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Time-memory Trade-offs for Saber+ on
Memory-constrained RISC-V
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Abstract—Saber is a module-lattice-based key encapsulation scheme that has been selected as a finalist in the NIST Post-Quantum
Cryptography Standardization Project. As Saber computes on considerably large matrices and vectors of polynomials, its efficient
implementation on memory-constrained IoT devices is very challenging. In this paper, we present an implementation of Saber with a
minor tweak to the original Saber protocol for achieving reduced memory consumption and better performance. We call this tweaked
implementation ‘Saber+’, and the difference compared to Saber is that we use different generation methods of public matrix A and
secret vector s for memory optimization. Our highly optimized software implementation of Saber+ on a memory-constrained RISC-V
platform achieves 48% performance improvement compared with the best state-of-the-art memory-optimized implementation of
original Saber.
Specifically, we present various memory and performance optimizations for Saber+ on a memory-constrained RISC-V microcontroller,
with merely 16KB of memory available. We utilize the Number Theoretic Transform (NTT) to speed up the polynomial multiplication in
Saber+. For optimizing cycle counts and memory consumption during NTT, we carefully compare the efficiency of the complete and
incomplete-NTTs, with platform-specific optimization. We implement 4-layers merging in the complete-NTT and 3-layers merging in the
6-layer incomplete-NTT. An improved on-the-fly generation strategy of the public matrix and secret vector in Saber+ results in low
memory footprint. Furthermore, by combining different optimization strategies, various time-memory trade-offs are explored. Our
software implementation for Saber+ on selected RISC-V core takes just 3,809K, 3,594K, and 3,193K clock cycles for key generation,
encapsulation, and decapsulation, respectively, while consuming only 4.8KB of stack at most.

Index Terms—NTT, Saber, memory optimizations, RISC-V, post-quantum cryptography, lattice-based cryptography.
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1 INTRODUCTION

A S the NIST Post-Quantum Cryptography (PQC) stan-
dardization process is coming to an end, the deploy-

ment of PQC schemes in real-world applications has become
a research hotspot in cryptographic engineering, especially
in the Internet of Things (IoT) scenarios millions of IoT
devices have appeared in our daily life. Currently, ARM
chips occupy most of the market in IoT scenarios. However,
since UC Berkeley initiated the RISC-V project in 2010, RISC-
V has become a strong competitor against ARM microcon-
trollers due to its open-source and extensible properties.
With the collaboration of over 1000 international members,
including many famous companies such as Western Digital,
Qualcomm, Alibaba, Huawei [1], over 80 mature RISC-V
chips have been manufactured, and many of them have
been prevalently used in IoT scenarios. The implementation
of PQC on RISC-V also attracts much attention. Many hard-
ware/software co-design based on RISC-V for PQC schemes
have been conducted [2], [3]. The NIST Lightweight Cryp-
tography Workshop (LWC) also uses RISC-V chips to bench-
mark lightweight cryptography. However, the availability of
PQC on IoT devices faces many challenges due to the lim-
ited resources, low power consumption, and low frequency
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of IoT devices. Many IoT devices have extremely limited
resources, especially in Wireless Sensor Network (WSN),
which consists of millions of dedicated sensors acting as
environmental monitoring or target tracking [4], and the
available RAM of these commercial sensors is about 4KB-
32KB. In order to solve the problem of PQC deployment on
memory-constrained RISC-V chips, this paper provides a
compact and optimized PQC implementation for the RISC-
V chips.

Saber [5], one of the four key establishment finalists, is
based on the Module Learning with Rounding (Mod-LWR)
problem. Saber is quite similar to the Mod-LWE (Module
Learning with Errors [6]) based scheme Kyber [7]. Both of
them introduce a small-dimension matrix, contributing to
a more flexible PQC scheme than ideal lattice-based [8]
schemes such as NewHope [9]. Nevertheless, the public
matrix in Saber and Kyber also increases the difficulty
of deployment in IoT devices. The significant difference
between Saber and Kyber is that Saber uses a power-of-
two modulus (q = 213), which eliminates complex rejection
sampling and modular reduction. However, this modulus
precludes the usage of the Number Theoretic Transform
(NTT) from accelerating polynomial multiplication. The
original polynomial multiplication, Toom-Cook-Karatsuba-
Schoolbook adopted by Saber, is asymptotically slower than
NTT and consumes more memory, which is unfriendly to
memory-constrained devices. Therefore, the introduction of
NTT for Saber allows us to speed up Saber’s polynomial
multiplication on memory-constrained devices [10].
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Motivation. This paper aims to explore various time-
memory trade-offs on memory-constrained RISC-V-based
devices. Polynomial multiplication is not only a critical
performance factor but also affects the memory footprint
of Saber. The Toom-Cook-based polynomial multiplication
in the Saber’s reference implementation [11] and related
optimization work [12], [13] achieves excellent performance,
but its memory footprint is quite large. [12, Sec 2.2.3] and
[13, Sec 4.2] use four levels of Karatsuba recursion to achieve
very small memory consumption, but there is a signifi-
cant performance penalty. NTT’s adaptation for Saber [10,
Sec 3.1] opens a new window for exploring various time-
memory trade-offs due to significant advantages of NTT
over Toom-Cook in terms of time and memory. However,
Saber’s original incompatibility with NTT brings some
memory penalties. For example, in the Saber.PKE.KeyGen
stage, we need to store the original secret vector for sub-
sequent usage and also store the NTT-domain counterpart
for computing matrix-vector multiplication. For Saber, only
32-bit NTT is feasible, so storing polynomials in the NTT
domain has a higher memory footprint than the 16-bit NTT
in Kyber and NewHope. The performance optimization of
NTT has been thoroughly studied, including optimization
on the RISC-V platform [14]. However, the performance of
NTT in Saber is not the only goal. Its memory optimization
is also crucial. Moreover, there is no relevant work to study
how to eliminate the side effects of NTT’s adaptation for
Saber as far as we know.

Contributions. Our contributions in this work can be
summarized as below:

1) We propose an on-the-fly generation strategy for
Saber+’s secret vector (on-the-fly GenS). This tech-
nique allows us to store merely one polynomial
instead of the entire secret vector. We improve pre-
vious on-the-fly generation of the public matrix (on-
the-fly GenA) proposed in [12, Sec 2.2.1]. Besides,
inspired by Kyber’s GenA implementation1, we
propose an out-of-order GenA technique for Saber+.
This technique breaks the restriction on the genera-
tion order of the public matrix, and its combination
with the on-the-fly GenS achieves an excellent time-
memory trade-off.

2) Based on the techniques mentioned above and dif-
ferent memory allocation schemes for the secret
vector, we propose three strategies for computing
matrix-vector multiplication. These three strategies
present different time-memory trade-offs, and it is
worth mentioning that they can perfectly meet the
individual memory requirements of LightSaber+,
Saber+, and FireSaber+.

3) We review the selection of NTT parameters and
construct a new set of parameters for Saber+, which
can also be used in the original Saber. Our new se-
lection can eliminate the modular reduction after the
addition operation in Gentleman-Sande butterflies
and achieve better performance in the 6-layer NTT
implementation.

1. gen matrix routine in https://github.com/pq-crystals/kyber/
blob/master/ref/indcpa.c

4) We carefully analyze the efficiency of the complete-
NTT and various incomplete-NTTs from both arith-
metic and implementation perspectives. We imple-
ment the complete-NTT, 7-layer NTT, 6-layer NTT,
and 5-layer NTT with hand-written assembly and
conclude that the 6-layer NTT is most efficient for all
variants of Saber+ on the selected platform. All our
NTT optimizations are also suitable for the original
Saber.

