
Performance bounds for QC-MDPC codes
decoders

Marco Baldi1, Alessandro Barenghi2, Franco Chiaraluce1,
Gerardo Pelosi2, and Paolo Santini1

1 Università Politecnica delle Marche, Ancona, Italy
2 Politecnico di Milano, Milano, Italy

{m.baldi, f.chiaraluce, p.santini}@univpm.it
{alessandro.barenghi, gerardo.pelosi}@polimi.it

Abstract. Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC)
codes are receiving increasing attention for their advantages in the con-
text of post-quantum asymmetric cryptography based on codes. How-
ever, a fundamentally open question concerns modeling the performance
of their decoders in the region of a low decoding failure rate (DFR). We
provide two approaches for bounding the performance of these decoders,
and study their asymptotic behavior. We first consider the well-known
Maximum Likelihood (ML) decoder, which achieves optimal performance
and thus provides a lower bound on the performance of any sub-optimal
decoder. We provide lower and upper bounds on the performance of ML
decoding of QC-MDPC codes and show that the DFR of the ML decoder
decays polynomially in the QC-MDPC code length when all other param-
eters are fixed. Secondly, we analyze some hard to decode error patterns
for Bit-Flipping (BF) decoding algorithms, from which we derive some
lower bounds on the DFR of BF decoders applied to QC-MDPC codes.

Keywords: QC-MDPC codes · Decoding failure rate · Bit-Flipping de-
coder · Maximum likelihood decoder · Error floor · Post-quantum cryp-
tography · Code-based cryptography

1 Introduction

Code-based public-key cryptography is deemed as one of the most consolidated
and promising areas in post-quantum cryptography. As the most remarkable ex-
ample, we can mention the Classic McEliece scheme [2], which currently appears
as a finalist in the NIST post-quantum standardization process [1, 27]. This
scheme essentially consists of a highly optimized version of the original proposal
by Robert McEliece [26] and, in particular, employs the same family of error
correcting codes (namely, binary Goppa codes). Despite more than 40 years of
cryptanalysis, the improvements in known attacks against the original McEliece
scheme, which are substantially based on Information Set Decoding (ISD) al-
gorithms, have been very limited (see [5] for a review of such algorithms, and
[10, 12] for the state of the art). However, this robustness is somehow paid with



2 M. Baldi et al.

very large public keys, a feature that has historically represented Achille’s heel of
code-based cryptography and, ultimately, has hindered its spreading in modern
applications.

To overcome this issue, researchers have thoroughly investigated the possi-
bility of replacing Goppa codes with other error correcting codes, and/or that
of adding some geometrical structure to the employed codes, which may enable
a more compact code representation. However, the majority of such attempts
were unsuccessful, either because of algebraic attacks (such as [15, 38]), struc-
tural attacks (such as [3, 13, 25]), or a combination of them [20]. While alge-
braic code structures proved more difficult to hide and have lead to unbroken
instances with moderate advantages in terms of public key size [9, 24], more
important reductions in the key size can be achieved by resorting to random-
based structured codes like Quasi-Cyclic Moderate-Density Parity-Check (QC-
MDPC) codes [4, 30], which derive from the well-known family of Quasi-Cyclic
Low-Density Parity-Check (QC-LDPC) codes [6]. However, low-complexity de-
coding of QC-MDPC codes, as well as QC-LDPC codes, is performed through
iterative algorithms derived from Gallager’s Bit Flipping (BF) decoder [21] and,
differently from bounded distance decoders used for algebraic codes like Goppa
codes, these algorithms are characterized by a non-null Decoding Failure Rate
(DFR). This implies that an adversary performing a Chosen-Ciphertext Attack
(CCA) can gather information about the secret key by exploiting decryption
failures [19, 22, 31]. Formally, this translates into the fact that a non-zero DFR
may prevent the cryptosystem from achieving Indistinguishability under Adap-
tively Chosen Ciphertext Attack (IND-CCA2), that is, resistance against active
attackers, which is fundamental in many scenarios. To overcome this issue, it
is required to guarantee that the decoding algorithm has a provably low DFR,
namely, not higher than 2−λ, where λ is the target security level in bits [23]. Such
small values of DFR are impossible to assess directly through numerical simula-
tions; thus, finding theoretical models for the DFR of decoders for QC-MDPC
codes is of paramount importance.

Related works. For a single-iteration BF decoder, the available analyses estab-
lish both the error correction capability [33, 39] and a provable, code-specific
upper bound on the DFR [32]. However, for more than one decoder iteration,
these models require some assumptions that result in a loose modeling of the
decoder performance. Multiple iterations have been conservatively analyzed in
[7], for a decoder that however processes the bits in a sequential manner and,
consequently, is not efficient in practice. Following a completely different strat-
egy, authors in [36] study the dependence of the DFR on the code length, and
propose to extrapolate such a function in the region of low DFR values, based
on its trend estimated through numerical simulations for smaller DFR values.
Such an extrapolated performance is then used to adjust the code and decoder
parameters [17, 18], as well as to design parameter sets for the BIKE cryptosys-
tem [4]. A theoretical justification of this approach is provided in [35], where
the authors claim that the logarithm of the DFR is a concave function of the
code length, up to the point where the DFR is not larger than 2−λ. Under this



Performance bounds for QC-MDPC codes decoders 3

assumption, extrapolation with an exponential decay in the code length yields
a conservative DFR estimate. This is motivated in [35] through the assumption
that, when the DFR is extremely low, the only relevant failure phenomena in a
BF decoder are those due to input sequences for which the closest codeword is
different from the transmitted one. Notice that, if such an assumption is true,
then the BF decoder must approach the optimal (Maximum Likelihood (ML))
decoder in the region of low DFR.

Our contribution. We study the performance of decoders for QC-MDPC codes
in the setting with a fixed number of errors. We start by analyzing the DFR of
the optimum decoding strategy, corresponding to a complete ML decoder which
additionally exploits the knowledge on the number of introduced errors. We show
that, for some families of QC-MDPC codes (like those employed in BIKE), this
decoder is characterized by a non-zero DFR that decays polynomially in the code
length (assuming all the other parameters as fixed). Studying the performance
of ML decoding allows us to obtain a lower bound on the DFR of any sub-
optimal decoder. In particular, through our analysis, we are able to formally and
rigorously prove the existence of the error floor region, for the considered codes,
as a function of the code length. The error floor is a well-known phenomenon
when the codes are used in communication systems, for example affected by
thermal noise, but its dependence on the code length has been rarely investigated
in previous literature [29, 35].

More precisely, we consider BF decoders for QC-MDPC codes and show
how to identify some error patterns that, with high probability, cannot be cor-
rected. By doing this, we are able to compute a lower bound on the DFR of
such decoders. With our results, we are able to provide evidence in contrast
with the claims in [35], in particular showing that: i) a BF decoder is extremely
far from being optimal, and ii) the most likely failure events are not those due
to near-codewords. It must be noted that, in an independent and very recent
work [42], Vasseur has come to similar conclusions with a thorough analysis of
near-codewords and their impact on the DFR. We remark that our results do
not directly imply that the parameters proposed in [4, 18, 35] do not achieve
the claimed DFR. However, they suggest that finding exact models for the per-
formance of a BF decoder still requires further investigations, especially in the
regime, here of interest, of extremely low DFR.

The paper is organized as follows. In Section 2 we establish the notation used
throughout the paper, and we provide basic concepts about coding theory and
QC-MDPC codes. In Section 3 we analyze the ML decoder, and we employ the
obtained results to prove the existence of the floor for specific families of QC-
MDPC codes. In Section 4 we take into account BF decoding, and we describe
how to pick hard to decode errors and how to use such vectors to find a lower
bound on the DFR. Finally, in Section 5 we draw some concluding remarks. With
respect to the version published in the Proceedings of International Workshop on
Code-Based Cryptography (CBCrypto 2021), this paper contains an additional
appendix, namely, Appendix 5



4 M. Baldi et al.

2 Notation and Background

We use bold uppercase letters to denote matrices, and bold lowercase letters to
denote vectors. Given a matrix A, we use Ai,: (resp, A:,i) to denote its i-th row
(resp. column), while ai,j refers to its entry in the i-th row and j-th column. For
a vector a, we use ai to refer to its i-th component. The null vector of length n
is indicated as 0n. The Hamming weight of vector a is denoted as wt(a), while
Supp (a) refers to its support, that is, the set of indexes pointing at non-null
entries. Let F2 denote the binary finite field. For two vectors a and b with equal
length, defined over F2, we denote as 〈a ; b〉 their integer inner product, that is,
their inner product after lifting their entries from F2 to the ring of integers Z.

For a set A, the expression a
$←− A means that a is uniformly picked among

the elements of A; the cardinality of the set is denoted as |A|. We use Bn,w ⊂ Fn2
to denote the Hamming sphere with radius w, that is, the set of length-n vectors
with Hamming weight w.

2.1 Error correcting codes

In the following we focus on linear block codes over F2.

Definition 1. A linear code C of length n, dimension k and redundancy r =
n− k over F2 is a k-dimensional linear subspace of Fn2 . We say that G ∈ Fk×n2

is a generator matrix for C if it is a basis of C ; a matrix H ∈ Fr×n2 is said
to be a parity-check matrix for C if it is a basis of its null space.

A crucial property of a linear code is that the sum of any number of codewords
yields another codeword. Codes are normally endowed with a distance metric,
that is, a function able to measure the distance between pairs of codewords; in
this paper we only consider the Hamming metric, defined next.

Definition 2. The Hamming distance in the vector space Fn2 is defined as the
function dist : Fn2 × Fn2 → N such that

dist(a,b) = |Supp (a + b)| = wt(a + b).

We finally recall the concepts of weight distribution and minimum distance.

