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Abstract. Consider some user buying software or hardware from a
provider. The provider claims to have subjected this product to a number
of tests, ensuring that the system operates nominally. How can the user
check this claim without running all the tests anew?
The problem is similar to checking a mathematical conjecture. Many
authors report having checked a conjecture C(x) = True for all x in some
large set or interval U . How can mathematicians challenge this claim
without performing all the expensive computations again?
This article describes a non-interactive protocol in which the prover
provides (a digest of) the computational trace resulting from processing
x, for randomly chosen x ∈ U . With appropriate care, this information
can be used by the verifier to determine how likely it is that the prover
actually checked C(x) over U .
Unlike “traditional” interactive proof and probabilistically-checkable proof
systems, the protocol is not limited to restricted complexity classes, nor
does it require an expensive transformation of programs being executed
into circuits or ad-hoc languages. The flip side is that it is restricted
to checking assertions that we dub “refutation-precious”: expected to
always hold true, and such that the benefit resulting from reporting a
counterexample far outweighs the cost of computing C(x) over all of U .

1 Introduction

Consider as a motivational example the sequence defined by the following itera-
tion:

φ : x 7→

{
x/2 if x ≡ 0 (mod 2)

3x+ 1 if x ≡ 1 (mod 2).

starting from an initial value x0 ∈ N. The celebrated and still open Collatz
conjecture [Col86] states that for all integers x0, the iteration eventually reaches
1: ∀x0 ∈ N, ∃n ∈ N such that φn(x0) = 1.

An impressive body of mathematics has been produced to try and prove (or
refute) this claim. Computer verification checked it to be true up to 87×260 [Bař21].
Other famous mathematical conjectures verified over large intervals include the



Goldbach conjecture (verified for x ≤ 4 × 1018, [eSHP14]) and the Riemann
hypothesis (verified up to height ' 3× 1012 [PT21]).

Such claims are however problematic from a scientific standpoint because
computational exploration is, by definition, following the edge of available com-
puting power. In theory, repeating calculations to check them just adds one bit
of effort but in practice, very few researchers have access to massive infrastruc-
tures allowing to re-run such calculations. In addition, in a number of cases the
verification effort is distributed, making it harder to aggregate and verify claims
of computational feats.

1.1 Related work

The topic of verifiable computing was kickstarted by Babai et al. [BFLS91] in the
context of monitoring large computations performed by a powerful, but faillible,
supercomputer. This contrasts with the more traditional approach of majority
or quorum computation, where a single task is repeated several times with the
hope that not all computers conspire to lure the verifier [CRR11,CL02]. The new
paradigm relies on providing a proof of validity together with a computational
result: the celebrated PCP theorem [ALM+98,AS98,AS92,Hås01] states that with
a suitably encoded proof, it is sufficient for the verifier to check three randomly
chosen bits! Unfortunately, this theorem does not provide a practical, useable
protocol that can be implemented. Furthermore, the PCP proof might be very
long (potentially too long for the verifier to process).

An interactive protocol for verifiable computation was proposed by Ishai et
al. [IKO07] and the first non-interactive primitives were very limited [Mic94]. A
history of these developments can be found in Goldwasser et al. [GKR15]; several
implementations are also available [SMBW12,VSBW13,PHGR16].

Most of the protocols above start by translating a program into a circuit,
then translating this circuit into a polynomial (arithmetization). The verifier
supplies the input and the prover executes the circuit, producing a transcript
from intermediate values. Rather than sending the transcript to the verifier (who
could then run the circuit themselves, and thus check the transcript’s validity)
the key idea is to convince the verifier that a valid transcript exists by encoding
the transcript in some way, then having the verifier probe some parts of that
encoded transcript. This makes it possible for a computationally weaker verifier
to nevertheless check the work of a computationally stronger prover.

In the non-interactive setting literature this is achieved by either extracting a
commitment [IKO07,Blu11,SBV+13,SMBW12,SVP+12,VSBW13] or by using
encrypted queries [GGPR13,BCI+13,BCG+13,BCTV14], in both cases using
PCP under the hood. The above thread of research shows that it is possible for
the verifier to check the prover’s claim — for a given program and a given input
— without running the full program itself.

Our approach achieves a similar goal, albeit in a restricted setting, by different
means. The core notion is that of a probabilistic counter, which is closer in spirit
to the method introduced by Morris for approximate counting [Mor78,Fla85].
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In the original context of approximate counting, one wishes to estimate the
number of unique elements in a (large) list by using the least amount of memory;
the simplest form of this algorithm consists in hashing and determining the
maximum number of leading zeros after this operation [DF03,FFGM07]. While
nearly optimal for the task it is set to solve [KNW10], approximate counting and
its variants are easy to manipulate in an adversarial setting [PR21,RT20].

