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Abstract. We revisit designing AND-RX block ciphers, that is, the de-
signs assembled with the most fundamental binary operations—AND,
Rotation and XOR operations and do not rely on existing units. Likely,
the most popular representative is the NSA cipher SIMON, which remains
one of the most efficient designs, but suffers from difficulty in security
evaluation.
As our main contribution, we propose SAND, a new family of lightweight
AND-RX block ciphers. To overcome the difficulty regarding security
evaluation, SAND follows a novel design approach, the core idea of which
is to restrain the AND-RX operations to be within nibbles. By this,
SAND admits an equivalent representation based on a 4 × 8 synthetic S-
box (SSb). This enables the use of classical S-box-based security evalua-
tion approaches. Consequently, for all versions of SAND, (a) we evaluated
security bounds with respect to differential and linear attacks, and in
both single-key and related-key scenarios; (b) we also evaluated security
against impossible differential and zero-correlation linear attacks.
This better understanding of the security enables the use of a relatively
simple key schedule, which makes the ASIC round-based hardware im-
plementation of SAND to be one of the state-of-art Feistel lightweight
ciphers. As to software performance, due to the natural bitslice struc-
ture, SAND reaches the same level of performance as SIMON and is among
the most software-efficient block ciphers.

Keywords: Lightweight Cryptography · Feistel Structure ·AND-Rotation-
XOR · Synthetic S-box · Related-key Security

1 Introduction

With the rapid development of pervasive computing, particularly the imminent
5th generation (5G) networking technology for seamless communication, the In-
ternet will be characterized by more and more application scenarios, like smart



home, smart cities and industry 4.0. Under the fusion of 5G, Artificial Intelli-
gence (AI) and Internet of Things (IoT), the power of data will also be unleashed,
gradually. However, this fast-growing number of connected devices and ubiqui-
tous communications in the network also poses a potential threat to the security
of data and privacy. In particular, the presence of plenty of constrained devices,
which can only devote a small fraction of resources to security, has motivated
seeking for new security/efficiency trade-offs. Consequently, the design and anal-
ysis of lightweight symmetric schemes have been one of the most productive lines
of research in recent years.

Actually, the term lightweight is not strictly defined due to a variety of usage
scenarios, from low power consumption (passive RFID tags) to low energy con-
sumption (battery-powered devices) or low latency application (disk encryption).
However, area cost is usually a major criterion for lightweight block ciphers, but
when taking power, energy and throughput into consideration, it is rather a com-
plex task to compare different lightweight primitives. In fact, these metrics also
show different requirements, faced with various deployments in the real-world,
many lightweight block ciphers have been proposed for different applications in
recent years. For instance, Midori [6] is designed for energy and power efficiency
of hardware implementation. PRINCE [24], MANTIS [13] and Qarma [4] all aim to
achieve a low latency. The block ciphers SIMON (AND-RX) and SPECK (ARX)
from the NSA [12] are two quite elegant and competitive algorithms, where the
former is hardware-oriented and the latter is software-oriented. RECTANGLE [75]
is designed to facilitate bitslice implementations and is suitable for multiple
platforms. SKINNY [13] is then proposed as a competitor to SIMON in terms of
performance and provides much stronger security guarantees with regard to dif-
ferential/linear attacks. GIFT [9] pursues even smaller area consumption but still
with sound security. Most recently, the cipher CRAFT [15] takes the implemen-
tations of efficient protection against DFA attacks as its main design criteria.
Some lightweight proposals also have been standardized as ISO/IEC standards,
like PRESENT [22] and CLEFIA [64]. To summarize, significant advances have been
made regarding the performance as well as approaches to design and security
analysis of lightweight block ciphers.4

To further elaborate, SKINNY and GIFT are considered as two prominent ex-
amples. Both are among the best SPN ciphers, and have been chosen by a
number of submissions to the NIST Lightweight Standardization Process as the
underlying building blocks. In detail, the designs TGIF [41], SUNDAE-GIFT [7],
GIFT-COFB [8], HYENA [26], and LOTUS-AEAD/LOCUS-AEAD [25] are built upon
GIFT, while the designs ForkAE [1], SKINNY-AEAD/SKINNY-HASH [14], Remus [39],
and Romulus [40] are based on SKINNY.

In contrast, less progress has been made regarding the counterpart Feistel
block ciphers. A Feistel cipher is involution-like, i.e., encryption and decryption
are the same up to different round key assignments. When hardware implemen-
tation of the decryption functionality is required, this significantly reduces the

4 For more details, we refer to the main page https://www.cryptolux.org/index.

php/Lightweight_Cryptography, maintained by the CryptoLUX research group.
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cost, which constitutes the main advantage of the Feistel scheme compared to the
SPN approach. Efficient Feistel lightweight ciphers were mostly designed years
before, with LBlock [72], Piccolo [63], TWINE [68], RoadRunneR [11], SIMON and
SIMECK [74] as notable examples.

Among the above, SIMON achieves the best performance due to its extremely
simple AND-RX structure. Yet, as a side effect, it turns out rather cumbersome
to establish security lower bounds against differential and linear cryptanalysis, in
both single-key and related-key scenarios. The difficulties are two-fold. First, the
bit-oriented nature of SIMON effectively prohibits the use of the well-understood
active S-box proof approaches [31,55,67]. Moreover, the dependency problem in
the round function raises additional difficulty in understanding its exact dif-
ferential and linear properties. The original design paper [12] has eluded any
security analysis and bounds as well as the design rationale. Then, the charac-
terizations of the exact differential and linear properties of SIMON were found
by Kölbl et al. [47], which adopted Boolean satisfiability problem (SAT) and
satisfiability modulo theories (SMT) based search methods. However, security
bounds remain intractable for large versions such as SIMON-128 due to the large
search space. This was eventually solved by Liu et al. [49], who identified the
provably optimal differential trails of SIMON-64, SIMON-96 and SIMON-128 in the
single-key scenario, using a delicate variant of Matsui’s branch-and-bound search
algorithm.

Despite the above exciting progress regarding their security analysis, it re-
mains an open problem to obtain AND-RX designs with easier provable bounds
and utilize their hardware efficiency. The usual approach is to start from ad hoc
designs and apply the above search tools for the security evaluation. Note that,
for the similar ARX designs, the landscape already turns different: the recently
proposed long trail design strategy (LTS) and the result SPARX [33] exhibited
that ARX ciphers can be designed with both provable bounds and efficient soft-
ware performance. Motivated by these, we ask if it is possible to design Feistel
lightweight block ciphers with AND-RX operations (more precisely, based on
SIMON) with better efficiency and stronger security bounds, even in the related-
key setting.

1.1 Our Contributions

In this paper, we answer the above question positively. In detail, we propose a
new family of AND-RX block ciphers SAND. Due to the novel design approach,
SAND admits an equivalent S-box-based representation (which we will elaborate
later) and thus supporting S-box-based security evaluation approaches. This
allows for both strong security bounds and competitive performance:

– High security. Benefiting from the well-developed active S-box-based se-
curity evaluation approaches, SAND ensures strong security in both single-key
and related-key scenario. We remark that until now, only a few lightweight
designs are designed to resist related-key attacks, with LED [37], PICCOLO,
TWINE and SKINNY to name a few.
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– Efficient hardware and software performances. As shown in Table 1,
for ASIC round-based implementations, all versions of SAND have competitive
area cost for both the encryption-only and the unification of encryption/de-
cryption among the current most efficient lightweight block ciphers. Regard-
ing software implementations, the natural bitslice structure and AND-RX
operations push SAND to be among the best—in particular, comparable with
SIMON.

SAND’s design idea, and New approach to AND-RX We now elaborate on
why our new design SAND admits dual representations (S-box-based and AND-
RX based structures). A fundamental unit function in SIMON is f(x1, x2, x3) :=
x1�x2⊕x3, which maps three input bits to a single output bit. We still rely on
this (non-linear) AND-RX function. The crucial trick is that we first divide the
round function input into several nibbles and then apply two bijective “unit”
AND-RX functions on every nibble. These two “unit” AND-RX functions are
“2-round” (multi-branch) Feistel-like transformations using the aforementioned
f as “round functions”. In contrast, in the SIMON round function, every input
bit is tripled with two different other input bits and taken as the inputs of f .
Consequently, the SIMON round function is somewhat “undividable”, while our
design admits a dual representation.

The size of the nibbles in SAND is 4 bits (whereas larger nibbles are of course
supported by this approach). By this, every nibble gives rise to an 8-bit output,
and thus the two “unit” AND-RX functions could be viewed as a single 4×8-bit
synthetic S-box (SSb). In this vein, the SAND round function could be written as
parallel applications of such synthetic S-boxes. Such a substitution layer clearly
doubles the size of the intermediate state. To compress the state back to fit into
the other Feistel branch, we XOR a half of the state to the other and then apply
a bit permutation for diffusion. It is this SSb-based representation that enables
SAND to enjoy the traditional active S-box-based security evaluations, which gives
rise to security lower bounds of SAND in both single-key and related-key scenarios.

We stress again that the 4 × 8-bit SSb is built upon (multi-branch) Feistel-
style functions rather than a smaller SIMON-like non-linear function. Our ap-
proach of first applying SSb and then compressing increases the algebraic de-
gree of the round function: the maximal degree of SSb is 3, while that of smaller
SIMON-like functions is 2. Also, it achieves better diffusion. In all, our 4 × 8-
bit SSb approach turns out crucial for the security and efficiency of SAND. We
defer detailed discussion and comparison with similar design approaches (e.g.,
NOEKEON [30], KECCAK [18] and ASCON [34]) to Section 3.1. Besides the instance
SAND, we believe that this new design approach is another important method-
ological contribution.