Definition 3. For a linear code C ⊆ Fn2 and w ∈ [0;n], we denote with Aw
the number of codewords whose weight is w. Then, the weight distribution of C
corresponds to the collection of all values Aw. The minimum distance of C is
defined as the minimum w > 0 such that Aw > 0 or, equivalently, as

d = min
{

dist(c, c′) | c, c′ ∈C , c 6= c′
}

= min{wt(c) | c ∈C \ 0n}.

Arguably, the most important application of linear codes is that of error
correction over noisy channels; this is accomplished through decoding algorithms,
i.e., techniques that, within certain limits, can identify the channel action on a
received sequence and, consequently, reconstruct the transmitted codeword. In



Performance bounds for QC-MDPC codes decoders 5

this work, we focus on the use of error correcting codes in the context of the
McEliece cryptosystem. In such a setting, the message to be transmitted is first
encoded as a codeword and then an error vector e of fixed weight t is added to
it. To this end, we introduce the McEliece channel, whose action is described as

c 7→ x = c + e, c ∈ Fn2 , e
$←− Bn,t,

where c is the input sequence and e is the error introduced by the channel.

To provide a rigorous classification of decoders, we consider the following
formal definition, which has been made specific to the McEliece channel.

Definition 4. Let C ⊆ Fn2 be a linear code of length n. We say that an algo-
rithm Dec : Fn2 → Fn2 has DFR ε for C , in the McEliece channel with parameter
t, if

Pr
[
Dec(c + e) 6= c

∣∣∣ c
$←−C , e

$←− Bn,t
]

= ε.

2.2 QC-MDPC codes

Let us recall the definition of MDPC codes, which were first introduced in [28]
for the context of communications but, later on, received interest for the use in
public-key cryptosystems [30].

Definition 5. Let H ∈ Fr×n2 such that all of its rows have weight w = O(
√
n);

then, we say that the code having H as parity-check matrix is an MDPC code.

Namely, MDPC codes are analogous to LDPC codes, with the only difference
that their parity-check matrices are denser than those of typical LDPC codes.

In particular, when used in cryptography, these codes are usually endowed
with the QC structure, that is, the matrix H is formed by circulant blocks of
size p. Note that, for a circulant matrix, all rows and columns have the same
weight; thus, with some abuse of notation, we will use the term “weight of a
circulant matrix” to refer to the weight of any of its rows/columns. From now
on, we will focus on a particular class of QC-MDPC codes, which we formally
define as follows.

Definition 6. Let H = [H0, · · · ,Hn0−1], with Hi being a circulant matrix of
size p and weight v = O(

√
p/n0). Then, we say that the code C admitting H

as parity-check matrix is an n0-QC-MDPC code. Furthermore, we denote with
QC-MDPC(n0, p, v) the collection of all such codes.

Note that an n0-QC-MDPC code has length n = n0p, dimension k = (n0 − 1)p
and redundancy r = p. A parity-check matrix as in Definition 6 has all columns
with weight v, while all rows have weight w = n0v = O(

√
n). In a cryptosystem,

a user randomly and uniformly picks a code from QC-MDPC(n0, p, v), and uses
its parity-check matrix as the secret key.



6 M. Baldi et al.

3 Maximum-Likelihood Decoding

In this section we analyze the optimal decoding strategy of QC-MDPC codes
exploiting ML, and characterize its performance over the McEliece channel. Such
a technique works by first testing the distance between each codeword and the
received sequence, and then by outputting the codeword that minimizes such a
distance. When there is more than one codeword at the same minimum distance
from the received sequence, then the ML decoder can apply one of the following
two strategies:

– Complete ML decoding: the decoder randomly outputs one of the codewords
at minimum distance from the received sequence.

– Incomplete ML decoding: the decoder halts and reports a decoding failure.

In this paper we consider a complete ML decoder. We observe that the results
we obtain can easily be adapted to the case of an incomplete ML decoder and,
in general, no big difference exists between the two behaviors from a practical
standpoint. However, since the complete ML decoder always returns a codeword,
it is clear that its DFR is lower than that of the incomplete counterpart. Indeed,
the two decoders behave differently only when there is more than one codeword
at the same distance from the received sequence. In such a situation, the incom-
plete decoder will not try to decode (hence, according to Definition 4, it will
fail), while with some non null probability the complete version will return the
correct codeword.

Taking into account the fact that, in our case, there are exactly t errors
affecting each transmitted codeword, we can modify the standard definition of
complete ML decoding as follows.

Definition 7. Let C be a linear code over F2 with length n. The complete
ML-decoder is the algorithm ML : Fn2 → C that, on input x ∈ Fn2 , returns

c′
$←−C (x)

, where

C
(x)

=
{
c ∈C s.t. dist(x, c) = t

}
,

that is, C
(x)

is the set of all the codewords of C which are exactly t away from
x under Hamming distance.

Note that, when C
(x)

contains only one codeword, obviously that codeword
is the decoder output (so, no randomness is involved). We point out that the
decoder we have defined above corresponds to the best decoder (in terms of
DFR) one can dispose of, in the McEliece channel. Indeed, the decoder i) exploits
knowledge on the number of errors, and ii) always returns a codeword. Because
of these reasons, the study of its performances is meaningful since it allows us to
derive the minimum DFR that can be reached. Complete ML decoding can also
be performed when the decoder input is the syndrome of the received sequence;
formally, we define such a procedure as follows.



Performance bounds for QC-MDPC codes decoders 7

Definition 8. Let C be a linear code over F2 with length n and parity-check
matrix H. We define the ML syndrome decoder as the algorithm MLS: Fn2 → Fn2
that, on input x ∈ Fn2 , returns x + e′, where e′

$←− S(x)H and

S(x)H =
{
e ∈ Bn,t s.t. eH> = xH>

}
.

Notice that the ML and MLS decoders are, in principle, different from each
other. Indeed, the ML decoder always returns a codeword, while the MLS de-
coder may return a vector that does not belong to the code. Yet, in the following
theorem we prove that the DFR of these algorithms coincide, and furthermore
we provide explicit bounds for such a failure probability.

Theorem 1. Let C ⊆ Fn2 be a linear code of length n, dimension k and mini-
mum distance d, and consider the transmission over the McEliece channel with
parameter t. Then, the ML and MLS decoding algorithms have the same DFR,
denoted as εML, which is equal to

εML = 1− 1(
n
t

) ∑
e∈Bn,t

1∣∣∣C (e)
∣∣∣ .

Furthermore, it holds that ε
(L)
ML ≤ εML ≤ ε(U)

ML , where

ε
(U)
ML =

1

2
(
n
t

) ∑
w∈[d;2t]
w even

Aw

(
w

w/2

)(
n− w
t− w/2

)
,

ε
(L)
ML =


0 if Aw = 0 for all even w ∈ [d; 2t],

maxw∈[d;2t]
w even
Aw>0

{
( w
w/2)(

n−w
t−w/2)

2(n
t)

}
otherwise.

Proof. See Appendix A.

It is clear that the computational complexity of both ML and MLS decoders
is intractable unless the code or the channel have trivial parameters (i.e., very
low values of k and/or t). Indeed, a straightforward implementation of the ML
decoder runs in time O(2Rn) (since all codewords must be tested), being R = k/n
the code rate, while the MLS decoder takes time O(nt) (since it tests all vectors
in Bn,t, of size

(
n
t

)
= O(nt)). Furthermore, we recall that solving the decoding

problem for a generic random linear code was proven to be NP-complete [11], as
well as finding its minimum distance [41]. It is thus rather unlikely that efficient
implementations of ML decoders are found. For this reason, one normally relies
on sub-optimal decoding strategies. Hence, any such practical decoder is going
to have a DFR higher than that of the ML decoder.

3.1 ML decoders for QC-MDPC codes

When QC-MDPC codes are employed in public-key cryptosystems [28, 4, 8], we
have that both the secret and the public keys are representation of the same



8 M. Baldi et al.

code C , drawn at random from QC-MDPC(n0, p, v). In particular, the secret
key corresponds to a sparse parity-check matrix, while the public key is either a
dense generator or a dense parity-check matrix. Furthermore, we have that n0
is normally chosen as a small integer, namely, n0 ∈ {2, 3, 4}. Because of the QC
structure, we can derive some common properties for these codes, as stated in
the following proposition.

Proposition 1. Let C be picked at random from QC-MDPC(n0, p, v). Then,
the following properties hold:

i) the minimum distance of C is not greater than 2v;
ii) we have A2v ≥ p

(
n0

2

)
.

Proof. See Appendix B.

When employed in a public-key cryptosystem, the parameters of a QC-MDPC
code must satisfy some constrains in order to guarantee the desired security level
λ. As it is well known, the best attacks against these schemes exploit Informa-
tion Set Decoding (ISD) algorithms, which are techniques originally conceived
for decoding arbitrary codes, when no efficient decoding algorithm is available.
Given a code with length n and dimension k, an ISD algorithm can be used to
decode an error vector of weight ω with a computational complexity that is well
approximated [40] as

CISD(n, k, ω) ≈ 2−ω log2(1−k/n).

Note that the above complexity also corresponds to that of finding a specific
codeword of weight ω in a code with the same parameters. In a public-key
cryptosystem employing QC-MDPC codes, two main applications of ISD exist:

- decoding attacks, that aim at recovering the plaintext from an intercepted
ciphertext, which can either be in the form of a syndrome or an error cor-
rupted codeword. In both cases, the corresponding error has weight t, thus

an adversary faces a complexity equal to CISD(n,k,t)√
p , where the polynomial

speed-up comes from quasi-cyclicity [34];
- key recovery attacks, that aim at finding low weight codewords in either the

public code or its dual. The knowledge about these codewords will indeed
reveal the structure of the sparse parity-check matrix used as the private key.
In particular, it can be shown that searching for low weight codewords in
the dual code corresponds to the optimal attack strategy [8, Section 2.3.1].