Same with Saber’s reference implementation, our imple-
mentation is constant-time and does not have any secret
dependent branching or secret dependent memory accesses.
Organization of the paper. Section 2 describes the Saber
scheme, polynomial multiplication, and our target platform.
Section 3 presents the efficient implementation of Mont-
gomery reduction, the parameters selection of NTT, compar-
isons of the complete-NTT and various incomplete-NTTs,
and efficient layers merging techniques. Section 4 describes
our improved on-the-fly generation of the public matrix
and secret vector, explores various time-memory trade-offs,
and clarifies the differences between Saber+ and Saber. In
Section 5, we compare the performance and stack usage of
our optimized implementation with previous work.
Availability of our software. All source codes are available
at https://github.com/Ji-Peng/Saber RV32

2 PRELIMINARIES

2.1 Saber KEM
Saber [5], [11], due to its high security, flexibility, and
simplicity, was selected for the final round and became
one of the four KEM finalists in the NIST PQC stan-
dardization competition. The IND-CCA secure Saber.KEM
scheme is based on the IND-CPA secure public-key encryp-
tion (Saber.PKE) scheme with the help of Fujisaki-Okamoto
transformations [15] and some symmetric cryptographic
primitives [16]. The IND-CPA secure Saber.PKE scheme is
illustrated in Algorithm 1 ∼ Algorithm 3 and we refer the
readers to [11] for details about Saber.KEM scheme since the
optimizations in this paper mainly applied to the Saber.PKE
scheme.

Saber and Kyber, as two of the four KEM finalists, are
both constructed with module lattices, which demonstrates
that the security and efficiency of the PQC schemes based
on module lattices have been widely recognized compared
with the pure LW{E,R} [17], [18] or Ring-LW{E,R} [8]
problems. The IND-CPA security of Saber.PKE is reduced
from the Mod-LWR problem, which is a module version
of the LWR problem by introducing a small l-dimensional
matrix and two fixed power-of-two moduli p, q. Formally, a
Mod-LWR sample is given by(

A, b =

⌊
p

q
(ATs)

⌉)
∈ Rl×lq ×Rl×1q (1)

where the secret vector s is sampled from the centered
binomial distribution βµ(R

l×1
q ) and the public matrix A is

sampled from the uniform random distribution U(Rl×lq ).
The decisional Mod-LWR problem states that it is hard
to distinguish whether the (A, b) are generated by the
Mod-LWR distribution or the uniform random distribution

https://github.com/pq-crystals/kyber/blob/master/ref/indcpa.c
https://github.com/pq-crystals/kyber/blob/master/ref/indcpa.c
https://github.com/Ji-Peng/Saber_RV32
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Algorithm 1 Saber.PKE.KeyGen() [11]

1: seedA ← U
(
{0, 1}256

)
2: A = gen (seedA) ∈ Rl×lq

3: r ← U
(
{0, 1}256

)
4: s = βµ

(
Rl×1q ; r

)
5: b = ((ATs+ h) mod q)� (εq − εp) ∈ Rl×1p

6: return (pk := (b, seedA) , sk := (s))

Algorithm 2 Saber.PKE.Enc(pk = (b, seedA),m ∈
R2; r) [11]

1: A = gen (seedA) ∈ Rl×lq

2: if r is not specified then
3: r ← U

(
{0, 1}256

)
4: end if
5: s′ = βµ

(
Rl×1q ; r

)
6: b′ = ((As′ + h) mod q)� (εq − εp) ∈ Rl×1p

7: v′ = bT (s′ mod p) ∈ Rp
8: cm =

((
v′ + h1 − 2εp−1m

)
mod p

)
� (εp − εT ) ∈ RT

9: return c := (cm, b
′)

U(Rl×lq ×Rl×1q ). The two fixed power-of-two moduli p and q
not only avoid the noise sampling and rejection sampling
but also eliminate the explicit modular reduction, which sig-
nificantly simplifies the scheme. The three variants of Saber,
namely LightSaber, Saber, and FireSaber, use the module
dimensions l=2, 3, and 4. They all share the same underlying
arithmetic operations, which further demonstrates Saber’s
flexibility. Saber defines three constant polynomials h, h1,
and h2 to simplify rounding operations into simple shift
operations. As described in Algorithm 1 ∼ Algorithm 3, the
noise in Saber.PKE scheme is deterministically generated by
using simple and efficient shift operations to scale down
from modulus q to modulus p. The parameters εp, εq, εT in
Algorithm 1 ∼ Algorithm 3 satisfy p = 2εp , q = 2εq and
T = 2εT respectively. More details about these constants
can be found in [11].

The generation of the public matrix A (GenA) and
secret vector s (GenS) in Algorithm 1 and Algorithm 2
are implemented by the eXtend Output Function (XOF). In
Saber, SHAKE-128 [19] is used to produce pseudo-random
bytes, which are further used to generate the uniformly dis-
tributed public matrix and the centered binomial distributed
secret vector. The SHAKE-128 adopts a sponge construction,
which absorbs an initial seed into the Keccak state using
keccak absorb(). After that, the keccak squeezeblocks() is
used to generate the pseudo-random bytes, where the size
of each pseudo-random block is 168 bytes. Depending on
whether the polynomial generation sequence is the same in
A and AT , GenA can be performed in two ways: in-order
GenA and out-of-order GenA. Saber adopts the in-order
GenA strategy while Kyber adopts the out-of-order GenA
by attaching coordinates (i, j) into the initial seed, and the
detailed difference is given in Subsection 4.4. Each strategy
has its advantages and disadvantages. The first scheme
only needs to absorb once, and the matrix generation fully
utilizes each pseudo-random block without wasting any
pseudo-random bytes. Hence, when generating the public
matrix A, fewer keccak squeezeblocks() will be called. Al-

Algorithm 3 Saber.PKE.Dec(s, c = (cm, b
′) [11])

1: v = b′T (s mod p) ∈ Rp
2: m′ = ((v − 2εp−εT cm + h2) mod p)� (εp − 1) ∈ R2

3: return m′

though the out-of-order GenA causes a minor performance
decrease compared with the in-order GenA, this strategy
enables an excellent time-memory trade-off with the help of
the on-the-fly GenS (see Subsection 4.4 and Subsection 4.5).

2.2 Polynomial Multiplication
Although the choice of the power-of-two moduli p, q sim-
plifies the Saber scheme, the original power-of-two modulus
q = 213 excludes the use of the asymptotically faster NTT
based multiplication. Therefore, the reference implemen-
tation of Saber [11] combined Toom-Cook and Karatsuba
(TC/K) multiplication algorithms to accelerate the polyno-
mial multiplication in Rq . Recently, Chung et al. [10, Sec
3.1] adapted NTT for Saber, NTRU [20], and LAC [21] and
achieved superior performance compared with the previ-
ous TC/K multiplication implementation. NTT provides a
perfect solution for Saber’s implementation on memory-
constrained IoT microcontrollers regarding memory foot-
print and efficiency. We refer the readers to [12, Sec 2.1]
and [13, Sec 2] for the details about TC/K multiplication
algorithm.

2.2.1 Number Theoretic Transform
The premise of using NTT in Rq = Zq[X]/ (Xn + 1) is that
q is a prime number. When q satisfies q ≡ 1 mod 2n, there
exists a 2n-th primitive root of unity, thus the complete-NTT
transformation is available. Considering the polynomial
X256 + 1 in Kyber and Saber, the complete-NTT transfor-
mation means that we can factor the polynomial X256 + 1
into 256 polynomials of degree-0 modulo q. Let’s denote the
set of all 512-th roots of unity as

{
ζ, ζ3, ζ5, . . . , ζ511

}
. Then,

the polynomial X256 + 1 can be decomposed as

X256 + 1 =
255∏
i=0

(
X − ζ2i+1

)
=

255∏
i=0

(
X − ζ2br8(i)+1

)
, (2)

where br8(i) denotes the bit-reversal of an unsigned 8-
bit integer i. After the complete-NTT transformation, the
polynomial f ∈ Rq is decomposed into 256 polynomials of
degree-0, which can be written as

NTT(f) = f̂ = (f̂0, f̂1, · · · , f̂255)

with

f̂2i =
255∑
j=0

f2jζ
(2br8(i)+1)j , f̂2i+1 =

255∑
j=0

f2j+1ζ
(2br8(i)+1)j .

