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Abstract. At ToSC 2021, Rohit et al. presented the first distinguishing and key
recovery attacks on 7 rounds Ascon without violating the designer’s security claims
of nonce-respecting setting and data limit of 264 blocks per key. So far, these are the
best attacks on 7 rounds Ascon. However, the distinguishers require (impractical) 260

data while the data complexity of key recovery attacks exactly equals 264. Whether
there are any practical distinguishers and key recovery attacks (with data less than
264) on 7 rounds Ascon is still an open problem.
In this work, we give positive answers to these questions by providing a comprehensive
security analysis of Ascon in the weak key setting. Our first major result is the 7-round
cube distinguishers with complexities 246 and 233 which work for 282 and 263 keys,
respectively. Notably, we show that such weak keys exist for any choice (out of 64)
of 46 and 33 specifically chosen nonce variables. In addition, we improve the data
complexities of existing distinguishers for 5, 6 and 7 rounds by a factor of 28, 216

and 227, respectively. Our second contribution is a new theoretical framework for
weak keys of Ascon which is solely based on the algebraic degree. Based on our
construction, we identify 2127.99, 2127.97 and 2116.34 weak keys (out of 2128) for 5, 6
and 7 rounds, respectively. Next, we present two key recovery attacks on 7 rounds
with different attack complexities. The best attack can recover the secret key with
263 data, 269 bits of memory and 2115.2 time. Our attacks are far from threatening
the security of full 12 rounds Ascon, but we expect that they provide new insights
into Ascon’s security.
Keywords: Ascon · Weak keys · Cube attack · Algebraic degree

1 Introduction
Undoubtedly, one of the main security criterion of a keyed cryptographic primitive is its
random behavior for any randomly selected key from the entire key space. It is often
difficult to guarantee this criterion, as there might exist some keys, often termed as weak
keys, for which the strength (distinguishability or key recovery) of a primitive may differ
significantly. This is evident from a wide range of attacks on symmetric ciphers in the
weak key setting [BB93, Haw98, FMS01, KM07, Men17, Kha19, GLR+20, LIMS21].

A typical weak key attack consists of two steps: (1) finding a weak key set and (2)
ensuring that the complexity of a distinguisher or key recovery attack is less than the
number of weak keys, both of them being challenging tasks. Some promising generic weak
key attacks are the invariant and nonlinear invariant subspace attacks [LAAZ11, LMR15,
TLS16, Bey18] which have seen applications to block ciphers only.

This work focuses on weak key analysis (from the algebraic degree perspective) of
permutation-based authenticated encryption with associated data (AEAD) scheme Ascon,
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designed by Dobraunig, Eichlseder, Mendel, and Schläffer [DEMS16, DEMS21]. Being one
of the winners of the CAESAR competition (the Competition for Authenticated Encryption:
Security, Applicability, and Robustness) [CAE] and currently a finalist of the US National
Institute of Standards and Technology (NIST) lightweight cryptographic standardization
project [Nat19], Ascon has received substantial third-party security evaluation.

The state-of-the-art analyses on Ascon could be divided into two categories: (1)
distinguishing attacks on the underlying public permutation and (2) attacks targeting the
Ascon AEAD. Examples of the former include differential/linear distinguishers [DEMS15,
DEM15, BDKW19], limited-birthday distinguishers [GPT21], zero-sum distinguishing
attacks [DEMS15, Tod15, GRW16, YLW+19], and subspace trails [LTW18]. The latter
category is more relevant to our work as concrete cryptanalysis is performed on Ascon
AEAD. Some of the existing results are provable security claims [JLM14], state recovery
attacks [DKM+17], differential-linear cryptanalysis [DEMS15, LLL21], forgery attacks
[DEMS15, LZWW17, GPT21], cube attack and its variants [DEMS15, LDW17, LZWW17,
RHSS21].

Among all the aforementioned cryptanalytic results, the best attacks on Ascon in the
AEAD context considering the two design requirements ([DEMS16, Chapter 2]), namely
(1) nonce value should not be repeated for a fixed key and (2) the data limit per key is
264 blocks, can reach only 7 (out of 12) rounds due to Rohit et al. [RHSS21]. However,
their distinguishers complexity, i.e., 260 is still not practical while the data complexity of
key recovery attacks equals 264. Furthermore, it is surprising that there is no weak key
analysis of Ascon till date. Thus, it is worth investigating the weak key security of Ascon
and identifying whether there are any practical distinguishers and key recovery attacks
(with data less than 264) on 7 rounds. Table 1 gives a summary of the attacks on Ascon.
We now list our contributions.

Our Contributions. We present a comprehensive security analysis of round-reduced Ascon
in the weak key setting without violating any of Ascon’s security claims. Our contributions
are threefold and summarized as follows.

1. Practical distinguishers for up to 7 rounds: We identify a set of keys and
a set of nonce variables (say d out of 64) such that the algebraic degree of the output
bits is at most d− 1 in nonce variables. In particular, for 7 rounds, we find that for
any fixed set of d = 46 (resp. 33) nonce variables out of

(64
46
)
(resp.

(64
33
)
) choices,

there are 282 (resp. 263) keys where the algebraic degree of the output bits is at
most 45 (resp. 32). This gives distinguishers1 with complexities 246 and 233. To the
best of our knowledge, these are the first practical distinguishers for 7-round Ascon.
Furthermore, in a weak key scenario, our choice of d = 13 (9), 24 (17) and 46 (33)
improve the complexities of existing distinguishers (which works for all keys) for 5, 6
and 7 rounds by a factor of 23 (28), 28 (216) and 213 (227), respectively (see Table 1).
The source codes of the distinguishers are publicly available at https://github.
com/blacksegal/ascon_weak_key_analysis.

2. Theoretical framework of weak keys: We provide the theoretical construc-
tion of a weak key space solely based on the algebraic degree. Our central idea is to
partition the key space such that for any key in the weak key space, there must exist
a set of d nonce variables which achieves an algebraic degree of at most d− 1 after r
rounds. We show that this criterion holds for 2127.99, 2127.97 and 2116.34 keys (out of
2128) with d = 13, 24 and 46 for r = 5, 6 and 7, respectively. In addition, we find
a subset of these keys with d = 9, 17 and 33 where the number of keys are 2104.1,
2103.92 and 294.67 for 5, 6 and 7 rounds, respectively. Moreover, we give structural

1The XOR sum of all 2d values of the output equals zero with probability 1.

https://github.com/blacksegal/ascon_weak_key_analysis
https://github.com/blacksegal/ascon_weak_key_analysis
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Table 1: Summary of attacks on Ascon in the nonce-respecting setting
Key recovery

#Rounds Data Time Method #Keys Validity Source

7/12 277.2 2104 Conditional cube 2128 7 [LDW17]
7/12 264 2123 Cube 2128 3 [RHSS21]
7/12 277.2 277 Conditional cube 2117 7 [LDW17]
7/12 264 297 Cube 2116.34 3 Section 6.1
7/12 263 2115.2 Cube 2116.34 3 Section 6.2

Distinguishers

#Rounds Data Time Method #Keys Validity Source

5/12 217 217 Degree 2128 3 [DEMS15]
5/12 216 216 Division Property 2128 3 [RHSS21]
5/12 213 213 Degree 2115 3 Section 4.2
5/12 29 29 Degree 2111 3 Section 4.2
6/12 233 233 Degree 2128 3 [DEMS15]
6/12 231 231 Division Property 2128 3 [RHSS21]
6/12 224 224 Degree 2104 3 Section 4.2
6/12 † 218 218 Degree 2110 3 Section 4.3
6/12 217 217 Degree 295 3 Section 4.2
7/12 260 260 Division Property 2128 3 [RHSS21]
7/12 246 246 Degree 282 3 Section 4.2
7/12 233 233 Degree 263 3 Section 4.2

7: Although a generic attack but violates the required data limit of ≤ 264 per key,
and hence, is invalid.
†: An experimental distinguisher with a success probability of 0.63.

properties of weak keys such as (1) indices where key bits are equal and/or unequal
and (2) Hamming weight of a weak key, which are crucial for key recovery attacks.