In our construction the prover will share with the verifier a small proportion
of inputs R � U on which some conjecture C holds5, and which, in addition,
satisfy a specific property S(x). This property is designed so that the prover
cannot predict in advance whether any particular value x satisfies it, until they
actually compute C(x) using an agreed-upon program P . The verifier can confirm
that both C(x) and S(x) hold true (for instance by running P on each x ∈ R).
As we will show, under some hypotheses and with appropriate parameters, the
verifier then has statistical evidence that the prover did try most of the values
x ∈ U .

In a sense, this mechanism combines the approximate counting approach
with a refinement of the well-known proof-of-work mechanism introduced by
Dwork & Naor [DN92], where a given computation C(x) is being performed.
However, it differs in one fundamental aspect: instead of exhibiting the end
result of a computational task, we exhibit a number r of witnesses that the task
was successful and estimate from r how many times the task was performed by
comparing r to a threshold value r.

This strategy comes with a limitation: a prover can stumble upon values x
that do not satisfy C(x). This does not contradict that the prover actually tested
≈ |U | different values of x. Therefore a prover may decide to withhold from
disclosing such values x, and still get a convincing proof that they tested many
value (they just so happen to “miss” those few ones). In other terms, the prover
may not honestly report all the results of their computations — but they still
have to be honest most of the time, otherwise verification would fail. Naturally,
such counterexamples to C cannot belong to the set R transmitted to the verifier,
which means that their density cannot exceed ≈ 1− |R|/|U | by much. To work
around this limitation, we suggest restricting the techniques discussed here to a
subclass of properties that we dub “refutation-precious”, formalized hereafter.

1.2 Incentivizing counterexample reporting

In general we have no control over the proportion of counterexamples to a
generic statement C. This means that a dishonest prover could dissimulate
counterexamples if they found them.

Working around this issue is possible using purely mathematical means, by
randomizing and restarting the protocol many times. However in our setting this
is most impractical: by design, we are handling computations that are barely
feasible — we cannot hope to repeat them.

5 This fact is denoted by x ∈ R⇒ C(x) = True. Typically, U ⊂ N.
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Alternatively, we can invoke a game-theoretical argument that provers would
be better off not withholding counterexamples when they find them: the property
to be checked is almost always true (resp. almost always false), so that an
exception would be of large utility to whomever reports it. For instance, finding
and reporting a counterexample to the Collatz conjecture will bring upon the
finder a fame whose value is conceivably much higher than a $10M computation. In
other words, no researcher would in their right mind find a Collatz counterexample
and keep mum about it. We call this a refutation-precious claim. The same would
hold for detecting a bug in a program or a circuit: it would immediately credit a
researcher’s reputation through the publication of a CVE.

Beware that not all situations lend themselves to such a compulsion to reveal
counterexamples: for instance, an intelligence agency discovering the very same
bug as above may be willing to stockpile exploits, and therefore keep its discovery
secret.

Venturing out of cryptology into cognitive science, we can nonetheless try to
nudge provers to consider counterexamples6 x̂ worthy of reporting using several
means:

Means Example
Positive Prize (e.g., monetary award)
reinforcement if ∃x̂ discovered and duly reported by the tester.
Positive Penalty (e.g., a fine)
punishment if ∃x̂ unreported by the tester.
Negative Granting an immunity (e.g., from a lawsuit)
reinforcement if ∃x̂ discovered and duly reported by the tester.
Negative Revocation of a privilege (e.g., sales clearance)
punishment if ∃x̂ unreported by the tester.

Finally, several provers may be put in competition, making it a prisoners’ dilemma
for all of them to conspire and withhold counterexamples.

2 Preliminaries

2.1 Machine model and state

As part of our protocol we assume that the prover and the verifier agree on
a concrete computational model. We only need a way to describe this model
unambiguously (so that its parameters can be agreed upon) and that, when
running a program P on input x, we can obtain the sequence of states τ that
the machineM(P, x) goes through during computation.

Any such model could be used, but for the sake of compactness and applicability,
we may want to use higher-level semantics.

One well-studied model that can be used is TinyRAM, introduced by Ben-
Sasson et al. [BCG+13] for the very purpose of proving program execution.
6 Formally, a counterexample is x̂ ∈ U such that C(x̂) = False.
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TinyRAM is close enough to real programs that it can be translated and compiled
on most computer architectures, yet it enjoys a full specification together with a
small instruction set, making it easier to prove statements about. In particular,
for our needs, the TinyRAM assembly is very succinct, having only 29 opcodes,
but most importantly its state is straightforward to capture.