We can then assess the complexity of this kind of attacks as CISD(n0p,p,n0v)
p .

To reach a security level of λ bits, we must guarantee that all successful attacks
run in a time not lower than 2λ. Hence, taking these considerations into account,
we get that v and t must satisfy the following relationshipsv ≈

λ+log2(p)

n0 log2

(
n0

n0−1

) ,
t ≈ λ+ 1

2 log2(p)

log2(n0)
,

(1)



Performance bounds for QC-MDPC codes decoders 9

from which, with simple algebra, we get

t ≈ vn0
(

1− log2(n0 − 1)

log2(n0)

)
− log2(p)

2 log2(n0)
. (2)

QC-MDPC codes with n0 = 2. To consider a case of practical interest, we
focus on n0 = 2; actually, this corresponds to the QC-MDPC codes that are
considered in the BIKE cryptosystem [4] and other relevant works [36, 35, 18,
17]. Assuming p ≈ n0v2 (recall Definition 6), from (2) we have that

t ≈ 2v − 0.5− log2(v).

For security levels of practical interest, we always have v < t: since the result-
ing QC-MDPC(2, p, v) code always contains codewords of even weight ≤ 2t (as
stated in Proposition 1), applying Theorem 1 we get that the ML decoder has a

provably non-zero DFR. Indeed, we can plug w = 2v into the expression of ε
(L)
ML ,

and correspondingly obtain a lower bound on the DFR of the ML decoder as

ε
(L)
ML =

(
2v
v

)(
2p−2v
t−v

)
2
(
2p
t

) .

Notice that, for growing p and fixed v and t, we get ε
(L)
ML = O

(
p−v

)
, which is

polynomial in the circulant size p. To highlight such result, we encapsulate it in
the following proposition.

Proposition 2. Consider C ∈ QC-MDPC(2, p, v) used over a McEliece chan-
nel with parameter t = 2v − 0.5 − log2(v). Then, ML decoding of C fails with
a probability that decays asymptotically as O(p−v).

This result is foundational, since it proves that, when the parameters v and t
are fixed, the DFR of the ML decoder decays polynomially with the circulant
size (which is linear in the code length). This is the typical floor behavior:
the DFR (seen as a function of the code length) starts with an exponential
decay but, at some point, the slope changes and the DFR decay becomes only
polynomial. To have a further insight on the lower bound of the ML decoder,
and to especially highlight how it depends on the code parameters p and v, with
simple approximations we elaborate the previous expression and get

ε
(L)
ML ≈ 21.5573v−v log2(

p
v )−0.5 log2(v)−1.3257. (3)

To see how such an estimate has been derived, see Appendix C. To have a

graphical view of how ε
(L)
ML evolves with the circulant size p, and also to have an

evidence of the quality of the approximation in (3), we provide some numerical
examples in Fig. 1.



10 M. Baldi et al.

0 20,000 40,000 60,000 80,000 100,000

20

2−250

2−500

2−750

2−1000

p

D
F

R

Exact ε
(L)
ML , λ = 80

Approx. ε
(L)
ML , λ = 80

Exact ε
(L)
ML , λ = 128

Approx. ε
(L)
ML , λ = 128

Exact ε
(L)
ML , λ = 192

Approx. ε
(L)
ML , λ = 192

Fig. 1: Lower bound on the DFR of the ML decoder, for QC-MDPC codes with
n0 = 2 and parameters achieving different security levels. For each value of p, we

have computed v and t through (1). The exact value of ε
(L)
ML is computed as in

Theorem 1, considering w = 2v, while the approximated one has been obtained
through (3).

QC-MDPC codes with n0 ≥ 4. Interestingly, for n0 ≥ 4, (2) implies t < v.
Recall that, due to sparsity, we expect that the minimum distance of a large
majority of QC-MDPC codes is exactly 2v. For all such codes, the upper bound

ε
(U)
ML expressed in Theorem 1 is null, and hence our analysis does not highlight

the existence of the floor region.

4 Lower bounds for BF decoders

As mentioned before, the ML decoder is interesting from a theoretical perspec-
tive, since it can be used to derive a safe lower bound on the DFR of any decoder
employed in practice. Yet, practical decoders in cryptosystems usually rely on
completely different decoding strategies, which originate from the BF decoder
first presented in [21]. In this section we propose a numerically-aided approach
to compute a lower bound on the DFR of BF decoders. Based on Propositions
3 and 4, we will be able to find error vectors with a special structure by only
looking at the code parity-check matrix, without needing any simulation. Then,
starting from these error vectors, a lower bound on the DFR of BF decoding
can be computed by exploiting some numerical simulations, as will be described
in Proposition 5. For this reason, the lower bound we propose, which partially
relies on simulations, is defined as numerically-aided.

A BF decoder performs the decoding procedure starting from an estimate
of the value of e, initially set to 0n, and changes this estimate, flipping its bit



Performance bounds for QC-MDPC codes decoders 11

values (hence the name) on the basis of a set of values computed starting from
the syndrome, known as counters, which are defined as follows.

Definition 9. Let H ∈ Fr×n2 and s = xH>, for x ∈ Fn2 . We define the i-th
counter σi as the number of set entries in s that are indexed by Supp (H:,i) or,
equivalently, as the number of unsatisfied parity-check equations in which the i-th
bit participates.

It is immediately seen that almost all QC-MDPC decoders proposed in the
literature (like those in [39, 32, 36, 18, 35, 17, 7]) include a stage in which
error estimate bit flipping decisions are taken on the basis of counters. So, to
encompass all such algorithms, we will generically speak of BF decoders.

Let x = c+e, with c being a codeword and e being the error vector introduced
by the channel. Any BF decoder follows a common procedure, which can be
summarized as follows:

1. on input x ∈ Fn2 , compute the syndrome s = xH> and initialize the error
estimate e′ = 0n;

2. compute the counters σi, for i = {0, . . . , n− 1};
3. assume positions of e corresponding to high valued counters to be incorrectly

estimated, and flip the corresponding entries in e;
4. update the syndrome as s + e′H>. If the new syndrome is null, complete

the procedure outputting x + e′. If the new syndrome is not null and the
maximum number of iterations has not been reached, restart from step 2,
otherwise report the occurrence of a failure.

In particular, step 3 is implemented through a threshold criterion: positions
associated to counters with values greater than or equal to some threshold b ≤ v
are considered to be incorrectly estimated. When the decision on a bit is correct
(i.e., when the current value of e′i is different from ei) we speak of correct flip,
otherwise (i.e., when the current value of e′i is equal to ei) we speak of wrong
flip. Notice that, in each iteration, we have that s corresponds to the syndrome
of the vector e+e′. The value of b may be chosen in different ways (for instance,
as a function of the iteration number and the syndrome weight), and is not
expected to become lower than v/2. The reason for this claim is explained next.
Indeed, any BF decoder treats as error affected the bits for which the number
of unsatisfied involved parity-check equations exceeds that of the satisfied ones.
Choosing b < v/2 implies that we contradict this criterion, hence we expect that
the decoder ends up in performing a number of wrong flips which is larger than
that of correct flips.

The counters values are related to the structure of H, as well as to the support
of the error vector; the exact relation is described in the next lemma.

Lemma 1. Let H ∈ Fr×n2 and s = eH> for a vector e ∈ Fn2 . Let

γi,j =

{
|Supp (H:,i) ∩ Supp (H:,j)| if i 6= j,

0 if i = j.



12 M. Baldi et al.

Let

ζ
(1)
i (H, e) =

∑
j∈Supp(e)\{i}

γi,j − 2
∑

`∈Supp(H:,i)

⌊
〈H(i)

`,: ; e(i)〉
2

⌋
,

ζ
(0)
i (H, e) =

∑
j∈Supp(e)

γi,j − 2
∑

`∈Supp(H:,i)

⌊
〈H`,: ; e〉

2

⌋
,

where H
(i)
`,: and e(i) are the vectors obtained via puncturation of the i-th position.

Then, for the i-th counter σi, the following relation holds

σi =

{
wt(H:,i)− ζ(1)i (H, e) if ei = 1,

ζ
(0)
i (H, e) if ei = 0.

Proof. See Appendix D.

4.1 Hard to decode errors for QC-MDPC

In this section we rely on Lemma 1 to construct error patterns that, with high
probability, cannot be corrected by a BF decoder. Namely, we consider the subset
of Bn,t formed by the vectors that have a large number of overlapping ones with
a column of the parity-check matrix. We show that for such vectors decoding
fails with a probability that is rather high, and use numerical simulations to find
a lower bound for the DFR of the BF decoder.

Let C be a QC-MDPC(n0, p, v) code, with parity-check matrix H ∈ Fp×n0p
2

and e ∈ Bn,t. As we have already said, a BF decoder takes decisions (i.e.,
decides which bits are correct and which are error affected) according to the
counters values. We expect that high counters are associated to error positions,
and low counters are associated to error free positions: if the counters behave
in the opposite way (we speak of bad counters), then the decoder may make
wrong choices. In particular, the decoder may potentially get stuck in a bad
configuration when the number of bad counters is rather large. To better explain
what we expect to happen in such a situation, let us start with some preliminary
considerations.

– Let δ(e) = max {σi | i ∈ Supp (e)}. Clearly, a single iteration of a BF decoder
with threshold set as b > δ(e) will never flip any of the set bits in e.

– We expect the same phenomenon happens, with very high probability, even
when considering multiple iterations, all employing thresholds larger than
δ(e). Indeed, a flip among the set bits of e can happen only if the decoder,
at some point, makes wrong flips and these flips trigger, in the subsequent
iterations, correct flips among the positions indexed by Supp (e). Yet, this
phenomenon should happen with extremely low probability. Indeed, when
the decoder makes a wrong flip, it moves into a state characterized by more
errors: it is very implausible that this somehow helps the decoding process.



