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Abstract

With the growing adoption of facial recognition worldwide as a pop-
ular authentication method, there is increasing concern about the inva-
sion of personal privacy due to the lifetime irrevocability of facial fea-
tures. In principle, Fuzzy Extractors enable biometric-based authentica-
tion while preserving the privacy of biometric templates. Nevertheless,
to our best knowledge, most existing fuzzy extractors handle binary vec-
tors with Hamming distance, and no explicit construction is known for
facial recognition applications where `2-distance of real vectors is consid-
ered. In this paper, we utilize the dense packing feature of certain lattices
(e.g., E8 and Leech) to design a family of lattice-based fuzzy extractors
that docks well with existing neural network-based biometric identifica-
tion schemes. We instantiate and implement the generic construction and
conduct experiments on publicly available datasets. Our result confirms
the feasibility of facial template protection via fuzzy extractors.

Keywords— Facial Recognition, Fuzzy Extractor, Privacy Protection, Biometric
Authentication

1 Introduction

Biometic-based authentication technology has become increasingly popular in the past
years. It is used almost everywhere in public spaces such as airports, hotels, shopping
centers, and on personal devices such as mobile phones. Despite the convenience and
potential benefits (e.g., to prevent and solve crimes) it offered, there are rising concerns
about privacy, security, and legislation regarding the use of the technology.

A major security challenge we tackle in this paper is the tension between the
ease of use and secure storage of the biometric templates. Unlike password-based au-
thentication where passwords can be stored in a protected form (salted hash), noisy
biometric templates have to be stored in the clear to facilitate biometic-based authen-
tication. Once the data storage is compromised then it may lead to security breaches
and privacy issues.

Facial templates are typically protected with standard encryption or in trustworthy
environments. As far as mobile devices are concerned, iPhone and iPad Pro store
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FaceID templates in Secure Enclave [App21], and Android offers a TEE called Trusty
to store sensitive information like fingerprint templates [And21]. When it comes to
PC, Windows Hello stores biometric templates locally in AES-encrypted form [Mic21].
However biometric templates are protected (by SE, TEE or encryption), they must be
decrypted into memory in clear form for subsequent use.

1.1 Biometric-Based Authentication

In a typical password-based authentication, a server receives a username and password
from a client via a secure channel, and the server verifies whether they match the
record in her own database before granting access. To mitigate the risk of password
database compromise and to avoid sending passwords in cleartext1, the server can
store the digest of a password instead of the password itself. Unfortunately, biometric-
based authentication does not have such a straightforward (functionally equivalent yet
privacy-preserving) counterpart due to the conflict between the noisy characteristics
of biometrics and the diffusion nature of cryptographic hashing.

We recall a biometric-based authentication scenario between a client and a server.
Biometrics (e.g., fingerprints, face, and iris characteristics) serve as the credentials for
authentication due to the unique feature. The client uses the biometric information
and interacts with the server to complete the authentication. Server stores (a certain
form of) the biometric templates of the clients for authentication and verification.

Let us first consider the following non-privacy-preserving scenario:

Enrollment. Initially, each client registers himself with his ID and a number of his
biometric samples, from which some descriptive features are extracted and stored as
a template.

Authentication. During authentication, a client claims an identity and gets his bio-
metric information acquired, processed, and uploaded to the server. The server com-
pares the received information against the stored template of the claimed ID based on
their closeness under certain metrics and decides whether the authentication succeeds
or not.

The disadvantages are obvious: 1) The server sees the sensitive private information
including users’ facial features2, which are not strictly necessary for authentication
propose; 2) in case that the server is compromised, it will pose further security risks
to the owner of the facial features.

To securely store biometrics in a way similar to password hashing, fuzzy extractors
are introduced by Dodis et al. [DRS04]. In short, a fuzzy extractor takes as input a
sample from a noisy source and generates a digest along with a helper string. With
the helper string, one can recover the same digest based on any other sample (from the
same source) as long as the two samples are sufficiently close under a certain distance
measure. If the source has enough entropy, the extracted digest is guaranteed to be
sufficiently (pseudo)random and thus suffices for authentication purposes.

As shown in Figure 1, the original scheme is enhanced into a privacy-preserving
one with an appropriate fuzzy extractor:

Enrollment. The client scans its own biometric sample and computes the biometric
embedding, denoted as w. Then the client applies a fuzzy extractor to the embedding
to obtain a random string and a “helper string”, denoted as (R,P )← FE.Gen(w). The
random string is then hashed into a digest H(R) and sent to the server together with

1For simplicity, we omit other (e.g., rainbow table and replay) attacks, which can be
addressed by means of randomization (e.g., salted hashing and nonce-based protocol).

2For example, the GDPR categorizes facial recognition data as sensitive personal data that
requires additional protection.
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Client Server

(R,P )← FE.Gen(w)

id, P,H(R)

Store P,H(R)

id

P
R′ ← FE.Rep(P,w′)

(id, H(R′))

Accept if H(R) = H(R′)

Enrollment

Authentication

Figure 1: A fuzzy extractor-based authentication process.

the client’s identity id. Finally, the client stores the helper locally and discards the
rest relevant information.