1.2 Outline

This paper is organized as follows. In Section 2, we first give the specifications
of the new block cipher SAND. Then, the design rationales of SAND are given in
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Ciphers Type
Area Delay

Cycles
TP100KHz TPMax Related-key

(GE) (ns) (Kbps) (Mbps) Security

SAND-64/128
Enc 1287 0.86 48 133.3 1550.4 X

Enc&Dec 1563 0.91 48 133.3 1465.2

SKINNY-64/128
Enc 1306 1.63 36 177.8 1090.7 X

Enc&Dec 1916 2.28 36 177.8 779.7

TWINE-64/128
Enc 1389 1.51 36 177.8 1177.3 X††Enc&Dec 1687 1.58 36 177.8 1125.2

SIMECK-64/128
Enc 1300 0.69 44 145.5 2108.0

Unknown
Enc&Dec 1714 0.83 44 145.5 1752.5

SIMON-64/128
Enc 1329 0.75 44 145.5 1939.4

Unknown
Enc&Dec 1779 0.84 44 145.5 1731.6

CRAFT-64/128
Enc 1316 0.70 32 200.0 2857.1

No†Enc&Dec 1618 1.00 32 200.0 2000.0

ANU-64/128
Enc 1460 1.66 25 256.0 1542.2

No‡Enc&Dec 1835 2.44 25 256.0 1049.2

SAND-128/128
Enc 1874 0.88 54 237.0 2693.6 X

Enc&Dec 2264 0.88 54 237.0 2693.6

SKINNY-128/128
Enc 1849 2.12 40 320.0 1509.4 X

Enc&Dec 2973 2.31 40 320.0 1385.3

WARP-128/128
Enc 1632 0.75 41 312.2 4162.6

Unknown‡‡Enc&Dec 1775 0.75 41 312.2 4162.6

ANT-128/128
Enc 1898 0.85 46 278.3 3273.7

Unknown
Enc&Dec 2284 0.88 46 278.3 3162.1

SIMON-128/128
Enc 1930 0.78 68 188.2 2413.3

Unknown
Enc&Dec 2535 0.84 68 188.2 2240.9

† Although the authors of CRAFT do not claim any security in the related-key model,
the practical related-key attacks on full round CRAFT are presented in [35].
†† Based on TWINE, the designers of Tweakable TWINE [59] claim the related-key security

for T-TWINE-128, which can be reduced to that of TWINE.
‡ The related-key distinguisher and attacks on full round ANU are given in [60].
‡‡We also consider a recently proposed block cipher WARP [5], which is an efficient design

with the single-key security claim.

Table 1: Comparison of lightweight block ciphers implemented in this paper,
synthesized with TSMC 90nm standard cell library (All implementations are
round-based and synthesized under area optimization).
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Section 3. In Section 4, the security analysis of SAND is provided. Later, the hard-
ware and software evaluations are given in Section 5 and Section 6 respectively.
Finally, we conclude the paper in Section 7.

2 Specifications of SAND

SAND is a family of two AND-RX block ciphers with Feistel structure: SAND-64
and SAND-128. Both of them accept 128-bit keys and have different block sizes 2n,
where n stands for the length of the branch (n = 32 for SAND-64 and n = 64 for
SAND-128). The basic parameters of SAND-64 and SAND-128 are listed in Table 2.

Cipher
Block Branch Key Rounds

size 2n size n size m R

SAND-64 64 32 128 48

SAND-128 128 64 128 54

Table 2: Parameters for SAND-64 and SAND-128.

For the detailed specification, the following notations will be employed.

– x = (xn−1, xn−2, · · · , x0): the n-bit variable with (n mod 4) ≡ 0, where
xn−1 is the most significant bit (MSB) and x0 represents the least significant
bit (LSB). A two-dimensional representation is also used for the variable x,
which can be viewed as a 4× n

4 array of bits

x =


xn−1 · · · x7 x3
xn−2 · · · x6 x2
xn−3 · · · x5 x1
xn−4 · · · x4 x0

 .
– x ‖ y: concatenation of variables x and y.
– x� s: shift x by s bits to the left.
– x≪ t: rotate x by t bits to the left.
– x ≪n

4
t: the n-bit variable x with (n mod 4) ≡ 0, which can be divided

into four n
4 -bit words x = (xn−1, xn−2, · · · , x0) = x{3}‖x{2}‖x{1}‖x{0},

and each word x{i} is rotated by t bits to the left within the word, that is
x≪n

4
t = (x{3}≪ t)‖(x{2}≪ t)‖(x{1}≪ t)‖(x{0}≪ t).

– x� y: bitwise AND operation of x and y.
– x⊕ y: bitwise exclusive-or (XOR) operation of x and y.
– x[i]: the i-th nibble of variable x, e.g., for x = (xn−1, xn−2, · · · , x0) with (n

mod 4) ≡ 0, x[n4 − 1] = (xn−1, xn−2, xn−3, xn−4), . . ., x[1] = (x7, x6, x5, x4),
x[0] = (x3, x2, x1, x0).
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– Act(x[i]): the characteristic function of x[i], i.e.,

Act(x[i]) =

{
0, if x[i] = 0x0,

1, otherwise.

For x = x[n4 − 1]‖ · · · ‖x[1]‖x[0],

Act(x) = Act
(
x[
n

4
− 1]

)
‖ · · · ‖Act(x[1])‖Act(x[0]).

For example, Act(x) = 0111 if x = 0x0123.

We also give some definitions that will be used throughout the paper. It
should be noted that the S-box SSb of SAND allows non-trivial linear transitions
with bias 1

2 , which should not be counted as active S-boxes. Thus, we exclude
the input/output masks that lead to a bias of 1

2 in Definition 2 and Definition 3,
instead of only the output mask 0 for the usual S-box.

Definition 1 (MDP - Maximal Differential Probability). Let S be a vec-
torial Boolean function S : Fa2 → Fb2, the maximal differential probability of S is
defined as:

max
∆in∈Fa

2\{0},∆out∈Fb
2

#
{
x ∈ Fa2 |S(x)⊕ S(x⊕∆in) = ∆out

}
2a

.

Definition 2 (MALB - Maximal Absolute Linear Bias). Let S be a vec-
torial Boolean function S : Fa2 → Fb2, the maximal absolute linear bias of S is
defined as:

max
Γin∈Fa

2 ,Γout∈Fb
2

0<#{x∈Fa
2 |Γin�x=Γout�S(x)}<2a

∣∣∣#{x ∈ Fa2 |Γin � x = Γout � S(x)
}

2a
− 1

2

∣∣∣,
where � denotes the inner product operation.

Definition 3 (Active S-box and Non-active S-box). Let S be a vectorial
Boolean function S : Fa2 → Fb2, for any given differential transition ∆in →
∆out(∆in ∈ Fa2 , ∆out ∈ Fb2), whose probability is prob∆in→∆out . It will result
in an active S-box when 0 < prob∆in→∆out < 1 and a non-active S-box when
prob∆in→∆out

= 1. Similarly, for any given linear transition Γin → Γout(Γin ∈
Fa2 , Γout ∈ Fb2), whose linear bias is biasΓin→Γout

. It will result in an active S-box
when 0 < |biasΓin→Γout

| < 1
2 and a non-active S-box when |biasΓin→Γout

| = 1
2 .

2.1 Round Function

(1) State Loading

7



xr yr

xr+1 yr+1

xr ≪n
4
α

G0

xr ≪n
4
β

G1
Pn

skr

Figure 1: Round function of SAND.

Denote by P = (Pl, Pr) the plaintext, then the left n-bit half Pl = (Pln−1, · · · , P l1, P l0)
and the right n-bit half Pr = (Prn−1, · · · , P r1, P r0) can be viewed as two 4× n

4
arrays of bits

Pl =


Pln−1 · · · Pl7 Pl3
Pln−2 · · · Pl6 Pl2
Pln−3 · · · Pl5 Pl1
Pln−4 · · · Pl4 Pl0

 =


x0{3}
x0{2}
x0{1}
x0{0}

 , P r =


Prn−1 · · · Pr7 Pr3
Prn−2 · · · Pr6 Pr2
Prn−3 · · · Pr5 Pr1
Prn−4 · · · Pr4 Pr0

 =


y0{3}
y0{2}
y0{1}
y0{0}

 .
The input state (x0, y0) of the encryption is loaded from P in a row-by-row
manner.

x0 = Pln−1 · · ·Pl7Pl3‖Pln−2 · · ·Pl6Pl2‖Pln−3 · · ·Pl5Pl1‖Pln−4 · · ·Pl4Pl0
= x0{3}‖x0{2}‖x0{1}‖x0{0},

y0 = Prn−1 · · ·Pr7Pr3‖Prn−2 · · ·Pr6Pr2‖Prn−3 · · ·Pr5Pr1‖Prn−4 · · ·Pr4Pr0
= y0{3}‖y0{2}‖y0{1}‖y0{0}.

Denote C = (Cl, Cr) the ciphertext, the left n-bit half is Cl = (Cln−1, · · · , Cl1, Cl0)
and the right n-bit half is Cr = (Crn−1, · · · , Cr1, Cr0), then C can be loaded
from the output state of the encryption (xR, yR) as below

Cl =


Cln−1 · · · Cl7 Cl3
Cln−2 · · · Cl6 Cl2
Cln−3 · · · Cl5 Cl1
Cln−4 · · · Cl4 Cl0

 =


xR{3}
xR{2}
xR{1}
xR{0}

 , Cr =


Crn−1 · · · Cr7 Cr3
Crn−2 · · · Cr6 Cr2
Crn−3 · · · Cr5 Cr1
Crn−4 · · · Cr4 Cr0

 =


yR{3}
yR{2}
yR{1}
yR{0}

 .
(2) Iterative Round Function F
An illustration of F can be found in Figure 1, where G0 and G1 are non-

linear functions, and Pn is a permutation providing diffusion. For the input state
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(xr, yr) and the subkey skr of the r-th round (for 0 ≤ r < R), the output state
(xr+1, yr+1) is computed with

(xr+1, yr+1) = Fskr (xr, yr) = (Pn(G0(xr ≪n
4
α)⊕G1(xr ≪n

4
β))⊕ yr ⊕ skr, xr),

where the tuple of the rotation constants (α, β) is fixed to (0, 1) for all versions
of SAND. To maintain the consistency in the encryption and decryption, the swap
between the two branches is omitted in the last round.

(3) Non-linear Functions G0 and G1

Let the n-bit variable x be the input value of G0 and G1, which is re-
garded as the concatenation of four n

4 -bit words x{3}‖x{2}‖x{1}‖x{0}. Let
y = y{3}‖y{2}‖y{1}‖y{0} denote the output value. For G0, we have

y{0} = x{3} � x{2} ⊕ x{0},
y{3} = y{0} � x{1} ⊕ x{3},
y{2} = x{2},
y{1} = x{1}.

As to the function G1, the output is calculated as

y{2} = x{3} � x{1} ⊕ x{2},
y{1} = y{2} � x{0} ⊕ x{1},
y{3} = x{3},
y{0} = x{0}.