Performance bounds for QC-MDPC codes decoders 13

– When δ(e) is particularly low (say, lower than dv/2e), then it is reasonable
that decoding fails, regardless of the employed thresholds. Indeed, to flip the
set bits in e, a threshold lower than dv/2e is required. However, with this
choice, it becomes very likely that the number of wrong flips exceeds that
of correct flips. Hence, the decoder simply increases the overall number of
wrongly estimated bits.

– Analogous reasoning can be applied to the case in which an error vector is
such that there is a large number of error free positions with high counters
values. Indeed, in such a case, the decoder may wrongly flip some of the
corresponding bits, and hence will end up in introducing errors.

As we argue in the remainder of this section, finding error vectors leading to
bad counters is rather easy for QC-MDPC codes. We start with the following
proposition (which can be trivially proven, taking into account that H is made
of circulant blocks).

Proposition 3. Let H ∈ Fp×n0p
2 be the parity-check matrix of a QC-MDPC

code. Then, for any ` ∈ [0;n − 1] and any pair i, j ∈ Supp (H:,`), we have
γi,j ≥ 1.

Remember that, as stated in Lemma 1, high values of γi,j have a bad influence
on the counters. Hence, as a consequence of the above proposition, we expect
that an error vector whose support is contained in the support of a column of
H leads to large number of bad counters. To formalize this claim, we consider
the following proposition.

Proposition 4. Let C ∈ QC-MDPC(n0, p, v) with parity-check matrix H. Let
e ∈ Fn0p

2 with weight t̃ < v, and such that Supp (e) ⊆ Supp (H:,z) for some z.
Furthermore, assume that

∑
`∈Supp(H:,i)

⌊
〈H(i)

`,: ; e(i)〉
2

⌋
= 0 ∀i ∈ Supp (e),

∑
`∈Supp(H:,i)

⌊
〈H`,: ; e〉

2

⌋
= 0 ∀i ∈ Supp (H:,z) \ Supp (e).

Then, the following relations hold{
σi ≤ v + 1− t̃ if i ∈ Supp (e),

σi ≥ t̃ if i ∈ Supp (H:,z) \ Supp (e).

Proof. The proof is a straightforward application of Lemma 1 and Proposition
3. We start with the case i ∈ Supp (e) and consider that, by hypothesis, we

have ζ
(1)
i (H, e) =

∑
j∈Supp(e)\{i} γi,j . Since the support of e is contained in

Supp (H:,z), as a consequence of Proposition 3 we have γi,j ≥ 1 for any pair of

indexes i, j ∈ Supp (e), and hence ζ
(1)
i (H, e) =

∑
j∈Supp(e)\{i} γi,j ≥ t̃−1. Then,

from Lemma 1 we get σi = v − ζ(1)i (H, e) ≤ v + 1− t̃. Analogously, for the case

i ∈ Supp (H:,z) \ Supp (e), we have ζ
(0)
i (H, e) =

∑
j∈Supp(e) γi,j ≥ t̃, and hence

we get σi = ζ
(0)
i (H, e) ≥ t̃. ut



14 M. Baldi et al.

As an application of the above proposition, we see that increasing t̃ will
worsen the counters’ behavior: namely, the counters values will become lower
for error positions, and higher for the correct positions which are indexed by
the column of H but not by the error vector. In particular, if we choose t̃ ≥
d v+3

2 e, then we will get σi ≤ bv/2c for all i ∈ Supp (e), and σi ≥ dv+3
2 e for all

i ∈ Supp (H:,z) \ Supp (e). To flip the bits indexed by Supp (e), we are going to
need a threshold that is not higher than dv/2e, but this will also trigger wrong
flips for all positions i ∈ Supp (H:,z)\Supp (e). Hence, in such a case, there does
not exist a threshold that is sufficiently low to perform correct flips, but also
high enough to guarantee that wrong flips do not happen. We point out that

an important hypothesis in Proposition 4 is that the values of ζ
(0)
i (H, e) and

ζ
(1)
i (H, e) only depend on the γi,j values. In general, this is not true and one has

to consider also the number of overlapping ones between the error vector and
the rows of H. Yet, as we show in the next section, the behavior of the counters
remains somehow bad and these vectors cause failures with high probability.

Finally, we comment about the decoding of error vectors with weight t > v,
but such that their support intersects with the support of a column in H in a
sufficiently large number t̃ of positions. As a difference with the situation we
have previously examined, the decoder must now correct more errors. In other
words, we can write e = ê + ě, where ê and ě have disjoint supports and ê is
such that its support has size t̃ and is contained in the support of a column
of H. It is very unlikely that these additional errors (i.e., those due to ě) can
improve the situation, up to the point that the decoder flips any of the bits in
ê. In the best case scenario, we expect that the decoder may be able to identify
the error positions due to ě, but will not be able to flip any of the positions
due to ê. Hence, decoding will fail with very high probability also in this case.
Notice that, with a simple counting argument, one finds that the number of
errors with weight t and such that their supports intersect in t̃ elements with
that of a column in H (say, the first one) is given by

∣∣{e ∈ Bn,t, such that |Supp (e) ∩ Supp (H:,0)| = t̃
}∣∣ =

(
v

t̃

)(
n0p− v
t− t̃

)
. (4)

In general terms, the possibility to decode successfully depends on many
factors (such as the decoder setting) which we have not considered yet. In other
words, even if for a vector e we have δ(e) > dv/2e, this does not imply that
e can be corrected. Actually, we expect that a vector with a sufficiently large
number of overlapping positions with a column of H is ”harder to decode”, with
respect to a completely random vector. Hence, even moderately low values of t̃
may lead to rather high decoding failure probabilities. This in turn provides us
with an operative method to generate error vector families which are expected to
be harder to decode. As a consequence, through the use of numerical simulations
to estimate the concrete DFR of these error families, we are able to obtain a
lower bound on the DFR of any iterative BF-like decoder, as we state in the
following proposition.



Performance bounds for QC-MDPC codes decoders 15

Proposition 5 (DFR lower bound).
Let C ∈QC-MDPC(n0, p, v), with parity-check matrix H ∈ Fp×n0p

2 . Let Dec be
a BF-like decoder employed in the McEliece channel with parameter t > v, and
consider the following procedure:

1. for any t̃ ∈ [1, v], generate a large number of vectors with weight t and exactly
t̃ ∈ [1; v] entries that overlap with H:,0;

2. simulate decoding of these vectors, and denote with ε̃Dec(t̃) the estimated
failure rate (that is, the ratio between the number of failure events and that
of considered vectors);

3. compute

ε
(L)
Dec =

v∑
t̃=1

ε̃Dec(t̃)

(
v
t̃

)(n0p−v
t−t̃

)(
n0p
t

) .

Then, ε
(L)
Dec represents a lower bound for the DFR of Dec.

Proof. We consider error vectors with a special structure, that is, those intersect-
ing with H:,0 in t̃ ∈ [1; v] positions. For each t̃, we rely on numerical simulations
to estimate the probability that the decoder is not able to correct a vector of
this kind, and call this probability ε̃Dec(t̃). Assuming that ε̃Dec(t̃) is a proper
estimate of the failure probability, when considering only vectors e ∈ Bn,t such
that |Supp (e) ∩ Supp (H:,0)| = t̃, we have

ε
(L)
Dec =

v∑
t̃=1

Pr [Dec(e) 6= 0n] · Pr
[
|Supp (e) ∩ Supp (H:,0)| = t̃ | e $←− Bn0p,t

]
≈

v∑
t̃=1

ε̃Dec(t̃) · Pr
[
|Supp (e) ∩ Supp (H:,0)| = t̃ | e $←− Bn0p,t

]
(5)

=

v∑
t̃=1

ε̃Dec(t̃) ·
(
v
t̃

)(n0p−v
t−t̃

)(
n0p
t

) ,

where the last equality comes from (4). Finally, we claim that ε
(L)
Dec is a lower

bound on the DFR since there may be other vectors that cause a decoding
failure. For instance, we are not considering vectors that do not intersect with
H:,0, but intersect in a large number of positions with other columns of H. For

these vectors, we expect to have the same failure rates ε̃
(L)
Dec. ut

Remark 1. The bound given in the above proposition is likely to be loose. For
instance, we may consider the probability that a random e ∈ Bn,t intersects
in t̃ positions with at least a generic column in H. Assuming all columns of H
behave as random vectors with weight v and length p, for rather large values of
t̃ we get that such a probability corresponds to

1−

(
1−

(
v
t̃

)(n0p−v
t−t̃

)(
n0p
t

) )n0p

≈ n0p
(
v
t̃

)(n0p−v
t−t̃

)(
n0p
t

) .



16 M. Baldi et al.

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

Max counter

R
el

a
ti

v
e

fr
eq

u
en

cy
t̃ = 10

t̃ = 20

t̃ = 30

t̃ = 40

t̃ = 50

t̃ = 60

d v
2
e

(a)

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

Max counter

R
el

a
ti

v
e

fr
eq

u
en

cy

(b)

Fig. 2: Results of numerical simulations on 100 random codes, picked from the
family QC-MDPC(2, p, v) with p = 12, 323 and v = 71. For each code, we
have generated 100 error vectors intersecting with the first column of H in t̃
positions. Figures (a) and (b) report the measured distribution of max{σi |
i ∈ Supp (e) ∩ Supp (H:,0)}. In (a), we have considered vectors with weight t̃,
i.e., such that their support is fully contained in that of H:,0. In (b), we have
considered vectors with weight t = 134 and support intersecting that of H:,0 in
t̃ positions.