3. Key recovery attacks on 7 rounds: We present two key recovery attacks on 7
rounds Ascon with different attack complexities. Our first attack requires 264 data,
270 bits of memory and 297 time2 while the second attack requires 263 data, 269 bits
of memory and 2115.2 time (see Table 1). Although the time complexity of the latter
attack is marginal, it answers the question “Is there a key recovery attack on 7-round
Ascon with less than 264 data ?” posed by [RHSS21].

Outline of the Paper. The rest of the paper is organized as follows. In Section 2, we
define our notation and some well-known relevant cryptanalytic techniques. Section 3
gives the specification of Ascon along with our attack settings. We present the practical
weak key distinguishers of round-reduced Ascon in Section 4. In Section 5, we provide the
construction of weak key space of Ascon and their structural properties. Section 6 gives
the key recovery attacks on 7-round Ascon in the weak key setting. Finally, we conclude in
Section 7 with future research directions.

2Offline queries to 7-round Ascon permutation.
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2 Notation and Preliminaries
Let A and B be two sets. We use A ∪ B (resp. A ∩ B) to denote the set consisting of
elements which are in A or B (resp. A and B), while A \ B represents the set which
contains elements from A but not in B. For a set A, its cardinality is given by |A|. Let
F2 = {0, 1} be the finite field with two elements and Fn

2 denotes the n-dimensional vector
space over F2. For x, y ∈ Fn

2 , x⊕ y and x‖y denote the bitwise XOR and concatenation
operations, respectively. In addition, we use “+” to denote all kinds of additions (of
integers, field elements, and Boolean functions) and the actual meaning should be clear
from the context.

Monomial representation and Boolean functions. For a given u = (u0, · · · , un−1) ∈ Fn
2 ,

we write the monomial xu in n variables from x = (x0, · · · , xn−1) as

xu =
n−1∏
i=0

xui
i . (1)

Note that xu = 1 if and only if ui ≤ xi for all 0 ≤ i ≤ n− 1.
Let f : Fn

2 → F2 be a Boolean function whose Algebraic Normal Form (ANF) is defined
by f(x) =

∑
u∈Fn

2
aux

u where au ∈ F2. For any u ∈ Fn
2 , we denote its Hamming weight by

wt(u). The algebraic degree of a Boolean function f , represented by deg(f), is defined as
deg(f) = max{wt(u) | au 6= 0}.

Keyed Boolean functions. Let v = (v0, · · · , vm−1) be m public variables and k =
(k0, · · · , kn−1) be n secret variables. Then, in the context of symmetric ciphers, each
output bit can be regarded as a Boolean function f : Fm

2 × Fn
2 → F2 given by

f(v, k) =
∑

u∈Fm
2

∑
w∈Fn

2

au,wv
ukw, (2)

where au,w ∈ F2. In Equation 2, deg(f) = max{wt(u) + wt(w) | au,w 6= 0}. For
a fixed key k, which is usually treated as a secret constant in cryptanalysis, we are
interested in the algebraic degree in public variables only. Thus, in our work, we focus on
deg(f) = max{wt(u) | au,w 6= 0}.

Cube attacks. The cube attack proposed in [Vie07, DS09] analyzes a keyed Boolean
function as a black-box polynomial which is tweakable in public variables. Given n
secret variables k = (k0, · · · , kn−1), m public variables v = (v0, · · · , vm−1), a set of indices
I = {i0, · · · , id−1} ⊆ {0, · · · ,m−1} and Ī = {0, · · · ,m−1}\I, Equation 2 can alternatively
be viewed as

f(v, k) =
(∏

i∈I
vi

)
· t(Ī , k) + q(v, k), (3)

where each monomial in the Boolean function q misses at least one variable from v[I] =
{vi | i ∈ I}. Following the terminology of cube attacks, we denote I, v[I] and a Boolean
function t(·) as the cube indices set, cube variables set, and the superpoly of cube monomial∏

i∈I vi, respectively.
Let Cv[I] denote the set consisting of all 2d possible values of the variables in I while

the variables in Ī are fixed to some constant. We call Cv[I] as the d-dimensional cube, and
summing f(v, k) over it (also termed as the cube-sum) gives the superpoly t(Ī , k). More
precisely, we have ⊕

Cv[I]

f(v, k) = t(Ī , k). (4)
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Finding the ANF of a superpoly or showing that a certain cube monomial does not
appear in the ANF are the essence of cube attack and its variants [ADMS09, KMN10,
DS11, HWX+17]. The former is typically exploited for key recovery attacks while the latter
is used as a distinguisher. There are division property [Tod15, TM16] based automated
techniques which can recover the ANF of a superpoly [TIHM17, WHT+18, WHG+19,
HLM+20, HLLT20, HSWW20]. However, in this work, we concentrate on distinguishers
and show how they can be utilized for key recovery attacks in case of Ascon without the
need of any automated tools.

3 Specification of Ascon and Attack Settings
Ascon [DEMS16, DEMS21], designed by Dobraunig et al., is a permutation-based family
of authenticated encryption with associated data algorithms (AEAD). The Ascon AEAD
algorithm takes as inputs a secret key K, a nonce N , a block header AD (a.k.a associated
data) and a message M . It then outputs a ciphertext C of the same length as M , and
an authentication tag T which authenticates the associated data AD and the message
M . It operates in a sponge-duplex mode [BDPA11, Dae12] (as shown in Figure 1)3 using
the iterative permutations pa and pb with a and b rounds, respectively. Ascon has two
variants, namely Ascon-128 and Ascon-128a. Table 2 lists these two variants along with
their recommended parameters.

IV‖K‖N 320 pa

⊕

0∗‖K

c

⊕r

A1

pb

⊕

As

pb

⊕

0∗‖1

⊕

P1 C1

pb

⊕

Pt−1 Ct−1

pb

⊕

Pt Ct

⊕

K‖0∗

pa

⊕

K

T

Initialization Associated Data Plaintext Finalization

Figure 1: Ascon’s mode of operation (encryption phase)

Table 2: Ascon variants and their recommended parameters

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb IV

Ascon-128 320 64 128 128 128 12 6 80400c0600000000
Ascon-128a 320 128 128 128 128 12 8 80800c0800000000

3.1 The Ascon Permutation
The core permutation p of Ascon is based on a substitution permutation network (SPN)
based design paradigm. It operates on a 320-bit state arranged into five 64-bit words
and is defined as p : pL ◦ pS ◦ pC . The state at the input of the r-th round is denoted
by Xr

0‖Xr
1‖Xr

2‖Xr
3‖Xr

4 while Y r
0 ‖Y r

1 ‖Y r
2 ‖Y r

3 ‖Y r
4 represents the state after the pS layer.