(4) Bit Permutation Pn
Let variable x be the input value of the n-bit permutation Pn, which can be

seen as the parallel application of a n
4 -bit permutation pn

4
on four n

4 -bit words.
For the i-th input word x{i} = (xn

4 ·i+n
4−1, . . . , xn

4 ·i+1, xn
4 ·i), the element of the

i-th output word y{i} is defined as

yn
4 ·i+pn

4
(j) = xn

4 ·i+j , for 0 ≤ j < n

4
and 0 ≤ i < 4.

The bit permutations p8 and p16 used in SAND-64 (P32) and SAND-128 (P64) are
given in Table 3 and Table 4, respectively. To further facilitate understanding,
an illustration of p8 is given in Figure 2.

Table 3: p8 for SAND-64.

j 0 1 2 3 4 5 6 7

p8(j) 7 4 1 6 3 0 5 2

Table 4: p16 for SAND-128.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p16(j) 14 15 8 9 2 3 12 13 6 7 0 1 10 11 4 5

2.2 Key Schedule

Key schedule of SAND-64. The 128-bit master key K is viewed as four 32-bit
words, i.e., K = K3‖K2‖K1‖K0, which are the initial state of the LFSR shown

9



xn
4
·i+7 xn

4
·i+6 xn

4
·i+5 xn

4
·i+4 xn

4
·i+3 xn

4
·i+2 xn

4
·i+1 xn

4
·i+0

yn
4
·i+7 yn

4
·i+6 yn

4
·i+5 yn

4
·i+4 yn

4
·i+3 yn

4
·i+2 yn

4
·i+1 yn

4
·i+0

Figure 2: An illustration of p8 operating on the i-th input word x{i}.

Ki+3 Ki+2 Ki+1 Ki

(A8)
3

i+ 1

Figure 3: Key schedule of SAND-64.

in Figure 3. The update function of the LFSR is

Ki+4 ← (A8)3
(
Ki+3

)
⊕Ki ⊕ (i+ 1),

where (i + 1) is the round constant and with 0 ≤ i < R − 4. The operation A8

is applied to Ki+3 for three times, iteratively. Note that the r-th round subkey
skr (0 ≤ r < R) is loaded from Kr. The 32-bit state in Kr can be represented
two-dimensional as a 4× 8 array

Kr =


Kr

31 · · · Kr
7 K

r
3

Kr
30 · · · Kr

6 K
r
2

Kr
29 · · · Kr

5 K
r
1

Kr
28 · · · Kr

4 K
r
0

 ,
which will be loaded into current round subkey skr in the same manner as done
for the input state of the encryption, then we have

skr = Kr
31 · · ·Kr

3‖Kr
30 · · ·Kr

2‖Kr
29 · · ·Kr

1‖Kr
28 · · ·Kr

0 .

As illustrated in Figure 4, A8 is a nibble-oriented function, and its input is
divided into eight nibbles, say X[7]‖ · · · ‖X[1]‖X[0]. The output of A8 is

(X[7] ≪ t1)⊕X[0]‖X[7]⊕ (X[7]� t0)‖X[6]‖X[5]‖X[4]‖X[3]‖X[2]‖X[1],

where t0 and t1 are set to 3 and 1, respectively.
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X[7] X[6] X[5] X[4] X[3] X[2] X[1] X[0]

X ′[7] X ′[6] X ′[5] X ′[4] X ′[3] X ′[2] X ′[1] X ′[0]

� t0

≪ t1

Figure 4: Operation A8 for SAND-64.

Ki+1 Ki

(A16)
3

i+ 1

Figure 5: Key schedule of SAND-128.

Key schedule of SAND-128. The 128-bit master key K is viewed as two 64-bit
words, i.e., K = K1‖K0, which are used to initialize the state of the LFSR in
Figure 5. The update function of the LFSR is

Ki+2 ← (A16)3(Ki+1)⊕Ki ⊕ (i+ 1),

where (i+1) is also introduced as the round constant and with 0 ≤ i < R−2. The
operation A16 is applied to Ki+1 for three times, iteratively. Also, the subkey
skr(0 ≤ r < R) is loaded from Kr. Similarly, the 64-bit state in Kr can be
represented as a 4× 16 array

Kr =


Kr

63 · · · Kr
7 K

r
3

Kr
62 · · · Kr

6 K
r
2

Kr
61 · · · Kr

5 K
r
1

Kr
60 · · · Kr

4 K
r
0

 ,
which will be loaded into the subkey

skr = Kr
63 · · ·Kr

3‖Kr
62 · · ·Kr

2‖Kr
61 · · ·Kr

1‖Kr
60 · · ·Kr

0 .

As shown in Figure 6, A16 is also nibble-oriented, with the 64-bit input X
split into 16 nibbles X[15]‖ · · · ‖X[1]‖X[0]. Then, the output is

(X[15] ≪ t1)⊕X[0]‖X[15]⊕ (X[15]� t0)‖X[14]‖X[13]‖ · · · ‖X[2]‖X[1],
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X[15] X[14] X[13] X[12] X[11] X[10] X[9] X[8] X[7] X[6] X[5] X[4] X[3] X[2] X[1] X[0]

X ′[15] X ′[14] X ′[13] X ′[12] X ′[11] X ′[10] X ′[9] X ′[8] X ′[7] X ′[6] X ′[5] X ′[4] X ′[3] X ′[2] X ′[1] X ′[0]

� t0

≪ t1

Figure 6: Operation A16 for SAND-128.

where t0 and t1 are set to 3 and 1, respectively.
To further help understanding, we present simple implementations of SAND

from the bitslice view in Appendix B.

3 Design Rationales

3.1 The Designing of SAND

Before we detail the design rationale of SAND, we would like to share the moti-
vations and design history of this new block cipher. We also make comparison
to similar designs and highlight our novelties.

Motivations. During the past decade, NSA’s SIMON family of block ciphers has
been witnessed to achieve a huge leap regarding both software and hardware
performances. Subsequently, Yang et al. [74] combined some features of SIMON

and SPECK and designed SIMECK as a new security/efficiency tradeoff. The round
function of SIMECK bears a strong resemblance with SIMON. As such, they were
later referred to as SIMON-like ciphers.

Despite the performance breakthrough, a major drawback of SIMON-like ci-
phers is the (relative) difficulty in establishing security bounds against differen-
tial and linear attacks. A related design approach known as ARX based ciphers
used to suffer from similar difficulties, which was however largely remedied by
Dinu et al.’s long trail design strategy (LTS) [33]. This enabled them to present
an efficient software-oriented lightweight block cipher SPARX with provable dif-
ferential/linear security bounds. On the downside, the LTS advocates using large
(ARX-based) S-boxes, which is imperfect for hardware. In view of these, it is
natural to ask if similar methodological breakthroughs are feasible regarding
AND-RX hardware-efficient designs.

Since Feistel networks are compatible with non-invertible round functions, we
decide to leverage the (non-invertible) expand-then-compress design principle,
which has been adopted by many designs, including SIMON and PICARO [58].
Compared to Feistel ciphers in which the state is not expanded, the expanding
phase enlarges the space for evaluating the operations in parallel, which reduces
latency and improves throughput. However, this expanding may also result in the
dependency problem, which is caused by the same input for multiple non-linear
operations. The situation is further complicated by the aforementioned security
evaluation difficulty due to the use of AND-RX structure. To solve this problem,
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our idea is to identify an approach to design AND-RX round functions, such that
the round function has some equivalent (classical) S-box representations. This
will enable the use of the well-developed active S-box-based security evaluation
methods and tools.

Besides easing security evaluations, two additional issues have to be carefully
addressed. First, the impact of the dependency problem on the differential and
linear properties shall be controllable. Second, the AND and XOR bit operations
shall be carefully utilized for a competitive performance. With all the above mo-
tivations, we come up with the SAND family of block ciphers.

Comparison with SIMON-like ciphers. As mentioned before, both SAND and
SIMON-like ciphers are combinations of AND-RX functions and Feistel network,
and this allows for extremely efficient implementations in both hardware and
software. However, significant differences emerge regarding security evaluations.
In fact, the designers of SIMON did not provide any security analysis nor design
rationale, and various sophisticated tools have been proposed by third-parties,
which managed to bridge the gap several years later [47,49,50]. On the other
hand, the novel design of SAND admits an equivalent representation using 4× 8
S-boxes, and thus lends itself to easy security evaluation via the classical S-
box-based tools. This enables establishing security lower bounds even against
related-key attacks, which remains an open problem for SIMON. The deepened
understanding also opens the way to using a simpler key schedule with smaller
hardware area, compared to SIMON.

Compared to SIMON, the added XOR operations in each round of SAND indeed
ensure a faster diffusion. In detail, SAND-64 and SAND-128 achieve full (bit level)
diffusion after 7 and 9 rounds respectively,5 while the corresponding number of
rounds is 9 in SIMON-64 and 13 in SIMON-128 respectively. Again, we owe all these
advantages to the carefully constructed round function.

Comparison with ANT and ANU. The block cipher ANT [28] is another AND-
RX Feistel cipher. The round function of ANT bears strong similarity with SAND.
However, in ANT, the rotations are not limited to be “within nibbles”, which has
an advantage in speed of diffusion. Therefore, ANT does not admit S-box-based
representations, and the designers had to resort to (less efficient) bit-level auto-
matic search and more conservative parameters. For example, for ANT-128/128,
the designers were only able to ensure the absence of useful differential charac-
teristics with more than 28 rounds, while we could draw similar conclusions with
23 rounds for SAND-128/128. The fine-grained security evaluation also allows us-
ing a simplified key schedule in SAND with reduced hardware area, compared to
ANT.

ANU is another block cipher utilizing expand-then-compress style round func-
tions [10]. However, ANU is not an AND-RX cipher: the round function of ANU

appears more like a parallel application of two GOST-like round functions, that

5 The diffusion test codes are available at https://github.com/sand-bar/

SAND-Diffusion-Test.
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is, the composition of a classical S-box layer and a rotation, and each nibble
becomes the input to two parallel S-boxes. Unfortunately, the designers of ANU

overlooked the dependency problem: they consider the differential properties of
the two parallel S-boxes as independent, whereas they are actually dependent
as they share the same input. Consequently, their security evaluation turns out
inaccurate, and concrete full-round related-key attacks have been exhibited [60].
We remark that we overcome this via viewing the “two parallel S-boxes” as a
single small-to-big synthetic S-box rather than two independent ones. As such,
our theoretical evaluations are matched by experiments on reduced-scale round
functions.