Using these probabilities in (5) (instead of the term
(
v
t̃

)(n0p−v
t−t̃

)
/
(
n0p
t

)
), we would

obtain an increase on the value of ε
(L)
Dec by a factor n0p. However, this approach

leads to multiple counting of the same vectors. We expect that the obtained
probabilities are not much higher than the actual ones, yet, using them would

prevent us from claiming that ε
(L)
Dec is a provable lower bound.

Remark 2. As anticipated in the Introduction, a similar analysis has been inde-
pendently and concurrently performed by Vasseur in his PhD thesis [42, Chapter
16]. Namely, Vasseur has denoted as near-codewords the error patterns produc-
ing syndromes with unusually low weight. The effect of near-codewords on the
counters distribution has been motivated by the results of numerical simulations,
which are reported in [42, Table 16.2]. It can be easily seen that the error vec-
tors we have considered in this section can be deemed as near-codewords, since
with very high probability a rather large number of cancellations happen in the
syndrome computation. However, as a significant difference with [42], in this pa-
per we have provided a quantitative justification to for the counters behaviours,
through Lemma 1 and Propositions 3 and 4.

4.2 Results for QC-MDPC(2, p, v) codes

We first consider the counters distribution for error vectors whose support in-
tersects that of a column of H in t̃ positions. As we have already said, due to
overlapping ones with rows of H, we expect the counters values to be slightly
better than what we have considered in Proposition 4.



Performance bounds for QC-MDPC codes decoders 17

10 20 30 40 50 60 70

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

t̃

ε̃ D
ec

(t̃
)

(a)

2 4 6 8 10 12 14

10−8

10−6

10−4

10−2

100

iterations

fr
a
ct

io
n

o
f

co
rr

ec
te

d
er

ro
rs

(b)

Fig. 3: Numerical simulations on the Backflip decoder as in the BIKE v3.2 spec-
ification, with maximum number of iterations set to 100. The sample DFR was
estimated running either at least 108 decoding actions, or collecting at least 100
decoding failures, whichever event happened first. Figure (b) reports the number
of iterations taken to decode an input, for all the inputs which were correctly
decoded.

10 20 30 40 50 60 70

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

t̃

ε̃ D
ec

(t̃
)

(a)

2 2.5 3 3.5 4 4.5 5

10−8

10−6

10−4

10−2

100

iterations

fr
a
ct

io
n

o
f

co
rr

ec
te

d
er

ro
rs

(b)

Fig. 4: Numerical simulations on the BGF decoder as in the BIKE v4.1 spec-
ification, with maximum number of iterations set to 5. The sample DFR was
estimated running either at least 108 decoding actions, or collecting at least 100
decoding failures, whichever event happened first. Figure (b) reports the number
of iterations taken to decode an input, for all the inputs which were correctly
decoded.



18 M. Baldi et al.

Yet, due to sparsity, we expect that the number of such overlapping elements
is low, so that the effect in the counters values is rather limited. To validate this
assertion, we have run numerical simulations on the family of QC-MDPC codes
with n0 = 2, p = 12, 323 and v = 71, employed in the McEliece channel with
t = 134. Note that these parameters correspond to the ones of BIKE, version
4.1 [4], considered also in [18]. The obtained results are reported in Fig. 2. We
notice that, regardless of the weight of the error vector, when the intersection
between the error vector and a column of H increases, the maximum counter
becomes lower. Hence, as a consequence, we expect that the failure probability
increases, as well.

In order to validate the analysis reported in the previous section, we have ap-
plied Proposition 5 on two improved BF decoders, namely, the backflip proposed
in [36] and the Black Gray Flip (BGF) proposed in [18], also used for decryption
in BIKE [4]. Both decoders have been considered for codes with v = 71 and a
McEliece channel with t = 134. We have analyzed both decoders for the values
of p in the proposals of the BIKE cryptosystem [4], respectively in version 3.2
and 4.1, that is p = 12, 323 for the BGF decoder and p = 11, 779 for the backflip
decoder.

We have performed numerical simulations to obtain the values of ε̃Dec(t̃), stop-
ping each simulation after having registered 100 decoding failures for each value
of t̃ or having realized at least 100M decoding computations. In order to cope
with the significant computation time requirements, we have parallelized the de-
coder calculus, distributing it through the OpenMP framework, thus resulting
in some additional decoding computations beyond the 100M being occasionally
performed. We tested 10 random codes with the same parameters detecting no
relevant change in the results. For both decoders we report, in Figs. 3 and 4, the
values of ε̃Dec(t̃) as a function of t̃, and the number of iterations taken by the
decoder whenever the error was correctly decoded. In the figures we additionally
report the number of iterations taken by each decoder when a correct decoding
computation took place, over the ≈ 330M decoded error vectors for each de-
coder; each colored line reports the data for a specific value of t̃ for which we
have determined ε̃Dec(t̃) > 10−8.

Remark 3. An interesting experimental note regarding the computational effi-
ciency and effectiveness of the decoding process of the BGF and backflip decoder
concerns the number of iterations which they require to correct an error. While
the BGF decoder employs all the 5 iterations for which it has been designed, all
the iterations above the 12-th in the backflip decoder were useless in our simula-
tions. Indeed, no error was corrected with a number of iterations between 13 and
100. This provides an interesting insight with respect to [37], where it is stated
that adding iterations beyond the 20-th in a backflip decoder should significantly
improve its expected DFR. Indeed, when considering the approach of [37], which
extrapolates the low-DFR behavior of the decoder from experimentally simula-
ble points, our results would imply that a 20 iteration backflip decoder behaves
as a 100 iteration one (as the simulated results match). This in turn would lead
to the DFR extrapolation of 2−97.65 being true also for the 100 iteration variant



Performance bounds for QC-MDPC codes decoders 19

Table 1: Summary of the DFR bounds found in this work, compared with the
claimed values in [36, 18, 4].

Decoder Backflip [36] BGF [18, 4]
(p,v, t) (11779,71,134) (12323,71,134)

Claimed DFR 2−128 2−128

ε
(L)
ML 2−425.86 2−430.45

ε
(L)
Dec 2−166.3 2−168.06

of the backflip decoder. The non monotone trend in the number of iterations of
the backflip decoder finds an explanation in the flipping Time-To-Live (TTL) of
the procedure (which reverts a bit flip after a given TTL has expired): indeed
the TTL during the overwhelming majority of our numerical simulations was
found to be set to 5 for flips taking place in the first iteration.

Employing the results on ε̃Dec(t̃) obtained through simulations in the expression

of ε
(L)
Dec given in Proposition 5, we are able to provide lower bounds on the DFR

of these algorithms, which are shown in Table 1. The reported values differ from

the ones of ε
(L)
ML by a factor of ≈ 2259, in turn showing how a significant amount of

failure events, at very low DFR values, are not due to near-codewords (as claimed
in [35]). Indeed, our reported data are able to set a reliable lower bound on the
DFR, through Proposition 5, in turn showing that iterative decoders perform
significantly worse than the ML decoder. We note that the lower bounds we
provide do not explicitly contradict the numerical claims on the DFR for both
the backflip and the BGF decoder with the parameters at hand. We also note
that obtaining concrete values for ε̃Dec(t̃) for values of t̃ < 25 may bring the value
of our lower bound further up.

5 Conclusion

We have proposed two approaches for bounding the performance of iterative
decoders derived from Gallager’s BF, and used in decoding QC-MDPC codes
in code-based cryptosystems. The first approach relies on modeling the ML de-
coder performance, which is an optimal decoder and hence provides an ultimate
bound on the behavior of any sub-optimal decoder, such as the BF ones. This
also allows to characterize the asymptotic DFR of these decoders, which has
been shown to decay polynomially in the code length. The second approach
exploits a numerically-aided procedure to provide a lower bound on the DFR
of BF decoders: the approach relies on numerical estimations for the DFR of
families of error vectors which are harder to decode for BF decoders. Through
weighing the contribution to the total DFR of such error families with their
size we achieve a lower bound on the DFR for the specific class of iterative
decoders derived from BF. In particular, this second approach was shown to
provide tighter lower bounds to the DFR by a factor of 2259 with respect to the



20 M. Baldi et al.

bound obtained modeling the performance of the ML decoder, thus providing a
preliminary quantitative assessment of the performance gap of the iterative BF
decoders and their ideal ML counterpart on QC-MDPC parameters of interest
in code-based cryptography.

References

[1] G. Alagic et al. Status Report on the Second Round of the NIST Post-Quantum
Cryptography Standardization Process. https://csrc.nist.gov/publications/
detail/nistir/8309/final.

[2] M. R. Albrecht et al. Classic McEliece: Conservative Code-Based Cryptography.
https://classic.mceliece.org/.

[3] D. Apon et al. “Cryptanalysis of LEDAcrypt”. In: Advances in Cryptology –
CRYPTO 2020. Ed. by D. Micciancio and T. Ristenpart. Cham: Springer Inter-
national Publishing, 2020, pp. 389–418.

[4] N. Aragon et al. BIKE: Bit Flipping Key Encapsulation. https://bikesuite.
org.

[5] M. Baldi et al. “A finite regime analysis of information set decoding algorithms”.
In: Algorithms 12.10, 209 (2019).

[6] M. Baldi. QC-LDPC Code-Based Cryptography. SpringerBriefs in Electrical and
Computer Engineering. Springer International Publishing, 2014.

[7] M. Baldi et al. “A failure rate model of bit-flipping decoders for QC-LDPC
and QC-MDPC code-based cryptosystems”. In: Proc. 17th International Joint
Conference on e-Business and Telecommunications (ICETE), Secrypt 2020, 17th
International Conference on Security and Cryptography. Paris, France, 8-10 July
2020, pp. 238–249.

[8] M. Baldi et al. LEDAcrypt: Low-dEnsity parity-check coDe-bAsed cryptographic
systems. https://www.ledacrypt.org/.