We use Xr
i [j] (resp. Y r

i [j]) to denote the j-th bit (starting from left) of Xr
i (resp. Y r

i ).
We now describe the three steps pC , pS , and pL in detail (superscripts are removed for
simplicity).

3Thanks to TikZ for Cryptographers [Jea16].
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Addition of constants (pC). As shown in Figure 2, an 8-bit constant is added to the
bits 56, · · · , 63 of word X2 at each round.

X4

X3

X2

X1

X0

Figure 2: Addition of constants (pC)

Substitution layer (pS). A 5-bit Sbox is applied on each of the 64 columns (see Figure 3).
Let (x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) denote the input and output of the Sbox,
respectively. Then the algebraic normal form (ANF) of the Sbox is given in Equation 5.
Note that here xi and yi are the bits of the word Xi and Yi, respectively.

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1
y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(5)

X4X4

X3

X2

X1

X0

Figure 3: Substitution layer pS

Linear diffusion layer (pL). Each 64-bit word is updated by a linear operation Σi which
is defined in Equation 6 and also illustrated in Figure 4. Here ≫ is the right cyclic shift
operation over a 64-bit word.

X0 ← Σ0(Y0) = Y0 + (Y0 ≫ 19) + (Y0 ≫ 28)
X1 ← Σ1(Y1) = Y1 + (Y1 ≫ 61) + (Y1 ≫ 39)
X2 ← Σ2(Y2) = Y2 + (Y2 ≫ 1) + (Y2 ≫ 6)
X3 ← Σ3(Y3) = Y3 + (Y3 ≫ 10) + (Y3 ≫ 17)
X4 ← Σ4(Y4) = Y4 + (Y4 ≫ 7) + (Y4 ≫ 41)

(6)

X4

X3

X2

X1

X0

Figure 4: Linear diffusion layer pL
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3.2 Attack Configuration and Targets

We focus on the initialization phase of Ascon (see Figure 5) reduced to r ∈ {5, 6, 7} out of
12 rounds, in the nonce-respecting setting. In our attacks, we query the Ascon oracle q
times for distinct nonces Ni and the known-plaintexts Pi, and obtain the corresponding
ciphertext blocks Ci for i = 0, · · · , q − 1. For a fixed key K and AD = φ, we denote these
queries by Ci ← Ascon(K,Ni, φ,Mi) where the tag is omitted. We consider two attacks as
follows.

IV‖K‖Ni
320 pr

⊕

Pi Ci

Figure 5: Our attack configuration

Distinguishing attacks. Our goal is to find a set of keys denoted by WKr and a set of
cube indices I = {i0, i1, · · · , id−1} such that

⊕
Cv[I]

Y r
0 [i] = 0, for all 0 ≤ i ≤ 63.

Moreover, we aim to achieve small values of d to have low data complexity.

Key recovery attacks. What are the complexities of recovering K ∈ WKr? Is there a
key recovery attack with data less than 264 ?

In the following, we only give the distinguishing and key recovery attacks on Ascon-128
in detail. However, they are equally applicable to Ascon-128a as the underlying permutation
is the same for both variants.

4 Practical Weak Key Distinguishers

In this section, we present the distinguishers for round-reduced Ascon with practical data
complexities, in the weak key setting. We explain the idea of constructing the distinguishers
and give concrete examples.

4.1 Core Idea of Distinguishers

Our main idea is to reduce the algebraic degree of the output bits (in terms of nonce bits
v0, · · · , v127) by imposing certain conditions on nonce bits v0, · · · , v127 and the secret key
bits k0, · · · , k127. We achieve this in two steps as follows.
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Step 1. Constraints on nonce bits [RHSS21]. The idea is similar to the one proposed
in [RHSS21]. We first look at the Sbox output after round 1 as given in Equation 7

Y 0
0 [i] = vi+64ki + vi + (rci + ki+64)ki + rci + ki+64 + ki · IV[i] + ki + IV[i]
Y 0

1 [i] = vi+64 + vi(rci + ki+64) + viki + vi + (rci + ki+64)ki + rci + ki+64 + ki + IV[i]
Y 0

2 [i] = vi+64vi + vi+64 + rci + ki+64 + ki + 1
Y 0

3 [i] = vi+64 · IV[i] + vi+64 + vi · IV[i] + vi + rci + ki+64 + ki + IV[i]
Y 0

4 [i] = vi+64ki + vi+64 + vi + ki · IV[i] + ki,

(7)
where rci is a round constant bit, and rci = 1, for i ∈ {56, 57, 58, 59} and zero otherwise.
Setting vi = vi+64 reduces Equation 7 to Equation 8 as follows.

Y 0
0 [i] = viki + vi + (rci + ki+64)ki + rci + ki+64 + ki · IV[i] + ki + IV[i]
Y 0

1 [i] = vi(rci + ki+64) + viki + (rci + ki+64)ki + rci + ki+64 + ki + IV[i]
Y 0

2 [i] = rci + ki+64 + ki + 1
Y 0

3 [i] = rci + ki+64 + ki + IV[i]
Y 0

4 [i] = viki + ki · IV[i] + ki

(8)

The condition vi = vi+64 in Equation 7 ensures that Y 0
2 [i] and Y 0

3 [i] in Equation 8 are
independent of the nonce variable vi for a fixed i.

Step 2. Constraints on key bits. We now make Y 0
1 [i] independent of vi in Equation 8

by adding the following constraints on the key bits.{
ki = 1 + ki+64, i ∈ {56, 57, 58, 59}
ki = ki+64, i ∈ {0, · · · , 63} \ {56, 57, 58, 59}

(9)

Upper bounds on the algebraic degree. Combining Equation 8 and Equation 9, the
algebraic degrees of words 0, 1, 2, 3 and 4 after the Sbox and linear layer of round 1 are
1, 0, 0, 0 and 1, respectively. Accordingly, the upper bounds on the algebraic degree (in
variables v0, · · · , v63) for up to 7 rounds can be easily computed by hand and are given in
Table 3.

Table 3: Upper bounds on the algebraic degree of Ascon in cube variables

Round r
Bits in word

Xr
0 Xr

1 Xr
2 Xr

3 Xr
4

1 1 0 0 0 1
2 1 1 1 2 1
3 2 3 3 3 2
4 6 6 5 5 5
5 12 11 10 11 12
6 23 22 23 24 23
7 45 47 47 47 46

4.2 Weak Key Distinguishers (Theoretical)
In this section, we give two explicit examples of practical weak key distinguishers based on
our degree observations in Table 3. For the sake of brevity, we focus on 7-round Ascon.
Here we present a 46 (resp. 33) dimensional cube. We show that there are 282 (resp. 263)
keys for which the cube sum after 7 rounds is always zero for these cubes.
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Example 1. Let I1 = {0, 1, · · · , 45} and define

WK7
I1

:= {(k0, · · · , k127) | ki = ki+64 for i ∈ I1}.

