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Abstract

We consider the feasibility of non-interactive secure two-party computation (NISC) in the
plain model satisfying the notion of superpolynomial-time simulation (SPS). While stand-alone
secure SPS-NISC protocols are known from standard assumptions (Badrinarayanan et al., Asi-
acrypt 2017), it has remained an open problem to construct a concurrently composable SPS-
NISC. Prior to our work, the best protocols require 5 rounds (Garg et al., Eurocrypt 2017), or
3 simultaneous-message rounds (Badrinarayanan et al., TCC 2017).

In this work, we demonstrate the first concurrently composable SPS-NISC. Our construction
assumes the existence of:

� a non-interactive (weakly) CCA-secure commitment,

� a stand-alone secure SPS-NISC with subexponential security,

and satisfies the notion of “angel-based” UC security (i.e., UC with a superpolynomial-time
helper) with perfect correctness.

We additionally demonstrate that both of the primitives we use (albeit only with polynomial
security) are necessary for such concurrently composable SPS-NISC with perfect correctness.
As such, our work identifies essentially necessary and sufficient primitives for concurrently
composable SPS-NISC with perfect correctness in the plain model.

*The original version of this paper which only included the feasibility results was first submitted to a conference
on May 21, 2020. The necessity of the assumptions was first claimed with a proof sketch in a conference submission
on May 27, 2021. The current version includes the full proofs of the necessary conditions.

�Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267,
and a JP Morgan Faculty Award. This material is based upon work supported by DARPA under Agreement No.
HR00110C0086. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Government or DARPA.
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1 Introduction

Secure two-party computation is a primitive that allows two parties to compute the result f(x, y) of
a function f on their respective inputs x,y, while ensuring that nothing else is leaked. In this paper,
we focus on secure two-party computation in the setting of minimal communication, where both
players send just a single message. The first player, called the receiver, speaks first, and next the
second player, called the sender, responds; finally, only the receiver recovers the output f(x, y) of
the function. Such 2-round protocols are referred to as non-interactive secure computation protocols
(NISC).1

Security of secure computation protocols is traditionally defined using the simulation paradigm,
first introduced in [28] and extended in several later works [27, 5, 38, 11]. Roughly speaking,
security is defined by requiring that the “view” of any polynomial-time attacker can be simulated
by a polynomial-time attacker that participates in an “idealized” version of the protocol where the
parties only interact with a trusted party computing f . While this notion of “basic” simulation-
based security is often adequate in cases where a protocol is run in isolation, there are several
important properties of real-world security that are not considered by this definition. For instance,
many protocols interact with other protocols, either through using them as components or sub-
protocols or through existing in the same setting; intuitively, it is desirable that a definition of
security should provide a guarantee that such a composition of multiple provably secure protocols
is still secure. Some of the classical definitions of simulation-based security (e.g., [38, 11]) in fact
did guarantee such a notion of composability.

Concurrently Composable Secure Computation All of the early definitions of simulation-
based security, however, had a caveat; security was only considered when the protocol was executed
in a stand-alone setting where only a single instance could be executed at a time. Realistically,
protocols are often executed in a concurrent setting (originally formalized in [19, 16, 18]) where
many instances of a protocol are executed, potentially simultaneously, between many different
parties. An adversary in this model may control a large subset of the players, and furthermore is
able to observe the results of ongoing interactions in order to adaptively influence future interactions
by either reordering communication or changing the behavior of the corrupted parties. Ideally, we
would want to be able to show that a protocol is concurrently secure, or that a notion analogous
to simulation-based security holds even against a more powerful adversary in this multi-instance
setting. As with composability, though, concurrent security is not implied by basic definitions of
simulation-based security; while definitions such as those of [38, 11] guaranteed composable security
in a non-concurrent setting, the first definition to achieve both properties was that of universally
composable (UC) security, first proposed in [12]. At a high level, UC security expands further on
the simulation paradigm by considering an “external observer”, or environment, which runs and
observes interactions between an adversary and potentially many concurrent instances of a protocol
Π. We say that Π UC-realizes some functionality f if the environment cannot distinguish between
the “real” interaction and an “ideal” interaction between a polynomial-time simulator and the
perfectly secure “idealized” version of the functionality f . Furthermore, if a protocol π UC-realizes
some functionality g and Π uses π as a sub-protocol, the composability of UC guarantees that,
since the environment cannot distinguish interactions with π from simulated interactions with the
idealized g, we can effectively replace π with the idealized g when proving Π secure.

1As is well-known, in this non-interactive setting, it is inherent that only one of the players can receive the output.
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While UC security provides extremely strong guarantees, it also has correspondingly restrictive
limitations on what can be proven secure. Even in the case of two-party computation, impossibility
results exist showing that very few functionalities f(x, y) can be computed UC-securely [14]—or,
disregarding composability, even concurrently securely [36]—without introducing additional trusted
setup assumptions.

The notion of superpolynomial-time simulation (SPS) [41], a relaxation of UC security which
allows the simulator to run in superpolynomial time, has allowed for the construction of several
protocols, both for two-party computation [41, 45, 2, 39] and the more general case of multi-
party computation [4, 35, 21], which are able to securely realize virtually all functionalities. While
some definitions of SPS security provide the same concurrency guarantees as UC security, SPS
security fails to uphold many of the desirable composability properties: the problem is that SPS
security only requires that any polynomial time attacker can be simulated (in superpolynomial
time), but to perform composition, we also need to simulate “simulated attackers”, which run in
superpolynomial time. The notion of “angel-based” UC security [43] and its generalization of “UC-
security with a superpolynomial-time helper” [15] remedy this issue and provide for a composable
notion of concurrent SPS-security: in these models, the simulation is polynomial-time but both the
adversary and the simulator have access to a “helper” oracle (an “angel”) which implements some
specific superpolynomial-time functionality. Angel-based security is a strictly stronger notion than
SPS security, and it retains all of the composability properties of standard UC security, with the
important caveat that composability only holds with protocols that are secure with respect to the
same oracle. Furthermore, secure computation protocols are feasible in the angel-based security
model [43, 37, 15, 30, 31, 29]; the most recent constructions have been based on the notion of “CCA-
secure” commitments [15], which are commitment schemes that satisfy hiding in the presence of an
adversaries that is given access to a “decommitment oracle”.

On the Existence of Concurrently-Composable NISC In this work, we consider the feasibil-
ity of concurently composable non-interactive (i.e., 2-round) secure computation protocols, NISCs.
As is well known, even if we do not care about concurrency or composability, NISC protocols are
not possible in the plain model (i.e., without any trusted set-up assumptions) using the standard
notion of polynomial-time simulation [26]. On the other hand, if we consider the relaxed notion
of SPS security, NISC protocols have been shown to be feasible based on standard assumptions in
recent works [41, 2, 39]. (Indeed, enabling secure 2-round protocols was one of the original moti-
vations behind the notion of SPS security [41].) These works, however, only consider stand-alone
SPS security.

In fact, even if we require just concurrent SPS security (let alone both concurrent and compos-
able), the question of what we can achieved remains open. The state of the art can be summarized
as follows:

� [21] proposed the first concurrently secure constant-round protocol based on standard as-
sumptions, and this bound was later reduced to 5 [22].

� [3] presented a three-round concurrently SPS-secure multi-party computation protocol for
general functionalities, which can be reduced to two rounds for specific subclasses of func-
tionalities; however, their protocol relies on the simultaneous-message model, and so it still
requires five (or, for restricted functionalities, three) messages for two-party computation in
the standard (synchronous) model.
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� Other general two-round concurrently secure multi-party computation protocols (e.g., [6, 23,
7]) require a common reference string (CRS) as “trusted setup”.

� For the special case of zero-knowledge arguments of knowledge, [41] presented a 2-round
protocol that satisfies concurrent SPS-security; but concurrent security only holds in the
setting of “fixed”, as opposed to “interchangeable”, roles—that is, the attacker can corrupt
either all provers, or all verifiers. (On a technical level, this notion of concurrency with “fixed
roles” does not deal with non-malleability [16].)

Hence, prior work leaves open the question whether, in the plain model, we can achieve a two-round
concurrently secure protocol even for specific two-party functionalities (such as zero-knowledge
arguments of knowledge).

Meanwhile, for composable “angel-based” security in the plain model, the situation is even
worse; the protocol proposed by [15] requires nε rounds, while [30] reduced this to logarithmic
round complexity and [31] further reduced this to a constant. Thus, the literature leaves open the
following fundamental problem:

Is concurrently composable NISC possible in the plain model, and if so, under what
assumptions?

In fact, we are not aware of NISC protocols even for specific functionalities (e.g., zero-knowledge
arguments of knowledge) that satisfy any “meaningful notion” of concurrent security with “inter-
changeable roles” (i.e., the adversary can corrupt the sender in some sessions and the receiver in
others) even with respect to just 2 concurrent sessions!2

1.1 Our Results

We solve both of the above questions by demonstrating the existence of a NISC protocol for
general functionalities satisfying not only concurrent SPS security but also UC security with a
superpolynomial-time helper. Our construction relies on the following building blocks:

� A non-interactive CCA-secure commitment scheme [40, 15, 33, 8].