We recall here some elementary facts about TinyRAM, for the sake of com-
pleteness7. A TinyRAM machine is described by two integers (W,K) together
with a state (P, pc, {r1, . . . , rK}, f, mem, x) where:

Notation Definition
P the program to be executed

(considered as a read-only sequence of elementary operations)
pc is a W -bit integer

(indicating which instruction is currently being executed)
r1, . . . , rK are W -bit registers

f a one-bit flag
mem an array of 2W bytes
x a string of W -bit integers, representing the input

At every clock cycle, TinyRAM fetches the instruction in P indicated by pc, and
reads if necessary from the input tape x. A special instruction answer takes a
single argument and acts as the return value of program P — it immediately
terminates execution. Before the execution of P all registers, all memory cells,
the flag and the program counter pc are set to zero. Any other computational
model could be used, but TinyRAM strikes a nice balance between usability and
compactness.

2.2 Resource binding

While in the most general setting C(x) should return True or False, a given
program may also fail to terminate. For instance, for Collatz the intermediate
values may exceed available memory, or the sequence may run longer than a
reasonably set time-out value, making the verification impossible on the target
machine using the specific program P — it may also loop forever. To avoid issues
with such cases we impose that the execution of P (x) is bounded both in terms
of time and memory. We do not regard this limitation as fundamental given the
goal that we seek to achieve.

Because we cannot predict in advance the amount of time and memory that
P will require for processing a given x, we assume that the conjectures tested by
our programs are “wrapped” in a resource-binding condition. Namely, CMB,T

(x)

7 The current specifications can be found here: http://www.scipr-lab.org/doc/
TinyRAM-spec-2.000.pdf.
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the wrapped version of the conjecture C(x), is the conjunction of:

CMB,T
(x) :=


C(x) = True
P (x) terminates before T clock cycles
P (x) uses less than B memory cells inM

We implement the wrapping directly inMB,T : if an execution exceeds a time
limit T or happens. to claim at some point more than B memory cells, thenM
returns False and halts. Such an x is not included in R.

3 A first basic protocol

We now describe a first version of our protocol. As the analysis will later show,
this naive first version has limitations. It is therefore only a skeleton on which
we will graft improvements, and is useful to set up some terminology.

Setup. We consider that both parties have agreed on parameters λ > 0, a set
U of size u, a collision-resistant hash function H : {0, 1}∗ → {0, 1}λ, a machine
setup (see Section 2.1) MB,T , and constants κ < 2λ, 0 < r < u. Furthermore
both parties have agreed on a program P with domain U and a serialization of it
written [P ].

Prover. The prover runs Algorithm 1 and transmits information (R) to the
verifier.

Algorithm 1 Prover’s Algorithm
procedure GenerateProof(P,U, κ < 2λ)

2: R← ∅
for all x ∈ U do

4: RunMB,T (P, x), collecting τ , the sequence of machine states
if MB,T (P, x) finishes within the (B, T ) ressource binding then

6: if P (x) = False then
Report a refutation precious counterexample

8: else if H([P ], x, τ) < κ then
Append x to R

10: return R

Verifier. The verifier runs Algorithm 2 on received data and accepts (returns
True) or rejects (returns False). The threshold value r appearing in this algorithm
is an integer which is determined by the verifier ahead of time based on the
analysis in Section 4.
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Algorithm 2 Verifier’s Algorithm
procedure CheckProof(R ⊂ U,P, κ < 2λ, r ∈ N)

2: if R 6⊂ U or |R| < r then
return False

4: for all x ∈ R do
RunMB,T (P, x), collecting τ , the sequence of machine states during execu-

tion;
6: if H([P ], x, τ) ≥ κ or P (x) = False orMB,T (P, x) finishes within the (B, T )

ressource binding then
return False

8: return True

Remark 1. The property S(x) discussed in the introduction is realized here as
the conjunction of:

S(x) :=

{
x ∈ U
H([P ], x, τ) < κ

While from an information-theoretical point of view MB,T (P, x) is entirely
determined by x and P , from a computational point of view there is essentially
no other way to obtainMB,T (P, x) than actually executing the program P on x
when H is collision-resistant.

Remark 2. The requirement that P returns a Boolean value is not restrictive:
without loss of generality it is always possible to turn testing P into testing a
predicate P ′(x) defined as

P ′(x) := (if P (x) = m then return True else return False)

where m is the hard-coded value representing the evaluation of the function
implemented by P at x.

Remark 3. The verifier checks that R ⊂ U . We assume that this can be tested effi-
ciently, in time O(|R|). Such is the case if U is an interval or U = {f(1), f(2), . . . }
for some function f . If U is arbitrary, the verifier may still rely on a trusted
helper publishing the Merkle tree of U or digitally signing each element of U .

Remark 4. The protocol is entirely deterministic, for both the prover and the
verifier. This assumes that two different runs of P (x) will produce identical τs.
In other words, P does not use any randomness source to produce its output.
For testing algorithms where randomness is necessary (e.g., computing a DSA
signature) an identical PRNG should used by the prover and the verifier.