(3)
The product of two polynomials f, g can be performed

by first transforming f, g into the NTT domain, and then
performing the point-wise base multiplication for 256 poly-
nomials of degree-0 modulo X − ζ2br8(i)+1. After that, the
INTT (invert NTT) transformation is conducted to convert
the NTT-domain result ĥ = f̂ ◦ ĝ back to the standard
domain. The whole process can be described as f · g =
INTT(NTT(f) ◦NTT(g)).
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Recent research [22] found that even though the prime
q doesn’t sastify 2n|(q − 1), the polynomial multiplication
can still be accelerated by utilizing NTT. When q is a prime
number and satisfies n|(q− 1) or (n/2)|(q− 1), there is only
n-th or n/2-th primitive root instead of 2n-th primitive root.
Therefore, the polynomial cannot perform the complete-
NTT transformation but can perform incomplete 7-layer or
6-layer NTT transformation for n = 256, eliminating the
final one or two NTT layer(s). The second-round Kyber
submission [23] adopted the incomplete 7-layer NTT by
modifying the prime q from 7681 to 3329, which satisfies
256|(3329 − 1). Therefore, it terminates the NTT transfor-
mation in the final layer.

2.3 Target Platform: E31 RISC-V Core

Our target platform is the SiFive Freedom E310 board
equipped with a 32-bit E31 RISC-V core. It is a real-
world memory-constrained RISC-V device, with merely
16KB memory available. Its register file consists of 32 32-
bit registers, among which 30 registers (t0 ∼ t6, s0 ∼ s11,
a0 ∼ a7, ra, gp, tp) are available for programming, while
the other two registers (zero, sp) are reserved registers. The
instruction set of this microcontroller belongs to RV32IMAC
in RISC-V ISA standard, including the basic integer (I),
integer multiplication and division (M), automatics (A), and
16-bit compressed instructions (C). Although it has more
available registers than other CPU processors, there is no
flag register to hold carry flag and overflow flag. Therefore,
when using the basic integer instructions to compute big
number addition or subtraction, an extra instruction sltu or
bltu is required to handle carry or overflow, which results in
significant overhead. In order to compute the sum of two 64-
bit integers, at least four instructions are used, while other
processors can complete it in just two instructions with the
help of the carry flag. As for the RISC-V integer multipli-
cation and division module, E31 is equipped with some
5-cycle multiplication instructions. A 32-bit multiplication
is performed by mul and mulh instructions. Both mul and
mulh cost 5 cycles. The instructions of RV32IMAC are inher-
ently constant-time except the division instruction. It should
be noted that most of the discussion on register usage targets
optimization for the RISC-V Instruction Set Architecture
(ISA) and can be applied to any 32-bit RISC-V device. Apart
from that, the discussion on instruction latency, memory
latency, instruction caches, and flash memory aims at the
selected RISC-V devices. Our analysis method can be used
for other (different micro-architecture) RISC-V platforms by
tweaking the cycle counts of corresponding instructions.

One might question the selection of a RISC-V device with
such limited memory. We want to emphasize our reasons for
choosing E31 core. Firstly, as the rapid development of the
open-source RISC-V ISA, implementing cryptographic al-
gorithms on RISC-V devices has become a research hotspot.
The NIST LWC group also recommends RISC-V as one of
the benchmark platforms. As far as we know, there are very
limited researches conducted on the software implementa-
tion of PQC schemes, especially Saber, on RISC-V devices.
As for the memory restriction, we believe choosing a real-
world memory-constrained device will obtain realistic and
accurate experimental results and provide a good reference

Algorithm 4 Signed Montgomery reduction on 32-bit RISC-
V, β = 232

Require: a = ah2
32 + al, and −β2M ≤ a < β

2M where M
is the modulus in our NTT implementation

Ensure: t = β−1a modM , and −M < t < M
1: mul al, al, M

′ . M ′ =M−1

2: mulh al, al, M
3: sub t, ah, al
4: return t

for deploying PQC schemes in resource-constrained appli-
cation scenarios.

3 PERFORMANCE OPTIMIZATION

In this section, we first present an optimized implementa-
tion of Montgomery reduction. We then discuss the choice of
NTT parameters and carefully compare the performance of
the complete-NTT and various incomplete-NTTs from arith-
metic and implementation perspectives. [10, Sec 3.1] first
adapted NTT-based polynomial multiplication for Saber,
and their results showed that NTT outperforms previous
Toom-Cook on Cortex-M4 and Intel platforms.

3.1 Efficient Implementation of the Montgomery Re-
duction
The Montgomery reduction can efficiently compute mod-
ular reduction without using division instructions, and its
execution is constant-time. A signed Montgomery reduction
was presented in [24, Alg 3]. As a result of using the 32-
bit NTT, our Montgomery reduction takes a 64-bit signed
integer as input and outputs a 32-bit result ranging from
−M to M , where M is the modulus in our NTT implemen-
tation. The details about the signed Montgomery reduction
on RISC-V are given in Algorithm 4.

3.2 Parameters Selection of NTT
To adapt NTT for Saber, we need to pick a prime M ,
which must be larger than the largest intermediate value
produced by Saber’s polynomial multiplication without
modular reduction. The parameter µ is equal to 10, 8, and
6 for LightSaber, Saber, and FireSaber, respectively, which
means that the coefficients of a noise polynomial range from
-5/-4/-3 to 5/4/3. We convert the polynomial coefficients in
Zq into a signed centered representation for getting a more
compact range boundary, and our NTT implementation is
also performed over signed integers. Thanks to Saber’s
power-of-two modulus q = 213, it is very efficient to convert
ai ∈ [0, q) to the centered representation, arithmetic shift
left by 3 bits and then arithmetic shift right by 3 bits to
get a′i ∈ [− q2 ,

q
2 ] with a 16-bit signed representation. The

polynomial multiplication a · s without modular reduction
produces a maximum intermediate value 5 · q2 · n and a
minimum intermediate value −5 · q2 ·n, where a ∈ Rq and s
is a noise polynomial. So we get the first restriction on M :

M ≥ 2 · 5 · q
2
· n = 10485760 (4)

The forward NTT uses Cooley-Tukey (CT) butterflies,
and the invert NTT uses Gentleman-Sande (GS) butterflies
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in our implementation. The input of CT butterflies is in
normal order, while the output is in bit-reverse order. GS
butterflies are just the opposite. Given two integers a and b
as the input, the CT butterflies compute a+γ ·b, a−γ ·b and
the GS butterflies compute a + b, (a − b) · γ. Montgomery
multiplication is used when computing γ · b and (a− b) · γ,
and they are both range from −M to M . So, the coefficients
of CT butterflies increase by M after each addition, but
they are doubled in GS butterflies. For example, suppose
the input ranges from −x to x, after continuous y-layer GS
butterflies without modular reduction, the output ranges
from −x · 2y to x · 2y . If x · 2y > 231, then a modular
reduction of the addition result is necessary for avoiding
overflow from a 32-bit signed integer. In order to eliminate
these additional modular reductions in GS butterflies, we
get another restriction on M , x · 2y < 231, where x is the
maximum value of INTT’s input, and y is the number of
layers of NTT.