Comparison with other designs. One may notice that any cryptographic
design can be represented by a composed of AND,Rotation and XOR operations,
like the S-box-based designs Piccolo, Midori, SKINNY, WARP and etc, also the
bitslice oriented designs NOEKEON, KECCAK, ASCON, Rectangle and etc. But, a
representative feature that distinguishes our algorithm from these existing ci-
phers is the design approach. For a traditional design, its design flow is usually
from top to bottom, briefly speaking, that is determining the overall structure of
the round function first, then finding a non-linear layer and a linear layer with
desired properties respectively. However, in our new design, the design flow is
from bottom to top, that is we start with the expand-then-compress principle
and exploit pure AND-RX bit operations, then construct the parallel non-linear
layers by AND-RX bit operations and finally combine the rotation constants
and permutations to pursue the equivalent transformation between AND-RX
and S-box based structures. Indeed, any S-boxes can be developed by AND-RX
operations. However, in most cases, the design of the S-box is a selection task
among all or a part of permutations. After fixing an S-box with desired proper-
ties, the designers may represent the S-box with Boolean expressions for efficient
software and hardware implementations. While in the design phase of SAND, we
do not have any ready-made units for the non-linear layer and face with the
target to tactfully organize various binary operations. Note that the linear and
non-linear layers are closely related to each other. The wise selection of parame-
ters in the algorithm enables us to transform the AND-RX cipher into an S-box
based one.

As for the security analysis, our design possesses a native AND-RX structure,
and it is commonly acknowledged that performing security evaluations against
differential and linear attacks for this kind of ciphers is difficult. To overcome
this difficulty, based on the parallel G0 and G1, we carefully select the rotation
constants (α, β) and bit permutation Pn, which leads to a 4 × 8 S-box (SSb)
under the equivalent transformation. Then we do some researches about this
unusual 4 × 8 S-box and reveal some good properties (MDP and MALB) like
the traditional 4 × 4 S-boxes, which makes it possible to take advantage of the
traditional S-box-based cryptanalytic methods.
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3.2 The Designing of the Round Function

As mentioned before, the round function of SAND is assembled with AND, Rota-
tion and XOR operations. According to the principle of expand-then-compress,
the left input branch is expanded into two branches so that the round function
supports parallel confusion and diffusion. The two branches originating from the
same input branch also bring us the dependency problem. Thus, how to arrange
the simple operations so that we can explore the dependency caused by the ex-
panding phase directly determines the level of resistance against differential and
linear attacks.

As discussed in Section 2, the most important components of the round func-
tion are the non-linear functions G0 and G1. In this subsection, we first argue
the structure of G0 and G1, for which the arrangements of AND and XOR op-
erations are deliberately selected to ensure that the dependency can be easily
controlled. After that, we illustrate how to integrate G0,G1 and thus reduce the
AND-RX structure to an algorithm with several 4×8 S-boxes. Under this trans-
formation, the SAND family of block ciphers exhibits excellent resistance against
differential and linear attacks under a traditional active S-box-based method. At
last, we discuss the selections of the rotation constants (α, β) and the parallel
bit permutation pn

4
.

The structure of G0 and G1 composed of AND and XOR operations.
The overall structures of G0 and G1 are demonstrated in Figure 7. Our design
consideration starts by determining the number of operations in G0 and G1.
Recall that the function operating on the left branch of SIMON-64/128 consists of
32 AND and 32 XOR operations. To minimize the cost and pursue a competitive
performance, we consider employing the same number of AND operations in the
round function of SAND, one half in G0 and the other half in G1 in order to
maintain a balance. On the other hand, to achieve a better diffusion, we decide
to increase the number of the XOR operations. Since the compression operation
after G0 and G1 already takes 32 XOR operations, we limit the number of the
XOR operations in G0 and G1 to be no more than 32. We then carefully consider

x{3} x{2} x{1} x{0}

x′{3}x′{2} x′{1}x′{0}

y{3} y{2} y{1} y{0}
G0

x{3} x{2} x{1} x{0}

x′{3}x′{2} x′{1}x′{0}

y{3} y{2} y{1} y{0}
G1

Figure 7: Overall structures of G0 and
G1.

1 1 1 1

1 1 1 2

3 1 1 2

G0

1 1 1 1

1 2 1 1

1 2 3 1

G1

Figure 8: Algebraic degrees of G0 and
G1.
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organizing these operations and take the following issues into consideration:

– to address the dependency brought by the same input of G0 and G1, and
– to maximize the algebraic degree of the output branch after the XOR com-

pression.

To ensure that none of the output bits of the compression operation has an
algebraic degree less than 2, we employ two-layer structures for G0 and G1. In
fact, the above constraints has significantly restricted the choices.

Now, we explain how to fix the operations one by one according to the above
constraints. Denote the n-bit input ofG0 (resp.,G1) as x = x{3}‖x{2}‖x{1}‖x{0}.
As shown in Figure 7, in the first layer of G0, we may as well combine the infor-
mation from x{3} and x{2} with AND operation. To make sure that each input
bit is involved in one non-linear operation after G0, we pass x{1} and x{0}
to another AND operation in the second layer. Then, we study how to set the
positions of the AND operations in G1. Owing to the dependency between the
inputs of G0 and G1, this should be accomplished with great care. As depicted
in Figure 7, to avoid directly mixing x{3} and x{2} with the AND operation in
G1, we let x{3} and x{1} be the inputs of the AND operation in the first layer.
Again, to ensure that each input bit is involved in a non-linear operation after
G1, we pass x{2} and x{0} to the AND operation in the second layer. After fix-
ing the positions of the AND operations, we need to consider the arrangements
of the XOR operations with respect to the algebraic degree, which will lead to
the degree after the XOR compression of these two branches later and we want
it to be equal or greater than 2. Please see Figure 8 for an illustration of the
algebraic degrees (marked with red circles) of the outputs for G0 and G1.

We have been aware of some other choices of G0 and G1, which are however
equivalent to our choice.
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Figure 9: Equivalent representation of G0 in SAND-64.
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Figure 10: Equivalent representation of G1 in SAND-64.
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Combining G0 and G1 into multiple 4×8 S-boxes. The key issue is to divide
G0 and G1 into different nibbles, and then combine the pair of nibbles in G0

and G1 with the same input 4-bit values, which is the origin of the dependency
of the round function.

In detail, as the first step, we decomposeG0 (resp.,G1). Let x = (xn−1, . . . , x1, x0)
be the n-bit input of G0 (resp., G1). The (equivalent) decomposed representa-
tions of G0 and G1 in SAND-64 are shown in Figure 9 and Figure 10, respectively.
It can be seen that G0 and G1 operate on n

4 nibbles in parallel. When the op-
erations in G0 and G1 are considered, separately, the low costs of G0 and G1

are bound to be weak regarding differential and linear attacks. Naturally, the
parallel computations on different nibbles can be formulated into the same 4-bit
S-box. Denote the S-box abstracted from G0 (resp., G1) as N0 (resp., N1), and
if we consider the same 4-bit input value, it will lead to the 4 × 8 synthetic S-
box. All of them are listed in Table 5. In addition, to show the flexible structure
of SAND block ciphers, we also provide the implementations from SSb view in
Appendix B.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

N0(x) 0 1 2 b 4 5 6 f 8 9 a 3 d c 7 e

N1(x) 0 1 2 3 4 7 6 5 8 9 e d c f a b

SSb(x) 00 11 22 b3 44 57 66 f5 88 99 ae 3d dc cf 7a eb

Table 5: The S-boxes N0, N1 and SSb.

Naturally, we generate the differential distribution tables (DDT) and linear
approximation tables (LAT) for N0 and N1, which can be found in Figure 11
and Figure 12, respectively, where ∆in and ∆out stand for the input and output
differences, Γin and Γout represent input and output masks. Note that these
DDTs and LATs present significant regularities on the one hand. On the other
hand, the maximal differential probabilities of N0 and N1 achieve 2−1, and the
maximal absolute linear biases equal 2−1. These facts reflect the weakness of
N0 and N1. Nevertheless, as we mentioned before, even though the individual
component in the round function of SAND is simple and weak at first glance, the
composition of these components will result in enhanced level of security and
exhibit excellent properties.

To this end, for each nibble in G0 and G1, we backtrace the same 4-bit input
value, then we combine their outputs. By this way, we can obtain n

4 synthetic
S-boxes with 4-bit input and 8-bit output. Then, we find that the MDP of SSb
is 2−2, and the MALB of SSb is also 2−2. The detailed differential and linear
properties of SSb will be respectively summarised in Lemma 1 and Lemma 2
later. Thus, the problem of dependency can be handled by using these synthetic
S-boxes, whose input values are independent of each other. The realization of the
round function of SAND-64 regarding these SSbs is demonstrated in Figure 13.
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Figure 11: DDTs of N0 (left) and N1 (right)
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Figure 12: LATs of N0 (left) and N1 (right)

Note that here we consider the S-box structure, x represents the 32 bits from
the input state of left branch, which can be divided into 8 nibble to pass N0 and
N1 described above. The output y is also reordered under this S-box transfor-
mation and denotes the 32-bit value after the XOR compression. For the sake
of simplicity, N(0,j) stands for the output of N0 corresponding to x[j] and N(1,j)

stands for the output of N1 regarding to x[j] (0 6 j 6 7). Let DDTSSb denote
the differential distribution table of SSb, which is provided in Appendix C, Ta-
ble 14. Based on the observation from this DDTSSb, we formulate the following
Lemma 1.

Lemma 1. For any valid6 differential propagation pair (∆in, ∆out) of SSb, if
the 4-bit input difference ∆in is non-zero, then it will result in an active S-box
with MDP being 2−2 and leads to an 8-bit output difference ∆out. Moreover, the
high 4-bit value ∆out[1] (most-significant nibble) and the low 4-bit value ∆out[0]
(least-significant nibble) of ∆out are both non-zero.

Similarly, let LATSSb denote the linear approximation table of SSb, we also
generated LATSSb and summarized its features in Property 1-3 and Lemma 2.

6 The valid means that the entry of corresponding differential propagation pair is non-
zero in DDT. Similarly, for the linear introduced later, it means that the entry of
corresponding linear propagation mask pair is non-zero in LAT.
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x[7] x[6] x[5] x[4] x[3] x[2] x[1] x[0]

N0,7 N1,7 N0,6 N1,6 N0,5 N1,5 N0,4 N1,4 N0,3 N1,3 N0,2 N1,2 N0,1 N1,1 N0,0 N1,0

N0,7 N0,6 N0,5 N0,4 N0,3 N0,2 N0,1 N0,0 N1,6 N1,5 N1,4 N1,3 N1,2 N1,1 N1,0 N1,7

y[7] y[6] y[5] y[4] y[3] y[2] y[1] y[0]

Reordered by G0, G1 and the rotation (α, β)

Figure 13: Representation of the round function of SAND-64 regarding SSb (cir-
cled with red rectangles) .