Remark 5. The protocol is entirely parallelizable for both parties. In settings
where using more than one prover should be deterred, H([P ], x, τ) might be
substituted by H([P ], x, τ, Ri−1) where Ri is the state of R at its previous
update. This does not prevent exploring in parallel H([P ], xj , τ, Ri−1) for several
xj values but limits the degree of parallelism that the prover might benefit of.
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Remark 6. At what conditions can verification succeed or fail?

Event Explanation
x /∈ R
(failure)
returns False

The prover picked an input x outside of the agreed-upon
domain U . This x can be discarded (removed from R) by
the verifier; ?.

H([P ], x, τ) ≥ κ
(failure)
returns False

The prover ran the computation with a valid input, but
this input shouldn’t have been included in the set R. Again
the verifier can discard x; ?.

P (x) = False
(failure)
returns False

The prover gave a counterexample. At this point we may
either accept with a different return code, or reject the
entire proof as “P (x) = True for all x ∈ R” doesn’t hold.

|R| < r
(failure)
returns False

The prover hasn’t sent enough evidence. As for the other
two failures cases denoted by ?, the verifier may fail “softly”,
requesting more evidence from the prover to continue.

M aborted
(interruption)
returns False

M was not powerful enough to run P (x) either time-wise
or memory-wise. Such x values are not included in R. We
expect those events to be exceptional.

all other cases
(success)
returns True

This is the normal outcome expected in most runs: P (x)
returned True and, in addition, H([P ], x, τ) < κ. Hence x
was included in R.

The practical deployment of the proposed protocol is subtle and requires
taking into account several caveats, e.g.:

Remark 7. It matters that P is agreed upon ahead of time. In particular, a
verifier should not accept a P provided solely by the prover, as P could be
written in a way purposely causing a statistical bias: for instance, P may include
the assignment instruction var=91116; where var is a variable never used in the
program. The prover could to re-run the protocol with a slightly different P
(having a different var value) until — by sheer statistical fluctuation — they
obtain a false positive. (One could refer to this as P -hacking8). Even if for each
version of P the probability η to generate an R fooling CheckProof is small,
the attacker only needs one such R to win. The attacker’s success probability is
hence 1− (1− η)n where n is the number of versions of P tried.

That being said, we do not address this threat, as it can be circumvented in
several ways:

– Firstly, conducting such an attack requires running the protocol multiple
times, which costs more than honestly following the protocol once.

– Interactivity is a simple workaround. In this case the verifier sends a random
challenge c at the beginning of the protocol and H(x) is replaced by H(c|x).

– The prover may also commit H(P ) into a blockchain on January 1st and
later assign to c the digest of blockchain’s ledger on midnight January 10th.

8 See https://en.wikipedia.org/wiki/p-hacking
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– P can be published and group-signed by a large enough community of users
with the group signature later being used as the randomizer c.

– P can be fed into to a verifiable delay function (VDF) with the VDF’s output
being used as c. This will affect honest provers once but add a penalty to
dishonest provers.

Remark 8. In a number of ad hoc cases, P and τ can be replaced by a witness ωx.
Consider for instance a conjecture of the form ∃ωx, C(ωx, x) = True. Typically,
in the case of Collatz, ωx can be the sequence of of digits φ(x), φ2(x), . . . , 1 and
the inclusion criterion may be corrected to:

S(x) :=

{
x ∈ U
H(x, ωx) < κ

A more subtle example is Goldbach’s conjecture stating that “any even integer
x ≥ 2 is the sum of two primes”. In this case ωx is the pair of primes whose
sum gives x.9 Here, because it may happen that multiple ωxs can be witness to
the same x a common random tape must be used to prevent a dishonest prover
trying more and more witnesses10 for the same x to compensate for skipping
subsets of U .

4 An analysis of the basic protocol

We consider throughout this analysis the number of executions of P performed by
the prover. This quantity is unknown, therefore we model it as an integer-valued
random variable N . The crux of our protocol lies in that we can estimate N
based on the information R provided to the verifier by the prover.

Let us introduce a few notations: u = |U |, and for a general symbol x we
denote by x a threshold value for x. There are two essential quantities of interest
in the analysis of the basic protocol:

– The probability that N ≥ u, i.e., that the prover ran the program P on at
least u different inputs: we write this probability q, and it depends on the
size r of R;

– The probability that valid proof exists: we write this probability η (indeed,
the protocol is deterministic); it also depends on the size r of R.

In the basic protocol, the verifier accepts if and only if r > r for a given threshold
value r. We provide closed form formulae for q and η, and discuss how r can be
chosen.
9 This is known to be true for large enough x, which means that there are only a finite
– albeit immense – set of values to check. Furthermore, checking a particular (ωx, x)
can be done in polynomial time.