Authentication. Upon a request to authenticate itself, the client re-captures the
client’s biometric sample, computes its embedding w′, and recovers the corresponding
digest with the “helper string”, i.e., R′ ← FE.Rep(P,w′). Then, it sends id, H(R′) to
the server who accepts if H(R) = H(R′).

Nevertheless, an important subtlety, mostly neglected in the literature of theoret-
ical fuzzy extractors, is that most of the existing fuzzy extractors can only handle low
Hamming weight errors while the errors introduced in the neural network based facial
recognition algorithms are of low cosine (or equivalently `2) distance. In particular,
vectors w,w′ are considered of the same person if ‖w − w′‖2 is small. Our work is
dedicated to addressing this mismatch via the dense packing feature of certain lat-
tices in the high-dimensional vector space. For the sake of completeness, we recall
the background knowledge of facial recognition, existing fuzzy extractors, and other
related privacy preserving technologies before summarizing our contribution of this
work.

1.2 Facial Recognition

Face embedding is a mapping from an image to a real vector (we use the term “feature
vector” and “embedding” interchangeably). Ideally, neural networks are constructed
and trained to make the similarity of embeddings proportional to that between the
faces. Therefore, this reduces the facial recognition problem to the measurement of
the distances between embeddings under a specific metric (typically in the `2-norm).
The image processing flow that we use in this work is shown in Figure 2.

w1

w2

w3

· · ·
wn

Feature Vector
Extracted

Face

Original
Image

Detection Recognition

ṽ1
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Figure 2: The image processing flow for recognition.

Face Recovery Attacks. Tan and Zhou introduced a method to reconstruct images
from templates in [TZ19]. Chi Nhan Duong et al. further introduces a face recovery
algorithm, which only makes black-box use of the underlying facial recognition system
[DTL+20]. The work of Yang et al. can effectively generate an inversion model for a
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deep neural network with only partial prediction value [YZCL19]. This line of research
implies that the mapping from facial images to templates is reversible and much useful
information about the original image can be recovered from the embedding, which
further necessitates the privacy protection of facial templates.

1.3 Classical Fuzzy Extractors and Their Drawbacks

Dodis et al. initiated the study of fuzzy extractors as the generalization of standard
randomness extractors to admit noisy sources [DRS04]. Numerous works improved
on the original construction by enhancing the security guarantees (namely robust-
ness [BDK+05, DKRS06, KR08, CDF+08] and reusability [CFP+16, Boy04, ABC+18,
ACEK17, WL18a, WLH18] or both simultaneously [WL18b, WLG19]) and reducing
assumptions [FMR13]. Xavier demonstrates that reusable fuzzy extractors can be
applied to biometric authentication with enhanced privacy [Boy04].

Nevertheless, the aforementioned constructions mainly focus on binary sources
with Hamming noise, i.e., two samplings of the source only differ in a few positions,
or some distances like set difference and edit distance. Such characterization does not
capture the small `2-norm noise in the facial recognition setting, since two vectors over
a large alphabet close in `2-distance may differ in a large portion of coordinates.

A number of works in the literature address the problem of designing effective
fuzzy extractors for sources with non-Hamming metric and large alphabets. Parente
and van de Graaf proposed the use of Low-Density Lattice Code (LDLC) in the con-
struction of fuzzy extractors for continuous sources [Pv16]. Their work inherently
assumes Gaussian noise and lacks a concrete instantiation of the proposed system.
Jana et al. proposed “Neural Fuzzy Extractors” where they design a neural network
for fuzzy extractors based on LDLC [JSE+20]. Their work, nevertheless, only re-
ported experiments on fingerprint data, and security analysis is based on an upper
bound (rather than the concrete security it achieves). Buhan et al. studied fuzzy ex-
tractors on continuous source by showing an upper bound on the extracted string’s
length and the error rate of source in [BDHV07]. Verbitskiy et al. studied the effect
of quantization methods on continuous sources fuzzy extractors in [VTO+09]. Both
works lack analysis on high dimensions and concrete constructions. Zhang, Li, and
Zhan used the integer lattice (i.e., qZn) to design “fuzzy commitment” in [ZLZ06]. But
their implementation is based on simulated Iris plant data, which is irrelevant to our
application. Li et al. proposed a fuzzy extractor in the maximum norm [LGM+17].
Their experiment is not based on any actual biometric data, and it lacks concrete
security analysis.

1.4 Other Related Works

Locality-Sensitive Hashing. Locality-sensitive hashing (LSH) is a way to solve
the approximate nearest neighbor problem in high dimensional space [HPIM12, IM98].
Briefly speaking, it hashes similar inputs into the same “buckets” with high probability.
The work of Uzun et al. [UCK+21] utilizes LSH to transform Euclidean distance into
Hamming distance in the context of fuzzy-matching private set intersection. Our
construction differs from the this in two ways: 1) we aim to directly design fuzzy
extractors for Euclidean distance, rather than reducing it to existing construction for
Hamming distance; 2) we carefully choose lattices suitable for our purpose (e.g., E8
and Leech) while LSH typically builds on random lattice [Cha02, JLY+12].