Act(Γin) Act(Γout)

0 00

1 01

1 10

0 or 1 11

Table 6: All possible patterns of input and output masks for SSb.
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Besides, the active status of all possible propagations of LATSSb are listed in
Table 6.

Property 1. For any given valid mask pair (Γin, Γout), if the 8-bit output mask
Γout is 0x00, then the input mask Γin should be 0x0. This case corresponds to
a non-active S-box (with the linear bias being 2−1).

Property 2. For any given valid mask pair (Γin, Γout), if the 4-bit input mask
Γin is non-zero, then the 8-bit output mask Γout must be non-zero.

Property 3. For any given valid mask pair (Γin, Γout), if the 4-bit input mask
Γin is 0x0, then the output mask Γout satisfies Act(Γout) = 00/11.

Lemma 2. For any valid linear propagation mask pair (Γin, Γout) of SSb, the
corresponding non-active transitions are listed in Table 7. Otherwise, it must be
an active S-box with MALB being 2−2.

Γin Γout
0x0 0x00

0x1 0x01

0x8 0x08

0x9 0x09

0x2 0x20

0x3 0x21

0xA 0x28

0xB 0x29

0x4 0x40

0x5 0x41

0xC 0x48

0xD 0x49

0x6 0x60

0x7 0x61

0xE 0x68

0xF 0x69

Table 7: All non-active linear transitions of SSb.

Big S-box method vs small S-box method. Now, the round function is
transformed into several small S-boxes SSb, and we can directly treat the round
function of SAND as a black-box (precisely, we just consider the function operating
on the left branch of the Feistel round without permutation Pn, please see Fig-
ure 13), which is called big S-box here, its differential distribution table DDTbig

(resp., linear approximation table LATbig) contains all the information about
differential (resp., linear) transitions. Simultaneously, we can also use DDTSSb
(resp., LATSSb) of these small S-boxes to derive DDTbig (resp., LATbig). As
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x[2] x[1] x[0]

N0,2 N1,2 N0,1 N1,1 N0,0 N1,0

N0,2 N0,1 N0,0 N1,1 N1,0 N1,2

y[2] y[1] y[0]

Reordered by G0, G1 and the rotation (α, β)

Figure 14: 12-bit small variant of the round function of SAND.

the input values for these parallel SSbs are divided into independent nibbles,
their outputs will XOR together due to the compression, and the propagations
of these nibbles follow the rule in DDTSSb (resp., LATSSb). Thus, the following
two properties can be got,

Property 4. Let (∆x, ∆y) be the n-bit input and output differences of the big
S-box, then the number of SSbs is n

4 and we have,

DDTbig[∆x][∆y] =
∑

∆high
z ⊕(∆low

z ≪4)=∆y

∏
0≤i<n

4

DDTSSb[∆x[i]][∆i
z],

where ∆x[i] and ∆i
z are the i-th SSb’s 4-bit input and 8-bit output difference

respectively, ∆high
z = ∆

n
4−1
z [1]|| · · · ||∆0

z[1] and ∆low
z = ∆

n
4−1
z [0]|| · · · ||∆0

z[0].

Property 5. Let (Γx, Γy) be the n-bit input and output masks of the big S-box,
then the number of SSbs is n

4 and we have,

LATbig[Γx][Γy] = 2
n
4−1 ·

Γy=Γ
high
z =(Γ low

z ≪4)∏
0≤i<n

4

LATSSb[Γx[i]][Γ iz ],

where Γx[i] and Γ iz are the i-th SSb’s 4-bit input and 8-bit output masks respec-

tively, Γhighz = Γ
n
4−1
z [1]|| · · · ||Γ 0

z [1] and Γ lowz = Γ
n
4−1
z [0]|| · · · ||Γ 0

z [0].

For these two methods, the latter one allows us to use these small S-boxes to
describe the differential (resp. linear) behavior of the big S-box, which is critical
for the efficiency of the search model.

Also, as verifications for the Property 4 and Property 5, we perform the tests
on the small variants of the round function, including three SSbs with 12-bit
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input and 12-bit output (depicted in Figure 14) and four SSbs with 16-bit input
and 16-bit output. It should be noted that for the round function with 16-bit
scale, we perform the tests of differential and linear, partially. The results of
these two variants show that DDTs and LATs generated by the two methods
are completely the same, which exhibits the accuracy of our model. The verifica-
tions of these small variants are provided at https://github.com/sand-bar/

SAND-Synthetic-Sbox.

The selections of the rotation constants (α, β) and bit permutation pn
4
.

The rotation constants (α, β) are used to mix the input bits within a word, and
the parallel bit permutation pn

4
aims at breaking the order of output bits within

a word. Due to the symmetry, we may as well let β > α.
For SAND-64, benefiting from the efficient S-box-based estimation of differen-

tial pattern model (at nibble level), which does not need to consider the detailed
DDT of SSb, we can perform exhaustive search for all pairs of rotation con-
stants (C2

8 = 28) and all 8-bit permutations (8! = 40320), which in total have
C2

8 ×8! ≈ 220.11 combinations. Under each combination, we evaluate the number
of rounds activating at least 32 differential active S-boxes to get some candi-
dates. Then, we consider the linear property of these candidates by evaluating
active S-boxes under the bit level model, which has to describe the detailed LAT
of SSb. Finally, we get (α, β) = (0, 1) and p8 = {7, 4, 1, 6, 3, 0, 5, 2}.

x15‖x14 x13‖x12 x11‖x10 x9‖x8 x7‖x6 x5‖x4 x3‖x2 x1‖x0

y15‖y14 y13‖y12 y11‖y10 y9‖y8 y7‖y6 y5‖y4 y3‖y2 y1‖y0

Figure 15: An illustration of p16 operating on 16-bit value x.

For SAND-128, the number of options for p16 is 16! ≈ 244.25, which is far
beyond our computing power. Thus, we still utilize the permutation p8 in SAND-
64 and extend it into a 16-bit permutation. To be more precise, we regard two
adjacent bits in a word as one element and apply p8 on the word, which is
depicted in Figure 15. In this way, we obtain p16 for SAND-128 (see Table 4).
Even though this p16 may not be the optimal choice, the analysis results show
that this selection guarantees good security bounds for SAND-128.

3.3 The Designing of the Key Schedule

Since we aim at achieving related-key security within a hardware-efficient design,
the key schedule should meet the following three basic requirements:
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– Consume the hardware area as small as possible;
– Spread the master key material to each subkey as much as possible;
– Keep the delay of the key schedule as short as possible.

It is necessary to strike a balance between the three aspects above. So, the
primary idea is to use a linear key schedule, which is more and more popu-
lar in recent designs, like GIFT and SKINNY. Within the linear key schedule,
its update function can make use of round-based Feistel structure since this
kind of design is able to save the hardware implementation cost by sacrificing
some delay but still guarantees a good diffusion for the entire key. This design
idea for the key schedule is first proposed in CUBE [17], an SPN based cipher.
In this paper, we generalize this design principle so that it fits the two ver-
sions of SAND and supplies priority to hardware performance—area and delay.
In this direction, we first set t0 = 3 (for the shift operation in a nibble, this
parameter will just leave one bit for the subsequent XOR operation). Then, we
let t1 = 1 and the XOR operation after the left rotation is positioned at the
rightmost nibble, which are suitable for diffusion. Several positions of the XOR
after t0 shift operation are tested, considering the resistance against related-key
attack, we just let the XOR go to the leftmost nibble (X[7] for SAND-64 and
X[15] for SAND-128). We also perform the propagation analysis of the master
key material by doing algebraic calculations, the detailed results are provided in
https://github.com/sand-bar/SAND-Diffusion-Test. Compared to the lin-
ear key schedules of SIMON, the ones adopted by SAND consume less hardware
area cost but still achieve good diffusion effect. To avoid possible circular shift
symmetries and slide attacks, we introduce a 6-bit counter as the round constant.
All these efforts lead to the final key expanding strategies.

4 Security Analysis

In this section, we present our security analysis of the SAND family. It should be
noted that our security evaluation leverages the S-box-based method. Thus, as
elaborated in Section 3.2, the bit in the state variables of the trails are repre-
sented in a 4-bit S-box order thereinafter, rather than the bitslice order described
in Section 2.

4.1 Security Claim

For the claimed security, we do not claim any security in the chosen-key or
known-key settings, but we do claim security in the single-key and related-key
settings.

Considering the provided analyses in this section, the related-key attacks
seems be the most promising cryptanalysis on SAND, as the effective related-key
differential characteristics can be upper bounded by 28 rounds (SAND-64/128)
and 33 rounds (SAND-128/128), respectively. For the single-key setting, we present
the security comparisons of SAND and some other block ciphers, which are listed
in Table 8.
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Cipher
Rounds for Best Distinguisher for Best Attack for Total

Full Diffusion Single-key Setting Single-key Setting†Rounds

SAND-64/128 7 15‡ - 48
SIMON-64/128 9 23 [49,51] 31 [27,71] 44
SIMECK-64/128 11 30 [48] 42 [48] 44
CRAFT-64/128 7 15 [36] 19 [36] 32

SAND-128/128 9 23‡ - 54
SIMON-128/128 13 42 [48] 53 [48] 68

† We list the corresponding best attacks of each cipher in terms of the covering
attack rounds until now, which may be extended in the future.
‡ The upper bound of the rounds of the effective differential or linear character-

istic.
- Although, the concrete attack is not mounted for SAND in this paper, its best

attack rounds can be roughly estimated by the summation of the rounds for
the best distinguisher and full diffusion.

Table 8: Security comparisons under the single-key setting.

Hence, considering the total rounds, we claim 128-bit security for SAND in
both the single-key and related-key models.

4.2 Differential and Linear Attacks

Differential cryptanalysis [21] (DC) and linear cryptanalysis [54] (LC) are the
most classic cryptanalytic methods. The resistance of a given cipher against
differential and linear attacks can be reflected by the lower bounds for the number
of active S-boxes to a certain degree.