� A stand-alone secure SPS-NISC with subexponential security [2].

In fact, as we show, a relaxed version of CCA-secure commitments—which we refer to as
weakly CCA-secure commitments—suffices; this notion differs from the standard notion of CCA
security only in that the CCA oracle, given a commitment c, rather than returning both the value
v committed to and the randomness r used in the commitment, instead returns just the value v
(analogous to the definition of CCA security for encryption schemes [44]). Our main result, then,
is as follows:

Theorem 1 (Informal). Assume there exist a non-interactive weakly CCA-secure commitment
scheme and a subexponentially-secure stand-alone SPS-secure NISC protocol for general function-
alities. Then, there exists a NISC protocol for general functionalities (with perfect correctness)
which is UC secure with a superpolynomial-time helper (i.e., achieves angel-based security).

2In particular, as far as we are aware, even getting a 2-round non-malleble SPS-zero-knowledge argument of
knowledge was open.
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We emphasize that before our result, it was not known how to even construct non-malleable
2-round protocols in the plain model (i.e., protocols secure under just two different executions
where the adversary may play different roles) for any non-trivial functionality. Furthermore, we
demonstrate that the two building blocks we rely on are also necessary for concurrently composable
SPS-NISC with perfect correctness3:

Theorem 2 (Informal). Assume the existence of a non-interactive NISC for general functionalities
(with perfect correctness) satisfying UC security with a superpolynomial-time helper. Then, there
exist both a non-interactive weakly CCA secure commitment scheme and a stand-alone secure
SPS-NISC for general functionalities.

Note that the only gap between the assumptions is that our feasibility result (Theorem 1) relies
on the existence of a subexponentially-secure SPS-NISC, whereas Theorem 2 only shows that a
polynomially-secure SPS-NISC is needed. But except for this (minor) gap, our work provides a
full characterization of the necessary and sufficient primitives for NISC (with perfect correctness)
satisfying UC security with a superpolynomial-time helper.

Thus, our work should be interpreted as showing that to upgrade a stand-alone secure NISC to
become concurrently composable, the existence of weakly CCA-secure commitments is both nec-
essary and sufficient. Our work thus further motivates the importance of studying non-interactive
CCA-secure commitments; furthermore, it highlights that perhaps the weaker notion of “weak”
CCA security, introduced here, may be more natural than the stronger version used in earlier
works.

On the Realizability of the Building Blocks As just mentioned, our main results demonstrate
that the two building blocks—non-interactive weakly CCA-secure commitments and stand-alone
SPS-NISC—are both necessary and sufficient for constructing concurrently composable SPS-NISC.
SPS-NISC with subexponential security can be constructed based on a variety of standard assump-
tions, such as subexponential hardness of the Decisional Diffie-Hellman, Quadratic Residuosity, or
N th Residuosity assumptions [2] or subexponential hardness of the Learning With Errors assump-
tion [9].

Non-interactive CCA secure commitments, however, require more complex assumptions. They
were first constructed in [40] based on adaptive one-way permutations; later, [33] presented such a
scheme, albeit with only unform security (i.e., security against uniform attackers) based on keyless
collision-resistant hash functions, injective one-way functions, non-interactive witness-indistinguish-
able arguments (NIWIs), and subexponentially-secure time-lock puzzles. Even more recently, [8]
presented a scheme also satisfying non-uniform security by replacing the keyless collision-resistant
hash function with a multi-collision-resistant keyless hash function; while their construction is only
claimed to achieve “concurrent non-malleability” [42, 34] (and not the stronger notion of CCA
security), it seems that a relatively minor modification of their analysis (similar to the analysis
in [33]) would show that their construction also achieves CCA security when all the underlying
primitives satisfy subexponential security.

Overview. We give a technical overview of our main result in Section 2, provide definitions in
Section 3, formally state Theorem 1 in Section 4, and prove it in Section 5. In addition, we formalize

3As usual, perfect correctness means that if both parties act honestly, then the protocol will output the correct
result of the computation with probability 1.
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and prove Theorem 2 in Section 6.

2 Technical Overview

In this section, we provide a high-level discussion of our security definition and our protocol. At a
high level, UC security expands on the simulation paradigm by considering an “external observer”,
or environment, which runs and observes interactions between an adversary and potentially many
concurrent instances of a protocol Π. We say that Π UC-realizes some functionality f if the
environment cannot distinguish between the “real” interaction and an “ideal” interaction between
a polynomial-time simulator and the perfectly secure “idealized” version of the functionality f . We
will demonstrate a strong and composable notion of concurrent security using the externalized UC
model [11, 13], where we assume the adversary, the environment, and the simulator are strictly
polynomial-time but have access to an “imaginary angel”, or a global “helper” entity H that
implements some superpolynomial-time functionality. (This notion was first considered in [43] for
the case of non-interactive, stateless, angels) In our case (as in [15]) H will implement the CCA
decommitment oracle O for a CCA secure commitment; while interacting with a party P , H will
send a valid decommitment in response to any commitments made using that party’s identity as the
tag. (Since the adversary controls corrupted parties, this effectively means that H will decommit
any commitments with a corrupted party’s identifier, but none with an honest party’s identifier).
CCA security guarantees, then, that an adversary will never be able to break an honest party’s
commitment; on the other hand, the presence of the helper H makes it relatively easy for the
simulator S we construct for the definition of UC security to extract information necessary for
simulation from corrupted parties’ commitments.

Aside from the commitment scheme, our protocol consists of two major sub-components. First,
in order to evaluate the functionality f(x, y), we begin with a NISC protocol that satisfies stand-
alone security with superpolynomial-time simulation. In order to build this into a protocol sat-
isfying full UC security, however, we will need to leverage the CCA-secure commitment scheme
in order to allow the simulator to extract the malicious party’s input from their message; since
the simulator is restricted to polynomial time (with access to the CCA helper H), this cannot be
done by simply leveraging the superpolynomial-time simulator of the underlying NISC. Instead, if
both parties commit to their respective inputs and send the commitments alongside the messages
of the underlying NISC, the simulator can easily use the CCA helper to extract the inputs from
the commitments. This, however, presents another issue: namely, there must be a way to verify
that a potentially malicious party commits to the correct input (i.e., the same one they provided to
the NISC). For the case of a corrupted sender, this will require the other major component of our
protocol: a 2-round zero-knowledge (ZK) interactive argument with SPS security; unsurprisingly,
we remark that an appropriate such SPS-ZK protocol can be obtained from an SPS-NISC.

Towards intuitively describing our protocol, we now briefly describe how we deal with extracting
from a malicious receiver and sender before presenting the complete protocol.

Dealing with a malicious receiver: using “interactive witness encryption”. As suggested
above, the first step towards extracting a malicious receiver’s input x is to have the receiver commit
to their input x and send the commitment cx with their first-round message. This way, when the
receiver is corrupted, the simulator can extract x using the decommitment helper H. Of course,
we require a way to verify that the commitment sent by the receiver is indeed a commitment to
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the correct value of x (i.e., the same as the receiver’s input to the NISC which computes f(x, y)).
We deal with this using a technique reminiscent of the recent non-concurrent NISC protocol of
[39], by using the underlying NISC to implement an “interactive witness encryption scheme”.4 The
receiver will, in addition to their input x for f , input the randomness rx used to generate the
commitment cx, as well as the corresponding decommitment dx, to the NISC; the sender will input
cx in addition to y, and the NISC will return f(x, y) if and only if (cx, dx) is a valid commitment
of x using randomness rx. Hence, if the receiver sends an invalid commitment to x to the sender,
they receive ⊥ from the NISC instead of the correct output; otherwise, if it is valid, the simulator
can always extract the correct value of x from the commitment using H.

Dealing with a malicious sender: using a “two-track” functionality For the case where
the sender is corrupted, we begin by having the sender produce a commitment cy to their input
y and send it along with their second message. Unlike with cx, however, we cannot verify cy
within the underlying NISC protocol, since the receiver does not receive the commitment cy until
after they have given their inputs to the NISC (and hence cannot provide it as an input to verify
that the commitment they received from the sender is correct). Instead, we rely on the SPS-ZK
argument, which the sender uses to prove that cy is a valid commitment to the same input y
used to produce their NISC message. However, this in turn creates issues for simulatability in the
corrupted-receiver case, since the simulator does not know y and cannot simulate the underlying
NISC or the ZK argument in only polynomial time.

To deal with this, we switch to what is effectively a two-track functionality for the underlying
NISC and ZK argument. We add a trapdoor t, chosen at random and committed to by the receiver
simultaneously with x. Furthermore, to ensure that the corrupted-receiver simulator can properly
simulate the output of the NISC, we “fix” the output when the trapdoor is used; that is, we augment
the NISC’s functionality yet again to take inputs t′ and z∗ from the sender and output z∗ if the
sender provides t′ which matches the receiver’s trapdoor t. More explicitly, the sender can program
the output of the computation in case it can recover the trapdoor t selected by the receiver.