Then |WK7
I1
|= 246 ·2(64−46)·2 = 282. Now, for the 46-dimensional cube satisfying vi = vi+64

for i ∈ I1, the cube sum after 7 rounds is always zero for all K ∈WK7
I1
. This holds as the

algebraic degree in cube variables after 7 rounds is at most 45 (see Table 3).
Example 2. Let I2 = {0, 1, · · · , 32} and define

WK7
I2

:={(k0, · · · , k127) | ki = ki+64 = 0 for i ∈ I2}
⋃

{(k0, · · · , k127) | ki = ki+64 = 1 for i ∈ I2}.
(10)

Then |WK7
I2
| = 2(64−33)·2 × 2 = 263. Now, for the 33-dimensional cube satisfying

vi = vi+64 for i ∈ I2, the cube sum after 7 rounds is always zero for all K ∈ WK7
I2
.

To see why it holds, note that the quadratic term exists only in X2
3 (see row 2 in

Table 3). These quadratic terms do not appear in the ANF of X2
3 if ki = ki+64 = 0 or

ki = ki+64 = 1 for all i ∈ I2. Since the algebraic degree is 1 after 2 rounds, the maximum
degree can be 25 = 32 after 7 rounds. Note that WK7

I2
⊂WK7

I1
.

We follow a similar approach for 5 and 6 rounds. Some examples along with the number
of weak keys are depicted in Table 4.

Table 4: Examples of weak keys
Round r I1 WKr

I1 I2 WKr
I2

5 {0, · · · , 12} 2115 {0, · · · , 8} 2111

6 {0, · · · , 23} 2104 {0, · · · , 16} 295

7 {0, · · · , 45} 282 {0, · · · , 32} 263

Experimental verification. We have experimentally verified all the weak key distinguishers
till 7 rounds. The source codes are available at https://github.com/blacksegal/ascon_
weak_key_analysis.
Remark 1. In the above discussion and in Table 4, we have only considered the keys
corresponding to one specific indices set. However, there exist multiple indices sets, and
consequently, the number of weak keys is the union of keys corresponding to these sets. In
Section 5, we define the weak key space for the key recovery attacks.

4.3 Weak Key Distinguishers (Experimental)
In this section, we give some distinguishers for 6 rounds based on our experimental
observations. We present some small size cubes which give distinguisher with good success
probability in the weak key setting.

We take different cube indices I ⊂ {0, · · · , 63} with{
ki = 1 + ki+64, i ∈ {56, 57, 58, 59} ∩ I
ki = ki+64, i ∈ I \ {56, 57, 58, 59}.

(11)

Experimentally we first calculate the probability p < 1/2 of a superpoly to be nonzero.
After the cube sum, we have a vector a = (a0, · · · , a63) ∈ F64

2 . For a random source, we
have Pr(ai = 1) = 1

2 , for 0 ≤ i ≤ 63. On the other hand, in the case of Ascon, we have
Pr(ai = 1) < 1

2 . So, we give a threshold T and if x = |{i ∈ {0, · · · , 63} | ai = 1}|< T , we
can assume the source is Ascon; otherwise we assume the source is random. We present
this idea in Algorithm 1.

Our distinguisher fails in two ways as follows:

https://github.com/blacksegal/ascon_weak_key_analysis
https://github.com/blacksegal/ascon_weak_key_analysis
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Algorithm 1: Experimental distinguisher setup
Input: Threshold T
Output: Ascon or random source

1 if the number of nonzero coordinates x after the cube sum satisfies x ≤ T , then
2 Output Ascon
3 else
4 Output random source
5 end

1. The source is Ascon but x > T . This happens with probability
∑64

i=T +1
(64

i

)
pi(1−

p)64−i.

2. The source is random but x ≤ T . This happens with probability
∑T

i=0
(64

i

) 1
264 .

Accordingly, the success probability of our distinguisher is given by

1− 0.5
( 64∑

i=T +1

(
64
i

)
pi(1− p)64−i +

T∑
i=0

(
64
i

)
1

264

)
. (12)

Experimental results. We did the experiments for 216 random keys with a random cube
each time. Since each key gives 64 superpolies, we have 222 superpolies in total. We take
the average over these values. Some of the distinguishers are listed below.

• |I| = 23: In this case p = 0.22 after 6 rounds. The threshold T = 22 gives the best
distinguisher with success probability 0.99.

• |I| = 22: In this case p = 0.42 after 6 rounds. The threshold T = 29 gives the best
distinguisher with success probability 0.74.

• |I| = 21: In this case p = 0.48 after 6 rounds. The threshold T = 31 gives the best
distinguisher with success probability 0.56.

Next we did the experiments with a fixed cube and tried to identify some cubes for 6
rounds which give better distinguishers than a random cube. The results are shown in
Table 5.

Table 5: Examples of weak key distinguishers (experimental) for 6 rounds Ascon
|I| I p T Sucess

prob.

21 {2, 3, 7, 8, 9, 10, 11, 13, 16, 17, 18, 19, 27,
28, 32, 33, 34, 36, 37, 42, 63}

0.29 25 0.96

20 {2, 3, 7, 8, 9, 10, 11, 13, 16, 17, 18, 19, 27,
28, 32, 33, 34, 36, 37, 42}

0.35 27 0.89

19 {2, 3, 7, 8, 9, 10, 11, 13, 16, 17, 18, 19, 27,
28, 33, 34, 36, 37, 42}

0.41 29 0.77

18 {2, 3, 7, 8, 9, 10, 13, 16, 17, 18, 19, 27, 28,
33, 34, 36, 37, 42}

0.46 30 0.63

5 The Weak Key Space of Ascon
Finding a weak key set for a cipher is typically a challenging task unless some specific
structural properties exist within the cipher. In this section, we show how to construct a
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weak key space of Ascon based on the algebraic degree. We first explain the idea of weak
keys, define them formally and then present the theoretical construction which works for
r ≥ 2 rounds of Ascon. Next, we identify some additional structural properties of weak
keys which are crucial for key recovery attacks. Finally, we present a combinatorial method
to count the number of such weak keys (lower bounds) for r = 5, 6 and 7 rounds.

5.1 Defining Weak Key Space
Our main idea is to partition the key space such that for any key in the weak key space,
there exists a d-dimensional cube for which all 64 superpolies are zero after r rounds, for
some d. We denote this set of keys by WKr[d] and formally define it in Definition 1.

Definition 1. [Weak key space WKr[d]]. Let d ≥ 1 and K ∈WKr[d]. Then there exists a
d-dimensional cube such that the algebraic degree of Y r

0 [i] in d cube variables is at most
d− 1 after r rounds, for all 0 ≤ i ≤ 63.

Remark 2. Definition 1 only is about the existence of a cube. Finding such a cube and
then using it in a key recovery attack is discussed later in Section 6.

Construction of weak keys set. Let r ≥ 2 be the number of rounds. We construct
WKr[d] (specific to r-round Ascon only) based on the key constraints given in Equation 9.
Let I = {i0, · · · , id−1} ⊆ {0, · · · , 63}. Define

WKr
I [d] := {(k0, · · · , k127) | (??) holds}, (13)

where (??) is given by

(??) :=
{
ki = 1 + ki+64, i ∈ {56, 57, 58, 59} ∩ I
ki = ki+64, i ∈ I \ {56, 57, 58, 59}.