10 E.g., for x = 100 we have: 100 = 11+89 = 17+83 = 29+71 = 41+59 etc. Naturally,
testing that several witnesses can exist is a stronger conjecture than Goldbach’s, we
just observe that this may happen.
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4.1 Computation of q

Let q be the probability that N ≥ u (i.e., that the prover tried u values11). Since
q increases with |R|, there exists a threshold r such that |R| ≥ r is equivalent to
q ≥ q for some q. Following standard statistical notation, q = 1− ε is the proof’s
power, and the proof is more convincing when ε is smaller.

Modeling H as a random function, and assuming that no counterexample was
found, every value x ∈ U is selected by the prover with equal probability p = κ/2λ.
The distribution of N is then exactly given by the negative binomial distribution
of parameters p and r. This distribution models the number of successes in a
sequence of independent and identically distributed Bernoulli trials before a
specified number r of successes occurs. If we observe r successes when repeatedly
performing a Bernoulli trial with success probability p, then the probability that
there were n trials is

Pr[N = n] =

(
n− 1

r − 1

)
pr(1− p)n−r.

This distribution is unimodal, has finite mode, mean and variance:

m = r +
(1− p)(r − 1)

p
, µ = r +

(1− p)r
p

, σ2 =
(1− p)r
p2

.

Since q = Pr[N ≥ u], its value can be computed through the cumulative distri-
bution function for N . Indeed, Pr[N ≥ u] = q = 1 − Pr[N < u], which can be
expressed as a closed-form formula using Gauss’ hypergeometric function 2F1:

q(p, u, r) = (1− p)u−r
(
u− 1

r − 1

)
2F1 [u− r, 1− r; 1 + u− r; 1− p] .

While this function can efficiently be approximated numerically to several thou-
sand digits12, it is interesting to express it in terms of the incomplete Beta
function instead, which has better numerical estimates and stability

B(z; a, b) =

∫ z

0

xa−1(1− x)b−1 dx =
za

a
2F1 (a, 1− b; a+ 1; z) .

In our case, it also gives a more compact expression:

q(p, u, r) = (u− r)
(
u− 1

r − 1

)
B(1− p;u− r, r). (1)

11 Note a very subtle distinction: “the probability a that the prover tried u values” is
not synonymous of “the probability a′ that the prover tried all values in U ”. Indeed, if
u = 106 it is easy to see that if the prover skips the testing of one specific xi ∈ U ,
then a′ drops to 0 by definition, whereas a does not.

12 See for instance https://dlmf.nist.gov/15.12 or [Joh19, Section 7].
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Remark 9. When u is large, q(p, u, r) has a sharp transition from 0 to 1 when p
is fixed and r is around pu. This can be illustrated on an example: let (u, p) =
(107, 10−3), consider q(p, u, pui/100) for i = 90, 91, . . . , 104 (Table 1 and fig. 1).

Remark 10. The problem can also be looked at from a different angle: say we
have u and wish a proof with some r to be accepted. Because q(p, u, r) is a
smooth function of p it is easy to set r to the desired value r and solve for p
numerically.

Remark 11. Note that unlike zero-knowledge protocols we do not need to aim at
an extremely large q (for instance q = 1−2−80) because, although non-interactive,
the prover’s protocol is fully deterministic. This would be different if a random
tape had allowed the prover to keep trying until a satisfactory proof was found.

4.2 Computation of η

The above analysis was predicated on the notion that the prover has a proof to
submit, i.e., that they successfully collected enough evidence. From a probabilistic
standpoint there is no issue, but from an operational standpoint the prover may
fail to obtain a proof because a proof respecting the imposed r simply does not
exist for a given H.

Under constant (u, r), the lower p the less likely it is that a prover obtains a
valid R. The probability that a prover collects r witnesses is easy to write down:

Pr[|R| ≥ r] =
u∑
k=r

(
u

k

)
pk(1− p)u−k.

We denote by η = Pr[|R| > r] the probability that a valid proof exists.
A more practical, if approximate, expression is given by the De Moivre–Laplace

theorem: for very large values of u we can estimate η as

η(p, u, r) ≈ 1

2
erfc

(
r − up√
2up(1− p)

)
(2)

The approximation gets better as u becomes large; but importantly it underesti-
mates the true value.

Remark 12. When u is large, η(p, u, r) has a sharp transition from 1 to 0 when
p is fixed and r is around pu. See Tables 1 and 2.