The ZK argument will then prove that either (1) there exists a witness w1 demonstrating that cy
and the sender’s NISC message are correctly generated (i.e., using the same y) given the receiver’s
first message, OR (2) there exists a witness w2 which demonstrates that the sender’s NISC message
was generated using the trapdoor t and no input y (which, in particular, means that the NISC will
output ⊥ if the trapdoor is incorrect). The honest sender can provide a witness for statement (1),
while the simulator in the malicious receiver case can decommit t using H to obtain the trapdoor
and generate a witness for statement (2). In fact, this is not quite sufficient to simulate for a
corrupted sender; we furthermore need an extractability, or “argument of knowledge”, property
such that the sender not only proves that there exists such a witness but also demonstrates that
it knows such a witness—in other words, such a witness should be extractable from the prover’s
message in superpolynomial time. This will be necessary to show that a corrupted sender cannot
provide a valid witness w2 to the trapdoor without having recovered the correct trapdoor t and
thus broken the security of the commitment scheme.

In our case, since the only extractor available to us is the decommitment oracleH, we implement

4Recall that witness encryption [20] is a primitive where a message m can be encrypted with a statement x so
that anyone with a witness w to x can decrypt m, but m cannot be recovered if x is false. Here, we would like cx to
be the “statement” that the commitment is correctly generated, and the randomness rx and decommitment dx the
“witness”.
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extractability by using a technique from [41] which adds a commitment to the witness to the
statement of the proof. The sender provides a witness (w1, w2) and two commitments c1 and
c2, and the proof accepts either if c1 is a valid commitment to w1 and w1 is a valid witness to
statement (1) above, or if the respective statement holds for c2, w2, and statement (2). This way,
a corrupted sender must with overwhelming probability use a witness for statement (1) in its proof
(implying that its NISC messages and commitment to y are correctly generated), as, otherwise, a
commitment of a correct witness for statement (2) would reveal the trapdoor t when decommitted
and thus clearly break CCA security of the commitment scheme.

Finally, we note at this point that the commitment cy is actually redundant, since the sender
already commits to y as part of their commitment to the witness w1, and, as we observed, the
corrupted sender must (unless they can correctly guess the trapdoor t) use the witness w1 to
produce an accepting SPS-ZK proof. Hence, we can remove cy entirely and have the simulator
extract the corrupted sender’s input from c1 using the helper H instead.

2.1 Protocol Summary

With the intuition and components described above, we can summarize our full protocol Π for
secure two-party computation of a functionality f(·, ·):

� The receiver, given input x, generates a random “trapdoor” t and does as follows:

– Generates commitment cx for x||t (respectively), using randomness rx.
– Generates the first-round message zk1 of a two-round SPS-ZK argument.
– Generates the first-round message msg1 of the underlying NISC protocol π, which will

securely compute the functionality h described below, using (x, rx, t) as its input.

It sends (msg1, zk1, cx) to the sender.

� The sender, given input y and the receiver’s first-round message (msg1, zk1, cx), does as follows:

– Generates the second-round message msg2 of the underlying NISC π, using (cx, y,⊥,⊥)
as its input and rNISC for randomness.

– Using witness w1 = (rNISC, y) and letting c1 and c2 be commitments to w1 and 0,
respectively, generates the second-round message zk2 of the ZK argument for statement
(msg1,msg2, cx, c1, c2) proving that either:

(1) there exists a witness w1 = (rNISC, y) that demonstrates that msg2 was correctly
and consistently generated with respect to the receiver’s first message, the sender’s
input y, and the randomness rNISC, and c1 is a valid commitment to w1, OR:

(2) there exists a witness w2 = (rNISC, t, z
∗) that demonstrates that msg2 was generated

using input (cx,⊥, t, z∗) (i.e., using the trapdoor instead of y), and c2 is a valid
commitment to w2.

It sends (msg2, zk2, c1, c2) to the receiver.

� The receiver, given the sender’s message (msg2, zk2, c1, c2), does as follows:

– Verifies that zk2 is an accepting proof with respect to the statement (msg1,msg2, cx, c1, c2).
Terminates with output ⊥ if not.
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– Evaluates and returns the output z from the NISC π.

The functionality h for the inner NISC, on input (x, rx, t) from the receiver and (cx, y, t
′, z∗)

from the sender, does the following:

� Verifies that cx is correctly generated from x||t and the randomness rx. Outputs ⊥ if not.

� If the trapdoor t′ given by the sender matches the receiver’s trapdoor t, bypasses the compu-
tation of f and outputs the sender’s input z∗.

� Otherwise, returns f(x, y).

Correctness will follow from correctness of the underlying primitives and the fact that an honest
sender and receiver will always generate cx, msg2, and zk2 according to the protocol above; thus, if
both parties are honest, the SPS-ZK proof from the sender will always accept and the receiver will
always obtain f(x, y) from evaluating GC.

In order to prove that Π H-EUC-securely realizes the ideal two-party computation functionality
Tf , we need to prove that, for every polynomial-time environment Z and adversary A in the “real”
execution of the protocol Π, there exists a polynomial-time simulator S in the “ideal” execution
of the protocol Π(Tf ) (where, instead of following the protocol, the receiver and sender send their
respective inputs x and y to an instance of Tf and the receiver gets the output f(x, y)) such
that Z’s view is indistinguishable between the “real” execution using A and the “ideal” execution
using S. This property needs to hold even when the environment and adversary have access to
a superpolynomial-time “helper” H implementing the CCA decommitment oracle. (Recall from
above that the helper will provide a decommitment of any commitment whose tag corresponds to
a corrupted party). Below, we provide a high-level sketch of the cases for simulating a corrupted
sender and receiver.

2.2 Simulating for a Corrupted Receiver

When the receiver is corrupted, S first needs to extract the receiver’s input x from their first
message and send it to the ideal functionality; this is straightforward to do, since both x and the
trapdoor t can be retrieved by running the decommitment helper H on the receiver’s input cx (and
the committed values must be the same as the ones given to the NISC in order for the receiver to
receive an output). However, S also needs to simulate the NISC message msg2, the SPS-ZK proof
zk2, and the commitments c1 and c2 to send to the receiver without knowing the corresponding
input y.

While one might be tempted to simply use the respective simulators from the definitions of
security to simulate the messages for the SPS-ZK argument and the internal NISC, we cannot
in fact run either of these simulators inside S, since S is restricted to (helper-aided) polynomial
time whereas, these simulators run in superpolynomial time. So, instead of using the simulators,
these messages will be simulated by running the honest protocols using the trapdoor recovered
from cx. S can generate the NISC message msg2 using the input (cx,⊥, t, z), where z is the output
f(x, y) returned from the ideal functionality Tf . In addition, S can use the second track of the
ZK argument with witness w2 = (rNISC, t, z), ensuring that it can generate both an accepting proof
zk2 and a NISC message that ensures the correct output (z = f(x, y), contingent on the malicious
receiver generating cx correctly) without knowing the sender’s input y.
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In a sense, this alternative method of simulating the underlying NISC and ZK argument has
interesting parallels to techniques in the context of obfuscation, where such two-track approaches
are often used to go from indistinguishability-based security to simulation-based security; see e.g.
[1, 32]. We also note that a technique similar to ours (albeit implemented with garbled circuits
rather than a NISC) was used in a very recent work to construct oblivious transfer from new
assumptions [17].

Proving that these simulated messages are indistinguishable from the real ones follows through
a series of hybrids and relies on complexity leveraging along with the simulation-based security of
both primitives. First, in order to switch to the second track of the ZK argument, we need to
ensure that the commitment c2 commits to the trapdoor witness (rNISC, t, z) rather than to 0. By
CCA security of the commitment scheme, commitments of the two values are indistinguishable even
by a party (the environment) with access to a decommitment oracle (in this case, the helper H).
Notice that, since the sender is honest, H will not provide the environment with decommitments
to commitments generated with the sender’s tag, which is precisely the property required of the
oracle in the CCA security definition.

Next, we deal with switching to the second track of the SPS-ZK and, respectively, to inputting
the trapdoor t to the NISC; we first switch the real proof zk2 using w1 to a simulated proof
using the simulator for the ZK argument. Next, leveraging the fact that the simulated proof
is indistinguishable for any msg2 satisfying either condition of the ZK language (irrespective of
which condition) and the fact that the simulator S ′R for the underlying NISC depends only on the
adversary (and not on the specific inputs to the NISC), we can indistinguishably switch from the
real NISC message using input (cx, y,⊥,⊥) to a simulated NISC message using S ′R, and then from
there to a real NISC message using the trapdoor input (cx,⊥, t, z). We then switch the simulated
ZK proof back to a real ZK proof, this time using the trapdoor witness w2; lastly, since the witness
w1 depends on y, we must switch the commitment c1 for the (now unused) first track of the ZK to
commit to 0, which will again follow from CCA security.

Complexity leveraging is required to prove indistinguishability between our hybrids, since we
require a NISC secure against adversaries able to run the (superpolynomial-time) simulator of the
ZK argument, and in turn a ZK argument secure against adversaries able to internally run the
decommitment helper H. Furthermore, while the intermediate hybrids clearly run in superpoly-
nomial time, we note that the final simulator S will still run in polynomial time (with H) and is
hence still sufficient to prove the notion of “angel-based” UC security.

