
at 101 cycles per byte on ARM Cortex M3/M4 and a
Trivium implementation [1] which operates at 36 cy-
cles per byte on ARM Cortex M03. We should addi-
tionally consider that in the FrodoKEM-640 implemen-
tation using AES; key generation, encapsulation, and
decapsulation respectively use AES for 73.6%, 77.1%
and 76.3% of its overall clock cycles. Thus, all other

3 Some differences between the ARM Cortex M0, M3, and M4
exist which may affect this comparison, such as the advanced
data processing bit field manipulations on the M3 and M4, or
the SIMD and fast multiply-and-accumulate on the M4.
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things being equal, when replacing AES with Trivium
we might see an increase of 1.9-2x in the overall run-
time of FrodoKEM-640 implementation.

4 Results

In this section we present the results obtained when im-
plementing our FrodoKEM architecture. We provide a
table of results for each of the key generation, encap-
sulation, and decapsulation designs in Tables 3, 4, and
5, respectively. We also provide results for the PRNG
and Gaussian sampler in Table 6. All tables give com-
parative results of the previous FrodoKEM design in
hardware, which utilize 1x LWE multiplier per clock
cycle and completely conform to the FrodoKEM spec-
ifications by using cSHAKE where we are using Triv-
ium. Moreover, all results are benchmarked on the same
FPGA device as previous work, Xilinx Artix-7 XC7A35T
FPGA, running on Vivado 2019.1.

The first analysis is directed towards the perfor-
mance of the PRNG. When compared to cSHAKE,
the PRNG previously used in literature, Trivium (the
PRNG we propose to use), occupies 4.5x less area on
the FPGA (measured in slices). This means that when
we instantiate a higher number of parallel multipliers,
we consume far less FPGA area than what would be
needed when using cSHAKE, as discussed in the algo-
rithm proposal. The increase in area occupation, due
to parallelising, is essentially the only reason for area
increase when we move from a base design to a design
of the same module with a higher number of paral-
lel multipliers. This is because the vector being multi-
plied remains constant, we just require some additional
registers to store these extra random elements. There
is obviously an increase when we move from parame-
ter sets due to the matrix A increasing from 640 to
976 elements. Additionally, we are able to use a much
smaller version of SHA-3 for generating the random
seeds (< 400 FPGA slices) and shared secrets as the
computational requirements for it have significantly de-
creased.

There is a significant increase in area consumption
of all the decapsulation results which do not utilize
BRAM. This is mainly due to the need of storing public-
key and secret-key matrices. We provide results for both
architectures with and without BRAM. The design with-
out BRAM has a significantly higher throughput, due
to the much higher frequency. These results are re-
ported in Figure 4, which shows the efficiency of each
design (namely their throughput) per FPGA slice uti-
lized. Figure 3 shows a slice count summary of all the
proposed designs, showing a consistent and fairly linear
increase in slice utilization as the number of parallel

multipliers increases. We note on decapsulation results
in Figure 3 where the results would lie if BRAM is used,
hence the total results for without BRAM include both
red areas (i.e., they overlap). In most cases slice counts
at least double for decapsulation when BRAM is re-
moved, with only slight increases in throughout, hence
it might be not be useful in some use cases. BRAM us-
age, however, is not as friendly when hardware designs
are considered for ASIC, thus is it useful to consider
designs both with and without BRAM.

By changing our source of randomness and paral-
lelising the most computationally heaving components
in FrodoKEM we have shown significant improvements
in FPGA area consumption and throughput performance
compared to the previous works. For instance, compar-
ing to FrodoKEM module [12] (that is using one multi-
plier) we reduce slice consumption by 3.6x and 5.4x for
key generation and 1.6x for encapsulation, all whilst not
requiring any BRAM, whereas previous results utilize
BRAM. For decapsulation, we decrease the amount of
slices used between 1.6x and 2.6x when BRAM is used
and similarly decrease slice counts by 1.5x and 1.1x
when BRAM is not used. These savings are expected
since more than half of this is due to storage otherwise
used in BRAM.

Tables 3, 4, and 5 also contain a metric to analyse
the area-time efficiency of the proposed designs. This
metric takes into account the hardware design’s utilisa-
tion of slices (i.e., not BRAM) and the time taken (in
this case, seconds) for a full key generation, encapsu-
lation, or decapsulation operation to complete. There
is a common trend when analysing these results; the
hardware designs become significantly more performant
when the number of parallel multipliers are increase.