In our implementation, only the 6-layer NTT is adopted.
The input of the INTT is the result of the base multiplication,
which ranges from−2M to 2M . We get the final range limit:
M ≥ 2 ·5 · q2 ·n and 2M ·26 < 231, that is, 5 ·q ·n ≤M < 224.
In the end, our choice is M = 10487809 = 512 · 20484 + 1
such that 2n | (M − 1) and the underlying field Zq contains
a 2n-th primitive root of unity. Such M can implement both
the complete-NTT and various incomplete-NTTs.

3.3 Arithmetic Analysis of Incomplete-NTTs

Recent research [22] shows that it is not necessary to pick
an M , which satisfies 2n | (M − 1), to obtain the complete-
NTT. When n = 256 = 28, the complete-NTT also refers
to 8-layer NTT. The modulus of Kyber changed from 7681
to 3329 such that 256 | (3329 − 1) in NIST PQC Round 2
submission [25], which means that only 7-layer NTT is avail-
able. And related work [10], [26] also shows the effectiveness
of incomplete-NTTs. To explain why incomplete-NTTs can
even outperform the complete-NTT, we carefully analyze
the overhead of the complete-NTT and the incomplete l-
layer NTT (l = 5, 6, 7) from an arithmetic perspective.

In the following, we use M64 to represent the multi-
plication of multiplying two 32-bit operands to obtain a
64-bit product, and A64 represents a 64-bit long integer
addition. On the selected RISC-V platform, M64 is imple-
mented by two multiplication instructions, mul and mulh,
where mul/mulh computes the low-/high-limb of the 64-
bit product and they both have a 5-cycles delay on the
selected RISC-V platform. As described in Subsection 2.3,
computing A64 consumes 4 basic instructions.

We use MontMul to represent a Montgomery multipli-
cation, whose computation consumes an M64 and a Mont-
gomery reduction (MontR). For example, c = MontMul(a, b)
is equivalent to c ≡ a · b modM . According to Algorithm 4,
we can express the overhead of a Montgomery reduction
as MontR = 1M64 + 1A32, where A32 represents all single-
cycle instructions, including addition, subtraction, shift, and
conditional set instructions. So the overhead of MontMul
is M64 + MontR = 2M64 + 1A32. We use < i, j > to briefly
represent the overhead of iM64 + jA32, whose computation
consumes 10i + j cycles on the selected platform. For exam-
ple, the overhead of MontR/MontMul is< 1, 1 > / < 2, 1 >.

Algorithm 5 Base multiplication in l′-layer NTT

Require: Degree-(n′−1) polynomial a =
∑i<n′−1
i=0 aix

i and
b =

∑i<n′−1
i=0 bix

i with n′ = 28−l
′

Ensure: c =
∑i<n′−1
i=0 cix

i = a · b mod (Xn′ − γ)
1: cj = MontMul(MontR(

∑i≤n′−1
i=j+1 aibn′+j−i), γ) +

MontR(
∑i≤j
i=0 aibj−i) for j ∈ [0, n′ − 1)

2: cn′−1 = MontR(
∑i≤n′−1
i=0 aibn′−1−i)

The computation of one CT or GS butterfly consumes one
MontMul and two A32, i.e. butterfly =< 2, 3 >. Each layer
of NTT/INTT contains n

2 butterflies, so the overhead of one
layer can be expressed as layer = n

2 < 2, 3 >=< 256, 384 >.

Base multiplication in the complete-NTT. The overhead
of base multiplication in the complete-NTT is nMontMul =
n< 2, 1 >=< 512, 256 >.

Base multiplication in the 7-layer NTT. For the 7-layer
NTT, the base multiplication is implemented by a polyno-
mial multiplication of degree-1, that is, c = c0 + c1x =
(a0 + a1x) · (b0 + b1x) mod (X2 − γ), where γ is a
specific power of ζ . In detail, c0 = MontMul(a0, b0) +
MontMul(MontMul(a1, b1), γ) and c1 = MontR(a0b1+a1b0),
where the calculation of c1 uses lazy reduction technique. So
the overhead of the base multiplication in the 7-layer NTT
is

n

2
(3MontMul + 2M64 + 1MontR + 1A64 + 1A32)

=< 1152, 1152 > .

Base multiplication in the 6-layer NTT. The base multi-
plication of degree-3 in the 6-layer NTT can be expressed
as c = (a0 + a1x + a2x

2 + a3x
3) · (b0 + b1x + b2x

2 +
b3x

3) mod (X4 − γ). Details about this base multiplication
is described in Algorithm 5. The calculation of c0, c1, and c2
have the same overhead because MontMul = M64 + MontR,
and their overhead is

2MontMul + 1MontR + 3M64 + 2A64 + 1A32 =< 8, 12 >

The calculation of c3 can make full use of the lazy reduction,
and its overhead is

1MontR + 4M64 + 3A64 =< 5, 13 >

Therefore, the overall overhead of the base multiplication in
the 6-layer NTT is

n

4
(3 < 8, 12 > + < 5, 13 >) =< 1856, 3136 >

Base multiplication in the 5-layer NTT. For the 5-layer
NTT, the base multiplication is implemented by a polyno-
mial multiplication of degree-7. According to Algorithm 5,
the overhead of c0, c1, ..., and c6 is equal, and their over-
head is

2MontMul + 1MontR + 7M64 + 6A64 + 1A32 =< 12, 28 >

The overhead of c7 is 1MontR + 8M64 + 7A64 =< 9, 29 >,
so the overall overhead of the base multiplication in the 5-
layer NTT is

n

8
(7 < 12, 28 > + < 9, 29 >) =< 2976, 7200 >.



6

TABLE 1
Increased (Inc) and reduced (Red) overhead of incomplete-NTTs

compared with the complete-NTT

Incomplete-NTT Inc Overhead Inc Cycles Red Cycles
7-layer NTT < 640, 896 > 7,296 8,832
6-layer NTT < 1344, 2880 > 16,320 17,664
5-layer NTT < 2464, 6944 > 31,584 26,496

Complete-NTT VS incomplete-NTTs. The early termina-
tion of NTT can reduce the overhead of computing NTT
and INTT, but the overhead of the base multiplication
will increase. So we need to judge whether the reduced
overhead of computing NTT and INTT can outnumber
the increased overhead of computing base multiplication.
In Table 1, we give the increased and reduced overhead
of incomplete-NTTs compared with the complete-NTT. For
example, compared with the complete-NTT, the increased
overhead of base multiplication in the 7-layer NTT is
< 640, 896 >= 7296 cycles. Moreover, the overhead of
one layer in NTT is < 256, 384 >= 2944 cycles. One
full polynomial multiplication is composed of 2 NTT, 1
INTT, and base multiplication, so terminating NTT 1-layer
earlier can reduce the overhead of 3 layers, which consume
3 × 2, 944 = 8, 832 cycles. Obviously, the 7-layer NTT
outperforms the complete-NTT by 1,536 cycles. Similarly,
the 6-layer NTT is 1,344 cycles faster than the complete-
NTT but slower than the 7-layer NTT. The 5-layer NTT is
not a wise choice because the increased overhead is more
than the reduced overhead. The above analysis aims to
provide an insight into why incomplete-NTTs are faster than
the complete-NTT from an arithmetic point of view. From
an implementation perspective, our experimental results
show that the 6-layer NTT is the fastest, because 3-layer
merging in 6-layer NTT can use registers more efficiently
than 4-layer merging in 7-layer NTT, and we will give a
detailed discussion in Subsection 3.4. When computing a
matrix-vector multiplication, the ratio of NTT/INTT to base
multiplication is different, and we will re-discuss the choice
of complete-/incomplete-NTTs in Section 4.