To summarize, the corrupted-receiver simulator SR proceeds as follows:

� Receives the receiver’s first-round message (msg1, zk1, cx).
� Uses the helper H to decommit cx, receiving x∗ and t.
� Sends x∗ to the ideal functionality Tf and receives the output z.
� Generates the second-round message msg2 of the underlying NISC π, using (cx,⊥, t, z) as its

input and rNISC for randomness.
� Using witness w2 = (rNISC, t, z) and letting c1 and c2 be commitments to 0 and w2, respec-

tively, generates the second-round message zk2 of the ZK argument for the language described
above and the statement (msg1,msg2, cx, c1, c2).

� Sends (msg2, zk2, c1, c2) to the receiver.

10



2.3 Simulating for a Corrupted Sender

When the sender is corrupted, S first needs to simulate the receiver’s message (msg1, zk1, cx) to
send to the sender; then, on receiving the sender’s message (msg2, zk2, c1, c2), S needs to either
output ⊥ (if the sender’s message does not verify) or extract the sender’s input y to send to the
ideal functionality so that the honest receiver gets the correct output f(x, y).

Simulating the first message without knowledge of x will require two changes: making cx commit
to 0||t rather than to x||t, and respectively changing the first NISC message to use 0 in place of
the input x (since, as before, we cannot use a simulated NISC message due to simulation being
superpolynomial-time).

We show indistinguishability through a series of hybrids similar to the corrupted receiver case.
First, we can use simulation-based security to switch the real NISC message (with input x) to a
simulated NISC message using the simulator S ′S for π. Next, the first message no longer depends
on x, so we can leverage CCA security to indistinguishably switch cx to commit to 0 instead. A
minor subtlety with this step is that the polynomial-time adversary for CCA security cannot run
the superpolynomial-time simulator S ′S , so instead we leverage non-uniformity and provide the
simulated first message of the NISC to the CCA security adversary as non-uniform advice. Finally,
we can again leverage simulation-based security (and the input-independence of the simulator S ′S)
to switch from the simulated message to another real message using the input 0.

It remains to consider the receiver’s output; the honest receiver will output the result from the
ideal functionality in the ideal experiment, but we need to ensure that the receiver correctly outputs
⊥ when the malicious sender provides invalid inputs in its second-round message. On receiving the
sender’s message (msg2, zk2, c1, c2), the simulator will extract the malicious party’s input by using
the helper H to decommit c1 (a commitment to the witness w1, which contains y) and then verify
the sender’s message. If verification is successful, S will send the resulting value y∗ to the ideal
functionality (which will return the result to the honest receiver); if not, it will terminate with
output ⊥.

By soundness of the ZK argument, if S does not output ⊥, then the sender is overwhelmingly
likely to have provided a proof in zk2 corresponding to a valid witness; furthermore, we can assert
that this witness is overwhelmingly likely to be a witness w1 = (rNISC, y) to part (1) of the ZK
argument, since, if the sender could figure out an accepting witness w2 = (rNISC, t, z

∗) for part (2)
with non-negligible probability, this would imply that an adversary could recover this by running
a decommitment oracle on the commitment c2 and subsequently use it to break CCA security of
the commitment cx (which contains t) sent by the receiver in the first round.5

Given a valid witness to part (1), then, it must be the case that c1 is a valid commitment to w1

and that msg2 is correctly generated with respect to the y given in w1—so, on inputs corresponding
to a valid commitment cx of x||t, the internal NISC π will output f(x, y) for the same y the simulator
receives by decommitting c1. Hence, we can simulate the output by, if verification passes, having the
receiver return the output from the ideal functionality (exactly as in the ideal interaction), which
will always be f(x, y) given the y extracted from c1; the above argument shows that this strategy will
produce an output identical to that of the internal NISC with overwhelming probability. Notably,
this simulated output is now independent of the value of x used to generate the first-round message
(and instead relies on the x sent to the ideal functionality by the honest receiver).

This gives us the completed corrupted-sender simulator SS , which proceeds as follows:

5In particular, notice that the commitments c2 and cx are generated by different parties and hence using different
tags—hence, an adversary breaking CCA security with respect to cx’s tag is allowed to decommit c2.
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� Generates a random “trapdoor” t.
� Generates commitment cx for 0||t (respectively), using randomness rx.
� Generates the first-round message zk1 of a two-round ZK argument.
� Generates the first-round message msg1 of the underlying NISC protocol π, which will securely

compute the functionality h described below, using (0, rx, t) as its input.
� Sends (msg1, zk1, cx) to the sender.

� Receives the sender’s message (msg2, zk2, c1, c2).
� Verifies that zk2 is an accepting proof with respect to the statement (msg1,msg2, cx, c1, c2).

Terminates with output ⊥ if not.
� Uses the helper H to recover w1 (including y∗) from the commitment c1.
� Verifies that w1 is a valid witness for the statement (msg1,msg2, cx, c1, c2). If not, returns ⊥.
� Sends y∗ to the ideal functionality Tf , which will return the output f(x, y∗) to the receiver.

3 Definitions

3.1 Non-Interactive Secure Computation

We start by defining non-interactive secure computation (NISC).

Definition 1 ([39], based on [46, 25, 2]). A non-interactive two-party computation proto-
col for computing some functionality f(·, ·) (where f is computable by a polynomial-time Turing
machine) is given by three PPT algorithms (NISC1,NISC2,NISC3) defining an interaction between
a sender S and a receiver R, where only R will receive the final output. The protocol will have
common input 1n (the security parameter); the receiver R will have input x, and the sender will
have input y. The algorithms (NISC1,NISC2,NISC3) are such that:

� (msg1, σ) ← NISC1(1n, x) generates R’s message msg1 and persistent state σ (which is not
sent to S) given the security parameter n and R’s input x.

� msg2 ← NISC2(msg1, y) generates S’s message msg2 given S’s input y and R’s message msg1.
� out← NISC3(σ,msg2) generates R’s output out given the state σ and S’s message msg2.

We restrict our attentions to protocols satisfying perfect correctness:

� Correctness. For any parameter n ∈ N and inputs x, y:

Pr [(msg1, σ)← NISC1(1n, x) : NISC3(σ,NISC2(msg1, y)) = f(x, y)] = 1

Externalized Universally Composable Security. To define the notion of security proven in
our main theorem, we use the framework of universally composable security [11, 12], extended
to include access to superpolynomial “helper functionalities” [13, 15]. Specifically, we prove UC
security in the presence of an external helper which allows the adversary to break the commitments
of corrupted parties.
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Model of execution. We recall the discussion of UC security with external helper functionalities
provided in [15]. Consider parties represented by polynomial-time interactive Turing machines [28];
the model contains a number of parties running instances of the protocol Π, as well as an adversary
A and an environment Z. The environment begins by invoking the adversary on an arbitrary input,
and afterwards can proceed by invoking parties which participate in single instances of the protocol
Π by providing them with their respective inputs, as well as a session identifier (which is unique
for each instance of the protocol Π) and a party identifier (which is unique among the participants
in each session). The environment can furthermore read the output of any party involved in some
execution of Π, as well as any output provided by the adversary.

For the purposes of UC security, we will restrict our attention to environments which may only
invoke a single session of the protocol Π—that is, any instances invoked must have the same session
identifier. Concurrent and composable security (i.e., against more generalized environments) will
follow from this via a universal composition theorem, which we will state later in this section.

The adversary, on the other hand, is able to control all communication between the various
parties involved in executions of Π, and to furthermore modify the outputs of certain corrupted
parties (which we here assume are decided non-adaptively, i.e., every party is either invoked as
permanently corrupted or permanently uncorrupted). Uncorrupted parties will always act according
to the protocol Π, and we assume that the adversary only delivers messages from uncorrupted
parties that were actually intended to be sent (i.e., authenticated communication); the adversary
can, on the other hand, deliver any message on behalf of a corrupted party. The adversary can also
send messages to and receive them from the environment at any point.

We will furthermore assume a notion of security using an “imaginary angel” [43], which can
be formalized in the externalized UC (EUC) setting [13]; both the corrupted parties and environ-
ment will have access to an external helper functionality H, also defined as an interactive Turing
machine—unlike the participants, adversary, or environment, however, H is not restricted to poly-
nomial running time. H is persistent throughout the execution and is invoked by the environment
immediately after the adversary is; furthermore, H must be immediately informed of the identity
of all corrupted parties when parties are determined by the environment to be corrupted.

Finally, while honest players can only be invoked on a single session identifier, we allow the
adversary to invoke H on behalf of corrupt parties using potentially arbitrary session identifiers;
this is needed to prove the composition theorem.

The execution ends when the environment halts, and we assume the output to be the output
of the environment. We let ExecΠ,A,Z(1n, z) denote the distribution of the environment’s output,
taken over the random tape given to A, Z, and all participants, in the execution above (with a
single session of Π), where the environment originally gets as input security parameter 1n and
auxiliary input z. We say that Π securely emulates some other protocol Π′ if, for any adversary A,
there exists a simulator S such that the environment Z is unable to tell the difference between the
execution of Π with A and the execution of Π′ with S—that is, intuitively, the environment gains
the same information in each of the two executions. Formally:

Definition 2 (based on [15]). For some (superpolynomial-time) interactive Turing machine H, we
say a protocol ΠH-EUC-emulates some protocol Π′ if, for any polynomial-time adversaryA, there
exists some simulated polynomial-time adversary S such that, for any non-uniform polynomial-time
environment Z and polynomial-time distinguisher D, there exists negligible ν(·) such that, for any
n ∈ N and z ∈ {0, 1}∗:

|Pr [D(ExecΠ,A,Z(1n, z)) = 1]− Pr
[
D(ExecΠ′,S,Z(1n, z)) = 1

]
| ≤ ν(n)

13



To prove that a protocol Π securely realizes an ideal functionality T , we wish to show that
it securely emulates an “ideal” protocol Π(T ) in which all parties send their respective inputs to
an instance of T with the same session identifier and receive the respective output; note that the
adversary does not receive the messages to or from each instance of T .