By using Lemma 1, we can perform the differential active S-box estimation
for SAND under the efficient differential pattern model. Regarding linear crypt-
analysis, due to the features of SSb according to Table 6, Table 7 and Lemma 2,
we count the number of active S-boxes by describing the detailed LAT of SSb
into the search model. The computation of the minimum number of active S-
boxes utilized the automatic methods in [55,67]. These are commonly used tools
in the cryptanalysis of block ciphers, and there are several openly available tools
(e.g., CryptoSMT [66]) facilitating the application. In the search around SAND, we
employ different methods in different settings for efficiency. For the differential
pattern search model, we use Mouha et al.’s [55] framework for word-oriented
distinguishers. We utilize the SAT/SMT based automatic search method [67]
to accomplish the search of (related-key) differential characteristics and linear
characteristics.

With automatic search methods relying on SMT/SAT,7 for two versions of
SAND, we get the minimum number of active S-boxes in differential and linear

7 We provide our source codes in https://github.com/sand-bar/

SAND-Trail-Search to serve more details of these searching models, which is
based on [66,2,38].
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trails for different numbers of rounds, which are summarised in Table 9 and
Table 10.

Rounds 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DC 1 2 4 6 9 12 16 18 20 22 24 26 29 32 34

LC 1 2 4 6 9 12 15 18 20 22 24 26 29 32 34

Table 9: Minimum number of active S-boxes in SAND-64 under single-key setting.

Rounds 2 3 4 5 6 7 8 9 10 11 12

DC 1 2 4 6 9 12 16 20 25 30 34

LC 1 2 4 6 9 12 16 18 25 30 34

Table 10: Minimum number of active S-boxes in SAND-128 under single-key set-
ting.

It can be observed in Table 9 that 15-round differential and linear charac-
teristics of SAND-64 have at least 32 active S-boxes. 30-round differential/linear
characteristics will activate 64 S-boxes at least, and these trails will not threaten
the security of SAND-64, essentially. Thus, we believe that 48-round SAND-64 is
enough to withstand DC and LC under the single-key attack scenario. Addition-
ally, some example trails and experiments of differential and linear properties
(like clustering for differential and linear hull effect) for SAND-64 are given in
Appendix D and Appendix E, respectively.

Regarding the security of SAND-128, it can be observed in Table 10 that 23-
round differential trail will have at least 64 active S-boxes since the optimal
11-round (resp., 12-round) trail activates at least 30 (resp., 34) S-boxes. A sim-
ilar analysis reveals that 23-round linear characteristic has at least 64 active
S-boxes. Therefore, we believe that 54-round SAND-128 is sufficient to provide
resistance against DC and LC under the single-key attack scenario.

Remark. The bound of 2−64 for SAND-64 is reached after 15 rounds, and the
2−128 bound for SAND-128 is reached after 23 rounds. As for SIMON, the single
trail of SIMON-64 attains the bound 2−64 with 19 rounds [47], and the trail of
SIMON-128 touches the bound 2−128 with 37 rounds [49,50].

4.3 Related-Key Differential Attacks

Related-key attacks [44,19] usually outperform the conventional differential at-
tacks due to attackers’ additional power to manipulate the keys. To ensure se-
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curity against related-key differential attacks, we use the SMT/SAT-based au-
tomatic method to determine the lower bound for the number of active S-boxes
under related-keys, with results in Table 11.

Rounds 4 5 6 7 8 9 10 11 12 13 14

SAND-64 0 0 1 2 3 4 6 8 11 14 ≥ 16

SAND-128 1 2 3 4 9 12 17 22 - - -

Table 11: Minimum number of active S-boxes in SAND under related-key setting.

For SAND-64, since the first four subkeys are extracted from the master key,
directly, it is trivial to see that it is possible to have no active S-boxes from
1-round to 4-round. From Table 11, we know that 14-round encryption will
activate at least 16 active S-boxes, and thus the probability of the optimal 14-
round related-key differential characteristic is upper bounded by 2−32. Therefore,
there is no effective related-key differential characteristic exceeding 27 rounds
and 48-round SAND-64/128 is enough to resist related-key differential attack.

For SAND-128, the result in Table 11 indicates that there is no 11-round
related-key differential characteristic with probability higher than 2−44. Thus,
we expect that the probability of the optimal 33-round characteristic is upper
bounded by 2−132 and 54-round SAND-128/128 is sufficient to provide resistance
against related-key differential attack.

4.4 Impossible Differential and Zero-Correlation Attacks

Impossible differential cryptanalysis [20,45] (IDC) utilizes a pair of differences
(∆in, ∆out), and ∆in never propagates to ∆out under the given algorithm. The
similar idea adapted in linear cryptanalysis develops into zero-correlation crypt-
analysis [23] (ZC). The resistance against these two attacks is generally explored
by the longest distinguisher we can discover. Several automatic methods target-
ing the search of impossible differential and zero-correlation distinguishers are
available [61,29].

In this paper, we exploit the method in [29] and fix the number of active
S-boxes in the input and output differences/masks as one, then perform an
exhaustive search at nibble level, i.e., all the 4-bit variables of the states are
replaced with the value of its characteristic function (Note this is also done
under the S-box view). For SAND-64, the longest impossible differential and zero-
correlation distinguishers identified with the model both achieve 10 rounds, and
we just select two of them listed as follows

(0x00, 0x80)
10R-IDC9 (0x80, 0x00),

(0x80, 0x00)
10R-ZC9 (0x00, 0x80).
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For SAND-128, the longest impossible differential and zero-correlation distinguish-
ers both achieve 14 rounds, which are appended in the following as an example

(0x0000, 0x8000)
13R-IDC9 (0x0040, 0x0000),

(0x8000, 0x0000)
13R-ZC9 (0x0000, 0x2000).

Although longer distinguishers may be detected with a more accurate model,
e.g., a more precise model at the bit level, we think that according to the current
results, both versions of SAND can withstand impossible differential and zero-
correlation attacks.

4.5 Integral Attacks

A popular method to estimate the resistence against integral cryptanalysis [46]
is to evaluate the division property [69] of a given cipher. Thus, we use the bit-
based division property[70] to evaluate the algebraic degree. Several automatic
tools for the search of division property are available. In this paper, we apply the
model in [73] to trace the propagation of bit-based division property of SAND.
From the test result, we find that the longest integral distinguisher for SAND-64
achieves 12 rounds, which is

(C1A31, A32)
12R−→ (U32, U1B1U30),

where ‘Ai’, ‘Bi’, ‘Ci’, ‘U i’ respectively stand for i consecutive active, zero-
sum, constant and unknown bits. The longest integral distinguisher for SAND-128
reaches 16 rounds,

(C1A63, A64)
16R−→ (U64, U5B1U58).

Considering the total rounds for SAND, our design is secure against integral at-
tacks.

4.6 Rotational-XOR Attacks

Rotational-XOR (RX) cryptanalysis [3] is a related-key attack targeting ARX
ciphers, which is a generalization of rotational cryptanalysis [43]. Recently, RX
cryptanalysis is extended to AND-RX ciphers [53]. So, we analyze the propaga-
tions of RX-differences through an AND-RX round (not including the permuta-
tion Pn) and the key schedule of SAND. As a result, the propagation probability
through an RX-difference for the round function is the same as that of a normal
XOR-difference. In other words, the DDTs generated by these two methods are
same, which is verified by performing tests on 12-bit small variant mentioned
before. As for the key schedule, due to the iterative Feistel linear operation (A8

or A16), it will produce probability on the key space for each round (at least
2−8 for the different rotation choice). Thus, RX attacks will not threaten the
security of SAND.
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4.7 Meet-in-the-Middle Attacks

Meet-in-the-Middle (MITM) attacks [32] have been applied to the security anal-
ysis of many block ciphers. As has been discussed in Section 3.3, the key schedule
of SAND is designed to spread master key bits to each subkey as much as possible.
Considering the rounds for full diffusion, many master key bits will be processed
into the round function quickly, we think that all versions of SAND have a good
resistance against MITM attacks.

5 Hardware Implementations

In order to compare the hardware performance of SAND with that of other
lightweight block ciphers fairly, we implemented all these lightweight designs
in Verilog HDL using an ASIC round-based architecture, which is a frequently
used hardware implementation evaluation and can exhibit the top performance
criterion of a target cipher in general.

With regard to the synthesis, we used the Synopsys Design Compiler (ver-
sion J-2014.09-SP3) with the standard cell library of TSMC 90nm logic process.
Note that all hardware realizations were synthesized with the compiler being
specifically instructed to optimize the circuit of area. For a better and fairer
comparison, the throughput at a maximally achievable frequency and at a fre-
quency of 100 KHz are both provided. The power consumption is simulated at
a frequency of 10 MHz.

The results of hardware performance of SAND and other lightweight block
ciphers are summarized in Table 12. For SAND-64/128, it has the smallest area
requirement compared to other lightweight designs. For SAND-128/128, when con-
sidering the related-key security, only SKINNY-128/128 can compete with our de-
sign in terms of area for the encryption-only implementation. But SAND-128/128
has a smaller critical path, which means it can be operated at higher frequen-
cies and provides better throughput. For more details of threshold implementa-
tion [56,57], in Appendix F, we discuss the adaptability of SAND to a popular
(hardware-oriented) side-channel countermeasure.

6 Software Implementations

In the process of designing, we also tried to equip SAND with some features
suitable for software implementations. For the AND-RX operations and inherent
bitslice structure of SAND, we naturally consider bitslice implementations in this
section, which is the most efficient software implementation of SAND. From the
six device/server use cases for lightweight encryption summarized in [16], bitslice
implementations are very common and can be used for any parallel mode.