3.4 NTT Optimization Techniques
The layer merging technique can improve the performance
of NTT by reducing memory accesses. On a Cortex-M4
platform, there are only 16 general-purpose 32-bit registers,
of which developers can only use 14. However, the 4-layer
merging is still possible by packing sixteen 16-bit coefficients
into eight 32-bit registers with the support of Single Instruc-
tion Multiple Data (SIMD) instructions [26, Sec 3.1]. On a
RISC-V platform, 30 of the 32 32-bit registers are available to
developers, so the 4-layer merging that needs to hold 16 co-
efficients is feasible. For the usage of registers, three registers
are used for function parameters, two registers are used to
store temporary values when computing the butterfly unit,
and two registers are used to hold the constants M and M ′

in Montgomery reduction. The remaining 23 registers are
used to control the loop and hold polynomial coefficients
and twiddle factors.
3-layer merging. When computing the 6-layer incomplete-
NTT, we merge six layers as 3+3. We need two registers to

control the inner and outer loops, and the remaining reg-
isters are enough for holding eight polynomial coefficients
and seven twiddle factors. The 6-layer INTT is merged in
the same manner.
4-layer merging. When computing the 8-layer complete-
NTT, we merge eight layers as 4+4. We only need one
register to control the single loop, and 16 registers are used
to hold the polynomial coefficients. So there are only six
registers left to load twiddle factors, but in the first 4-
layer merging, the same 15 twiddle factors are reused 16
times. We keep five of these twiddle factors in registers,
and the remaining one register is used to load the other ten
twiddle factors on demand. Merging as 3+3+2 is not cost-
effective because 256 additional load and store operations
are needed. The 5-layer and 7-layer NTT can be merged as
3+2 and 3+4, respectively. The 2-layer merging is easy to
implement because fewer registers are required.
Precomputation of twiddle factors. It is common to store
all Montgomery-domain twiddle factors in flash memory1,
but our rough estimate shows that it takes about 200 cycles
to load a word from the flash memory on SiFive freedom
E310. The overhead of loading all twiddle factors from
flash memory is unacceptable. So we decide to store all
the twiddle factors in writable memory (RAM) for better
performance2, and loading a word from the writable mem-
ory takes only two cycles on the selected platform. In this
way, our link script will place and maintain the twiddle
factors in a certain RAM area, occupying 0.75KB (NTT, base
multiplication, and INTT need 64 32-bit twiddle factors,
respectively) RAM for the 6-layer NTT. Besides, we reorder
these twiddle factors in the same order as they are used.
Moreover, we can reduce half of the multiplication with n−1

during the last layer in INTT by multiplying the last twiddle
factor with n−1, where n = 64 for the 6-layer NTT.

4 MEMORY OPTIMIZATION

The public matrix A, secret vector s and matrix-vector
multiplication consume a considerable amount of memory.
Previous work [12, Sec 2.2.1] proposed an on-the-fly gen-
eration strategy for the public matrix A (on-the-fly GenA
or just-in-time GenA) to reduce the memory footprint of
A in Saber, and they also optimized the memory footprint
during the secret vector generation. However, their on-the-
fly GenA strategy is quite complicated due to processing
the leftover bytes. Therefore, this section improves their
on-the-fly GenA by designing a simpler method to deal
with the leftover bytes and proposes a new out-of-order
GenA technique for Saber+. Our method does not affect
the nature of the mathematical distribution of A. More-
over, we propose an on-the-fly generation strategy for the
secret vector s (on-the-fly GenS). Based on the techniques
mentioned above and different memory allocation schemes
for the secret vector s, we present three different strategies
for computing the matrix-vector multiplication in Saber+.
These three strategies present different time-memory trade-
offs, and they can perfectly meet the individual memory
requirements of LightSaber+, Saber+, and FireSaber+.

1. Declaring an array with const keyword will suggest the linker to
put it in flash memory.

2. Declaring the array without const keyword.
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=

(a) A · s′ = b′

=

(b) AT · s = b

Fig. 1. Matrix-vector multiplication

4.1 Matrix-vector Multiplication and On-the-fly Genera-
tion

The matrix-vector multiplication appears twice in Saber,
AT · s in Algorithm 1 and A · s′ in Algorithm 2. Taking
l = 3 as an example, as shown in Figure 1, AT · s and A · s′
have different computing methods. In Saber’s reference
implementation, the matrix A is generated in row-major
order, and the matrix AT is generated in column-major
order. As shown in Figure 1a, when computing A · s′, the
core operation is the inner product of the i-th row of the
matrix A and vector s′, and the result will be stored in
the i-th slot of the vector b′. As shown in Figure 1b, when
computing AT · s, all polynomials in the i-th column of
matrix AT are multiplied by the i-th polynomial of vector s,
and l generated polynomials are respectively accumulated
into the l slots of vector b.

The basic idea of on-the-fly generation is that we gener-
ate a polynomial only when used and then reuse its mem-
ory space after finishing its polynomial multiplication. For
example, the computing of A · s′ contains l2 polynomial
multiplications, where each aij is used only once, so the
on-the-fly strategy can be used when generating matrix A.
With the on-the-fly GenA technique, the memory footprint
of matrix A is reduced from l2 ·256·2B to 512B. Its side effect
is that we need to keep the internal state of SHAKE-128 in
memory and deal with leftover bytes.

On-the-fly strategy for A · s′ = b′. When computing
A · s′ = b′, we can directly convert the result of the inner
product of a row of matrix A and vector s′ into the cipher-
text, so the memory to store vector b′ can be reduced down
to one polynomial. But we need to store the entire vector
s′, because it will be reused l times. In this manner, when
computing A · s′, we need to compute NTT 2l2 times. If we
store 32-bit ŝ′ (the NTT-domain representative of the vector
s′), then we only need to compute NTT l2 + l times, but the
memory usage of ŝ′ is as high as l · 256 · 4B. The ideal way
is that the matrix A is generated in column-major order,
then we can merely store one NTT-domain polynomial ŝ′i
instead of the whole vector ŝ′. The out-of-order GenA below
can meet such requirements and achieves an excellent time-
memory trade-off.

On-the-fly strategy for AT · s = b. When computing
AT · s = b, the on-the-fly GenS technique allows us store
merely a polynomial si instead of the vector s, but we have
to store the entire vector b. In our implementation, we store
the 32-bit polynomial ŝi (the NTT-domain representative of
si) instead of the original si. In this way, NTT is calculated
only l2 + l times instead of 2l2.

Keccak Squeeze 168B
88 coefficients

80B leftover

Step 1
Keccak Squeeze 168B 168 coefficients

Keccak Squeeze 168B 168 coefficients

Keccak Squeeze 168B
8 coefficients

88B leftover

Step 2

Byte-bank 80 coefficients80B leftover

Byte-bank 88 coefficients88B leftover

72 bytes are discarded

Keccak Squeeze 168B 168 coefficients
Step 3

1 polynomial

1 polynomial

1 polynomial

Fig. 2. On-the-fly GenS for Saber+ (l = 3, µ = 8)

4.2 On-the-fly GenS

Generating a secret vector s requires 640B, 768B, and
768B pseudo-random data for LightSaber+, Saber+, and
FireSaber+. We can get 168B pseudo-random data by calling
the keccak squeezeblocks() function once. So we need to
call it 4, 5, and 5 times for generating a secret vector s,
and there will be 32B, 72B, and 72B left for LightSaber+,
Saber+, and FireSaber+. For LightSaber+, we call kec-
cak squeezeblocks() once and use 168B outputs to generate
128 coefficients, and the 8B leftovers are directly discarded.
Discarding the 8B pseudo-random data will not affect the
security of Saber+ and can simplify the generation of s.
Overall, we call the keccak squeezeblocks() 4 times to gen-
erate the secret vector s for LightSaber+. As shown in
Figure 2, we use 88B byte-bank to keep the leftover bytes
for Saber+. The first 168B pseudo-random data is packed
into 168 coefficients, and the second 168B is divided into two
parts. The first 88B is packed into 88 coefficients and forms a
complete polynomial with the 168 coefficients above, while
the 80B leftovers will be kept in the byte-bank and used in
Step 2. In Step 2, after using the second 168B to generate
eight coefficients, there are still 160B leftovers. We discard
72B of them directly, and 72B is the maximum amount
we can discard without increasing the number of kec-
cak squeezeblocks() calls. The remaining 88B will be used
in Step 3 to generate the next polynomial. The generation
strategy of FireSaber+ is similar to Saber+, except that the
length of the byte-bank is 72B.