Definition 3 (based on [15]). For some (superpolynomial-time) interactive Turing machine H, we
say a protocol Π H-EUC-realizes some functionality T if it H-EUC-emulates the protocol Π(T )
given above.

In the case of two-party computation for functionality f , T will simply receive inputs x from
the receiver and y from the sender and return f(x, y) to the receiver:

Definition 4. For some (superpolynomial-time) interactive Turing machine H, we refer to a non-
interactive two-party computation protocol Π for some functionality f(·, ·) as H-EUC-secure if
it H-EUC-realizes the functionality Tf , which, on input x from a receiver R and input y from a
sender S, returns f(x, y) to R.

Remarks. Notice that, since Z’s output is a (randomized) function of its view, it suffices to
show that Z’s view cannot be distinguished by any polynomial-time distinguisher D between the
respective experiments. We can also without loss of generality assume that the environment Z in
the real execution effectively runs the adversary A internally and forwards all of A’s messages to
and from other parties by using a “dummy adversary” D which simply forwards communication
from Z to the respective party. This allows us to effectively view the environment Z and adversary
A as a single entity.

Furthermore, observe that we use a polynomial-time simulator S in our definition of security.
[26] shows that two-round secure computation protocols cannot be proven secure with standard
polynomial-time simulation; hence, many protocols are proven secure using superpolynomial-time
simulators (a technique originally proposed by [41, 43]). Indeed, we note that, if H runs in time
T (·), then a protocol that H-EUC-realizes some functionality T with polynomial-time simulation
will also UC-realize T with poly(T (·))-time simulation; hence, in a way, the simulator S we propose
in our security definition can still be considered to do a superpolynomial-time amount of “work”.

Universal composition. The chief advantage of the UC security paradigm is the notion of
universal composition; intuitively, if a protocol ρ UC-realizes (or, respectively, H-EUC-realizes)
an ideal functionality T , then it is “composable” in the sense that any protocol that uses the
functionality T as a primitive derives the same security guarantees from the protocol ρ as they
would the ideal functionality.

More formally, given an ideal functionality T , let us define a T -hybrid protocol as one where the
participating parties have access to an unbounded number of copies of the functionality T and may
communicate directly with these copies as in an “ideal” execution (i.e., without communication
being intercepted by the adversary). Each copy of T will have a unique session identifier, and their
inputs and outputs are required to contain the respective identifier.

Then, if Π is a T -hybrid protocol, and ρ is a protocol which realizes T , then we can define a
composed protocol Πρ by modifying Π so that the first message sent to T is instead an invocation
of a new instance of ρ with the same session identifier and the respective message as input, and
so that further messages are likewise relayed to the same instance of ρ instead, again with their
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contents as the respective input. Any output from an instance of ρ is substituted for the respective
output of the corresponding instance of T . The following powerful theorem, then, states the notion
of composability intuitively described above.

Theorem 3 (Relativized Universal Composition [11, 15]). For some ideal functionality T and
helper functionality H, if Π is a T -hybrid protocol, and ρ is a protocol that H-EUC-realizes T ,
then Πρ H-EUC-emulates Π.

Stand-alone Security. As one of the key building blocks of our UC-secure protocol, we use a
non-interactive secure computation protocol which satisfies the strictly weaker notion of stand-alone
security with superpolynomial-time simulation. We recall the definition (as given in [39]) below:

� Consider a real experiment defined by an interaction between a sender S with input y and a
receiver R with input x as follows:

– R computes (msg1, σ)← NISC1(1n, x), stores σ, and sends msg1 to S.

– S, on receiving msg1, computes msg2 ← NISC2(msg1, y) and sends msg2 to R.

– R, on receiving msg2 computes out← NISC3(σ,msg2) and outputs out.

In this interaction, one party I ∈ {S,R} is defined as the corrupted party; we additionally
define an adversary, or a polynomial-time machine A, which receives the security parameter
1n, an auxiliary input z, and the inputs of the corrupted party I, and sends messages (which
it may determine arbitrarily) in place of I.

Letting Π denote the protocol to be proven secure, we shall denote by OutΠ,A,I(1
n, x, y, z)

the random variable, taken over all randomness used by the honest party and the adversary,
whose output is given by the outputs of the honest receiver (if I = S) and the adversary
(which may output an arbitrary function of its view).

� Consider also an ideal experiment defined by an interaction between a sender S, a receiver
R, and a trusted party Tf , as follows:

– R sends x to Tf , and S sends y to Tf .

– Tf , on receiving x and y, computes out = f(x, y) and returns it to R.

– R, on receiving out, outputs it.

As with the real experiment, we say that one party I ∈ {S,R} is corrupted in that, as before,

their behavior is controlled by an adversary A. We shall denote by Out
Tf
Πf ,A,I(1

n, x, y, z) the

random variable, once again taken over all randomness used by the honest party and the
adversary, whose output is again given by the outputs of the honest receiver (if I = S) and
the adversary.

Definition 5 ([39], based on [47, 25, 41, 43, 2]). Given a function T (·), a non-inter-active two-party
protocol Π = (NISC1,NISC2,NISC3) between a sender S and a receiver R, and functionality f(·, ·)
computable by a polynomial-time Turing machine, we say that Π securely computes f with
T (·)-time simulation, or that Π is a non-interactive (stand-alone) secure computation
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protocol (with T (·)-time simulation) for computing f , if Π is a non-interactive two-party
computation protocol for computing f and, for any polynomial-time adversary A corrupting party
I ∈ {S,R}, there exists a T (n) · poly(n)-time simulator S such that, for any T (n) · poly(n)-time
algorithm D : {0, 1}∗ → {0, 1}, there exists negligible ε(·) such that for any n ∈ N and any inputs
x, y ∈ {0, 1}n, z ∈ {0, 1}∗, we have:∣∣∣Pr [D(OutΠ,A,I(1

n, x, y, z)) = 1]− Pr
[
D(Out

Tf
Πf ,S,I(1

n, x, y, z)) = 1
]∣∣∣ < ε(n)

where the experiments and distributions Out are as defined above.
Furthermore, if Π securely computes f with T (·)-time simulation for T (n) = nlogc(n) for some

constant c, we say that Π is stand-alone secure with quasi-polynomial simulation.

Badrinarayanan et al. [2] demonstrates that stand-alone secure NISC protocols with quasi-
polynomial simulation exist assuming the existence of a notion of “weak OT”, which in turn can
be based on subexponential versions of standard assumptions [2, 9]:

Theorem 4 ([2, 9]). Assuming subexponential hardness of any one of the Decisional Diffie-Hellman,
Quadratic Residuosity, N th Residuosity, or Learning With Errors assumptions, then for any con-
stants c < c′ and any polynomial-time Turing-computable functionality f(·, ·) there exists a (subex-
ponentially) stand-alone secure non-interactive two-party computation protocol with T (·)-time se-

curity and T ′(·)-time simulation for T (n) = nlog
c(n) and T ′(n) = nlog

c′ (n).

3.2 SPS-ZK Arguments

We proceed to recalling the definition of interactive arguments.

Definition 6 ([10, 28, 24]). We refer to an interactive protocol (P, V ) between a probabilistic
prover P and a verifier V as an interactive argument for some language L ⊆ {0, 1}∗ if the
following conditions hold:

1. Completeness. There exists a negligible function ν(·) such that, for any x ∈ L:

Pr [〈P, V 〉(x) = Accept] ≥ 1− ν(|x|)

2. T (·)-time soundness. For any non-uniform probabilistic T (·)-time prover P ∗ (not neces-
sarily honest), there exists a negligible function ν(·) such that, for any x 6∈ L:

Pr [〈P ∗, V 〉(x) = Accept] ≤ ν(|x|)

Furthermore, if the above holds even if the statement x 6∈ L can be adaptively chosen by the
cheating prover anytime prior to sending its last message, we call such a protocol (T (·)-time)
adaptively sound.