(14)

Note that for different choices of I, the keys might be repeated. Thus, in order to
make the counting of weak keys easy to follow, we redefine Equation 14 by introducing a
middle condition, as given in Equation 15.

ki = ki+64, i ∈ I and i 6= 56, 57, 58, 59
ki = 1 + ki+64, i /∈ I and i 6= 56, 57, 58, 59
ki = 1 + ki+64, i ∈ I and i ∈ {56, 57, 58, 59}

 for 0 ≤ i ≤ 63. (15)

The first two conditions in Equation 15 considers the sets I which do not contain
{56, 57, 58, 59} as a subset. On the other hand, the last condition (along with the first
two) considers the sets I which contain at least one of the indices 56, 57, 58, 59. Since
there are

(64
d

)
many choices of I, the set WKr[d] is given by

WKr[d] =
⋃

I={i0,···,id−1}⊆{0,···,63}

WKr
I . (16)

We now give the values of d for 5, 6 and 7 rounds Ascon.

Specifying d for Ascon. We set d = 13, 24 and 46 for r = 5, 6 and 7 rounds, respectively.
Definition 1 holds for these choices as there exist d cube variables of the form vi0 =
vi0+64, · · · , vid−1 = vid−1+64. For this setting, the algebraic degrees are 12, 23 and 45 after
5, 6 and 7 rounds, respectively (see Table 3).



Raghvendra Rohit and Santanu Sarkar 11

5.2 Structural Properties of Weak Keys
We state four properties (relevant for key recovery attacks) of the weak key space based
on its construction and the values of the cube sum.

5.2.1 Weak Keys and Equality among Key Indices

In Property 1, we give the relationship between a weak key and the number of indices
where key bits are equal and/or unequal.

Property 1. Let K ∈WKr[d] and I = {i0, · · · , id−1} ⊆ {0, · · · , 63} \ {56, 57, 58, 59}. Let
v[I] = {vi | for i ∈ I} be a d-dimensional cube and set vi = vi+64 for all i ∈ I. Then the
following assertions hold.

1. There exists at least d− 4 indices in I where ki = ki+64.

2. If
⊕
Cv[I]

Y r
0 [j] 6= 0 for all 0 ≤ j ≤ 63, then there exist at least 1 index in I such that

ki = 1 + ki+64.

3. If
⊕
Cv[I]

Y r
0 [j] 6= 0 for all 0 ≤ j ≤ 63 and for all I, then there exist at least 60− d− 1

indices in {0, · · · , 63} \ {56, 57, 58, 59} such that ki = 1 + ki+64.

Remark 3. The last two assertions in Property 1 hold for any K in the 2128 key space.

5.2.2 Smaller Subset of WKr[d]

We find a subset of WKr[d] for which there exists 2r−2 + 1 cube variables (instead of d)
which can reach an algebraic degree of at most 2r−2 after r rounds. This subset is formally
given in Property 2.

Property 2. Let r ≥ 2 and WKr[d] be given. Then there exists sWKr[d′] ⊂WKr[d] with
d′ = 2r−2 + 1 < d.

Proof. Let I ′ = {i0, · · · , id′−1} ⊂ {0, · · · , 63}. Define

sWKr
I′ [d′] := {(k0, · · · , k127) | (??0) or (??1) holds}, (17)

where (??0) and (??1) are given by

(??0) :=


ki = ki+64 = 0, i ∈ I ′ and i 6= 56, 57, 58, 59
ki = 1 + ki+64, i /∈ I ′ and i 6= 56, 57, 58, 59
ki = 0, ki+64 = 1, i ∈ I ′ and i ∈ {56, 57, 58, 59}

 for 0 ≤ i ≤ 63, (18)

(??1) :=


ki = ki+64 = 1, i ∈ I ′ and i 6= 56, 57, 58, 59
ki = 1 + ki+64, i /∈ I ′ and i 6= 56, 57, 58, 59
ki = 1, ki+64 = 0, i ∈ I ′ and i ∈ {56, 57, 58, 59}

 for 0 ≤ i ≤ 63. (19)

For any K ∈ sWKr[d′], K ∈WKr[d] as well, meaning that sWKr[d′] ⊂WKr[d]. To see
why d′ = 2r−2 + 1 holds, note that if we set vi = vi+64 for all i ∈ I ′, then X2

3 becomes
linear in cube variables (see Table 3). Thus, the algebraic degree in cube variables is at
most 1 after 2 rounds and at most 2r−2 after 2 + r rounds.
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5.2.3 Hamming Weight of a Weak Key

For any K ∈WKr[d], we identify some relations on the Hamming weight of K by simply
observing the cube sum. More precisely, we give bounds on the Hamming weight of a
weak key. The bounds are given in Property 3 where the core observation is based on the
definition of sWKr[2r−2] in Property 2.

Property 3. Let r ≥ 2, K ∈WKr[d] and I = {i0, · · · , i2r−2} ⊂ {0, · · · , 63}\{56, 57, 58, 59}.
Let v[I] = {vi | for i ∈ I} be a d-dimensional cube and set vi = vi+64 for all i ∈ I. If⊕
Cv[I]

Y r
0 [j] 6= 0 for all 0 ≤ j ≤ 63, then 1 ≤ wt(ki0 , · · · , ki2r−2 ) ≤ 2r−2.

5.2.4 Relationship between WKr[d] and WKr[d + 1]

From the construction of weak keys, it is trivial to see that a key which is weak under
WKr[d+1] is also a weak key under WKr[d]. In particular, for any K ∈ (WKr[d]

⋃
WKr[d+

1]), there exists d cube variables whose cube sum is zero after r rounds. The above
discussion is summarized in Property 4.

Property 4. Let WKr[d] and WKr[d+ 1] be given. Then for any K ∈ (WKr[d]
⋃

WKr[d+
1]), there exists a d-dimensional cube such that

⊕
Cv[I]

Y r
0 [j] = 0 for all 0 ≤ j ≤ 63.

Weak key sets for Ascon. We use Property 4 and define the weak key set WKr for
r-round Ascon as

WKr :=
64⋃

i=d

WKr[i]. (20)

Similarly, we have sWKr ⊂WKr which can be constructed based on Property 2.

5.3 Dimension of Weak Keys
In this section, we present a combinatorial method to count the number of weak keys, i.e.
|WKr| and |sWKr| for a given r.

5.3.1 Size of WKr

We first focus on Equation 15 and Equation 20 in detail for a given d. Let I = {i0, · · · , id−1}
be a set of d indices selected out of {0, · · · , 63}. We count the keys for all choices of I
and without repetition. The following cases are possible based on the construction in
Equation 15.

• Case 1: I does not contain {56, 57, 58, 59}. In this case, the key bits corresponding
to {56, 57, 58, 59} can take all 28 values. The d indices in I satisfy ki = ki+64 while
the remaining 60− d indices satisfy ki = 1 + ki+64. Accordingly, for all choices of I,
the number of keys is

(60
d

)
· 2d · 260−d · 256.

• Case 2: I contains at least one index from {56, 57, 58, 59}. The d− 1 indices in I
satisfy ki = ki+64 while the remaining 60− d+ 1 indices satisfy ki = 1 + ki+64. The
number of keys is

( 60
d−1
)
· 2d−1 · 260−d+1 · α1, for some constant α1 (its actual value

and reasoning provided later on).

• Case 3: I contains at least two indices from {56, 57, 58, 59}. The d− 2 indices in I
satisfy ki = ki+64 while the remaining 60− d+ 2 indices satisfy ki = 1 + ki+64. The
number of keys is

( 60
d−2
)
· 2d−2 · 260−d+2 · α2, for some constant α2.
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• Case 4: I contains at least three indices from {56, 57, 58, 59}. The d − 3 indices
in I satisfy ki = ki+64 while the remaining 60− d+ 3 indices satisfy ki = 1 + ki+64.
The number of keys is

( 60
d−3
)
· 2d−3 · 260−d+3 · α3, for some constant α3.