Secure Multi-party Computation. Recently Agrawal et al. proposed “External-
Facing Biometric Matching” [ABMR20], where “internal-facing” authentication means
that it uses the same device to store templates and take measurement of the biomet-
rics (e.g. to unlock mobile phones) while “external-facing” authentication refers to
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that the biometrics is captured by an external sensor (e.g., ATM, entrance access con-
trol system). In the latter scenario, a user carries an electronic device (e.g., mobile
phone) to execute a secure multiparty computation protocol with the external sensor
to complete authentication. In contrast, our work does not require the user to carry
any device. Moreover, their work does not address the secure storage of biometric
templates.

Homomorphic Encryption. We mention the privacy-preserving facial recogni-
tion systems based on additive homomorphic encryption and other cryptographic
tools [SSW10, EFG+09]. The scenario is however a bit different from ours, where
a user interacts with a server (in possession of a list of templates) to find out whether
the image belongs to the list. This line of research does not directly address the privacy
issues considered in this work since there the templates of the server are not protected.
Moreover, the result is returned to the user rather than the server, contrary to the
authentication setting.

1.5 Our Contribution

Our contributions are as follows.

• We introduce a new family of secure sketch — lattice-based secure sketch3— and
present three instantiations based on the Zn, Em8 , and Leech lattices. The new
constructions are compatible with the state-of-the-art fuzzy extractors [WLG19],
yielding a family of fuzzy extractors for Euclidean errors. Also, any lattice
with efficient CVP algorithm can be easily adapted to this framework. This
motivates the explicit construction of lattices that are both dense and efficiently
CVP-decodable, which might be of independent interest.

• We incorporate and implement our fuzzy extractors into the state-of-the-art
model of ArcFace [DGXZ19] pretrained by an open-source project [dee18] and
evaluate the system on the LFW dataset [HRBLM07, LM14].

• We concretely analyze the security from a real world dataset.
Admittedly, the level of security provided is not satisfactory. We attribute this
to not only our fuzzy extractor but more to the inherent limits of the facial
recognition method (false acceptance rate). We refer to Section 4 for more
details on our method and results.

A more compatible facial recognition algorithm is likely to improve not only the
performance but also the security level substantially, which is left as future work.

2 Preliminaries

In this section, we introduce the notions and definitions used throughout this paper,
as well as the fundamentals of lattices, fuzzy extractors, and facial recognition.

2.1 Notations

For an integer n we let [n]
def
= {1, 2, 3, ..., n}. For a real number x, dxc denotes rounding

x to the closest integer, and bxc denotes rounding x to the largest integer no greater
than x. Let log(x) denote the binary logarithm log2(x). Let a mod b denote the residue
of integer a divided by integer b. To simplify our notation, for odd b, a mod b must
be in range {−(b − 1)/2, ..., 0, ...(b − 1)/2}. For integer vector x = (x1, x2, ..., xn), let
x mod b denote (x1 mod b, x2 mod b, ..., xn mod b). As a slight abuse of notation, we

3We note our construction does not involve any hard lattice problems as in post-quantum
cryptography. In contrast, we require efficient CVP algorithms for the lattices in this paper.
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let |s| denote the bit length of the binary string s, let |x| denote the absolute value of
the real number x and let |S| be the size of set S, which will be clear from the context.

2.2 Metric Spaces

A metric space M is a set equipped with a real numbered distance function d :M×
M → R∗ satisfying the axioms of identity of indiscernibles, symmetry, and triangle
inequality, i.e., for any x, y, z ∈ M: d(x, y) = 0 ⇔ x = y; d(x, y) = d(y, x); and
d(x, y) + d(y, z) ≥ d(x, z).

Definition 1 (Euclidean Metric) The Euclidean distance between x, y ∈ Rn is de-
fined as

d2(x, y)
def
=

√∑
i∈[n]

(xi − yi)2 ,

where xi, yi denote the i-th elements of vectors x, y respectively.

Definition 2 (Maximum Metric) The maximum distance between vector x, y ∈ Rn
is defined as

d∞(x, y)
def
= max

i∈[n]
|xi − yi| ,

where xi, yi denote the i-th elements of vectors x, y respectively.

2.3 Lattice

A lattice Λ is a discrete additive subgroup of Rn. Λ can be generated from a basis
G ∈ Rn×k (i.e. Λ = {Gs : s ∈ Zk}).

Closest Vector Problem. Given a lattice Λ and any point y ∈ Rn, the closest
vector problem or maximum likelihood decoding, is the task of finding the closest
points x ∈ Λ under a certain metric (e.g., Euclidean). We denote the decoding function
with decode(·).

Direct Product. Since a lattice is a special case of a group, we follow the regular
notion on groups to denote Λ1×Λ2 as the direct product of two lattices Λ1 and Λ2. One
can verify that decode(Λ1 × Λ2) = (decode(Λ1), decode(Λ2)). We use Λn to indicate
Λ× ...× Λ where it is repeated n times.

Voronoi Cell. Fixing a lattice point y ∈ Λ, we define its Voronoi cell Vy(Λ) as the
set of points in Rn that are closer to y than any other lattice points, i.e.,

Vy(Λ)
def
=
{
x ∈ Rn : ∀y′ ∈ Λ, y′ 6= y, d(x, y) ≤ d(x, y′)

}
,

where d(·, ·) is a certain distance function. Alternatively, a Voronoi cell can be defined
by decoding function,

Vy(Λ)
def
= {x ∈ Rn : decode(x) = y} .