To ensure the fairness of the comparison, we consider the costs of packing and
unpacking the data. When doing the benchmarks, the encryption is given with
the prepared subkeys and using the CTR mode. We realized the implementations
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Ciphers Type
Area Delay

Cycles
TP100KHz TPMax Power10Mhz Energy

(GE) (ns) (Kbps) (Mbps) (µW) (pJ)

SAND-64/128
Enc 1287 0.86 48 133.3 1550.4 32.97 158.26

Enc&Dec 1563 0.91 48 133.3 1465.2 37.21 178.61

SKINNY-64/128†
Enc 1306 1.63 36 177.8 1090.7 33.36 120.10

Enc&Dec 1916 2.28 36 177.8 779.7 42.62 153.43

TWINE-64/128*
Enc 1389 1.51 36 177.8 1177.3 34.22 123.19

Enc&Dec 1687 1.58 36 177.8 1125.2 39.98 143.93

SIMECK-64/128
Enc 1300 0.69 44 145.5 2108.0 33.03 145.33

Enc&Dec 1714 0.83 44 145.5 1752.5 39.26 172.74

SIMON-64/128
Enc 1329 0.75 44 145.5 1939.4 33.59 147.80

Enc&Dec 1779 0.84 44 145.5 1731.6 39.49 173.76

CRAFT-64/128?
Enc 1316 0.70 32 200.0 2857.1 30.46 97.47

Enc&Dec 1618 1.00 32 200.0 2000.0 39.68 126.98

ANU-64/128*
Enc 1460 1.66 25 256.0 1542.2 34.17 85.43

Enc&Dec 1835 2.44 25 256.0 1049.2 39.75 99.38

SAND-128/128
Enc 1874 0.88 54 237.0 2693.6 45.33 244.78

Enc&Dec 2264 0.88 54 237.0 2693.6 47.76 257.90

SKINNY-128/128
Enc 1849 2.12 40 320.0 1509.4 46.18 184.72

Enc&Dec 2973 2.31 40 320.0 1385.3 60.92 243.68

WARP-128/128
Enc 1632 0.75 41 312.2 4162.6 39.47 161.83

Enc&Dec 1775 0.75 41 312.2 4162.6 42.92 175.97

ANT-128/128
Enc 1898 0.85 46 278.3 3273.7 45.58 209.67

Enc&Dec 2284 0.88 46 278.3 3162.1 48.50 223.10

SIMON-128/128
Enc 1930 0.78 68 188.2 2413.3 44.82 304.78

Enc&Dec 2535 0.84 68 188.2 2240.9 52.65 358.02

† SKINNY-64/128 is implemented with the tweakey schedule.
* The optimized S-box hardware implementation is adopted with the help of the tool
LIGHTER proposed in [42].

? CRAFT is implemented without tweak part and in dynamic key mode, that is considering
the key storage.

Table 12: Comparison of hardware performance for round-based implementa-
tions, synthesized with TSMC 90nm standard cell library under area optimiza-
tion.
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of SIMON and SAND with AVX2 registers and also compared to SIMON-SPECK-
SUPERCOP [52]. All benchmarking results can be found in Table 13 and all the
tests are accomplished on a PC with Intel Skylake processor (i7 6700) and 8GB
2400 MHz DDR4. It can be observed that the software performance of SAND is
very efficient and reaches the same level of SIMON. Since both implementations
may still be improved in the future, we provide our codes in https://github.

com/sand-bar/SAND-Software.

Block Key Parallel Speed (cycle per byte)

size size n-way SAND SIMON SIMON [52]

64 128 64 1.93 1.79 2.27

128 128 32 2.34 2.49 3.45

Table 13: Comparisons of software performance under bitslice implementations
with 2MB of messages.

7 Conclusion

In this paper, we presented a new AND-RX based Feistel lightweight block
cipher—SAND but supporting an S-box-based cryptanalysis. Benefiting from this
novel and flexible S-box transformation in the security evaluation, SAND reaches
strong security level under both single-key and related-key scenarios.

Actually, the S-box transformation is motivated by pursing an easier active
S-box-based security analysis and covering the dependency of the round func-
tion, which is caused by the expanding process. When we bridge the components
in the round function together, it will lead us to the synthetic S-box with good
differential and linear properties. Thus, the AND-RX based design can be re-
garded as the cipher with several 4 × 8 S-boxes. This design idea, we believe,
provides a new way for the designing of AND-RX based cipher in the future,
that also seeks for an easier S-box-based cryptanalysis.

Compared to the current efficient lightweight block ciphers, SAND also achieves
a competitive hardware performance for ASIC round-based implementations. For
software performance, the natural bitslice structure and AND-RX operations al-
low SAND to reach the similar performance as SIMON, which is one of the most
efficient lightweight primitives on software.
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Appendix A Test Vectors

/* SAND-64/128 */

K: 0F 1F 2F 3F 4F 5F 6F 7F 8F 9F AF BF CF DF EF FF

P: 0F 1F 2F 3F 4F 5F 6F 7F

C: 4D E9 0F 3B 2B 5E 70 6B

/* SAND-128/128 */

K: 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10

P: FF EF DF CF BF AF 9F 8F 7F 6F 5F 4F 3F 2F 1F 0F

C: F1 FB E8 65 BE CE 10 F8 2A 34 C6 C9 9D 6A 73 03
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Appendix B SAND Reference Implementations

B.1 SAND -64/128 C Reference Code from Bitslice View

#include <stdio.h>

#include <stdint.h>

typedef uint32_t u32;

#define ROUNDS 48

#define SWAP(x, y) ((x) ^= (y), (y) ^= (x), (x) ^= (y))

u32 ROTL(u32 x, int shift){

return (x << shift) | (x >> (32 - shift));

}

u32 G0(u32 x){

x ^= (x >> 3) & (x >> 2) & 0x11111111;

x ^= (x << 3) & (x << 2) & 0x88888888;

return x;

}

u32 G1(u32 x){

x ^= (x >> 1) & (x << 1) & 0x44444444;

x ^= (x << 1) & (x >> 1) & 0x22222222;

return x;

}

u32 P(u32 x){

return ROTL(x & 0x0F0F0F0F , 28) | ROTL(x & 0xF0F0F0F0 ,

12);

}

void Round(const u32 Pt[], u32 Ct[], const u32 Rk[], int

CryptRound){

u32 x = Pt[1], y = Pt[0];

for(int r = 0; r < CryptRound; r++) {

y ^= P(G0(x) ^ G1(ROTL(x, 4))) ^ Rk[r];

SWAP(x, y);

}

Ct[1] = y, Ct[0] = x;

}

u32 A8x3(u32 x){

for(int i = 0; i < 3; i++){

x = ROTL(x, 28);

u32 t = x >> 24 & 0xF;

x ^= (((t << 1) | (t >> 3)) << 28) ^ ((t << 3 & 0xF)

<< 24);

}
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return x;

}

void KeySchedule(const u32 Mk[], u32 Rk[], int CryptRound ,

int Dec){

Rk[3] = Mk[3], Rk[2] = Mk[2], Rk[1] = Mk[1], Rk[0] = Mk

[0];

for(int r = 0; r < CryptRound - 4; r++)

Rk[r + 4] = A8x3(Rk[r + 3]) ^ Rk[r] ^ (r + 1);

if(Dec == 1){

for(int r = 0; r < (int)(CryptRound / 2); r++)

SWAP(Rk[r], Rk[CryptRound - r - 1]);

}

}

int main(int argc , char *argv [])

{

u32 Pt[2] = {0x4F5F6F7F , 0x0F1F2F3F}, Ct[2];

u32 Mk[4] = {0xCFDFEFFF , 0x8F9FAFBF , 0x4F5F6F7F , 0

x0F1F2F3F };

u32 Rk[ROUNDS ];

printf("Pt: 0x%08X 0x%08X\n", Pt[1], Pt[0]);

printf("Mk: 0x%08X 0x%08X 0x%08X 0x%08X\n", Mk[3],Mk[2],

Mk[1],Mk[0]);

printf("Process Enc\n");

KeySchedule(Mk, Rk, ROUNDS , 0);

Round(Pt, Ct, Rk , ROUNDS);

printf("Ct: 0x%08X 0x%08X\n", Ct[1], Ct[0]);

printf("Process Dec\n");

KeySchedule(Mk, Rk, ROUNDS , 1);

Round(Ct, Pt, Rk , ROUNDS);

printf("Pt: 0x%08X 0x%08X\n\n", Pt[1], Pt[0]);

return 0;

}

B.2 SAND -128/128 C Reference Code from Bitslice View

#include <stdio.h>

#include <stdint.h>

typedef uint64_t u64;

#define ROUNDS 54

#define SWAP(x, y) ((x) ^= (y), (y) ^= (x), (x) ^= (y))

u64 ROTL(u64 x, int shift){

return (x << shift) | (x >> (64 - shift));
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}

u64 G0(u64 x){

x ^= (x >> 3) & (x >> 2) & 0x1111111111111111;

x ^= (x << 3) & (x << 2) & 0x8888888888888888;

return x;

}

u64 G1(u64 x){

x ^= (x >> 1) & (x << 1) & 0x4444444444444444;

x ^= (x << 1) & (x >> 1) & 0x2222222222222222;

return x;

}

u64 P(u64 x){

return ROTL(x & 0x00FF00FF00FF00FF , 56) | ROTL(x & 0

xFF00FF00FF00FF00 , 24);

}

void Round(const u64 Pt[], u64 Ct[], const u64 Rk[], int

CryptRound){

u64 x = Pt[1], y = Pt[0];

for(int r = 0; r < CryptRound; r++) {

y ^= P(G0(x) ^ G1(ROTL(x, 4))) ^ Rk[r];

SWAP(x, y);

}

Ct[1] = y, Ct[0] = x;

}

u64 A16x3(u64 x){

for(int i = 0; i < 3; i++){

x = ROTL(x, 60);

u64 t = x >> 56 & 0xF;

x ^= (((t << 1) | (t >> 3)) << 60) ^ ((t << 3 & 0xF)

<< 56);

}

return x;

}

void KeySchedule(const u64 Mk[], u64 Rk[], int CryptRound ,

int Dec){

Rk[1] = Mk[1], Rk[0] = Mk[0];

for(int r = 0; r < CryptRound - 2; r++)

Rk[r + 2] = A16x3(Rk[r + 1]) ^ Rk[r] ^ (r + 1);

if(Dec == 1){

for(int r = 0; r < (int)(CryptRound / 2); r++)

SWAP(Rk[r], Rk[CryptRound - r - 1]);

}

}
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int main(int argc , char *argv [])

{

u64 Pt[2] = {0 x7F6F5F4F3F2F1F0F , 0xFFEFDFCFBFAF9F8F}, Ct

[2];

u64 Mk[2] = {0 x1716151413121110 , 0x1F1E1D1C1B1A1918 };

u64 Rk[ROUNDS ];

printf("Pt: 0x%016lX 0x%016lX\n", Pt[1], Pt[0]);

printf("Mk: 0x%016lX 0x%016lX\n", Mk[1], Mk[0]);

printf("Process Enc\n");

KeySchedule(Mk, Rk, ROUNDS , 0);

Round(Pt, Ct, Rk , ROUNDS);

printf("Ct: 0x%016lX 0x%016lX\n", Ct[1], Ct[0]);

printf("Process Dec\n");

KeySchedule(Mk, Rk, ROUNDS , 1);