We also require a notion of zero-knowledge [28] with superpolynomial simulation (SPS-ZK)
[41], which states that the prover’s witness w should be “hidden” from the verifier in the sense that
proofs of a particular statement x ∈ L should be simulatable in a manner independent of w:
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Definition 7 ([41]). We refer to an interactive argument for some NP language L (with wit-
ness relation RL) as T ′(·)-time simulatable zero-knowledge with T (·)-time security (or
(T (·), T ′(·))-simulatable zero-knowledge) if, for any T (·)-time cheating verifier V ∗ (which can out-
put an arbitrary function of its view), there exists a T ′(·)-time simulator Sim and negligible function
ν(·) such that, for any T (·)-time non-uniform distinguisher D, given any statement x ∈ L, any wit-
ness w ∈ RL(x), and any auxiliary input z ∈ {0, 1}∗, it holds that:

|Pr [D(x, 〈P (w), V ∗(z)〉(x)) = 1]− Pr [D(x,Sim(x, z)) = 1] | ≤ ν(|x|)

Our construction will use a two-round adaptively sound zero-knowledge argument consisting of
three polynomial-time algorithms, (ZK1,ZK2,ZK3), defining the following interaction 〈P, V 〉:

� V runs (zk1, σ) ← ZK1(1n), which takes as input the security parameter n and generates a
first message zk1 and persistent state σ.

� P runs zk2 ← ZK2(wi1, x, w), which takes as input the first message wi1, a statement x, and
a witness w, and returns a second message zk2.

� V runs {Accept,Reject} ← ZK3(zk2, x, σ), which takes as input a second message zk2, a
statement x, and the persistent state σ, and returns Accept if zk2 contains an accepting proof
that x ∈ L and Reject otherwise.

We observe that, in fact, this primitive is implied by the existence of a stand-alone secure NISC
(see Definition 5).

Theorem 5. For any constants c < c′, letting subexponential functions T (n) = nlog
c(n) and

T ′(n) = nlog
c′ (n), then, if there exists a subexponentially stand-alone secure non-interactive two-

party computation protocol for any polynomial-time Turing-computable functionality f(·, ·) with
T (·)-time security and T ′(·)-time simulation, then there exists a two-round interactive argument
with T (·)-time adaptive soundness and (T (·), T ′(·))-simulatable zero-knowledge.

The construction and its proof of security is straightforward, but for completeness we provide
it in Appendix A.

3.3 Non-Interactive CCA-secure Commitments

Our construction will rely on non-interactive (single-message) tag-based commitment schemes sat-
isfying the notion of CCA security [40, 15, 33].

Definition 8 (based on [33]). A non-interactive tag-based commitment scheme (with t(·)-bit
tags) consists of a pair of polynomial-time algorithms (Com,Open) such that:

� c ← Com(1n, id, v; r) (alternately denoted Comid(1n, v; r)) takes as input an identifier (tag)
id ∈ {0, 1}t(n), a value v, randomness r, and a security parameter n, and outputs a commit-
ment c. We assume without loss of generality that the commitment c includes the respective
tag id.

� {Accept,Reject} ← Open(c, v, r) takes as input a commitment c, a value v, and randomness
r, and returns either Accept (if c is a valid commitment for v under randomness r) or Reject
(if not).

We consider commitment schemes having the following properties:
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1. Correctness: For any security parameter n ∈ N, any v, r ∈ {0, 1}∗, and any id ∈ {0, 1}t(n):

Pr[c← Com(1n, id, v; r) : Open(c, v, r) = Accept] = 1

2. Perfect binding: For any commitment string c, values v, v′, and randomness r, r′, if it is
true that Open(c, v, r) = 1 and Open(c, v′, r′) = 1, then v = v′.

3. T (·)-time hiding: For any T (·)-time non-uniform distinguisher D and fixed polynomial p(·),
there exists a negligible function ν(·) such that, for any n ∈ N, any id ∈ {0, 1}t(n) and any
values v, v′ ∈ {0, 1}p(n):

|Pr[D(Com(1n, id, v)) = 1]− Pr[D(Com(1n, id, v′)) = 1]| ≤ ν(n)

For our construction, we require a strictly stronger property than just hiding: hiding should
hold even against an adversary with access to a “decommitment oracle”. This property is known
as CCA security due to its similarity to the analogous notion for encryption schemes [44]. We
introduce a weakening of CCA security, to which we shall refer as “weak CCA security”, which is
nonetheless sufficient for our proof of security, and, as we shall prove in Section 6, is necessary for
our proof of security as well. We define this as follows:

Definition 9. Let O∗ be an oracle which, given a commitment c, returns a valid committed value
v—that is, such that there exists some randomness r for which Open(c, v, r) = Accept.

A tag-based commitment scheme (Com,Open) is T (·)-time weakly CCA-secure with respect
to O∗ if, for any polynomial-time adversary A, letting Expb(O∗,A, n, z) (for b ∈ {0, 1}) denote A’s
output in the following interactive experiment:

� A, on input (1n, z), is given oracle access to O∗, and adaptively chooses values v0, v1 and tag
id.

� A receives Com(1n, id, vb) and returns an arbitrary output; however, A’s output is replaced
with ⊥ if O∗ was ever queried on any commitment c with tag id.

then, for any T (·)-time distinguisher D, there exists negligible ν(·) such that, for any n ∈ N and
any z ∈ {0, 1}∗, it holds that:

|Pr[D(Exp0(O∗,A, n, z)) = 1]− Pr[D(Exp1(O∗,A, n, z)) = 1]| ≤ ν(n)

We remark that the only difference from the “standard” notion of CCA security is that the
CCA oracle, given a commitment c, rather than returning both the value v committed to and the
randomness r used in the commitment, instead returns just the value v. This is similar to the
definition of CCA security commonly used for encryption schemes [44].

4 Results

We state our main theorem and the respective protocol in this section.

Theorem 6. If there exist superpolynomial-time functions TCom(·) = nlogc0 (n), TZK(·) = nlogc1 (n),
TSim(·) = nlogc2 (n), and Tπ(·) = nlogc3 (n) for constants 0 < c0 < c1 < c2 < c3 so that there
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Input: A commitment c, which without loss of generality contains identity id and was
sent by party P in session S.
Output: A value v or the special symbol ⊥.

Functionality:

1. Verify that id = (S, P ) and return ⊥ if not.
2. Otherwise, run the oracle O (from the definition of weak CCA security) to find

a valid decommitment v (i.e., such that, for some randomness r Open(c, v, r) =
Accept), and return it, or return ⊥ if there is no valid decommitment (i.e., O
returns ⊥).

Figure 1: Decommitment helper H for a weakly CCA-secure commitment scheme (Com,Open).)

exist (1) a non-interactive weakly CCA-secure commitment scheme with respect to a TCom(n)-
time oracle O, (2) a non-interactive computation protocol for general polynomial-time Turing-
computable functionalities satisfying TZK(·)-time stand-alone security and TSim(·)-time simulation,
and (3) a non-interactive computation protocol for general polynomial-time Turing-computable
functionalities satisfying Tπ(·)-time stand-alone security (and T ′(·)-time simulation for some T ′(·)�
Tπ(·)), then, for any polynomial-time Turing-computable functionality f(·, ·), the protocol Π given
in Figure 2 for computing f is an H-EUC-secure non-interactive secure computation protocol with
respect to the helper H in Figure 1.

Let TCom(·), TZK(·), TSim(·), Tπ(·) be as given in the theorem. Π will use the following primitives:

� (Com,Open), a secure commitment scheme satisfying weak CCA security with respect to some
oracle O having running time TCom(n). This is primitive (1) given in the theorem.

� (ZK1,ZK2,ZK3), a two-message interactive argument which satisfies TZK(n)-time adaptive
soundness and (TZK(·), TSim(·))-simulatable zero-knowledge (with respective TSim(·)-time sim-
ulator SimZK). By Theorem 5, this can be constructed from the primitive (2) given in the
theorem.

� π = (NISC1,NISC2,NISC3), a stand-alone secure non-interactive two-party computation pro-
tocol for the functionality h given in Figure 3 satisfying Tπ(·)-time security and T ′(·)-time
simulation for some T ′(n)� Tπ(n). This is implied by primitive (3) in the theorem.

We provide the complete proof, which constructs the polynomial-time simulator S (aided by
H) required for the definition of H-EUC-security, in the next section.

5 Proof

Correctness of Π follows trivially from the correctness of π and (Com,Open). To prove security, we
state the following lemma, which amounts to showing that Π H-EUC-realizes the ideal functionality
Tf for secure two-party computation of f(·, ·):
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Input: The receiver R (with identity PR) and the sender S (with identity PS) are given
input x, y ∈ {0, 1}n, respectively, and both parties have common input 1n and session ID
id.
Output: R outputs f(x, y).

Round 1: R proceeds as follows:

1. Generate trapdoor t← {0, 1}n and randomness rx ← {0, 1}∗.
2. Compute cx = Com(1n, (id, PR), x||t; rx).
3. Compute (msg1, σNISC) ← NISC1(1n, (x, rx, t)), where the protocol π =

(NISC1,NISC2,NISC3) computes the functionality h given in Figure 3.
4. Compute (zk1, σZK)← ZK1(1n).
5. Send (msg1, zk1, cx) to S.