4.3 On-the-fly GenA

The on-the-fly generation strategy of matrix A proposed in
[12, Sec 2.2.1] requires a book-keeping of leftover bytes. In
our implementation, we simplify this process by directly
discarding some leftovers without increasing the number of
calls to Keccak. Generating a polynomial coefficient requires
13-bit pseudo-random data. So, the generation of the ma-
trix A requires 1,664B, 3,744B, and 6,656B pseudo-random
data, and we need to call the keccak squeezeblocks() 10,
23, and 40 times for LightSaber+, Saber+, and FireSaber+.
We observe that every two polynomials require 5 × 168B
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pseudo-random data, i.e., each polynomial needs 2.5×168B
pseudo-random data on average. Based on this observation,
we propose an improved on-the-fly GenA strategy. We first
pack two 168B data into 206 coefficients. After that, we use
82B of the third 168B to generate the 50 coefficients needed
to form the first polynomial, and there are 86B leftovers.
Then, we only keep 82B leftovers in the byte-bank for the
generation of the next polynomial. In Step 2, 82B leftovers
are firstly packed into 50 coefficients. Then, we only need
2 × 168B pseudo-random data to generate the remaining
206 coefficients of the second polynomial, and there will be
no leftovers. In sum, we use 5× 168B pseudo-random data
to generate two polynomials. We iterate this process two
and eight times to generate the matrix A for LightSaber+
and FireSaber+. For Saber+, four iterations are required to
generate eight polynomials and a separate Step 1 to generate
the last polynomial. Compared with the method in [12, Sec
2.2.1], our method greatly simplifies the book-keeping of
leftovers without increasing the number of Keccak calls.

4.4 Out-of-order GenA
Each entry aij in the public matrix A can be generated
without order restriction in Kyber. We call their method
‘out-of-order GenA’. For the generation of aij , the kec-
cak absorb() function takes seed, i, and j as input to reini-
tialize the internal state of Keccak, and then the outputs
of keccak squeezeblocks() are packed into aij . Hence, if
we want to generate l2 polynomials, we need to call kec-
cak absorb() l2 times. In Saber’s reference implementation,
keccak absorb() is called only once, and it only takes the
seed as input. In this way, the matrix A can only be
generated in row-major order, and the matrix AT can only
be generated in column-major order. We call this method
‘in-order GenA’.

In summary, the advantage of out-of-order GenA is that
aij can be generated without order restriction. The disad-
vantage is that keccak absorb() is called l2 times, and the
number of calls to keccak squeezeblocks() will be increased
because after generating each aij , the leftovers are directly
discarded. In-order GenA has a better performance than the
out-of-order GenA, but the generation order is limited.

In our implementation, out-of-order GenA is also imple-
mented with on-the-fly strategy. When we use out-of-order
GenA l2 times to generate the matrix A, compared with
the in-order GenA, the number of calls to keccak absorb()
increases by 3, 8, and 15 times, and the number of calls
to keccak squeezeblocks() increases by 2, 4, and 8 times
for LightSaber+, Saber+, and FireSaber+, although the per-
formance of out-of-order GenA is not as good as in-order
GenA, its combination with the on-the-fly GenS can achieve
excellent time-memory trade-offs. Based on this observa-
tion, we propose three strategies for computing the matrix-
vector multiplication in Saber+.

4.5 Three Strategies for Computing Matrix-vector Mul-
tiplication
When computing AT · s, on-the-fly GenA and on-the-fly
GenS techniques can be used at the same time, and we
only need to compute NTT l2 + l times. However, when
computing A · s′, if we use on-the-fly GenS to reduce the

memory footprint of the secret vector s′, then we need to
compute NTT 2l2 times and each entry of the vector s′ will
be repeatedly generated l times. Based on the above analysis
and proposed techniques, we propose three strategies to
achieve different time-memory trade-offs. In strategy 1, we
store the original vector s′, so we need to compute NTT 2l2

times. In strategy 2, we store the NTT-domain secret vector
ŝ′, and we need to compute NTT l2 + l times. In strategy
3, we use the out-of-order GenA technique to generate the
matrix A in column-major order. Furthermore, with the
support of on-the-fly GenS, we can merely store one NTT-
domain polynomial ŝi, so we only need to compute NTT
l2+l times. In the above three strategies, base multiplication
and INTT are computed l2 times.

In short, strategy 1 has the smallest memory footprint
but the worst performance, while strategy 2 has the best
performance but the largest memory footprint. Strategy 3
achieves an excellent time-memory trade-off, and its perfor-
mance and memory footprint are between the other two.
In order to enable the three variants of Saber+ to be de-
ployed on memory-constrained RISC-V-based devices, we
apply strategy 1, strategy 2, and strategy 3 to FireSaber+,
LightSaber+, and Saber+, respectively. LightSaber+’s mem-
ory consumption is inherently small, so strategy 2 with
the largest memory footprint is suitable for LightSaber+.
We apply strategy 1 with the smallest memory footprint to
FireSaber+ because of its inherently large memory footprint.
Saber+’s memory optimization requirements are between
LightSaber+ and FireSaber+, so strategy 3 with a better
time-memory trade-off is suitable. We have to note that our
implementation is highly modular. The users can apply the
proposed three strategies to different variants of Saber+ to
get the desired time-memory trade-off.

In addition, after computing A · s′ in Algorithm 2, s′ is
also used to compute the inner product bT · s′. In strategy
2, because we store the NTT-domain vector ŝ′, there is no
need to compute NTT(s′) again. Similarly, in strategy 3, we
keep the NTT-domain polynomial ŝ′i until the inner product
is completed. But the purpose of strategy 1 is to minimize
the memory consumption, so we have to compute NTT(s′)
again in strategy 1.

In Subsection 3.3, we compare the efficiency of the
complete-NTT and incomplete-NTTs from an arithmetic
perspective. When computing the full polynomial multipli-
cation (c=INTT(NTT(a)◦NTT(b))), the ratio of NTT/INTT to
base multiplication is expressed as NTT:Base=3:1. This ratio
is different for matrix-vector multiplication, so we need to
re-discuss the choice of incomplete-NTT. We implement all
of the complete-NTT, 7-layer NTT, 6-layer NTT, and 5-layer
NTT with hand-written assembly. Our experimental results
show that the 6-layer NTT is the fastest for all variants of
Saber+.