Round(Ct, Pt, Rk , ROUNDS);

printf("Pt: 0x%016lX 0x%016lX\n\n", Pt[1], Pt[0]);

return 0;

}

B.3 SAND -64/128 C Reference Code from SSb View

/* Just round function */

#include <stdio.h>

#include <stdint.h>

typedef uint32_t u32;

#define ROUNDS 48

#define SWAP(x, y) ((x) ^= (y), (y) ^= (x), (x) ^= (y))

const unsigned char SSb [16] = {

0x00 , 0x11 , 0x22 , 0xb3 , 0x44 , 0x57 , 0x66 , 0xf5 ,

0x88 , 0x99 , 0xae , 0x3d , 0xdc , 0xcf , 0x7a , 0xeb

};

u32 ROTL(u32 x, int shift){

return (x << shift) | (x >> (32 - shift));

}

u32 S(u32 x){

u32 g0 = 0, g1 = 0, t = 0;

for(int i = 0; i < 32; i += 4){

t = SSb[x >> i & 0xF];

g0 ^= (t >> 4 & 0xF) << i;

g1 ^= (t & 0xF) << i;

}

return g0 ^ ROTL(g1, 4);
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}

u32 P(u32 x){

return ROTL(x & 0x0F0F0F0F , 28) | ROTL(x & 0xF0F0F0F0 ,

12);

}

void Round(const u32 Pt[], u32 Ct[], const u32 Rk[], int

CryptRound){

u32 x = Pt[1], y = Pt[0];

for(int r = 0; r < CryptRound; r++) {

y ^= P(S(x)) ^ Rk[r];

SWAP(x, y);

}

Ct[1] = y, Ct[0] = x;

}

B.4 SAND -128/128 C Reference Code from SSb View

/* Just round function */

#include <stdio.h>

#include <stdint.h>

typedef uint64_t u64;

#define ROUNDS 54

#define SWAP(x, y) ((x) ^= (y), (y) ^= (x), (x) ^= (y))

const unsigned char SSb [16] = {

0x00 , 0x11 , 0x22 , 0xb3 , 0x44 , 0x57 , 0x66 , 0xf5 ,

0x88 , 0x99 , 0xae , 0x3d , 0xdc , 0xcf , 0x7a , 0xeb

};

u64 ROTL(u64 x, int shift){

return (x << shift) | (x >> (64 - shift));

}

u64 S(u64 x){

u64 g0 = 0, g1 = 0, t = 0;

for(int i = 0; i < 64; i += 4){

t = SSb[x >> i & 0xF];

g0 ^= (t >> 4 & 0xF) << i;

g1 ^= (t & 0xF) << i;

}

return g0 ^ ROTL(g1, 4);

}

u64 P(u64 x){
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return ROTL(x & 0x00FF00FF00FF00FF , 56) | ROTL(x & 0

xFF00FF00FF00FF00 , 24);

}

void Round(const u64 Pt[], u64 Ct[], const u64 Rk[], int

CryptRound){

u64 x = Pt[1], y = Pt[0];

for(int r = 0; r < CryptRound; r++) {

y ^= P(S(x)) ^ Rk[r];

SWAP(x, y);

}

Ct[1] = y, Ct[0] = x;

}

Appendix C DDT of SSb

For simplicity, we only present the DDT of SSb in this section, see Table 14. More
details of SSb could be found in https://github.com/sand-bar/SAND-Synthetic-Sbox.

Appendix D 7-round Optimal Differential and Linear
Characteristics for SAND-64/128

We give the following 7-round optimal differential and linear characteristics in
Table 15 and Table 16 for SAND-64/128 as examples.

Appendix E Experiments of Differential and Linear
Properties for 7-round Trails

In order to give a verification for the model under the S-box transformation and
also an evaluation of clustering effect, we consider the differential and linear hull
effect and distributions under random keys of the example trails presented in
Appendix D. Although, these experiments are still limited with regard to the
number of rounds and the number of trails, we just want to show the differential
and linear properties (differential and linear hull effect, the probability distribu-
tions over random keys) of SAND block cipher to some extent.

Clustering Trails by Solver. For the optimal 7-round differential trail listed
in Table 15, we fix the input and output differences in the search program and
enumerate the number of trails within this differential by the SAT solver [65].
The clustering result indicates that the differential effect for this 7-round dif-
ferential is not significant. Similarly, we also study the linear hull effect of the
7-round linear trail listed in Table 16, which is not notable.

42

https://github.com/sand-bar/SAND-Synthetic-Sbox


∆in ∆out (with Prob.)

0x0 0x00(1)

0x1 0x11(2−2) 0x13(2−2) 0x91(2−2) 0x93(2−2)

0x2 0x22(2−2) 0x24(2−3) 0x26(2−3) 0xA2(2−2)

0xA4(2−3) 0xA6(2−3)

0x3 0x31(2−3) 0x33(2−3) 0x37(2−2) 0xB1(2−3)

0xB3(2−3) 0xB5(2−2)

0x4 0x44(2−2) 0x46(2−2) 0x54(2−3) 0x56(2−3)

0xD4(2−3) 0xD6(2−3)

0x5 0x45(2−2) 0x47(2−2) 0x55(2−3) 0x57(2−3)

0xD5(2−3) 0xD7(2−3)

0x6 0x66(2−2) 0x72(2−2) 0xE4(2−2) 0xF2(2−2)

0x7 0x61(2−3) 0x63(2−3) 0x75(2−3) 0x77(2−3)

0xE1(2−3) 0xE3(2−3) 0xF5(2−3) 0xF7(2−3)

0x8 0x1C(2−3) 0x1E(2−3) 0x88(2−2) 0x8C(2−3)

0x8E(2−3) 0x98(2−2)

0x9 0x1D(2−3) 0x1F(2−3) 0x8B(2−2) 0x8D(2−3)

0x8F(2−3) 0x99(2−2)

0xA 0x2A(2−3) 0x2C(2−3) 0x3A(2−3) 0x3E(2−3)

0xAA(2−3) 0xAE(2−3) 0xBA(2−3) 0xBC(2−3)

0xB 0x29(2−3) 0x2D(2−3) 0x3B(2−3) 0x3D(2−3)

0xA9(2−3) 0xAF(2−3) 0xBB(2−3) 0xBF(2−3)

0xC 0x58(2−2) 0xC8(2−2) 0xCC(2−3) 0xCE(2−3)

0xDC(2−3) 0xDE(2−3)

0xD 0x5B(2−2) 0xC9(2−2) 0xCD(2−3) 0xCF(2−3)

0xDD(2−3) 0xDF(2−3)

0xE 0x6A(2−3) 0x6C(2−3) 0x7A(2−3) 0x7C(2−3)

0xEA(2−3) 0xEE(2−3) 0xFA(2−3) 0xFE(2−3)

0xF 0x6B(2−3) 0x6F(2−3) 0x79(2−3) 0x7D(2−3)

0xEB(2−3) 0xED(2−3) 0xF9(2−3) 0xFF(2−3)

Table 14: DDT of SSb (4-bit input and 8-bit output)
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Rounds x y Probability

0 09000890 88880230 2−6

1 80000900 09000890 2−4

2 80000000 80000900 2−2

3 00000000 80000000 2−0

4 80000000 00000000 2−2

5 80000800 80000000 2−4

6 08000880 80000800 2−6

7 88890000 08000880 -

Table 15: 7-round optimal differential characteristic with probability 2−24.

Rounds x y Correlation

0 2440e004 40004004 2−3

1 40004004 44000000 2−2

2 44000000 00000400 2−1

3 00000400 00000000 2−0

4 00000000 00000400 2−1

5 00000400 44000000 2−2

6 44000000 40004004 2−3

7 40004004 04406004 -

Table 16: 7-round optimal linear characteristic with correlation 2−12.
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Distribution Tests over Random Sampling Keys. To perform the proba-
bility distribution tests of the above trails over random sampling keys, we start
by randomly selecting 10000 keys. Then, with each selected key, we encrypt 230

blocks and count the corresponding number of right pairs for differential (resp.,
the absolute linear bias for linear). The results are compared to the expected
normal distributions for differential and linear from [62], as shown in Figure 16
and 17 respectively, which indicates a nice match between the experimental dis-
tributions and the expected.
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Figure 16: Cumulative distributions of number of right pairs over 10000 random
keys (blue) and expected normal distribution (red).

Appendix F Threshold Implementation of the SAND

Cipher

In this section, we show that the threshold implementation of SAND cipher can
take advantage of its Toffoli gates-based structure.

The concept of threshold implementation is to randomly encode each secret-
dependent bit (say, x) into several shares (say, x1, . . . , xn) such that x = x1 ⊕
. . . ⊕ xn, and accordingly perform the cryptographic algorithms in the shared
form (rather than the raw secret). In the rest of this section, unless otherwise
noted, we consider the most efficient first-order secure case, where the number of
shares is 3. As any cryptographic algorithm can be represented by a composition
of XOR and AND gates, the shared form implementation can be achieved by
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Figure 17: Cumulative distributions of absolute linear bias over 10000 random
keys (blue) and expected normal distribution (red).

transforming each gate into their shared correspondence. The shared XOR gate
can be trivially constructed by XORing pairs of input shares separately. However,
the construction of shared AND gate is non-trivial. Previous work [57] has shown
that it is impossible to construct a secure AND gate8 with 3 shares without
introducing any randomness.

A Toffoli gate is a composite gate that takes 3 input bits (say, x, y and z)
and outputs z = x ⊕ yz. Although a single AND gate is not quite friendly to
the threshold implementation, a secure shared Toffoli gate can be constructed
as follows:

z1 = x2 ⊕ y2z2 ⊕ y2z3 ⊕ y3z2
z2 = x3 ⊕ y3z3 ⊕ y3z1 ⊕ y1z3
z3 = x2 ⊕ y2z2 ⊕ y2z3 ⊕ y3z2

(1)

This structure contributes to an efficient threshold implementation of the SAND

cipher.
Figure 18 shows the threshold implementation of the SAND round function,

where all the shared linear gates (XOR, and rotation and Pn) are performed on
each share separately and TI Toffoli gate can be calculated by Equation 1. Note
that each of G0 and G1 includes two Toffoli gates that need to be separated by
a register to prevent the Glitches. Thus, the calculation of the round function
requires two cycles.

8 Informally speaking, a secure shared gate satisfied the properties of correctness,
noncompleteness and uniformity [56,57]
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Figure 18: Threshold implementation of the SAND round function
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