We further define Vy′(Λ) for a non-lattice point y′ by setting

Vy′(Λ)
def
= Vy(Λ) + (y′ − y)

for arbitrary y ∈ Λ. We omit the subscript if y is the origin. A Voronoi cell is both
centrally symmetric and convex.
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2.4 Min Entropy

For a (discrete) random variableX with support X , let H∞(X) denote the min-entropy
of X, i.e.,

H∞(X) = − log max
x∈X

p(x) ,

where p(x) = Pr[X = x].

2.5 Secure Sketch and Fuzzy Extractor

A fuzzy extractor extends the classical randomness extractor by allowing extraction
from noisy sources. In particular, “fuzziness” states that strings extracted from two
inputs are guaranteed to be identical if they have a small difference under some met-
ric. Moreover, “randomness extraction” requires the output to be close to uniform
randomness as long as the input has sufficient entropy.

A secure sketch is an efficient algorithm that generates auxiliary error-correcting
information from noisy inputs without sacrificing too much entropy. It is a crucial
building block underlying all existing fuzzy extractor constructions. Formally, we
have the following definitions.

Definition 3 An (M,m,m′, t)-secure sketch (SS) consists of a pair of PPT algo-
rithms (SS.Gen, SS.Rec) described below.

• SS.Gen(w) 7→ s : The sketch generation algorithm that outputs a sketch s ∈ S
from input w ∈M;

• SS.Rec(w′, s) 7→ w̃ : The recovery algorithm outputs w̃ ∈M from input w′ ∈M
and a sketch s ∈ S.

They satisfy the following two properties.

Correctness. For any w,w′ ∈M, it holds that

w = SS.Rec(w′,SS.Gen(w)), if d(w,w′) ≤ t .

Privacy. For any distribution W over M, it holds that

H∞(W |SS.Gen(W )) ≥ m′, if H∞(W ) ≥ m .

Definition 4 An (M,m,R, t, ε)-fuzzy extractor consists of three PPT algorithms (FE.Init,
FE.Gen, FE.Rep).

• FE.Init(1λ) 7→ pp : Generates the public parameter pp, which is the implicit
input to FE.Gen and FE.Rep;

• FE.Gen(w) 7→ (R,P ) : From input w ∈ M, extracts a random string R and
public information P that could help to recover R from another sampling of w;

• FE.Rep(w′, P ) 7→ R′ : Outputs a string R′ on input w′ ∈ M and the public
helper P .

They satisfy the following two properties.

Correctness. If d(w,w′) ≤ t, for (P,R)← FE.Gen(w), we have R = FE.Rep(w′, P );

Security. For any distribution W over M s.t. H∞(W ) ≥ m, R is indistinguishable
from the uniform distribution over M conditioned on P .
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2.6 From Secure Sketch to Fuzzy Extractor.

Existing works in the fuzzy extractor literature show that from a secure sketch scheme
(possibly with some additional properties), one can acquire a fuzzy extractor in the
random oracle model, or the plain model with the LWE or DDH assumptions [Boy04,
BDK+05, WLG19].

Those frameworks essentially allow us to concentrate on the construction of secure
sketches and follow existing works to finish the transformation to fuzzy extractors. For
simplicity and efficiency, we use a variant of the construction in [Boy04], described as
Algorithm 1 and Algorithm 2, where H is a cryptographic hash function.

Algorithm 1: FE.Gen from SS.Gen

Function FE.Gen (w)
r ← {0, 1}λ;
s := SS.Gen(w);
P = (s, r);
R := H(w,P );
return (R,P )

Algorithm 2: FE.Rep from SS.Rec

Function FE.Rep (w′, P )
Parse P as (s, r) ;
w̃ := SS.Rec(w′, s) ;
return H(w̃, P )

2.7 Adapting Embeddings to Fuzzy Extractors

As mentioned in Section 1.4, current facial recognition algorithms map images to real
vectors such that similar images correspond to close vectors with respect to cosine
distance or `2 metric. While real numbers can be simulated by float-point numbers in
clear text, they are arguably less natural to handle in cryptography.

Therefore we apply a simple quantization step on feature vectors to effectively
transform all real vectors to fix-point ones, which are equivalent to integer vectors.
Thus in the following, we assume without loss of generality that the embedding algo-
rithm returns discrete values represented as integers.

3 The Main Construction

Recall the shortcoming of previous fuzzy extractor schemes is that they support only a
few metrics (Hamming distance, set difference), which do not fit with facial recognition
methods. In this section, we first describe the construction of a secure sketch for `∞-
metric concretely. Then, we abstract this construction to a “lattice-based” secure
sketch paradigm and present an instantiation based on the E8 lattice.

3.1 Construction for Maximum Metric

Let w be an integer vector (w1, w2, ..., wn). Our goal is to construct two functions
(SS.Gen, SS.Rec) such that for a predefined tolerance parameter t, SS.Rec(w′, SS.Gen(w))
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should return exactly w if d∞(w,w′) ≤ t. Moreover, we want |s| to be as small as
possible to maximize the entropy of w condition on s.

As shown in Algorithm 3 and Algorithm 4, the message space consists of n-dim
integer vector, and the public information is essentially the modulo 2t + 1 residue of
the input message.