4.6 Saber+ vs. Saber

Note that Saber’s specification doesn’t explicitly specify
the generation strategy of the public matrix A and the
secret vector s, which means that Saber is open to differ-
ent implementation strategies. Therefore, we introduce two
tweaked GenA and a tweaked GenS strategies for Saber+ to
obtain more time-memory trade-offs, and these tweaks on
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GenA and GenS are the main characteristics that distinguish
Saber+ from Saber. Due to different generation order of A
and tweaked leftover handling strategy for A and s, our
GenA and GenS strategies on Saber+, i.e., on-the-fly GenA,
out-of-order GenA and on-the-fly GenS, are not compatible
with the known-answer-tests (KAT) vectors of the original
Saber submission. However, our tweaks do not affect the
nature of the mathematical distribution, and hence they do
not affect the security of Saber+. Besides, we would like to
emphasize the benefits our tweaks on GenA together with
our on-the-fly GenS strategy bring to Saber+. First of all,
our on-the-fly GenA used in strategies 1 and 2 has a simpler
mechanism to handle leftover bytes and doesn’t increase the
number of Keccak calls. Therefore, it has better performance
in Saber+ than the Saber presented in [12, Sec 2.2.1]. Besides,
the advantage of on-the-fly GenS is that it allows us to
store merely one polynomial in Saber+ instead of the entire
secret vector. Finally, although the out-of-order GenA used
in strategy 3 causes an increase of pseudo-random bytes,
its combination with on-the-fly GenS achieves an excellent
time-memory trade-off for Saber+.

4.7 Others
Since the coefficients of the secret polynomials lie in a small
range [−µ/2, µ/2), where the parameter µ=10, 8, and 6
for LightSaber+, Saber+, and FireSaber+, we apply the 4-
bit encoding technique proposed in [13, Sec 4.1] to the
coefficients of secret polynomials.

Unlike the in-place NTT implementation in Kyber and
NewHope, when computing c=INTT(NTT(a)◦NTT(b)) in
Saber+, apart from storing the original polynomial a and
b, the corresponding 32-bit NTT-domain representations, â
and b̂, also need to be stored. When computing matrix-
vector multiplication, the polynomial a is used only once, so
after getting â, the memory space of a can be reused to store
b̂. The memory reuse here can reduce the memory footprint
of 0.5KB when computing polynomial multiplication. In
order to avoid introducing an additional memory footprint,
our base multiplication is implemented in place. Similar to
[13, Sec 4.2], we also implement in-place verification of the
decryption.

5 RESULTS AND COMPARISON

In order to comprehensively compare our implementation
with others, we give detailed results and throughout com-
parison on three platforms: the selected RISC-V platform
(SiFive Freedom E310 board), the simulated PQRISCV plat-
form1 and Cortex-M4. The first platform is a real memory-
constrained platform with only 16KB of RAM, while the
PQRISCV platform is a simulated RISC-V platform with
128KB of RAM.

5.1 Experimental Setup

SiFive Freedom E310. This board contains an E31 RISC-V
core with RV32IMAC instruction set, but it is not equipped
with a random number generator. As far as we know, there
are currently no such RISC-V devices with merely 16KB

1. https://github.com/mupq/pqriscv

memory that support a hardware random number gener-
ator. Therefore, similar to Saber’s reference implementation,
we use the Counter mode of AES (AES CTR) to generate
seed bytes.

We use SiFive GCC 8.3.0 toolchain to compile our source
code with the -Os flag. The -O3 flag is the most commonly
used option for better performance, but the -Os option in
our implementation has better performance than the -O3
flag. The reason is that the E31 core supports an Instruction
Tightly Integrated Memory (ITIM) with a maximum size
of 8 KB. ITIM provides high-performance and predictable
instruction delivery. Fetching an instruction from ITIM is as
fast as an instruction-cache hit [27, Sec 3.1.1]. The executable
program compiled with the -O3 flag cannot be totally placed
in ITIM, part of it has to be placed in ROM, and fetching
instructions from ROM has a longer delay. Therefore, a
smaller executable program compiled with the -Os flag is
more suitable for the selected RISC-V core.

PQRISCV. The PQRISCV platform targets the VexRiscv2

implementation of the RISC-V ISA. This platform has
enough memory resources, so we can run the generic C im-
plementation in [11]–[13] on this platform to get a thorough
comparison. We use SiFive GCC 8.3.0 toolchain to compile
our source code with the -O3 flag. This platform does not
provide a hardware random number generator, so we also
use AES CTR to generate seed bytes.

Cortex-M4. Our implementation is compiled and run in
the same conditions as in pqm4 [28]. [10] is the known
fastest implementation of Saber using NTT on the Cortex-
M4 platform. In order to explore the performance penalty
of our memory optimization, we ported their Cortex-M4
assembly implementation of NTT into our work.

5.2 Comparison of Matrix and Secret Generation
Strategies

In order to explore the performance loss of the on-the-
fly generation strategies, we report their cycle counts in
Table 2. The GenA and GenS are taken from Saber’s ref-
erence implementation [11]. Taking l = 3 as an example,
we call the on-the-fly GenA, out-of-order GenA nine times,
and on-the-fly GenS three times. The results show that the
performance loss of on-the-fly GenA and on-the-fly GenS
is negligible. Although the performance penalty of out-of-
order GenA is more significant than GenA or on-the-fly
GenA, the increased cycles only account for about 5% of
the KenGen stage. Besides, our improved on-the-fly GenA
is 27% faster than [12, Sec 2.2.1] thanks to our simpler
mechanism of handling leftovers. The generation of the
public matrix and secret vector does not touch the memory
peak, so there is no need to report their stack usage.

5.3 Evaluation and Comparison of Saber+ KEM

Table 3 and Table 4 illustrate the experimental results of our
C and assembly Saber+ KEM implementation in terms of
execution time and stack usage on three platforms. Note that
all of our memory optimization techniques are implemented
in C, and only the layer merging in NTT is implemented in

2. https://github.com/SpinalHDL/VexRiscv

https://github.com/mupq/pqriscv
https://github.com/SpinalHDL/VexRiscv
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TABLE 2
Performance comparison for different generation strategies of public

matrix A and secret vector s.

Method Cycles
GenA ( [11]) 923 k cycles
on-the-fly GenA (This work) 944 k cycles
on-the-fly GenA ( [12]) 1 296 k cycles
out-of-order GenA (This work) 1 140 k cycles
GenS ( [11]) 209 k cycles
on-the-fly GenS (This work) 214 k cycles

assembly. As shown in Table 3, for l = 2, the assembly-
KeyGen and assembly-Encaps on SiFive E310 are slightly
slower than the C implementation because the loops and
functions in the assembly-NTT are expanded, resulting in
a larger executable program. A smaller executable program
can achieve better performance, which can be well corrob-
orated by the fact that the software compiled with the -Os
flag outperforms the -O3 flag on SiFive E310. Besides, when
l = 3 and l = 4, the assembly-KeyGen on SiFive E310
is also slower than the C implementation. After removing
AES CTR, we find that assembly-KeyGen outperforms the
C-KeyGen. We infer that due to the larger code size of the
assembly-NTT, the linker puts more AES CTR-related codes
into ROM. Due to the complicated AES implementation and
slower instructions fetching from ROM, a slower assembly-
KeyGen and assembly-Encaps are reasonable. Compared
with the C implementation, our assembly implementation
shows impressive speed-up on the PQRISCV platform with
relatively sufficient resources.

Since our selected RISC-V platform has merely 16KB
RAM, Saber’s reference implementation cannot run on
SiFive E310. To highlight our optimization more clearly,
we run Saber’s C reference implementation [11] on the
simulated PQRISCV platform. The results in Table 3 and
Table 4 on PQRISCV show that our C and assembly im-
plementation is faster than the reference implementation
with just merely one-third stack usage. For l = 3, our as-
sembly implementation shows 35%, 43%, and 53% speed-
ups for KeyGen, Encaps, and Decaps, respectively, which
clearly shows the advantage of our time-memory trade-
offs. Our Saber+ implementation on Cortex-M4 also shows
40%, 42%, and 44% speed-ups compared with the reference
implementation with roughly one third stack usage.