[9] M. Baldi et al. “Security of generalised Reed–Solomon code-based cryptosys-
tems”. In: IET Information Security 13.4 (2019), pp. 404–410.

[10] A. Becker et al. “Decoding random binary linear codes in 2n/20: How 1 + 1 = 0
improves information set decoding”. In: Advances in Cryptology - EUROCRYPT
2012. Ed. by D. Pointcheval and T. Johansson. Vol. 7237. Lecture Notes in
Computer Science. Springer, 2012, pp. 520–536.

[11] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. “On the inherent
intractability of certain coding problems”. In: IEEE Transactions on Information
Theory 24.3 (1978), pp. 384–386.

[12] L. Both and A. May. “Decoding linear codes with high error rate and its impact
for LPN Security”. In: Post-Quantum Cryptography, PQCrypto 2018. Ed. by
T. Lange and R. Steinwandt. Vol. 10786. Lecture Notes in Computer Science.
Springer, 2018, pp. 25–46.

[13] R. Canto-Torres and J. Tillich. “Speeding up decoding a code with a non-trivial
automorphism group up to an exponential factor”. In: Proc. IEEE International
Symposium on Information Theory (ISIT 2019). Paris, France, 7-12 July 2019,
pp. 1927–1931.

[14] M.-S. Chen, T. Chou, and M. Krausz. “Optimizing BIKE for the Intel Haswell
and ARM Cortex-M4”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2021.3 (July 2021), pp. 97–124. doi: 10.46586/tches.v2021.

https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://classic.mceliece.org/
https://bikesuite.org
https://bikesuite.org
https://www.ledacrypt.org/
https://doi.org/10.46586/tches.v2021.i3.97-124


Performance bounds for QC-MDPC codes decoders 21

i3.97-124. url: https://tches.iacr.org/index.php/TCHES/article/view/
8969.

[15] A. Couvreur et al. “Distinguisher-based attacks on public-key cryptosystems
using Reed-Solomon codes”. In: Designs, Codes and Cryptography 73.2 (2014),
pp. 641–666.

[16] S. Das. “A brief note on estimates of binomial coefficients”. In: URL: http://page.
mi. fu-berlin. de/shagnik/notes/binomials. pdf (2016).

[17] N. Drucker and S. Gueron. “A toolbox for software optimization of QC-MDPC
code-based cryptosystems”. In: Journal of Cryptographic Engineering 9.4 (2019),
pp. 341–357.

[18] N. Drucker, S. Gueron, and D. Kostic. “QC-MDPC decoders with several shades
of gray”. In: Post-Quantum Cryptography, PQCrypto 2020. Ed. by J. Ding and
J.-P. Tillich. Lecture Notes in Computer Science. Springer, Cham, 2020, pp. 35–
50.

[19] E. Eaton et al. “QC-MDPC: A timing attack and a CCA2 KEM”. In: Post-
Quantum Cryptography, PQCrypto 2018. Ed. by T. Lange and R. Steinwandt.
Vol. 10786. Lecture Notes in Computer Science. Springer International Publish-
ing, 2018, pp. 47–76.

[20] J.-C. Faugère et al. “Algebraic cryptanalysis of McEliece variants with compact
keys”. In: Advances in Cryptology – EUROCRYPT 2010. Ed. by H. Gilbert.
Vol. 6110. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010,
pp. 279–298.

[21] R. G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press, 1963.
[22] Q. Guo, T. Johansson, and P. Stankovski. “A key recovery attack on MDPC with

CCA security using decoding errors”. In: Advances in Cryptology – ASIACRYPT
2016. Ed. by J. H. Cheon and T. Takagi. Vol. 10031. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2016, pp. 789–815.

[23] D. Hofheinz, K. Hövelmanns, and E. Kiltz. “A modular analysis of the Fujisaki-
Okamoto transformation”. In: Theory of Cryptography,TCC 2017. Ed. by Y.
Kalai and L. Reyzin. Vol. 10677. Lecture Notes in Computer Science. Springer,
Cham, 2017, pp. 341–371.

[24] K. Khathuria, J. Rosenthal, and V. Weger. “Encryption scheme based on ex-
panded Reed-Solomon codes”. In: Advances in Mathematics of Communications
15.2 (2021), pp. 207–218.

[25] C. Löndahl et al. “Squaring attacks on McEliece public-key cryptosystems using
quasi-cyclic codes of even dimension”. In: Designs, Codes and Cryptography 80.2
(2016), pp. 359–377.

[26] R. J. McEliece. “A public-key cryptosystem based on algebraic coding theory.”
In: DSN Progress Report (1978), pp. 114–116.

[27] National Institute of Standards and Technology. NIST Post-Quantum Standard-
ization Process. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.
2017.

[28] S. Ouzan and Y. Be’ery. Moderate-density parity-check codes. https://arxiv.
org/abs/0911.3262. Sept. 2009.

[29] G. Poltyrev. “Bounds on the decoding error probability of binary linear codes
via their spectra”. In: IEEE Transactions on Information Theory 40.4 (1994),
pp. 1284–1292.

[30] R. Misoczki, J.-P. Tillich, N. Sendrier, P. S. L. M. Barreto. “MDPC-McEliece:
New McEliece variants from moderate density parity-check codes”. In: Proc.

https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.46586/tches.v2021.i3.97-124
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://arxiv.org/abs/0911.3262
https://arxiv.org/abs/0911.3262


22 M. Baldi et al.

IEEE International Symposium on Information Theory (ISIT 2013). Istambul,
Turkey, 7-12 July 2013, pp. 2069–2073.

[31] P. Santini et al. “Analysis of reaction and timing attacks against cryptosystems
based on sparse parity-check codes”. In: Code-Based Cryptography, CBC 2019.
Ed. by M. Baldi, E. Persichetti, and P. Santini. Vol. 11666. Lecture Notes in
Computer Science. Springer, Cham, 2019, pp. 115–136.

[32] P. Santini et al. “Analysis of the error correction capability of LDPC and MDPC
codes under parallel bit-flipping decoding and application to cryptography”. In:
IEEE Transactions on Communications 68.8 (2020), pp. 4648–4660.

[33] P. Santini et al. “Hard-decision iterative decoding of LDPC codes with bounded
error rate”. In: Proc. IEEE International Conference on Communications (ICC
2019). Shanghai, China, 20-24 May 2019.

[34] N. Sendrier. “Decoding one out of many”. In: Post-Quantum Cryptography,
PQCrypto 2011. Ed. by B.-Y. Yang. Vol. 7071. Lecture Notes in Computer Sci-
ence. Springer, Berlin, Heidelberg, 2011, pp. 51–67.

[35] N. Sendrier and V. Vasseur. “About low DFR for QC-MDPC decoding”. In:
Post-Quantum Cryptography, PQCrypto 2020. Ed. by J. Ding and J. Tillich.
Vol. 12100. Lecture Notes in Computer Science. Springer, Cham, 2020, pp. 20–
34.

[36] N. Sendrier and V. Vasseur. “On the decoding failure rate of QC-MDPC bit-
flipping decoders”. In: Post-Quantum Cryptography, PQCrypto 2019. Ed. by
J. Ding and R. Steinwandt. Vol. 11505. Lecture Notes in Computer Science.
Springer, Cham, 2019, pp. 404–416.

[37] N. Sendrier and V. Vasseur. On the existence of weak keys for QC-MDPC decod-
ing. Cryptology ePrint Archive, Report 2020/1232. https://eprint.iacr.org/
2020/1232. 2020.

[38] V. M. Sidelnikov and S. O. Shestakov. “On insecurity of cryptosystems based
on generalized Reed-Solomon codes”. In: Discrete Mathematics and Applications
2.4 (1992), pp. 439–444.

[39] J.-P. Tillich. “The decoding failure probability of MDPC codes”. In: Proc. IEEE
International Symposium on Information Theory (ISIT 2018). Vail, CO, USA,
17-22 June 2018, pp. 941–945.

[40] R. C. Torres and N. Sendrier. “Analysis of information set decoding for a sub-
linear error weight”. In: Post-Quantum Cryptography, PQCrypto 2016. Vol. 9606.
Lecture Notes in Computer Science. Springer, Cham, 2016, pp. 144–161.

[41] A. Vardy. “The intractability of computing the minimum distance of a code”.
In: IEEE Transactions on Information Theory 43.6 (1997), pp. 1757–1766.

[42] V. Vasseur. “Post-quantum cryptography: study on the decoding of QC-MDPC
codes”. PhD thesis. Mar. 2021.

Appendix A: Proof of Theorem 1

We focus on ML decoding, and derive an analytical expression for its DFR. To

this end, we consider an input x = c + e ∈ Fn2 , with c
$←−C and e

$←− Bn,t. The

decoder first computes C
(x)

, that is, the set of all codewords that are t away

from x, and then outputs at random one of them. Given that, clearly, c ∈C (x)
,

and that decoding fails every time the decoder output is different from c, we have

https://eprint.iacr.org/2020/1232
https://eprint.iacr.org/2020/1232


Performance bounds for QC-MDPC codes decoders 23

that a failure happens with probability∣∣∣C (x)
∣∣∣− 1∣∣∣C (x)
∣∣∣ .

Note that, if there is only one codeword in C
(x)

, then this codeword must be c;
hence, in this case, we never have a failure. To obtain the DFR, which we denote
as εML, we average the above probability over all the possible errors e ∈ Bn,t,
added to all the codewords in C . According to Definition 4, we assume uniform
distributions for both c and e, and hence obtain

εML =
1

2k
(
n
t

) ∑
e∈Bn,t

∑
c∈C

∣∣∣C (c+e)
∣∣∣− 1∣∣∣C (c+e)
∣∣∣ .