Algorithm 3: Sketch generation for `∞-metric

Function SS.Gen (w)
s := −w mod (2t + 1) ;
return s

Algorithm 4: Input recover for `∞-metric

Function SS.Rec (w′, s)
e := (w′ + s) mod (2t + 1) ;
w̃ := w′ − e ;
return w̃

The correctness and privacy of this construction is also straightforward, as shown
in Theorem 3.1.

Theorem 3.1 The (SS.Gen, SS.Rec) in Section 3.1 is a (Zn,m,m−dn log(2t+1)e, t)-
secure sketch in the `∞-metric.

Proof:
For correctness, d∞(w,w′) ≤ t implies |w′i−wi| ≤ t, ∀i ∈ [n]. This in turn implies,

e = (w′ + s) mod (2t+ 1)

= (w′1 − w1, w
′
2 − w2, . . . , w

′
n − wn) mod (2t+ 1)

= (w′1 − w1, w
′
2 − w2, . . . , w

′
n − wn) .

Thus,

w̃ = w′ − e
= (w′1 − (w′1 − w1), w′2 − (w′2 − w2), . . . , w′n − (w′n − wn))

= (w1, w2, . . . , wn)

= w .

For privacy,

H∞(W |SS.Gen(W )) ≥ H∞(W )− |s| ≥ m− dn log(2t+ 1)e .
This instantiation of a secure sketch in `∞-norm already gives rise to a facial

template protection. However, as we will show later, such a scheme does not exhibit
satisfactory performance when applied to pre-trained facial recognition models, which
measure similarity by `2-norm rather than `∞-norm. In the following subsection, we
generalize this construction to a lattice-based one that offers better approximation.
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3.2 On the Generalization of Secure Sketch

Intuitively, the construction for maximum metric can be viewed as a variant of the
“Syndrome-based Construction” of [DRS04] as illustrated in Figure 3. In the original
construction, the function decode(·) corresponds to the syndrome decoding algorithm
of a certain error-correction code. Our generalization follows a similar route, but
corrects errors over lattices instead of using the Hamming metric.

We describe the construction followed by analysis and discussions. Fix an n-
dimensional integer lattice Λ. On input w, we first find the closest lattice point c of
the t-scaled lattice tΛ via invoking the CVP algorithm decode(·), and then generates
sketch s = c − w. The parameter t ∈ R represents the error correction capability of
our construction and essentially reflects the trade-off between security and utility. To
recover w from a noisy input w′ and a secure sketch s, we apply the CVP algorithm on
c̃ = w′+s, calculates the difference e = w′−w = c̃−c, and finally outputs w = w′−e.
Notice that the linearity of lattice Λ ensures that if e ∈ V (tΛ) the difference e = w′−w
can be correctly recovered.

Notice that directly applying “decode” to w′ would incur an error if w and w′ are
separated by two adjacent lattice points, as illustrated by the dotted line in Figure 3.

c

w

w′

c̃

c′−s +e

+s
deco

de

decode

Figure 3: An intuitive illustration of the generalized secure sketch construction
in the two dimensional case where decode(x) returns the lattice point closest to
a given vector x.

More generally, we can define “closeness” between two points as one point lies
in the scaled centrally symmetric and convex body centered at the other one. We
introduce a new metric that generalizes `p-distances and fits well with our application.

Definition 5 (Centrally Symmetric Convex Body Metric) The distance between
x, y ∈ Rn is defined as

dB(x, y)
def
= min{t ≥ 0 : y − x ∈ t ·B} ,

where B is a centrally symmetric and closed convex body centered at the origin point.

As a special case of the Minkowski functional [B+74], this metric can be interpreted
as a family of distance functions. If B is a hypercube, this distance is equivalent to `∞.
If B is a hypersphere, this distance is equivalent to `2. In particular, given a lattice
Λ, its Voronoi cell V (Λ) is both centrally symmetric and convex, and dV (w,w′) ≤ t
implies w′ ∈ Vw(tΛ). We leave the proof that the distance function in Definition 5 is
a metric to Appendix A.

We argue this new metric could achieve better performance because it can be
regarded as an approximation of `2-metric.

We modify the definition of a traditional secure sketch by replacing d(w,w′) ≤ t
with dV (w,w′) ≤ t. This gives rise to the generalized construction in Algorithm 5 and
Algorithm 6.
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Algorithm 5: Generalized Construction for SS.Gen

Function SS.Gen (w)
c = decode(w) ;
s = c− w ;
return s

Algorithm 6: Generalized Construction for SS.Rec

Function SS.Rec (w′, s)
c′ = w′ + s ;
c∗ = decode(c′) ;
w̃ = c∗ − s ;
return w̃

Definition 6 An (M,m,m′,Λ, t)-lattice-based secure sketch (SS) consists of a pair of
PPT algorithms (SS.Gen, SS.Rec) which satisfies the following syntax and properties.

• SS.Gen(w) 7→ s : on input w ∈M generates a sketch s ∈ S.

• SS.Rec(w′, s) 7→ w̃ : on input w′ ∈M and s ∈ S outputs w̃ ∈M.

• Correctness. If dV (w,w′) ≤ t, then w = SS.Rec(w′, s), where s = SS.Gen(w).

• Privacy. For any distribution W over M with min-entropy H∞(W ) ≥ m, we
have H∞(W |SS.Gen(W )) ≥ m′.