0 2,000 4,000 6,000 8,000

FrodoKEM-640-1x

FrodoKEM-640-4x

FrodoKEM-640-8x

FrodoKEM-640-16x

FrodoKEM-976-1x

FrodoKEM-976-4x

FrodoKEM-976-8x

FrodoKEM-976-16x

Number of FPGA Slices

KeyGen
Encaps
*Decaps
Decaps

Fig. 3: Visualisation of FPGA slice consumption of
FrodoKEM’s key generation, encaps, and decaps on a Xilinx
Artix-7. Decaps values overlap to show results with (*) and
without BRAM.
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Table 3: FPGA resource consumption of the proposed FrodoKEM KeyGen designs, using 1, 4, 8, and 16 parallel multipliers, for
both parameter sets, on a Xilinx Artix-7 FPGA.

FrodoKEM LUT FF Slices DSP/ MHz Ops/ Area×Time
Protocol BRAM Sec (Slices×Secs)
KeyGen-640 1x 971 433 290 1/0 191 59 4.92
KeyGen-640 4x 1,174 781 355 4/0 185 226 1.58
KeyGen-640 8x 1,679 1,570 532 8/0 182 445 1.20
KeyGen-640 16x 2,587 2,994 855 16/0 172 840 1.02
KeyGen-640 [12] 3,771 1,800 1,035 1/6 167 51 20.29
KeyGen-976 1x 1,243 441 362 1/0 189 25 14.48
KeyGen-976 4x 1,458 792 440 4/0 184 97 4.54
KeyGen-976 8x 1,967 1,576 617 8/0 178 187 3.30
KeyGen-976 16x 2,869 3,000 908 16/0 169 355 2.56
KeyGen-976 [12] 7,139 1,800 1,939 1/8 167 22 88.14

Table 4: FPGA resource consumption of the proposed FrodoKEM Encapsulation designs, using 1, 4, 8, and 16 parallel multipliers,
for both parameter sets, on a Xilinx Artix-7 FPGA.

FrodoKEM LUT FF Slices DSP/ MHz Ops/ Area×Time
Protocol BRAM Sec (Slices×Secs)
Encaps-640 1x 4,246 2,131 1,180 1/0 190 58 20.34
Encaps-640 4x 4,620 2,552 1,338 4/0 183 221 6.05
Encaps-640 8x 5,155 3,356 1,485 8/0 177 427 3.48
Encaps-640 16x 5,796 4,694 1,692 16/0 171 825 2.05
Encaps-640 [12] 6,745 3,528 1,855 1/11 167 51 36.37
Encaps-976 1x 4,650 2,118 1,272 1/0 187 25 50.88
Encaps-976 4x 4,996 2,611 1,455 4/0 180 94 15.47
Encaps-976 8x 5,562 3,349 1,608 8/0 175 183 8.79
Encaps-976 16x 6,188 4,678 1,782 16/0 168 350 5.09
Encaps-976 [12] 7,209 3,537 1,985 1/16 167 22 90.22

Table 5: FPGA resource consumption of the proposed FrodoKEM Decapsulation designs, using 1, 4, 8, and 16 parallel multipliers,
for both parameter sets, on a Xilinx Artix-7 FPGA. Asterisk (*) denotes designs that used BRAM.

FrodoKEM LUT FF Slices DSP/ MHz Ops/ Area×Time
Protocol BRAM Sec (Slices×Secs)
Decaps-640 1x 10,518 2,299 2,933 1/0 190 57 51.46
Decaps-640 4x 11,581 2,818 3,424 4/0 174 208 16.46
Decaps-640 8x 13,128 3,737 3,710 8/0 164 391 9.49
Decaps-640 16x 14,528 5,335 4,020 16/0 160 763 5.27
*Decaps-640 1x 4,466 2,152 1,254 1/12.5 162 49 25.59
*Decaps-640 4x 4,841 2,661 1,345 4/12.5 161 192 7.00
*Decaps-640 8x 5,476 3,479 1,558 8/12.5 156 372 4.19
*Decaps-640 16x 6,881 5,081 1,947 16/12.5 149 710 2.74
Decaps-640 [12] 7,220 3,549 1,992 1/16 162 49 40.65
Decaps-976 1x 14,217 2,295 3,956 1/0 188 25 158.24
Decaps-976 4x 16,234 2,853 4,648 4/0 170 88 52.82
Decaps-976 8x 17,451 3,687 4,985 8/0 161 167 29.85
Decaps-976 16x 18,960 5,285 5,274 16/0 157 325 16.23
*Decaps-976 1x 4,888 2,153 1,390 1/19 162 21 66.19
*Decaps-976 4x 5,259 2,662 1,450 4/19 160 83 17.47
*Decaps-976 8x 5,888 3,490 1,615 8/19 155 161 10.03
*Decaps-976 16x 7,213 5,087 2,042 16/19 148 306 6.67
Decaps-976 [12] 7,773 3,559 2,158 1/24 162 21 102.76
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Table 6: FPGA resource consumption of the proposed PRNG
and Error Sampler designs on a Xilinx Artix-7 FPGA.