4.3 Contradictory goals

In an ideal world, we could aim for both q ≈ 1 and η ≈ 1, meaning that the prover
is guaranteed to find a proof and that this proof is very convincing. Unfortunately,
as Remarks 9 and 12 hint at, this is not possible. Instead, it seems that q+ η ≈ 1
which prevents having good parameters with the basic protocol.
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i 90 91 92 93 94

q 1.188× 10−24 2.894× 10−20 2.374× 10−16 6.656× 10−13 6.4781× 10−10

η ≈ 1

i 95 96 97 98 99

q 2.227× 10−7 0.000028 0.001264 0.022159 0.157324
η ≈ 1 0.999967 0.998657 0.977304 0.841466

i 100 101 102 103 104
q 0.498672 0.840260 0.976765 0.998575 0.999964
η 1

2 0.158534 0.022696 0.001343 ≈ 0

Table 1. q, η for (p, u, r) = (10−3, 107, 100i) and 90 ≤ i ≤ 104. Note that 100i =
i

100
× 10−3 × 107.

i 90 91 92 93 94

q 1.243× 10−24 3.003× 10−20 2.444× 10−16 6.807× 10−13 6.587× 10−10

η ≈ 1

i 95 96 97 98 99

q 2.253× 10−7 0.000028 0.001269 0.022206 0.157431
η ≈ 1 0.998651 0.977255 0.841357

i 100 101 102 103 104
q 0.498670 0.840149 0.976715 0.998568 0.999964
η 1

2 0.158643 0.022745 0.001349 0.000032

Table 2. q, η for (p, u, r) = (10−4, 108, 100i) and 90 ≤ i ≤ 104.

920 940 960 980 1000 1020 1040

0.2

0.4

0.6

0.8

1.0

Fig. 1. q(10−3, 107, 10i) (in blue) and η(10−3, 107, 10i) (in orange) for 900 ≤ i ≤ 1040.
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To understand why, assume that we wish to impose η > η. For large enough
values of u there always are couples (p, r) that make this true; while this problem
does not admit an analytical solution, we can solve it numerically, using our
approximation: ∀η ∈ [0, 1],∃h0 ∈ R such that

r − up√
2up(1− p)

< h0 ⇒ η > η.

For instance, for η = 0.99 we have h0 = −1.64497.
We can then express p as a function of r:

p =
h20 + r − h0

√
h20 +

2r(u−r)
u

2h20 + u
.

Decreasing p below this value will decrease η below η. Increasing p will decrease
q; therefore this is the best value of p we can choose for any given value of r,
under the constraint on η.

Since q is an increasing function of r, and because we do not wish the verifier
to test all inputs, the best value of q is q which is reached for r = u−1. Therefore,
when lower bounding η by η we upper bound q by q (and conversely). This gives
the behavior illustrated in Figure 2 — remarkably, this relationship does not
seem to depend on the choice of u..

We see from the above discussion that without an out-of-the-box idea, the
plain strategy is essentially hopeless as the best we can get is a little improvement
at the cost of having the verifier work essentially... as much as the prover.

This is a fundamental limitation of the “best effort” strategy described in
Algorithms 1 and 2. In conclusion, to get out of this deadlock, we need to change
the proof strategy, the verification strategy, or both.

5 Improving the basic protocol

In this section we discuss three approaches to try and overcome the limitations
discussed in Section 4.3.

5.1 An intuitive idea: keep hashing

An intuitive idea consists in just keep hashing to extend R. Indeed, if a complete
proof doesn’t exist for a given H, maybe we can fare better with a different H?

Run the protocol twice to collect two sets R0, R1, where R0 was collected
with a first hash function, and R1 with another one. Both hash functions can
be agreed upon ahead of time. The prover forms R = R0 ∪ R1. To see why
this does not work, we can compute the probability that N = 2u given that we
obtained |R0|+ |R1| witnesses, in other terms, q(p, 2u, r0 + r1). The probability
of obtaining an acceptable proof in this fashion is now determined by η(p, 2u, r):
indeed, Pr[|R0| + |R1| ≥ r] = η(p, 2u, r), being the sum of two independent
binomial variables of parameters (u, p).
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Fig. 2. Graph of q as a function of η, for u = 1010 (blue line). The dashed red line
represents 1− η. Plotting for u = 103, . . . , 1020 yields an identical graph.

In other terms, extending the computation by using a second hash function
replaces η(p, u, r) and q(p, u, r) by respectively η(p, 2u, r) and q(p, 2u, r) which
undergo the same trade-off as the original problem, given that this trade-off is
independent of u.

It would not be better to send only the best of the two Ris, discarding the other.
If the prover obtains two sets, R0 and R1, and sends the best of the two to the
verifier we increase the prover’s success probability to 1− (1− η)2 = η(2− η) ≥ η.
However, simultaneously, this approach weakens the proof. The probability that
a prover obtains r witnesses over a set strictly smaller than U is non zero. And
repeating the experiment enough times this (however rare) event will eventually
happen. Note that by only changing the hash function, we cannot change the value
of N , therefore either both experiments were over the full input domain, or neither
was. As a result, the probability that N > r drops to q(p, u, r)2 ≤ q(p, u, r).