We prove that this construction meets the new definition.

Theorem 3.2 The (SS.Gen, SS.Rec) in Section 3.2 is a (M,m,m−log |V (tΛ)∩Zn|, t)
lattice-based secure sketch.

Proof: For correctness, if dV (w,w′) ≤ t i.e. w′ ∈ Vw(tΛ), we have w′ − w =
(w′+s)−(w+s) = c′−c. Thus, c′ ∈ Vc(tΛ), c∗ = decode(c′) = c, w̃ = c∗−s = c−s = w.

For privacy, we have the size of secure sketch is bounded by integer points within
a Voronoi cell and thus,

H∞(W |SS.Gen(W )) ≥ H∞(W )− |s|
≥ m− log |Vc(tΛ) ∩ Zn|
= m− log |V (tΛ) ∩ Zn| .

3.3 Instantiation of the Lattice-based Secure Sketch

As mentioned above, all we need to do is to look for a “dense” and efficiently decodable
lattice. To our best knowledge, we are not aware of any explicit construction of high-
dimensional lattices that are simultaneously dense and decodable in the literature of
coding theory and cryptography. Therefore, we resort to good lattices in low dimen-
sions. Nevertheless, we found that the E8 and Leech lattices provide an improvised
makeshift according to our requirements. We plan to investigate other lattices like
Barnes-Wall lattice in the future.

IE8 Lattice. Let 1
2

denote the 8-dim vector (0.5, ..., 0.5). The E8 lattice [CS13] is
defined by
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E8
def
= D8 ∪ (D8 +

1

2
) ,

where
D8

def
= {(x1, ..., x8) : xi ∈ Z,

∑
i

xi = 0 mod 2} .

Algorithm 7: Unique Decoding of D8

Function Decode’ (x)
x̃ = dxc;
if

∑
i x̃i = 0 (mod 2) then

return x̃;
else

i = argmin |xi − x̃i| ;
if x̃i > xi then

return x̃ + ei;
else

return x̃− ei;

Algorithm 8: Unique Decoding of E8

Function Decode (x)
x1 = Decode′(x);

x2 = Decode′(x− 1
2 );

return xi closer to x for i ∈ {1, 2};

We use the decoding algorithm for E8 in [CS82], which involves two decodings of
D8, as shown in Algorithm 7 and Algorithm 8. To fit the high dimension template,
we may repeatedly use it m times, i.e., Em8 .

Leech Lattice. The Leech lattice is a dense 24-dimensional lattice with an efficient
decoding procedure. Due to its complexity we refer to existing works for its definition
and the decoding algorithm we use in this paper. We implemented the decoding
procedure for the Leech lattice in [CS86].

3.4 Fuzzy Extractor for Facial Templates

Recall that we can apply existing transforms (shown in Section 2.6) to the aforemen-
tioned secure sketches to obtain fuzzy extractors. These constructions can then be
applied to human facial templates.

4 Analysis and Evaluation

In this section, we analyze the concrete security level of our facial template protection
scheme by estimating the entropy of the protected biometric templates. More specifi-
cally, the unpredictability of the biometric secret (in the context of fuzzy extractor) is
measured by the minimum entropy of the template conditioned on the public helper in-
formation. A major technical difficulty we encounter is to model the most likely events
over a continuous random variable whose distribution is unknown. This demonstrates
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the gap between theoretical security analysis and the concrete security level the system
can offer.

To tackle these problems, we propose a simplified model to characterize the distri-
bution of biometric embedding vectors. In particular, the abstraction we introduce in
this model is derived from the actual functionalities of the machine-learning models
that generate the embedding vectors. This reduces the problem of security evalua-
tion of the continuous biometric template to the min-entropy evaluation of a discrete
distribution (over a finite set), which is non-uniform as we can observe. Therefore, it
remains to extrapolate the distribution of the biometric features from a public dataset
of limited size before quantifying its min-entropy. We accomplish this task by fitting
a parameterized distribution from real biometric templates in a public dataset. As a
result, our analysis shows that the protected facial templates can offer roughly 45 bits
of min-entropy.

4.1 Modelling the Facial Distribution

In the following, we focus on facial features as they are ubiquitous and representative.
Recall that the machine-learning model returns biometric embedding vectors in a high-
dimensional real space satisfying the following constraints with high probability:

• Embedding vectors of the same person allows deviations but their pair-wise
distance is upper-bounded by a threshold t1;

• Embedding vectors of different persons are lower-bounded by a threshold t2;

• It should hold that t1 < t2 to effectively separate the cases of no-match and
match.

Therefore, a machine learning model should transform the facial images of a pop-
ulation D to templates in the form of high-dimensional embedding vectors such that:

• Vectors of a person p should concentrate in a small region Vp. This represents
the error-tolerance feature of machine-learning models.

• Regions of different persons should be pairwise disjoint for the most majority of
the population.

Notice that almost all machine-learning models use the `2-norm as the distance
measure of their feature vectors. In view of that existing fuzzy extractors typically
adopt the Hamming metric and are thus not compatible with facial recognition ap-
plications, our construction in Section 3 can be regarded as efforts to use the lattice-
based metric in Definition 5 to approximate `2 distance. The intuition is that a region
V ⊆ Rn where every two elements are `2-distance bounded can be “enclosed” by a
hypersphere. Voronoi cells of a lattice are a good approximation of non-overlapping
hyperspheres in a high-dimensional space.