Round 2: S proceeds as follows:

1. Generate randomness r1, r2, rNISC ← {0, 1}∗.
2. Compute msg2 = NISC2(msg1, (cx, y,⊥,⊥); rNISC).
3. Let v = (msg1,msg2, cx), w1 = (rNISC, y), and w2 = (⊥,⊥,⊥). Compute c1 =

Com(1n, (id, PS), w1; r1) and c2 = Com(1n, (id, PS), 0; r2).
4. Compute zk2 ← ZK2(1n, zk1, (v, c1, c2), (w1, r1, w2,⊥)) for the language L consisting

of tuples (v, c1, c2), where v = (msg1,msg2, cx), such that there exists a witness
(w1, r1, w2, r2) so that either:

(a) c1 = Com(1n, (id, PS), w1; r1), and w1 = (rNISC, y) satisfies msg2 =
NISC2(msg1, (cx, y,⊥,⊥); rNISC).
OR:

(b) c2 = Com(1n, (id, PS), w2; r2), and w2 = (rNISC, t, z
∗) satisfies msg2 =

NISC2(msg1, (cx,⊥, t, z∗); rNISC).

5. Send (msg2, zk2, c1, c2) to R.

Output phase: R proceeds as follows:

1. Let v = (msg1,msg2, cx). If ZK3(zk2, (v, c1, c2), σZK) 6= Accept, terminate with
output ⊥.

2. Compute z = NISC3(msg2, σNISC). If z = ⊥, terminate with output ⊥; otherwise
return z.

Figure 2: Protocol Π for non-interactive secure computation.
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Input: The receiver R has input (x, rx, t), and the sender S has input (cx, y, t
′, z∗)

Output: Either f(x, y), z∗, or the special symbol ⊥.

Functionality:

1. If cx 6= Com(1n, (id, PR), x||t; rx), return ⊥.
2. If t = t′, then return z∗.
3. Otherwise, return f(x, y) (or ⊥ if either x or y is ⊥).

Figure 3: Functionality h used for the underlying 2PC protocol π.

Lemma 1. Let Π(Tf ) be the protocol where the sender and the receiver send their inputs x and
y to the ideal functionality Tf , which, given those inputs, computes f(x, y) and sends the result to
the receiver.

Then, for any polynomial-time adversary A, there exists a polynomial-time simulator S such
that, for any non-uniform polynomial-time environment Z and polynomial-time distinguisher D,
there exists a negligible function ν(·) such that, for any n ∈ N and aux ∈ {0, 1}∗:∣∣∣Pr [D(ExecΠ,A,Z(1n, aux)) = 1]− Pr

[
D(ExecΠ(Tf ),S,Z(1n, aux)) = 1

]∣∣∣ ≤ ν(n)

Proof. Recall that the environment and adversary will have access to the helper H in both the real
and ideal experiments, as will the simulator S which we now construct. S will forward commu-
nication directly between the environment Z and the helper H, while simulating the session of Π
started by Z by running one of the simulators SR (see Figure 4), SS (see Figure 5), or SN (see
Figure 6), depending on whether (respectively) the receiver, the sender, or neither is corrupted. We
can then demonstrate that the environment’s interaction with the simulator S in the ideal world
is indistinguishable from the environment’s interaction with the adversary A (which, without loss
of generality, we can assume to be controlled by the environment) in the real world.

So, assume for the sake of contradiction that there exist some environment Z and distinguisher
D such that, for infinitely many n ∈ N, there is auxiliary input aux ∈ {0, 1}n such that D dis-
tinguishes the distributions ExecΠ,A,Z(1n, aux) and ExecΠ(Tf ),S,Z(1n, aux) with some non-negligible
probability 1/p(n) (for polynomial p(·)). We henceforth denote the experiments which produce
these distributions by ExpReal and ExpSim, respectively; it then suffices to show that their respective
views ViewReal and ViewSim cannot be distinguished by any distinguisher running in polynomial
time with access to the helper H. We handle this in three separate cases, depending on whether
the receiver, sender, or neither party is corrupted in the session of Π.

5.1 Corrupted Receiver

In this case, the simulator S will run SR as given in Figure 4 in the experiment ExpSim; we prove
that there exists no distinguisher between the views ViewReal and ViewSim by a sequence of hybrids:

� Let H0 be identical to ExpReal, with the exception that the honest sender sends y to an
instance of the ideal functionality Tf , uses the decommitment helper H to retrieve the values
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Simulator SR
1. Receive the adversary’s first-round message (msg1, zk1, cx).
2. Generate randomness rNISC ← {0, 1}∗.
3. Use the helper H to compute x∗||t← H(cx).
4. Send x∗ to the ideal functionality Tf and receive the output z.
5. Compute msg2 ← NISC2(msg1, (cx,⊥, t, z); rNISC).
6. Let v = (msg1,msg2, cx), w1 = (⊥,⊥), and w2 = (rNISC, t, z). Compute c1 =

Com(1n, (id, PS), 0; r1) and c2 = Com(1n, (id, PS), w2; r2).
7. Compute zk2 ← ZK2(1n, zk1, (v, c1, c2), (w1,⊥, w2, r2)).
8. Send (msg2, zk2, c1, c2) to the adversary.

Figure 4: Simulator for a corrupted receiver.

x∗||t← H(cx), sends x∗ to Tf on behalf of the receiver, and retrieves the output z from Tf .

Views are identically distributed.

� Let H1 be identical to H0, with the exception that the sender computes the commitment c2 as
c2 = Com(1n, (id, PS), w2; r2) (where w2 = (rNISC, t, z)), rather than as c2 = Com(1n, (id, PS), 0;
r2).

Follows from weak CCA security of (Com,Open).

� Let H2 be identical to H1, with the exception that the sender computes the second ZK message
as zk2 ← SimZK(zk1, (v, c1, c2)) rather than computing it as zk2 ← ZK2(zk1, (v, c1, c2), (w1, r1,
w2,⊥)).

Follows from simulation-based security of the ZK proof, specifically indistinguishability against
TZK(·)-time distinguishers and TZK(·)� TCom(·).

� Let H3 be identical to H2, with the exception that the sender computes the second NISC
message using the corrupted-receiver simulator S ′R for the underlying NISC π, as follows:

– Forward the corrupted receiver’s first-round message msg1 for π to S ′R, which will produce
a message (x, rx, t) to send to the ideal functionality Th.

– Verify that the corrupted receiver’s commitments cx and ct satisfy cx = Com(1n, (id, PR),
x||t; rx); if not, forward ⊥ to S ′R as the result from Th.

– Forward f(x∗, y) to S ′R as the result from Th.

– S ′R will produce a message msg′2 to send to the corrupted receiver for π; send (msg′2, zk2,
c1, c2) to the corrupted receiver for Π.

rather than computing it as msg2 ← NISC2(msg1, (cx, y,⊥,⊥)).

Follows from simulation-based security of the NISC protocol π, specifically indistinguishability
against Tπ(·)-time distinguishers and Tπ(·)� TSim(·) + TCom(·).

� Let H4 be identical to H3, with the exception that the sender computes the second NISC
message as msg2 ← NISC2(msg1, (cx,⊥, t, z))—that is, using the trapdoor—rather than com-
puting it using the simulator S ′R as in H3.

Follows again from simulation-based security of the NISC protocol π, and additionally the fact
that the simulator S ′R depends only on the adversary and not the inputs to the NISC (hence,
the same simulator can be used for the definition of security in this hybrid as in the last).
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� Let H5 be identical to H4, with the exception that the sender computes the second ZK message
as zk2 ← ZK2(zk1, (v, c1, c2), (w1,⊥, w2, r2)), where w1 = (⊥,⊥) and w2 = (rNISC, t, z), rather
than computing it as zk2 ← SimZK(zk1, (v, c1, c2)).

Follows once again from simulation-based security of the ZK proof.

� Let H6 be identical to H5, with the exception that the sender computes the commitment
c1 as c1 = Com(1n, (id, PS), 0; r1), rather than as c1 = Com(1n, (id, PS), w1; r1) (where w1 =
(rNISC, y)). Note that H6 is now identical to the experiment ExpSim where the adversary
interacts with the simulator SR.

Follows from weak CCA security of (Com,Open).

We set out to prove:

Claim 1. For the case where the receiver is corrupted in the session of Π, there exists no polynomial-
time distinguisher D∗ with oracle access to H such that, for some polynomial p∗(·):

|Pr [D∗(ViewReal) = 1]− Pr [D∗(ViewSim) = 1]| ≥ 1/p∗(n)

Proof. Observe that, if the views ViewReal and ViewSim are distinguishable (i.e., the claim is not
true), there must be some sequence of randomness r for the experiments prior to the session of Π
(recall that the experiments prior to Π are identical) such that the views ViewReal|r and ViewSim|r,
henceforth denoting the respective views with randomness fixed to r when applicable, are similarly
distinguishable—that is:

|Pr [D∗(ViewReal|r) = 1]− Pr [D∗(ViewSim|r) = 1]| ≥ 1/p∗(n)

We thus proceed by proving the respective hybrids are indistinguishable for any such fixed
randomness r.

To start, the views of H0 and ExpReal are trivially identically distributed as the sender computes
all of its messages in the same way. We continue with the following claims to complete the proof:

Subclaim 1. There exists no polynomial-time distinguisher D with access to the decommitment
helper H such that, for some polynomial p′(·) and some fixed randomness r prior to the session of
Π:

|Pr [D(View[H0]|r) = 1]− Pr [D(View[H1]|r) = 1]| ≥ 1/p′(n)

Proof. This will follow from the CCA security of (Com,Open). Assuming for the sake of contra-
diction that there exists a polynomial-time distinguisher D which distinguishes View[H0]|r and
View[H1]|r with non-negligible probability 1/p′(n), we can use this to construct a polynomial-time
adversary ACom which breaks the CCA security of the commitment scheme. ACom does as follows:

� Run the experiment given by H0 with the following differences:

– Use the fixed randomness r prior to the session of Π.
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– Use CCA oracle queries in place of queries to the decommitment helper H for commit-
ments using corrupted parties’ identifiers.