In other terms, a mere “replay” of the protocol, either by considering the
union of both experiments or just taking the best, results in the same situation
or in a dramatic decrease of the proof’s power for a meager increase in η.
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5.2 Relaxing the problem

A second strategy that can be considered is to allow some leeway in the problem
statement, by recognizing as valid a proof whose domain is slightly different from
the claim. We first discuss this idea on an example, then analyse the general case.

Experiment. Assume that we are authorized to distort reality and “extend” U
in some way to a set U ′ of size u′ = u(1 +∆) for some ∆ > 0. How large should
such an extension be?

Set as a target a strong proof: q(10−3, 107, 10400) = 0.999964. As we saw,
the corresponding η(10−3, 107, 10400) ≈ 0, but this is simply because the prover
falls short of having a complete proof by ≈ 500 witnesses. Allowing the prover
to compute beyond 107, they might collect the few hundreds of missing hashes
necessary to reach 10400. It appears that ∆ = 0.07 gives

η(10−3, 1.07× 107, 10400) = 0.998144,

Hence, in the above example, allowing 7% more values is enough to be assured
the prover can get a very convincing proof with very high probability.

Taking another numerical example: u = 107, η0 = 0.99, p = 10−4, r = 103,
gives ∆ = 0.0709, which corresponds to 709000 additional computations. In other
words, we need ∆ = 7% additional independent traces. Note that this differs from
7% additional hashes performed on the same traces.

General case. More precisely, to ensure success at least η0, the prover should
claim to have checked u inputs when in reality it has checked (1 +∆)u inputs
where

1−∆ ≥
α
(
α(1− p) +

√
(1− p)(α2(1− p) + 2r)

)
+ r

pu
with α = erfc−1(2η0).

We thus have a first working solution: test over U but claim credit only for
testing over a U ′ such that |U ′| = |U |

1+∆ .

The above solution might however be unfit to settings where the prover is required
to test P over the entire set U . We hence propose a second mental experiment.

5.3 Increasing the worklard

A third strategy that can be considered is to require more work from the prover;
in essence the verifier can request several independent proofs of execution on the
same input before accepting it. Here again we first discuss an example before
moving on to the general case.
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Experiment. Imagine two programmers, Peter and Petra, each coding P dif-
ferently as a functionally equivalent program Pb (i.e., ∀x ∈ U, b ∈ {0, 1}, P (x) =
Pb(x)).

For instance, if P (x) is a primality test then Peter will code P as the Rabin–
Miller test13 P0 whereas Petra will code P as the Elliptic Curve Primality Test
(ECPT) P1. It is agreed that for all practical purposes: ∀x ∈ N, P0(x) = P1(x).

To make sure that we are testing independent traces (i.e., independent execu-
tions), we need to assume that given a Miller–Rabin trace τ0(x), it is impossible
to infer from it an ECPT trace τ1(x) without running the ECPT (and vice versa).
This assumption seems very reasonable given the fundamental differences between
these two primality testing approaches.

In practice, Petra will be replaced by a deterministic code obfuscation algo-
rithm taking as input P = P0 and producing P1.

General case. The requirement on this obfuscation process is the following: An
attacker should not be able to execute Pb(x) and derive a trace τ¬b(x) directly
from τb(x). Otherwise, they may skip the execution of P¬b. Namely, we require
that any algorithm producing τb(x) from τ¬b(x) is more costly than running
P¬b(x).

To generalize this process, we proceed as described in Algorithms 3 and 4.
Here Obfuscate(i, P ) is a deterministic obfuscator using the counter i to derive
a pseudo-random tape14 used to create and output Pi.

Note that a cheating prover may now test on fewer values in U and compensate
the resulting drop in q by increasing i (which is the number of sessions). We hence
need to bound the number of sessions below some threshold t. It remains to esti-
mate t for some given security level ψ = Pr[it took t iterations to find γ proofs].

ψ =

t∑
k=γ

(
t

k

)
ηk(1− η)t−k.

Now, q is replaced by ρ:

ρ = 1− Pr [∀i ∈ [1, . . . , γ], Ni < u] = 1− (1− q)γ

Example 1. For (p, u, r) = (10−3, 107, 104) we get

(q, η) = (
1

2
, 0.498672)⇒ (γ, t) = (20, 57)⇒ (ψ, ρ) = (99%, 1− 2−20)

We hence see that for a given u, ψ, ρ, ε several trade-offs between the size of the
proof O(γr) and the work performed by the parties (resp. O(γu) and O(γr)) are
possible as a function of the parameters p, r.