Although many related works tried to optimize Saber in
terms of time and memory, only a few works focused on
extremely memory-constrained scenarios (i.e., 8KB∼32KB
RAM available). Besides, previous memory optimizations
only focused on optimizing Toom-Cook and Karatsuba [12],
[13]. The NTT’s adaptation on Saber was only conducted on
Cortex-M4 and Intel CPU [10]. There are still no memory op-
timizations conducted over the NTT’s adaptation on Saber.
We believe our implementation can fill this gap and provide
efficient time-memory trade-offs to resolve the availability
of Saber in memory-constrained scenarios.

[12] from TCHES 2018 is one of the few works that
explore the availability of Saber on ARM Cortex-M0 with
limited memory. We deploy their generic C implementation
on SiFive E310. However, they use the hardware-specific
random number generator on Cortex-M0. To be fair, we

modified their implementation to use AES CTR as the
seed bytes generator and benchmarked their implementa-
tion on the selected RISC-V platform. They only provide
the memory-optimized implementation of Saber without
LightSaber and FireSaber. As shown in Table 3 and Table 4,
our stack usage is slightly larger than theirs in the Encaps
stage, but our implementation is 42%, 46%, 55%, and 48%
faster than theirs for KenGen, Encaps, Decaps, and the entire
scheme respectively. The experimental results on PQRISCV
and Cortex-M4 can also draw similar conclusions.

[13] provides time-memory trade-offs for Saber on
Cortex-M4, and they reported that Saber’s KEM scheme
could execute with less than 3.5KB stack usage thanks
to their memory optimization. They provide a generic C
version and a memory-efficient version (M4-mem), and the
latter version optimizes the 4-level memory-efficient Karat-
suba algorithm on Cortex-M4 using assembly language. In
order to compare with their implementation on the RISC-
V platform, we tried to deploy their generic C code on our
selected RISC-V platform and PQRISCV platform. However,
the stack usage of their C implementation is too large to run
on SiFive E310, and their C implementation accounts for
nearly 21KB-40KB of stack on PQRISCV. The performance
results on PQRISCV show that our assembly implemen-
tation outperforms than theirs by 18%, 20%, and 29% for
KenGen, Encaps, and Decaps, respectively, while consum-
ing nearly one-seventh stack. For our generic C implemen-
tation, our encapsulation and decapsulation are 3% slower
than the work in [13] when l = 4, but our stack usage
is only 12%-14% of theirs. Compared with their M4-mem
implementation on Cortex-M4, our implementation is 1.48-
1.72 times faster than theirs. For stack usage, our KeyGen
is better than theirs only when l = 3 or l = 4, and in
other cases, our stack usage is 252-1468 bytes more than
theirs. In summary, we believe it is worth trading these stack
consumption for such a significant performance gain.

The implementation in [10, Sec 3.1] is the first work that
utilizes NTT to accelerate Saber. Their results show that
Saber’s NTT adaptation can achieve a great performance
gain. However, they did not conduct any memory opti-
mization, which makes their implementation impractical in
memory-constrained scenarios. According to Table 4, their
implementation requires 14KB-41KB of stack. After inte-
grating our memory optimizations with their NTT assem-
bly implementation on Cortex-M4, we can save 73%-88%
stack with merely 10%-31% performance loss. This firmly
confirms the effectiveness of our memory optimizations.

6 CONCLUSIONS

In this paper, we presented the first known tailored RISC-V
implementation of a modified Saber (Saber+). Our imple-
mentation aimed at memory optimization, and we explored
various time-memory trade-offs on a memory-constrained
RISC-V platform. Our time-memory trade-offs can reduce
the stack consumption by 73%-88% with merely 10%-
31% performance loss compared with the fastest Saber
NTT adaptation implementation. Compared with previous
memory-optimized implementation using 4-level memory-
efficient Karatsuba, the stack consumption is at the same
level, but our speed is much faster than them. Our work
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TABLE 3
Comparison of execution time (in k cycles) on three platforms.

Platform Implementation KeyGen Encaps Decaps
l = 2 l = 3 l = 4 l = 2 l = 3 l = 4 l = 2 l = 3 l = 4

SiFive
Freedom

E310

[12] (M0-mem) - 6 546 - - 6 614 - - 7 133 -
Our Saber+(C) 2 219 3 647 5 056 2 202 3 881 6 076 2 030 3 755 6 019

Our Saber+
(Assembly) 2 560 3 809 5 063 2 205 3 594 5 360 1 773 3 193 4 928

Speed-up
(Assembly VS Old) — +42% — — +46% — — +55% —

PQRISCV

[11](C) 6 308 10 699 16 405 6 769 11 986 18 430 6 677 12 196 19 036
[12] (M0-mem) - 12 085 - - 13 837 - - 14 521 -

[13](C) 5 293 8 487 11 741 5 233 8 627 12 589 4 651 8 039 12 087
Our Saber+(C) 5 074 8 242 11 233 4 847 8 498 12 915 4 172 7 832 12 353

Our Saber+
(Assembly) 4 494 7 000 9 083 4 020 6 885 9 587 3 012 5 720 8 360

Cortex-M4

[11](C) 1 041 2 201 3 778 1 520 2 906 4 692 1 840 3 386 5 338
[12] (M4-mem) - 1 165 - - 1 530 - - 1 635 -
[13] (M4-mem) 607 1 233 2 052 857 1 620 2 546 973 1 765 2 749

[10] 360 658 1 010 513 864 1 257 501 838 1 234
Our Saber+(C) 635 1 331 2 072 888 1 693 2 913 1 018 1 887 3 184

Our Saber+
(Assembly) 409 849 1 238 566 1 067 1 607 565 1 064 1 617

TABLE 4
Comparison of stack usage (in bytes) on three platforms.

Platform Implementation KeyGen Encaps Decaps
l = 2 l = 3 l = 4 l = 2 l = 3 l = 4 l = 2 l = 3 l = 4

SiFive
Freedom

E310

[12] (M0-mem) - 4 984 - - 4 696 - - 5 800 -
Our Saber+(C) 3 812 4 324 4 884 4 404 4 932 4 916 4 436 4 948 4 948

Our Saber+
(Assembly) 3 804 4 316 4 876 4 396 4 924 4 908 4 428 4 940 4 940

Reduction
(Assembly VS Old) — +13% — — -5% — — +15% —

PQRISCV

[11](C) 9 392 13 024 19 968 11 520 15 648 23 104 12 272 16 752 24 592
[12] (M0-mem) - 4 980 - - 4 068 - - 5 172 -

[13](C) 21 364 28 084 35 844 23 604 30 868 39 204 24 356 31 972 40 692
Our Saber+(C) 3 796 4 416 4 852 4 372 5 008 4 900 4 420 5 024 4 932

Our Saber+
(Assembly) 3 788 4 416 4 844 4 364 5 008 4 892 4 412 5 024 4 924

Cortex-M4

[11](C) 9 392 12 992 19 560 11 496 15 616 22 696 12 240 16 712 24 176
[12] (M4-mem) - 6 931 - - 7 019 - - 8 115 -
[13] (M4-mem) 3 548 4 400 5 216 3 248 3 412 3 668 3 156 3 448 3 736

[10] 14 616 23 288 37 128 16 248 32 616 40 488 16 992 33 712 41 968
Our Saber+(C) 3 816 4 328 4 848 4 392 4 896 4 904 4 408 4 904 4 920

Our Saber+
(Assembly) 3 800 4 312 4 832 4 376 4 880 4 888 4 392 4 888 4 904

shows that the combination of NTT and various memory
optimization techniques proposed in this paper can effec-
tively reduce Saber+’s stack consumption, making it possi-
ble to deploy all variants of Saber+ on memory-constrained
devices.
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