• Case 5: I contains {56, 57, 58, 59}. The d− 4 indices in I satisfy ki = ki+64 while
the remaining 60 − d + 4 indices satisfy ki = 1 + ki+64. The number of keys is( 60

d−4
)
· 2d−4 · 260−d+4 · α4, for some constant α4.

The constant terms αi’s are computed as follows. Let k56, k57, k58, k59, k120, k121,
k122, k123 be an 8-bit subkey. Then, out of 256 possible values, we compute the number of
distinct subkeys where there are at least 1, 2, 3 and 4 indices in {56, 57, 58, 59} satisfying
ki = 1 + ki+64 for α1, α2, α3 and α4, respectively. We computed them using a simple
Python code (also provided in the Supplementary Material) and obtained α1 = 240,
α2 = 176, α3 = 80 and α4 = 16.

Adding the keys in cases (1)− (5) (since their intersection is empty), we have

|WKr[d]|= 260 ·
((60

d

)
· 256 +

(
60
d− 1

)
· 240 +

(
60
d− 2

)
· 176

+
(

60
d− 3

)
· 80 +

(
60
d− 4

)
· 16
)
. (21)

Since WKr =
64⋃

i=d

WKr[i], we enumerate all keys following an approach similar to

WKr[d]. However, there may be repetitions in WKr[i], WKr[i + 1], · · · ,WKr[64]. For
example, WKr[64] ⊂WKr[60]. To avoid ambiguity, we give a lower bound on the size of
WKr by only considering the sets whose intersections are empty. Note that the exact value
will not differ significantly from the lower bound for r = 7 as d = 46 contributes to the
majority of keys.4 At the end, we have

|WKr| ≥ |WKr[d]|+
60∑

i=d+1

(
60
i

)
· 260 · 28. (22)

5.3.2 Size of sWKr

We first find the number of keys that satisfy Equation 18. In particular for a given d′,
we find the size of sWKr[d′]. Let I = {i0, · · · , id−1} be a set of d indices selected out of
{0, · · · , 63}. We count the keys for all choices of I and without repetition. Again, we have
5 cases.

• Case 1: I does not contain {56, 57, 58, 59}. In this case, the key bits corresponding
to {56, 57, 58, 59} can take all 28 values. The d′ indices in I satisfy ki = ki+64 = 0
while the remaining 60− d′ indices satisfy ki = 1 + ki+64. Accordingly, the number
of keys is

(60
d′

)
· 260−d′ · 256.

• Case 2: I contains at least one index from {56, 57, 58, 59}. The number of keys is( 60
d′−1

)
· 260−d′+1 · β1, for some constant β1.

• Case 3: I contains at least two indices from {56, 57, 58, 59}. The number of keys is( 60
d′−2

)
· 260−d′+2 · β2, for some constant β2.

• Case 4: I contains at least three indices from {56, 57, 58, 59}. The number of keys
is
( 60

d′−3
)
· 260−d′+3 · β3, for some constant β3.

4In fact |WK7| ≈ 2117 if we add the contributions for all d = 46, · · · , 64.
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• Case 5: I contains {56, 57, 58, 59}. The number of keys is
( 60

d′−4
)
· 260−d′+4 · β4, for

some constant β4.

The constant terms βi’s are computed as follows. For an 8-bit subkey (k56, k57, k58,
k59, k120, k121, k122, k123), we compute the number of distinct subkeys where there are at
least 1, 2, 3 and 4 indices in {56, 57, 58, 59} satisfying ki = 0 and ki+64 = 1 for β1, β2, β3
and β4, respectively. Using the same Python code we obtained β1 = 175, β2 = 67, β3 = 13
and β4 = 1.

Adding the keys in cases (1)− (5) (since their intersection is empty), the number of
keys that satisfy Equation 18 for a fixed d′ is(

60
d′

)
· 260−d′ · 256 +

(
60

d′ − 1

)
· 260−d′+1 · 175 + +

(
60

d′ − 2

)
· 260−d′+2 · 67

+
(

60
d′ − 3

)
· 260−d′+3 · 13 +

(
60

d′ − 4

)
· 260−d′+4. (23)

Now, since the intersection of keys corresponding to Equation 18 and Equation 19 is
empty, we can multiply Equation 23 by 2 to get the number of keys satisfying Equation 18
and Equation 19. Thus, the sizes of sWKr[d′] and sWKr are given as follows.

|sWKr[d′]|= 2 ·
((60

d′

)
· 260−d′ · 256 +

(
60

d′ − 1

)
· 260−d′+1 · 175

+
(

60
d′ − 2

)
· 260−d′+2 · 67 +

(
60

d′ − 3

)
· 260−d′+3 · 13

+
(

60
d′ − 4

)
· 260−d′+4

)
(24)

|sWKr| ≥ |sWKr[d′]|+
60∑

i=d′+1
2 ·
(

60
i

)
260−i · 28 (25)

5.3.3 Lower Bounds and Experimental Verification

Using Equation 22 and Equation 25, we compute the lower bounds on the sizes of WKr

and sWKr. In Table 6, we list these numbers for 5− 7 rounds.

Table 6: Total number of weak keys (lower bounds)
Round r d |WKr| Probability d′ |sWKr| Probability

5 13 2127.99 2−0.01 9 2104.09 2−23.91

6 24 2127.97 2−0.03 17 2103.92 2−24.08

7 46 2116.34 2−11.66 33 294.67 2−33.33

Experimental verification. To verify the correctness of Equation 21 and Equation 24,
we computed the number of weak keys for the small parameters: (1) key size equals
16 bits, (2) d = d′ = 4, and (3) we select the 4 indices {1, 2, 3, 4} which are similar to
{56, 57, 58, 59}. Our experimental results matches exactly with these equations. The
source codes for verification are publicly available at https://github.com/blacksegal/
ascon_weak_key_analysis.

https://github.com/blacksegal/ascon_weak_key_analysis
https://github.com/blacksegal/ascon_weak_key_analysis
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6 Key Recovery Attacks in the Weak Key Setting
In this section, we present key recovery attacks on 7-round Ascon in the weak key setting.
We give two attacks: (1) an attack with data complexity 264 and (2) an improved key
recovery attack with data complexity 263.

6.1 Key Recovery Attack with 264 Data
Let K ∈WK7 as defined in Equation 20. Since |WK7| ≈ 2116.34 (see Table 6), the goal is
to recover K with complexities (memory and time) strictly less than 2116.34 Ascon queries.
We recover K in two phases, namely (1) Data collection phase and (2) Key recovery phase.
We now explain each phase in detail and discuss the respective attack complexities.

6.1.1 Data Collection Phase

In this phase, we query the Ascon oracle for 264 distinct nonces, empty associated data and
1-block of message. The nonces are chosen as discussed in Section 4.1 and for simplicity,
we assume that the message block equals 064 (64 bit zero string) in each of the queries.
The ciphertext block is then stored in a hash table T, indexed by the 64-bit value of the
nonce. The entire phase is illustrated in Algorithm 2.