FrodoKEM LUT FF Slices DSP/ MHz Ops/
Protocol BRAM Sec
Error+Trivium 401 311 179 0/0 211 211m
Trivium 296 299 169 0/0 220 220m
Error+AES [12] 1,901 1,140 756 0/0 184 184m
cSHAKE [12] 2,744 1,685 766 0/0 172 1m

We also see this in the increase in throughput perfor-
mance in Figure 4. Moreover, we can use this metric to
compare with previous work by Howe et al. [12] to see
that in all cases, parallelising results provide significant
speed-ups; up to 35x improvement for key generation.

Since the majority of our proposed designs operate
without BRAM4, we are able to attain a higher fre-
quency than previous works. Overall our throughput
outperforms previous comparable results, by factors be-
tween 1.13x and 1.19x [12]. Moreover, whilst maintain-
ing less area consumption than previous research, we
are able to increase the amount of parallel multipli-
ers. As a result, we can achieve up to 840 key gen-
erations per second (a 16.5x increase), 825 encapsu-
lations per second (a 16.2x increase), and 710 opera-
tions per second (a 15.6x increase). We also maintain
the constant run-time which the previous implementa-
tion attains, as well as implementing first-order mask-
ing during decapsulation5. The masking is also done
using parallel multiplication and thus does not affect
the run-time of the decapsulation module. The clock
cycle counts for each module are easy to calculate; key
generation requires (n2n̄)/k clocks, encapsulation re-
quires (n2n̄+ n̄2n)/k clocks, and decapsulation requires
(n2n̄+ 2n̄2n)/k clocks, for dimensions n = 640 or 976,
n̄ = 8, and k referring to the number of parallel multi-
pliers used.

5 Conclusions

The main contributions of this research is to evalu-
ate the performance potential of FrodoKEM [19], a
NIST post-quantum candidate for key encapsulation,
when utilising a significantly more performant PRNG
in hardware. We develop designs which can reach up to
825 operations per second, where most of the designs
fit in under 1500 slices. Area consumption results are
less than the previous state-of-the-art, and are much

4 We ensure BRAM is not inferred in our designs by setting
-max_bram to zero for synthesis in Vivado.

5 This masking could also be used in key generation (Line 7
of Algorithm 1), however the hardware results provided only
show this for decapsulation.
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Fig. 4: Comparison of the throughput performance per FPGA
slice on a Xilinx Artix-7.

lower than many of the other post-quantum hardware
designs shown in Table 1. We significantly improve the
throughput performance compared to the state-of-the-
art, by increasing the number of parallel multipliers we
use during matrix multiplication. In order to do this
efficiently, we replace an inefficient PRNG previously
used, cSHAKE, with a much faster and smaller PRNG,
Trivium. As a result, we are able to obtain either a much
lower FPGA footprint (up to 5x smaller) or a much
higher throughput (up to 16x faster) compared to pre-
vious research. Our implementations run in constant
computational time and the designs comply with the
Round 2 version of FrodoKEM in all aspects except for
this PRNG choice. To further evaluate the performance
of FrodoKEM, we implemented first-order masking for
decapsulation, and we showed that it can be achieved
with almost no effect on performance. We expect this
research would have an impact on real-world use cases
such as in TLS, as shown previously from key exchange
version of Frodo [7], potentially making its performance
competitive with classical cryptographic schemes used
today.

The results show that FrodoKEM is an ideal candi-
date for hardware designs, showing potential for high-
throughput performances whilst still maintaining rela-
tively small FPGA area consumption. Moreover, com-
pared to other NIST lattice-based candidates, it has a
lot more flexibility, such as increasing throughput with-
out completely re-designing the multiplication compo-
nent, compared to, for example, a NTT multiplier.
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