13 With accuracy 2−100.
14 Typically by using i as a seed to a PRNG.
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Algorithm 3 Prover’s Algorithm
procedure GenerateParallelProof(P,U, κ < 2λ, (γ, r) ∈ N2)

2: R← ∅
I ← ∅

4: i ← 0
while |R| 6= γ do

6: Pi ← Obfuscate(i, P )
Ri ← GenerateProof(Pi, U, κ)

8: if |Ri| ≥ r then
Append Ri to R

10: Append i to I

i← i+ 1

12: return R, I

Algorithm 4 Verifier’s Algorithm
procedure CheckParallelProof(R ⊂ Uγ , I ⊂ Nγ , P, U, κ < 2λ, (γ, r, t) ∈ N3)

2: if |R| 6= γ or |I| 6= γ or max(I) > t then
return False

4: for all j ∈ I do
Pj ← Obfuscate(j, P )

6: if ¬CheckProof(Rj , Pj , κ, r) then
return False

8: return True

Remark 13. To clarify the way in which parameters are set, we refer the reader to
the chronological diagram of fig. 3 where typically chosen parameters are double
circled and derived parameters are single circled. An arrow from parameter x to
parameter y indicates that y is derived from x. Note that in actual deployments
some of the arrows might be reversed and double circles moved to other parameters.
For instance the implementer may impose γ instead of p etc.

The second solution solves the problem for the set U at the cost of slower
computations for both parties.

6 Implementation

We implemented the algorithms of this paper (except those of Section 5.3) together
with a virtual machine that captures the memory states of a program during
execution. The code can be found at https://github.com/Ashashin/tinyrust.

In this particular implementation, the virtual machine takes as input a
program (in the form of TinyRAM assembly source code) and a tape (in the form
of a file containing data), checks the program for validity (e.g., label resolution,
register indices, etc.), and runs it. For simplicity we consider P = [P ], i.e., the
serialization is the source code: it is possible to use instead some canonical

17
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Fig. 3. Relationships between chosen (double circled) and derived (simple circled)
parameters.

representation, such as an abstract syntax tree, or source code stripped of
comments and non-syntactic whitespace, but committing to the byte-exact source
avoids raising concerns about lexing or compiler issues.

The implementation uses for H the SHA-1 function, for which there is ex-
tensive software and hardware support, including highly optimized libraries and
dedicated ASICs. This is only for demonstration purposes and a real-world
implementation should use a more secure hash function.

Experimental results. To validate the analysis of Section 4 we ran a program
testing the Collatz conjecture on a toy interval of size u = 106, for various
parameters κ. Figure 4 plots the value of q as a function of N , that is, the actual
number of executions performed by the prover.

7 Conclusion and further work

The technique described in this paper can find applications in a large variety of
fields where counterexamples are not expected (i.e., refutation-precious). Among
those are the provable testing of software against fuzzing, the verification of
electronic circuits or even the testing of complex industrial control systems.

The method can also be used to support the claim that sufficiently many
persons were solicited during an opinion poll: e.g. by having each person digitally
sign in a deterministic way a reference string15 and use the signature as an x.

Although not designed as such, it is also possible to apply the algorithms
described in this paper to get a “useful” proof of work in blockchains. Assuming
that the execution of P on an input takes work w, the average amount of work
invested per proof is w/p. Note that even if w is much larger than the cost of
15 E.g., RSA-FDH sign the string “I, John Doe, certify that I participated in the opinion

poll organized on January 19th, 2022 by the city of Grandview, Missouri.”
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a unitary application of H this is not a problem as the blockchain requires to
spend work anyway, no matter what the precise calculations are. In such a model,
a vendor could publish a program P and its testing would reward the miners
who will, in turn, be harnessed into becoming software testers. A technical detail
consists in avoiding a situation where different testers test P over identical Us.
This can be solved by deriving each U pseudo-randomly from the tester’s identity
and other current ledger parameters etc.

It may also be interesting to simultaneously decrease u and increase p, espe-
cially in the case that the prover ended up with too few witnesses and does not
want to perform any additional effort (or there is no meaningful way to extend
U). In that case, increasing p raises the number of witnesses that can be given,
but always reduces the value of q (there is no “optimum” where, as p grows and
more witnesses are found, q momentarily increases). This can be compensated
by reducing the value u communicated to the verifier. Naturally, one wants to
only minimally change the values, otherwise what the prover obtains is a very
convincing proof of a very small computation. This idea calls for further analysis
and fine-tuning. This and other strategies to improve the basic protocol beyond
those discussed in Section 5 are likely to extend the applicability of this work.

A further extension consists in hashing not each and every memory state
of M but skipping some states pseudo-randomly to increase efficiency by a
constant factor. e.g., the parties may hash only the states at cycles t1, t2, . . . , ti
to get an intermediate hash h and define the next hashing milestone at time
ti+1 = ti + (h mod 256). We conjecture that this does not change much in terms
of security.

Finally, the verifier here does more work than necessary on each input, as
it essentially runs the same program as the prover. The verifier’s workload on
a given input could in all likelihood be made much lighter by using verified
computing techniques (cf. Section 1.1), provided that the overhead of doing so,
does not nullify the advantages.
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