Now we show that, due to linearity, we can consider that the transmitted
codeword corresponds to 0n. Indeed, for each codeword c ∈C and any e ∈ Bn,t,
we have

C
(c+e)

=
{
a ∈C s.t. dist(c + e,a) = t

}
=
{
a ∈C s.t. dist(c + a, e) = t

}
=
{
a′ ∈C s.t. dist(a′, e) = t

}
= C

(e)
.

From this observation, we further obtain

εML =
1

2k
(
n
t

) ∑
e∈Bn,t

∑
c∈C

∣∣∣C (c+e)
∣∣∣− 1∣∣∣C (c+e)
∣∣∣ =

1

2k
(
n
t

) ∑
e∈Bn,t

∑
a′∈C

∣∣∣C (e)
∣∣∣− 1∣∣∣C (e)
∣∣∣

=
1

2k
(
n
t

) ∑
e∈Bn,t

2k

∣∣∣C (e)
∣∣∣− 1∣∣∣C (e)
∣∣∣ =

1(
n
t

) ∑
e∈Bn,t

∣∣∣C (e)
∣∣∣− 1∣∣∣C (e)
∣∣∣

= 1− 1(
n
t

) ∑
e∈Bn,t

1∣∣∣C (e)
∣∣∣ .

We now proceed by proving the lower and upper bounds on the DFR. Based
on the above aconsiderations, we consider the transmission of the null codeword
over the McEliece channel. The output of the channel, which is given as input
to the decoder, corresponds to a weight t vector, uniformly distributed over
Bn,t. Decoding fails every time the decoder outputs a codeword which is not the

null one. Clearly, for any e ∈ Bn,t, we necessarily have 0n ∈ C
(e)

: hence, a

decoding failure may happen only when C
(e)

contains at least two codewords.
Notice that we can express the decoding failure rate as

εML =
1(
n
t

) ∑
e∈Bn,t

Pr [ML(e) 6= 0n] =
1(
n
t

) ∑
e∈Bn,t

∑
c∈C \0n

Pr [ML(e) = c] .



24 M. Baldi et al.

Consider that

dist(c, e) = wt(c) + t− 2α and dist(c, e) ∈ [wt(c)− t; wt(c) + t],

where α = |Supp (e) ∩ Supp (c)| and, clearly, 0 ≤ α ≤ min{t,wt(c)}. In partic-
ular, c will be at distance t from e only when 2α = wt(c). Then, the following
claims can be straightforwardly proven:

i) if wt(c) is odd, then c 6∈C (e)
;

ii) if wt(c) > 2t, then dist(c, e) > t and thus c 6∈C (e)
;

iii) if wt(c) is even and ≤ 2t, then, by a counting argument on the number of
elements of Supp (e) and Supp (c) that coincide, we have that

|{e ∈ Bn,t | dist(c, e) = t}| =
(

wt(c)

wt(c)/2

)(
n− wt(c)

t− wt(c)/2

)
;

iv) if e is such that c 6∈C (e)
, then Pr [ML(e) = c] = 0, otherwise

Pr [ML(e) = c] =
1∣∣∣C (e)
∣∣∣ ≤ 1

2
,

since C
(e)

contains at least two codewords.

By putting everything together, we get

εML =
1(
n
t

) ∑
c∈C \0n

∑
e∈Bn,t

Pr [ML(e) = c] =
1(
n
t

) ∑
c∈C \0n

∑
e∈Bn,t

c∈C (e)

Pr [ML(e) = c]

=
1(
n
t

) ∑
c∈C \0n

∑
e∈Bn,t

c∈C (e)

1∣∣∣C (e)
∣∣∣ ≤ 1

2
(
n
t

) ∑
c∈C \0n

|{e ∈ Bn,t | dist(c, e) = t}|

=
1

2
(
n
t

) ∑
c∈C \0n

wt(c)∈[d;2t]
wt(c) even

(
wt(c)

wt(c)/2

)(
n− wt(c)

t− wt(c)/2

)

=
1

2
(
n
t

) ∑
w∈[d;2t]
w even

Aw

(
w

w/2

)(
n− w
t− w/2

)
= ε

(U)
ML ,

where Aw is the number of codewords in C of weight w, and d is the minimum
distance of C .



Performance bounds for QC-MDPC codes decoders 25

In analogous way, we now derive a lower bound for the DFR of the ML-
decoder; we start from

εML =
1(
n
t

) ∑
e∈Bn,t

Pr [ML(e) 6= 0n] =
1(
n
t

) ∑
e∈Bn,t

∣∣∣C (e)
∣∣∣− 1∣∣∣C (e)
∣∣∣

=
1(
n
t

) ∑
e∈Bn,t∣∣∣C (e)

∣∣∣≥2

∣∣∣C (e)
∣∣∣− 1∣∣∣C (e)
∣∣∣ ≥

∣∣∣{e ∈ Bn,t
∣∣∣ ∣∣∣C (e)

∣∣∣ ≥ 2
}∣∣∣

2
(
n
t

) ,

where the inequality comes from the observation that, if
∣∣∣C (e)

∣∣∣ ≥ 2, we have∣∣∣∣C (e)
∣∣∣∣−1∣∣∣∣C (e)
∣∣∣∣ ≥

1
2 . In the above expression, we need to count the number of vectors

e ∈ Bn,t for which C
(e)

contains at least a codeword which is different from
the null one. To avoid multiple counting of the same vector, we bound further
such a quantity as follows. We have∣∣{e ∈ Bn,t | ∃c ∈C \ 0n s.t. dist(c, e) = t

}∣∣
=

∣∣∣∣∣∣
⋃

c∈C \0n

{e ∈ Bn,t | dist(c, e) = t}

∣∣∣∣∣∣
=

∣∣∣∣∣∣{e ∈ Bn,t | dist(c∗, e) = t} ∪
( ⋃

c∈C \{0n,c∗}

{e ∈ Bn,t | dist(c, e) = t}
)∣∣∣∣∣∣

≥ |{e ∈ Bn,t | dist(c∗, e) = t}| ,

for any non null codeword c∗. Notice that the above quantity depends only on
the weight of the considered c∗. Let w = wt(c∗): if w is odd or w 6∈ [d, 2t], then
|{e ∈ Bn,t | dist(c∗, e) = t}| = 0, otherwise

|{e ∈ Bn,t | dist(c∗, e) = t}| =
(
w

w/2

)(
n− w
t− w/2

)
.

Since the above inequality holds for any codeword c∗ of proper weight, we can

write εML ≥ ε(L)ML , where

ε
(L)
ML = max

w∈[d,2t]
w even
Aw>0

{(
w
w/2

)(
n−w
t−w/2

)
2
(
n
t

) }
.

Notice that if C does not contain a codeword with even weight not larger than

2t, then the expression of ε
(L)
ML becomes meaningless (i.e., it becomes 0).



26 M. Baldi et al.

To conclude the proof, we show that the MLS decoder has the same DFR
of the ML decoder. Let x = c + e, with c ∈ C and e ∈ Bn,t, be the received
sequence. The probability that ML, on input x, outputs a codeword which is

different from c is equal to 1−
∣∣∣C (e)

∣∣∣−1. The MLS decoder, on input s = xH>,

fails with probability 1−
∣∣∣S(x)H

∣∣∣−1. Note that C
(e)

contains all codewords c′ 6= c

such that dist(e, c′) = t; thus, we have that e′ = c′+e has weight t and syndrome

e′H> = eH> = s, so that e′ ∈ S(x)H . Then, we have that
∣∣∣C (e)

∣∣∣ ≤ ∣∣∣S(x)H

∣∣∣.
Now, for each e′ ∈ S(x)H , we have that eH> = e′H>, from which (e+e′)H> = 0;
hence c′′ = e + e′ ∈C . Now, consider that

x + e′ = c + e + e′ = c + c′′ = ĉ ∈C ,

and that

dist(ĉ,x) = wt(ĉ + x) = wt(c + c′′ + c + e) = wt(e + e′ + e) = wt(e′) = t,

thus ĉ ∈ C
(e)

. This shows that, for any candidate in S(x)H , we also have a

candidate in C
(e)

, and vice versa: this proves that
∣∣∣C (e)

∣∣∣ =
∣∣∣S(x)H

∣∣∣.
Appendix B: Proof of Proposition 1

Let C ∈QC-MDPC(n0, p, v), and denote with H its parity-check matrix formed
by circulant blocks of weight v. Let Hi denote the i-th circulant block in H. For
i0, i1 ∈ {0, 1, · · · , n0−1}, with i0 6= i1, and ` ∈ {0, 1, · · · , p−1}, consider a vector
c(i0,i1,`) in the form

c(i0,i1,`) = [c
(i0,i1,`)
0 , c

(i0,i1,`)
1 , · · · , c(i0,i1,`)n0−1 ],

where

c
(i0,i1,`)
j =


0p if j 6= i0, i1,

the transpose of the `-th column of Hi1 if j = i0,

the transpose of the `-th column of Hi0 if j = i1.

It is easily seen that ci0,i1,`H> = 0p, hence ci0,i1,` ∈ C . Furthermore, ci0,i1,`

has weight 2v: this proves that C cannot have a minimum distance larger than
2v. Consider now that the number of vectors ci0,i1,` is given by the number of
choices for i0, i1 and `, which is equal to p

(
n0

2

)
. This proves that C contains

at least p
(
n0

2

)
codewords with weight 2v. Clearly, we cannot exclude that there

are more codewords with this weight (even if this is rather unlikely), so we can
only claim that A2v ≥ p

(
n0

2

)
.