Based on the above observation, we formulate the following idealized assumption
on the distribution of embedding vectors returned by a machine-learning model.

Assumption 1 (The model) Given an n-dimensional rank-k lattice Λ with basis
G ∈ Rn×k and a facial recognition machine learning model M , the embedding vector
w of a facial image returned by M can be decomposed as w = G · s+ ∆ + e and follows
the distribution:

W
def
= G · S +D + E ,

where S has support Zk, G · S is the distribution of lattice points, D of support Rn is a
offset from the center of the embedding vectors to G · s, and E of support Rn describes
the noise during measurement. We further assume that the offset distribution D is
independent of the distribution S with finite support.
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For the embedding w = G · s0 + ∆0 + e, one can consider (s0,∆0) as the unique
identifier of an individual subject to measurement noise e. We assume that the noise
during the registration phase can be omitted for simplicity4 (i.e., e ≈ 0). The intuition
is that the biometric enrollment typically uses many measurements to reduce noise in
the facial template and improve the accuracy of subsequent recognition.

Therefore, due to the construction in Definition 6 the public information P cor-
responds to the offset vector ∆. As a slight abuse of notations, given w = G · s + ∆
and P = ∆, the distribution of w conditioned on P should have its probability density
all concentrated on lattice points, as illustrated in Figure 4 in the 2-dimensional case.
Thus, if we denote as H∞(W |P ) the inverse logarithm of the expected number of trials
to find a collision given P , it holds that

H∞(W |P ) = H∞(S) .

To conclude, the model effectively transforms the task of estimating the unpre-
dictability of a facial template in the form of a high dimensional real vector (given
public information), into that of estimating the min-entropy of its closest lattice point.
As we shall see in the following subsection, the min-entropy can be effectively estimated
from existing public datasets.

−1 −0.5 0
0.5 1−1

0

1

0

1

(a) Continues distribution of W

−1 −0.5 0
0.5 1−1

0

1

0

1

(b) W condition on P

Figure 4: A 2-dimensional illustration of W and W condition on P .

4.2 The Distribution of Facial Features

It remains to estimate the min-entropy from a dataset D̃ of real-world facial sam-
ples/templates. Let S̃ be the corresponding set of the closest lattice points, i.e.,
S̃ = decode(D̃).

First Attempt. A natural estimation is by the definition of min-entropy:

H̃∞(W |P ) = H̃∞(S) = − log max
s∈S̃

p(s) .

The limitation of this method is that the size of D̃ becomes the bottleneck limiting
the efficiency and practicality of the estimation. In particular, by measuring prob-
abilities from the uniform distribution on D̃, the derived min-entropy never exceeds
log |D̃|. In other words, to estimate H∞(w|P ) for w with h-bits of min-entropy, one
must prepare a dataset of size at least 2h, which is unrealistic.

Our Method. Recall that the decode algorithm is parameterized by t. We denote
maxs∈S̃ p(s) by pt, where larger values for t enable better error tolerance at the expense

of potentially more leakage. Given dataset D̃, we can set parameter t at a low enough

4The assumption that e = 0 during measurement phase is not strictly necessary but it
simplifies entropy estimation. As we will see, adding more noise can only increase the unpre-
dictability/entropy about w.
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level t0 with an acceptable false rejection rate (e.g., @70%) but templates of different
people from the dataset are never mapped to the same lattice point. Intuitively, the
observed distribution over lattice points, in this case, may not faithfully reflect the
actual distribution of facial templates because the observed probabilities are the just
inverse of the dataset size. This implies that we cannot get a meaningful estimation
for pt0 when the false acceptance rate in the dataset is zero at a low error tolerance
level t0.

We tackle this problem via extrapolation. In particular, we collect samples of
(t, pt) for large values of t’s and fit pt to a curve. In this way, we can estimate pt0 for
parameter t0 which can not be reflected by a small database. Through experiments
on several candidate distributions, we put forward our core assumption below along
with justifications and empirical evidence.

Assumption 2 pt follows the cumulative distribution function of Johnson’s SU dis-
tribution [Joh49b, Joh49a], i.e.,

pt = Jγ,δ,ξ,λ(t)

= Φ

(
γ + δ sinh−1

(
t− ξ
λ

))
Here J(x) denotes the cumulative distribution function of a Johnson’s SU distri-

bution, Φ denotes the cumulative distribution function of the Gaussian distribution
N (0, 1) and γ, ξ, δ, λ are parameters of Johnson’s SU distribution.

This assumption is justified for the following reasons:

• Recall that the function pt is the maximum probability of the nearest lattice
points of biometric templates over a lattice scaled by a factor t. If the scale
factor t is so large that all templates are included in one Voronoi cell, then all
probability density concentrates on this single lattice point and we have pt = 1.
In the other direction, if t is small enough such that no two people are mapped
to the same lattice point then pt becomes the probability of a most likely feature
vector returned by a machine learning model, which is arguably very small (i.e.
pt → 0). This implies pt satisfies the requirements of a cumulative density
function.