Algorithm 2: Data collection phase
Input: Empty hash table T
Output: Hash table T

1 Set M = 064 . 64 bit message block with all zeros
2 for i = 0 to 264 − 1 do
3 Set N = i‖i . Nonce condition
4 C ← Ascon(K,N, φ,M) . Tag is omitted
5 T[i]← C

6 end
7 return T

Complexity evaluation. The time and memory complexities of this phase are 264 Ascon
queries (Line 4 in Algorithm 2) and 264 · 64 = 270 bits of memory (Line 5 in Algorithm 2),
respectively.

6.1.2 Key Recovery Phase

In this phase, we recover the secret key K. Since K ∈WK7, by Definition 1, there exists
a 46-dimensional cube which gives the XOR sum of ciphertexts as 064 after 7 rounds.
Further, the keys corresponding to these 46-dimensional cubes should satisfy Equation 15.
In our attack, we only need to identify a single set of cube variables (by checking all

(64
46
)

cubes) and its respective keys by doing local operations on table T. Next, the obtained set
of keys is filtered by doing an exhaustive search. An algorithmic description of this phase
is provided in Algorithm 3.

Complexity evaluation. The worst case complexities of this phase are
(64

46
)
· 246 ≈ 296.67

memory access to T and the same number of 64-bit XOR operations in order to recover a
46-dimensional cube (Lines 3-11 in Algorithm 3). Once such a set I is recovered, then the
number of keys corresponding to it satisfying Equation 15 are given as follows.

1. 246+14 · 28 = 268, if I does not contain the indices 56, 57, 58 and 59.
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Algorithm 3: Key recovery phase
Input: Hash table T
Output: Secret key K

1 K = {} . Empty list of keys
2 for each I = {i0, · · · , i45} ⊂ {0, · · · , 63} do
3 L← 0
4 for i = 0 to 246 − 1 do
5 V0 ← 0
6 for j = 0 to 45 do
7 V0[ij ] = (i� j)&1 . j-th bit of integer i
8 end
9 L← L⊕ T[V0]

10 end
11 if L == 0 then
12 for each K ′ satisfying Equation 15 do
13 C ← Ascon(K ′, 064, φ, 064) . Offline computation
14 if C == T[0] then
15 Add K ′ to K
16 end
17 end
18 end
19 Break for loop
20 end
21 Perform exhaustive search on K to get K
22 return K

2. 245+15 · 2 · 26 = 267, if I contains only one of the index 56, 57, 58 and 59.

3. 244+16 · 22 · 24 = 266, if I contains exactly two of the indices 56, 57, 58 and 59.

4. 243+17 · 23 · 22 = 265, if I contains exactly three of the indices 56, 57, 58 and 59.

5. 242+18 · 24 = 264, if I contains the indices 56, 57, 58 and 59.

These keys are then filtered exhaustively to obtain a set of possible key candidates K
(Lines 11-20 in Algorithm 3). The time complexity of this step is 268 (assuming the worst
case) offline Ascon evaluations.5 Since we are doing a match on 64 bits in Line 14, the
size of K is 268−64 = 24 on average. Finally, we do an exhaustive search on K (Line 21 in
Algorithm 3) to recover K.

Overall, the time complexity is 296.67 (memory access) + 296.67 (64-bit XORs) + 268+24

(offline Ascon evaluations). In the worst case, the time complexity is dominated by 297

Ascon evaluations.
Combining the complexities of data collection and key recovery phases, the attack

complexities are 264 data, 270 memory (in bits), and 297 time (Ascon evaluations).

6.1.3 Discussion on the units of Time Complexity

The overall time complexity should be in terms of number of Ascon queries (online +
offline). Since we use memory accesses to table T and 64-bit XOR operations, we define

5Here, one Ascon evaluation is equivalent to 7-round Ascon permutation computation.
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the following scale factors.

1 memory access ≈ 1 Ascon evaluation
1 64-bit XOR ≈ 2−7.2 Ascon evaluations

The latter is due to the fact that Ascon’s bit-sliced implementation requires 21× 7 = 147
64-bit XORs for 7 rounds.

6.1.4 Discussion on the Recovered Indices Set

We argue that the indices set I recovered in the data collection phase is correct with very
high probability. Let’s assume that it is incorrect. In that case, there exists at least one
i ∈ I for which the key conditions in Equation 15 does not hold. For simplicity, we further
assume that there is only one such i. This implies that the cube variable vi is present
in Y 0

1 [i], and consequently, in X1
1 [i], X1

1 [i+ 3] and X1
1 [i+ 25]. Thus, for an incorrect I,

the degree increases quickly compared to the correct one. The differences in the degree
upper bounds are shown in Table 7. We see that the degree bounds are 45 and 59 for the
right and wrong I, respectively, after 7 rounds. Since the dimension of cube is 46, the
probability that the wrong I gives the cube sum as zero in all the 64 output bits is 2−64.

Table 7: Upper bounds on the algebraic degree of Ascon in cube variables. For an incorrect
I, the values are shown in [·] and taken from [RHSS21, Section 7.2]

Round r
Bits in word

Xr
0 Xr

1 Xr
2 Xr

3 Xr
4

1 1 [1] 0 [1] 0 [0] 0 [0] 1 [1]
2 1 [2] 1 [1] 1 [1] 2 [2] 1 [2]
3 2 [3] 3 [3] 3 [4] 3 [4] 2 [3]
4 6 [7] 6 [8] 5 [7] 5 [7] 5 [6]
5 12 [15] 11 [15] 10 [13] 11 [14] 12 [15]
6 23 [30] 22 [29] 23 [29] 24 [30] 23 [30]
7 45 [59] 47 [59] 47 [60] 47 [60] 46 [58]

Now, for a randomly chosen K ∈WK7, we find the expected number of cubes for which
all 64 superpolies are zero after 7 rounds. We have N =

(64
46
)
cubes in total. If a cube C is

such that all 64 superpolies are zero after 7 rounds, we say that C satisfies property P.
Now in the weak key setting, there is at least one cube with P. Let us assume that any
other cube apart from this cube satisfies P with probability 2−64. We want to find the
number of cubes X which satisfy P. Define a binary random variable Xi which takes 1 if
and only if the i-th cube satisfy P. It is clear that E(Xi) = 2−64. Thus

E(X) = 1 + E(
N−1∑
i=1

Xi) = 1 +
N−1∑
i=1

E(Xi) = 1 + (N − 1)2−64

=⇒ E(X) = 1 +
((64

46

)
− 1
)

2−64 ≈ 1 + 2−12.3.

6.2 Key Recovery Attack with 263 Data
Let K ∈WK7 as defined in Equation 20. We show how to recover K with 263 data and
time < 2116.34. The attack is again divided into a data collection phase and a key recovery
phase, which are described as follows.
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6.2.1 Data Collection Phase

We set the cube variables as v0, · · · , v58, v60, · · · , v63 and v59 = 0. We then query the Ascon
oracle for 263 distinct nonces, empty associated data and a zero message block similar to
Subsubsection 6.1.2. The ciphertext block is then stored in a hash table T1, indexed by
the 64-bit value of the nonce.

Complexity evaluation. The time and memory complexities of this phase are 263 Ascon
queries and 263 · 64 = 269 bits of memory, respectively.

6.2.2 Key Recovery Phase

We divide this phase into 5 steps. Each of these steps are sequential, i.e., we only move
to the next step if specific conditions (mentioned later) are not met. We denote the time
complexity of step i by Ti. Further, let L = {56, 57, 58, 59} and J = {0, · · · , 63} \ L.