Performance bounds for QC-MDPC codes decoders 27

Appendix C: Derivation of Equation (3)

We here show how (3) can be obtained. We start by specializing the expression of

ε
(L)
ML for the case of n0 = 2. Remember that the code always contains codewords

with weight w = 2v, so that we can write

ε
(L)
ML =

(
2v
v

)(
2p−2v
t−v

)
2
(
2p
t

)
For the binomials appearing in the above expression, we are going to use the
following well known (for instance, see [16]) approximations(

2v

v

)
=

22v√
πv

(1 + o(1)) , (6)

(
2p− 2v

t− v

)
=

1√
2π(t− v)

(
(2p− 2v)e

(t− v)

)t−v
(1 + o(1)) , (7)

(
2p

t

)
=

1√
2πt

(
2pe

t

)t
(1 + o(1)) , (8)

where e is Euler’s number. Neglecting the o(1) terms and expressing (6) as a
power of 2, we get (

2v

v

)
≈ 22v−0.5 log2(v)−0.8257.

From (7) and (8), we obtain(
2p−2v
t−v

)(
2p
t

) =
1√

1− v
t

(
(2p− 2v)e

(t− v)

)t−v (
2pe

t

)−t
(1 + o(1))

=
e−v√
1− v

t

(
(2p− 2v)

(t− v)

)t−v (
2p

t

)−t
(1 + o(1))

To further simplify, we consider t ≈ 2v, from which(
2p−2v
t−v

)(
2p
t

) ≈ e−v√
0.5

(
(2p− 2v)

v

)v (p
v

)−2v
=

e−v√
0.5

(
2p

v
− 2

)v (p
v

)−2v
= 2−1.4427v+0.5+v log2(

2p
v −2)−2v log2(

p
v ).

Since 2p
v � 2, we further have(

2p−2v
t−v

)(
2p
t

) ≈ 2−1.4427v+0.5+v log2(
2p
v )−2v log2(

p
v )

= 2−0.4427v+0.5−v log2(
p
v )



28 M. Baldi et al.

Putting everything together, we get(
2v
v

)(
2p−2v
t−v

)
2
(
2p
t

) ≈ 21.5573v−v log2(
p
v )−0.5 log2(v)−1.3257

Appendix D: Proof of Lemma 1

To avoid confusion, in this proof we use ” ⊕ ” to indicate the sum in the bi-
nary finite field, and the operator ” + ” to indicate the standard sum over the
integers ring. We denote with cj the value of the j-th parity-check equation

cj =
⊕n−1

i=0 eihi,j , and we have

cj = 1 ⇐⇒ 〈H:,j ; e〉 is odd.

Recalling that the i-th counter σi corresponds to the number of unsatisfied
parity-check equations in which the i-th bit participates, that is

σi =
∑

j∈Supp(H:,i)

cj = |{j ∈ Supp (H:,i) | 〈Hj,: ; e〉 is odd}| ,

whenever ei = 1 we have

σi = wt(H:,i)−
∣∣∣{j ∈ Supp (H:,i) | 〈H(i)

j,: , e
(i)〉 is odd

}∣∣∣ .
We notice that, for each non negative integer a, it results

a− 2
⌊a

2

⌋
=

{
1 if a is odd,

0 if a is even.

Let hj,` denote the lifted entry hi,j (i.e., with value in {0; 1} ⊆ Z), and consider
the following chain of equalities

σi =
∣∣∣{j ∈ Supp (H:,i) | 〈H(i)

j,: ; e(i)〉 is odd
}∣∣∣

=
∑

j∈Supp(H:,i)

〈H(i)
j,: ; e

(i)〉 − 2

⌊
〈H(i)

j,: ; e
(i)〉

2

⌋

=
∑

j∈Supp(H:,i)

∑
`∈Supp(e(i))

hj,` − 2

⌊
〈H(i)

j,: ; e
(i)〉

2

⌋

=

 ∑
`∈Supp(e)\{i}

∑
j∈Supp(H:,i)

hj,`

− ∑
j∈Supp(H:,i)

2

⌊
〈H(i)

j,: ; e(i)〉
2

⌋

=
∑

`∈Supp(e)\{i}

γi,` −
∑

j∈Supp(H:,i)

2

⌊
〈H(i)

j,: ; e(i)〉
2

⌋
.

Putting all the previous inferences together, the thesis of the Lemma can be eas-
ily derived. When ei = 0, the thesis of the Lemma can be proved with analogous
reasoning.



Performance bounds for QC-MDPC codes decoders 29

Appendix E: Extended Simulation Results

Remark: The contents of this appendix are not included in the CBCrypto 2021
publication, and report the results of an extended simulation campaign on the
numerical estimation of the DFR of the Black-Gray Flip decoder for BIKE v4.1
– Category 1 parameters.

These results were made possible by the publication of a highly optimized
version of the BIKE v4.1 decoder [14], which in turn allowed us to extend
our simulations beyond the ones for the CBCrypto 2021 paper. To this end,
we integrated the aforementioned decoder in the software package provided at
https://bikesuite.org/, and modified the error generating function so that
t̃ error positions would be placed as per our analysis. To allow third party re-
production of our results, we employed as a seed of the PRNG the result of
the POSIX time function call, i.e., the number of seconds since the midnight
of 1970-01-01. We report the value of the seeds employed to allow results re-
production, and provide the employed codebase at https://www.ledacrypt.

org/DFR_additional_sim_CBCrypto.tar.gz. The computation generating the
data reported in Figure 5 ran in ≈ 69 core-days on a dual socket AMD Epyc
7551 server, while the computation generating the data in Figure 6 ran in ≈ 694
core-days on the same machine.

In the following, we further evaluate two points: the effect on ε̃Dec(t̃) of picking
different random QC-MDPC codes, and the effect of simply simulating a larger
number of decoding actions, to the end of detecting failures for lower values of
t̃.

Figure 5 reports the results of simulating 10 randomly selected QC-MDPC
codes, showing that, while picking different QC-MDPC codes provides variations
in the DFR against the error patterns we analyzed, such differences are contained
in less than an order of magnitude in the DFR values in the 10−8–10−7 range.

Figure 6 reports the results of more extensive simulations on three randomly
selected QC-MDPC codes, one picked from the set of Figure 5, and two re-drawn
at random. As it can be seen, the behaviour of more frequent failures we ob-
served, is still consistent when considering further lower numbers of intersections
between the error and the columns of the parity check matrix H.

Finally, we report the results of computing the value of ε
(L)
Dec considering the

methodology described in Section 4 in Table 2. Our results highlight how the
lower bound on we obtain on the DFR is consistent across multiple codes, and
tends to rise as more simulations are performed to estimate the DFR of error
patterns having a lower value for t̃. Futhermore, we highlight that a cyclic shift
of the error pattern does not change its behaviour with respect to the induction
of decoding failures. As a consequence, for each error pattern found, all its p
cyclic shifts will report the same measured failure rate. Taking into account

this factor in the computation of ε
(L)
Dec we obtain a higher estimate for our DFR

bound, with respect to neglecting cyclic shift effects. We note that such an
estimate does not consider the possibility for cyclic shifts of different errors to
be matching, although this fact is expected to be negligible. Whilst considering

https://bikesuite.org/
https://www.ledacrypt.org/DFR_additional_sim_CBCrypto.tar.gz
https://www.ledacrypt.org/DFR_additional_sim_CBCrypto.tar.gz


30 M. Baldi et al.

10 20 30 40 50 60 70

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

t̃

ε̃ D
ec

(t̃
)

Fig. 5: Numerical simulations on the BGF decoder as in the BIKE v4.1 specifi-
cation, with maximum number of iterations set to 5 and Category 1 parameters.
The sample DFR was estimated running either at least 108 decoding actions,
or collecting at least 100 decoding failures, whichever event happened first. The
depicted results represent 10 randomly selected QC-MDPC codes, one for each
marker colour.



Performance bounds for QC-MDPC codes decoders 31

10 20 30 40 50 60 70

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

t̃

ε̃ D
ec

(t̃
)

Fig. 6: Numerical simulations on the BGF decoder as in the BIKE v4.1 specifi-
cation, with maximum number of iterations set to 5 and Category 1 parameters.
The sample DFR was estimated running either at least 1010 decoding actions,
or collecting at least 30 decoding failures, whichever event happened first. The
depicted results represent 3 randomly selected QC-MDPC codes, one for each
marker colour.

the aforementioned point, we note that the estimates for ε
(L)
Dec which take into

account the effects of quasi cyclicity exceed the claimed DFR of 2−128. Finally,
we observe that, in case the trend linking the failure rate and value of t̃ were
to hold even for values of t̃ where currently no simulation results are available
(t̃ < 27), this would in turn imply an increase of the value of the lower bound
for the DFR moving them in the range of 2−90 – 2−88 not considering the quasi
cyclicity and in the 2−77 – 2−75 range considering quasi cyclicity.



32 M. Baldi et al.

Table 2: Lower bounds on the DFR values obtained as per the description in
Section 4. The last column of the table takes into account the fact that, for each
determined error pattern, all its cyclic shifts exhibit the same increased DFR
behavior. Lower bounds above 2−128 are in boldface

PRNG Number of ε
(L)
Dec ε

(L)
Dec

seed computed not considering considering
decodes quasi-cyclicity quasi-cyclicity

1633020036 108 2−141.01 2−127.42

1633031832 108 2−142.16 2−128.57

1633056215 108 2−141.59 2−128.00

1633074398 108 2−142.35 2−128.76

1633098805 108 2−141.94 2−128.35

1633123135 108 2−141.30 2−127.71

1633138995 108 2−142.17 2−128.58

1633163838 108 2−142.37 2−128.78

1633188683 108 2−142.22 2−128.63

1633213349 108 2−142.08 2−128.49

1632496983 1010 2−140.58 2−126.99

1632493786 1010 2−140.63 2−127.04

1633020036 1010 2−140.38 2−126.79


	Performance bounds for QC-MDPC codes decoders