• We choose the Johnson’s SU distribution as it best fits the data over other
candidate distributions. We also use the Kolmogorov-Smirnov test [MJ51] to
evaluate its suitability and find its p-value > 0.05, which empirically proves our
hypothesis (i.e., pt follows the Johnson’s SU distribution). We show an example
in Figure 5 to demonstrate that the data and the CDF of the distribution fits
well with each other.

Under this assumption, we can estimate parameters γ̂, δ̂, ξ̂, λ̂ from the observed
distribution D̃ over a real-world dataset, and then obtain the min-entropy as:

Ĥ∞(S) = − log Jγ̂,δ̂,ξ̂,λ̂(t) .

4.3 Experimental Setup

Hardware. We conduct our experiments on a Ubuntu 20.04 machine with Ryzen™
5 3600 CPU and 16GB RAM.

Face Embedding. We use ArcFace [DGXZ19] to transform facial images into 512-
dimensional real vectors. The models are pretrained by an open-source project [dee18].

Dataset. We conduct experiments on the Labeled Faces in the Wild (LFW) [HRBLM07,
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Figure 5: The curve of observed pt and the cumulative distribution function of
a Johnson’s SU distribution, where the parameters are fitted.

LM14] dataset, which is a popular benchmark for the facial recognition problem. The
LFW dataset contains more than 13,000 facial images. Some examples are shown in
Figure 6. We corrected several known errors in LFW [HRBLM] in order to reflect the
actual performance under the extremely low false acceptance rate.

Figure 6: A few samples from the updated LFW dataset [HRBLM07, LM14].

4.4 Experimental Results and Remarks

The running time of FE.Gen and FE.Rep is both less than 100ms, which does not
constitute a bottleneck compared to the inference operation of a neural network.

We report the experimental results on the LFW dataset in Table 1. The row “Zn”
represents the construction based on the regular integer grid lattice in the max norm,
while “Em8 ” and “Leech” represents the construction based on those two lattices, where
n = 512 and m = n/8. The two parameter sets under each category correspond to
different false rejection rate levels. The security level H∞ is the number of bits of
min-entropy evaluated according to the method in Section 4.2.

From Table 1 we observe the following facts:
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Table 1: The experimental results of evaluation on the LFW dataset.

Method FRR FAR H∞
Zn 70% 1.8× 10−6 29.1
Em8 70% 1.8× 10−7 37.8

Leech 70% 2.1× 10−7 45.5
No Protection 70% 1.6× 10−7 N/A

• In general, our system offers a security level of 30 ∼ 45 bits, namely, any (even
computationally unbounded) adversary has probability 2−30 ∼ 2−45 in success-
fully guessing the embedding in one trial. Although 45-bit security may not
be sufficiently strong in the cryptographic sense, it arguably offers realistic se-
curity if used in combination with computationally heavy hash functions like
PBKDF2 [MKR17], bcrypt [PM99] or scrypt [PJ16]. For instance, if one trial
takes one second on a PC, then the recovery of facial embedding needs more
than one million years in average.

• We fix the false reject rate at 70% for system usability, i.e., the authentic indi-
vidual needs three times on average to be authenticated. Increasing FRR will
improve the security level at the cost of less convenience for the users.

• The security level offered by the Leech lattice norm-based construction is better
than those based on Em8 and Zn, which attributes to that the Leech lattice-based
norm is a better approximation of `2 than Em8 and Zn.

Our experiment demonstrates the feasibility of facial biometric template protec-
tion. Although the face recognition technology has been well-developed, the most
advanced ones are based on proprietary models. Due to these constraints, we have to
use open-source models and publicly available datasets. Nevertheless, we believe that
better models and data can contribute to performance and security simultaneously.

Moreover, this new lattice-based construction reduces the task of finding a more
compatible fuzzy extractor to the search for a dense lattice that admits efficient de-
coding algorithms in high dimensions. While the mathematics literature is rich in the
constructions of dense lattices, relatively less attention is paid to efficient decoding
algorithms. A lattice that satisfies both constraints implies a better fuzzy extractor
and hence a better facial template protection scheme.

5 Conclusion

In this paper, we construct facial-recognition compatible fuzzy extractors from lattice-
based secure sketches. We then instantiate the constructions with three concrete lat-
tices and implement the corresponding facial template protection scheme. We perform
our experiments on the publicly available LFW dataset and analyze the security level.
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A Centrally Symmetric Convex Body Distance

Theorem A.1 The distance function in Definition 5 is a metric.

Proof: Recall that we only need to prove that the three properties in the definition
of a metric are satisfied:
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Identity of indiscernibles. Obviously, dB(x, y) = 0⇔ x = y.

Symmetry. Because the Voronoi cell B is centrally symmetric, we have dB(x, y) =
dB(y, x).

Triangle inequality. Denote dB(x, y), dB(x, z), dB(z, y) as t0, t1, t2 respectively. And
let ~xy, ~xz, ~zy go from the origin point and hit the border of P at a, b, c respec-
tively. Therefore ~xy = ~xz + ~zy implies t0~a = t1~b+ t2~c, implies ~a = t1

t0
~b+ t2

t0
~c

Suppose t0 > t1 + t2, thus 0 ≤ t1
t0

+ t2
t0
< 1.

However, this contradicts the convex property because border bac is not convex.
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