Step 1: Early filtering with 46 dimension cubes. We apply Algorithm 3 to J using
table T1. If we find a 46-dimensional cube whose cube sum is zero, then we are done.
Else if none of the

(60
46
)
cube sums are zero, then we proceed to the next step. The time

complexity T1 =
(60

46
)
· 246 (memory access) +

(60
46
)
· 246 (64-bit XORs).

Since none of the cube sum equals zero, by Property 1, there exist at least 15 and at
most 18 indices in J where ki 6= ki+64. We consider the case for 15, 16, 17 and 18 (not
equal) indices in step 2, 3, 4 and 5, respectively.

Step 2: 15 not equal indices. This means there are 45 indices in J where ki = ki+64 and
15 indices where ki 6= ki+64. Now, to satisfy the definition of WK7[46], there must exist at
least one index in L satisfying Equation 15. We select 46-dimensional cubes by choosing
45 variables from J and 1 variable from {56, 57, 58}, and then apply Algorithm 3. If none
of the cube sums is zero, then k56 = k120, k57 = k121, k58 = k122 and k59 = 1 + k123. The
number of key candidates are

(60
45
)
· 260 · 24.

The time complexity of this step is given by

T2 =
(

60
45

)
·
(

3
1

)
· 246︸ ︷︷ ︸

memory access

+
(

60
45

)
·
(

3
1

)
· 246︸ ︷︷ ︸

64-bit XORs

+
(

60
45

)
· 260 · 24︸ ︷︷ ︸

exhaustive search

.

Step 3: 16 not equal indices. Here, we have 44 indices in J where ki = ki+64 and 16
indices where ki 6= ki+64. Again, to satisfy the definition of WK7[46], there must be at
least two indices in L satisfying Equation 15. We select 46-dimensional cubes by choosing
44 variables from J and 2 variables from {56, 57, 58}, and then apply Algorithm 3. If none
of the cube sums is zero, then k59 = 1 + k123 and there exists exactly one i in {55, 56, 57}
such that ki = 1 + ki+64. The number of key candidates are

(60
44
)
· 260 · 48.

The time complexity is given by

T3 =
(

60
44

)
·
(

3
2

)
· 246︸ ︷︷ ︸

memory access

+
(

60
44

)
·
(

3
2

)
· 246︸ ︷︷ ︸

64-bit XORs

+
(

60
44

)
· 260 · 48︸ ︷︷ ︸

exhaustive search

.

Step 4: 17 not equal indices. We have 43 indices in J where ki = ki+64 and 17 indices
where ki 6= ki+64. To satisfy the weak keys definition, there must be at least three indices
in L satisfying Equation 15. We select 46-dimensional cubes by choosing 43 variables from
J and 3 variables from {56, 57, 58}, and then apply Algorithm 3. If none of the cube
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sums is zero, then k59 = 1 + k123 and there exists exactly two i in {55, 56, 57} such that
ki = 1 + ki+64. The number of key candidates are

(60
43
)
· 260 · 48.

The time complexity is given by

T4 =
(

60
43

)
· 246︸ ︷︷ ︸

memory access

+
(

60
44

)
· 246︸ ︷︷ ︸

64-bit XORs

+
(

60
43

)
· 260 · 48︸ ︷︷ ︸

exhaustive search

.

Step 5: 18 not equal indices. Since v59 is not a cube variable, we do an exhaustive
search on

(60
42
)
· 260 · 24 keys. Thus, T5 =

(60
42
)
· 260 · 24.

Complexity evaluation. Combining steps (1) to (5), the time complexity is given as
follows.

Memory access = 246 ·
((60

46

)
+
(

60
45

)
· 3 +

(
60
44

)
· 3 +

(
60
43

))
≈ 295.86

64-bit XORs = 246 ·
((60

46

)
+
(

60
45

)
· 3 +

(
60
44

)
· 3 +

(
60
43

))
≈ 295.86

Exhaustive search = 268 + 260 ·
((60

45

)
· 16 +

(
60
44

)
· 48 +

(
60
43

)
· 48 +

(
60
42

)
· 16
)

≈ 2115.2

In summary, the attack requires 263 data, 269 memory (in bits) and 2115.2 offline Ascon
evaluations in the worst case.

6.3 Discussion on Key Recovery Attacks
Here we compare the complexities of the two key recovery attacks discussed in Subsection 6.1
and Subsection 6.2 with that of exhaustive search in the weak key setting. We also briefly
give some insights on the possibility of extension of these attacks.

Comparison with exhaustive search. Since the number of weak keys is 2116.34, the
exhaustive search requires 2116.34 time complexity. For our first attack with 264 data, the
time complexity is 297, and thus, there is an improvement of more than 19 bits over a key
space of size 2116.34.

For our second attack with 263 data, the time complexity is 2115.2. Although the time
complexity is marginally better (around 1 bit) than the exhaustive search, the presented
attack is the first key recovery attack on 7-round Ascon with at most 263 data.

We also note that all these complexities are computed in the worst case, i.e., when we
go over all steps of the attack in the key recovery phase.

Extending weak key attacks. It is natural to ask whether it is possible to extend our
weak key attacks to attacks covering the full key space. Moreover, is it possible to improve
the time complexities of existing cube-based attacks [LDW17, RHSS21] on 7 rounds Ascon
using the weak key distinguishers. At the moment, Property 1 and Property 3 can certainly
reduce the 128-bit key space, but our initial findings suggest that the reduction factor is
very low (not even 1 bit). An initial approach in this direction could be to use all smaller
sub-cubes of a larger cube to find multiple relations among the key bits. For instance,
consider the 6-round Ascon. A 33-dimensional cube gives only 1 relation in key bits if we
use the approach of [LDW17]. However, by using Property 1 and Property 3, we could use
smaller sub-cubes of dimension 24 and obtain multiple relations among the key bits.

The above mentioned questions certainly need further investigation and therefore, we
mention them as an interesting research problem in Section 7.
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7 Conclusion
In this work, we have presented the first in-depth weak key security analysis of round-
reduced Ascon. We identified two practical distinguishers for 7 rounds with data complexi-
ties 246 and 233, and further improved the state-of-the-art distinguishers complexities by
a factor of 28, 216 and 227 for 5, 6 and 7 rounds, respectively. Moreover, we have shown
the existence and construction of a large class of weak keys by simply using algebraic
degree arguments. The lower bounds on the number of weak keys are 2127.99, 2127.97 and
2116.34 for 5, 6 and 7 rounds, respectively. We then discussed two key recovery attacks on
7 rounds in the weak key setting with complexities: (1) 264 data, 270 bits of memory and
297 time, and (2) 263 data, 269 bits of memory and 2115.2 time. Our second attack is the
best till now considering the data limit of less than 264 blocks.

Although all our results are in the weak key setting, we believe they will provide new
insights to the community in further understanding the security of Ascon. We now list
some problems which are worth investigating.

Problem 1. How to extend our weak key attacks to attacks covering the full key
space? Is it possible to improve the time complexities of existing cube-based attacks
[LDW17, RHSS21] on 7 rounds Ascon using the weak key distinguishers?

Problem 2. We believe that the number of weak keys could be increased by relaxing
the success probability of a distinguisher from 1 to some α satisfying 0.5 < α < 1. This
needs further investigation and a starting point could be the presented experimental
distinguishers in Section 4.3.

Problem 3. Is there a weak key distinguisher for 8 rounds Ascon?
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