– Respond with ⊥ to commitment queries using honest parties’ identifiers.

– When the honest sender generates the witness w2 = (rNISC, t, z), send the values w2 and
0 and the tag (id, PS) to the challenger to receive a commitment c∗ of a randomly chosen
one of the two values.

– Substitute c∗ for c2 whenever it occurs in the session of Π.

� Once the experiment finishes, run the distinguisher D on the final view and output the result.

Since S is honest, ACom never makes a CCA oracle query using the challenge commitment’s tag
(id, PS). Furthermore, we note that the ZK proof zk2 is independent of the value of w2 (as it is
computed using w2 = (⊥,⊥,⊥)). Hence, if c∗ is a commitment to 0, the view of the experiment
is identically distributed to View[H0]|r; if it is instead a commitment to w2, the view is identically
distributed to View[H1]|r. Hence, if D distinguishes between View[H0]|r and View[H1]|r with prob-
ability 1/p′(n), ACom can distinguish between the experiments Exp0 and Exp1 in the CCA security
game with probability 1/p′(n) and without making queries to commitments with the challenge tag,
contradicting the CCA security of (Com,Open).

Subclaim 2. There exists no TCom(n)·poly(n)-time distinguisher D such that, for some polynomial
p′(·) and some fixed randomness r prior to the session of Π:

|Pr [D(View[H1]|r) = 1]− Pr [D(View[H2]|r) = 1]| ≥ 1/p′(n)

Proof. This will follow from the simulation-based security of the ZK proof (ZK1,ZK2,ZK3). Assume
for the sake of contradiction that there exists some TCom(n) · poly(n)-time distinguisher D which
distinguishes the respective views with some non-negligible probability 1/p′(n); in that case, we
can construct a TCom(n) ·poly(n)-time distinguisher D′ which can distinguish the real ZK proof zk2

from the output of the simulator SimZK given a certain statement v ∈ L.
There must exist some assignment of the randomness r′ for both the corrupted receiver and hon-

est sender prior to the point where the ZK proof zk2 is generated such thatD distinguishes the distri-
butions View[H1]|r||r′ and View[H2]|r||r′ with probability 1/p′(n). Moreover, the randomness r′ de-
fines a unique statement v = (msg1,msg2, cx) and commitments c1, c2, where we know (v, c1, c2) ∈ L
because it was generated honestly by the sender, as well as specific witnesses w1 = (rNISC, y) and
w2 = (⊥,⊥,⊥) and a specific first message zk1. We can then construct the TCom(n)·poly(n)-time dis-
tinguisher D′ which distinguishes between the distributions ZK2(1n, zk1, (v, c1, c2), (w1, r1, w2,⊥))
and SimZK(zk1, (v, c1, c2)). Specifically, given a sample zk∗2 from one of the two distributions, D′

does as follows:

� Run the experiment given by H1 until the session of Π, using the fixed randomness r. Inter-
nally run the TCom(n)-time oracle O in place of the decommitment helper H throughout the
experiment. (This will require time TCom(n) · poly(n).)

� For the session of Π, let both parties use the fixed randomness given by r′, and replace the
ZK proof zk2 by the given zk∗2.
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� Once Π finishes, run D on the resulting view and output the result.

If zk∗2 is an honestly generated proof zk∗2 ← ZK2(1n, zk1, (v, c1, c2), (w1, r1, w2, r2)), then the
view given to D is identically distributed to View[H1]|r||r′ ; meanwhile, if it is a simulated proof
zk∗2 ← SimZK(zk1, (v, c1, c2)), then the view will be identically distributed to View[H2]|r||r′ . Hence
D′ distinguishes the real and simulated proofs with the same probability 1/p′(n) as with which D
distinguishes the respective views of the hybrids, contradicting the definition of simulation-based
security of the ZK proof since it runs in time TCom(n) · poly(n)� TZK(n).

Notably, the above claim (in addition to future claims which prove non-existence of a TCom(n) ·
poly(n)-time distinguisher) applies identically to any polynomial-time distinguisher with oracle
access to H, since any such distinguisher can trivially be made into a TCom(n) · poly(n)-time distin-
guisher by running O internally in place of H.

Subclaim 3. There exists no TCom(n)·poly(n)-time distinguisher D such that, for some polynomial
p′(·) and some fixed randomness r prior to the session of Π:

|Pr [D(View[H2]|r) = 1]− Pr [D(View[H3]|r) = 1]| ≥ 1/p′(n)

Proof. To prove this, we leverage the stand-alone security of the internal NISC protocol π. First,
assume the opposite for the sake of contradiction—that is, that there exists such a TCom(n)·poly(n)-
time distinguisher D able to distinguish the views with probability 1/p′(n). The definition of stand-
alone security guarantees that, for every adversary A′ against π, there exists a simulator S ′R whose
interaction with a corrupted receiver in an idealized experiment with the ideal functionality Th is
indistinguishable from the real interaction where parties use π. Notably, the simulator S ′R depends
only on the adversary and not on the inputs to the NISC, so the same simulator applies to the
adversary (i.e., the corrupted receiver) in H2 as to the adversary in H3, and, critically, later to the
adversary in H4.

Now, assuming without loss of generality that the adversaries are deterministic and take their
randomness as part of the auxiliary input aux, there must exist auxiliary input aux such that D
distinguishes View[H2]|r||aux from View[H3]|r||aux with probability 1/p′(n). In particular, we note
that aux, in conjunction with the inputs x and y, fixes the corrupted receiver’s first NISC message
msg1, as well as both inputs (x, rx, t) and (cx, y,⊥,⊥) to π.

We construct a D′ that runs in time TSim(n) · poly(n) and distinguishes the real and simulated
executions of π (with inputs x and y and auxiliary input aux) on the respective inputs (x, rx, t) and
(cx, y,⊥,⊥). D′, given some view (m1,m2, out) of the messages and receiver’s output from either
the real interaction (between the corrupted receiver and honest sender) or the ideal interaction
(between the corrupted receiver and simulator S ′R), does as follows:

� Run the experiment given by H2 until the session of Π, using the fixed randomness r. In-
ternally run the TCom(n)-time oracle O in place of the decommitment helper H throughout
the experiment. (Since the experiment runs the ZK simulator SimZK, this will require time
TSim(n) + TCom(n) · poly(n).)

� For the execution of Π, let the adversary use the fixed randomness given by aux (note that
this will fix their first NISC message msg1 to be identical to m1), and replace the honest
sender’s second NISC message msg2 by m2.
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� Once Π finishes, run D on the resulting view and output the result.

If the given view is the real execution of the NISC protocol π, the view given to D will be
identically distributed to View[H2]|r||aux; if the view is the simulated execution using S ′R, then the
view given to D will be identically distributed to View[H3]|r||aux. Hence, D′ must distinguish the
views of the real and simulated interactions with probability 1/p′(n).

We remark that it is critical that the output of h run on the respective inputs be the same
between H2 and H3 so that the output of the (real or simulated) NISC in the views distinguished
by D matches the respective output in the views distinguished by D′. Indeed, it can easily be
verified that the output of h in both experiments is always f(x, y) when the commitments cx and
ct are validly generated and always ⊥ if not.

Hence, the existence of a distinguisher D which distinguishes View[H0]|r and View[H1]|r with
non-negligible probability implies a D′ that contradicts the stand-alone security of π (since D′ runs
in time TSim(n) · poly(n)� Tπ(n)), completing the argument.

Subclaim 4. There exists no TCom(n)·poly(n)-time distinguisher D such that, for some polynomial
p′(·) and some fixed randomness r prior to the session of Π:

|Pr [D(View[H3]|r) = 1]− Pr [D(View[H4]|r) = 1]| ≥ 1/p′(n)

Proof. Identical to Subclaim 3, except that D′ now differentiates between the real and simulated
executions of π on inputs (x, rx, t) and (cx,⊥, t, z). We note that, as with the above experiment,
the output of h is always identical between H3 and H4; furthermore, since the adversary A′ remains
the same throughout all of our hybrids, the same simulator S ′R satisfies the definition of security
for the proof here as it does for the proof in the previous subclaim.

Subclaim 5. There exists no TCom(n)·poly(n)-time distinguisher D such that, for some polynomial
p′(·) and some fixed randomness r prior to the session of Π:

|Pr [D(View[H4]|r) = 1]− Pr [D(View[H5]|r) = 1]| ≥ 1/p′(n)

Proof. Identical to Subclaim 2, but using different witnesses w1 = (⊥,⊥) and w2 = (rNISC, t, z),
though, importantly, the statement (v, c1, c2) is the same.

Subclaim 6. There exists no polynomial-time distinguisher D with access to the decommitment
helper H such that, for some polynomial p′(·) and some fixed randomness r prior to the session of
Π:

|Pr [D(View[H5]|r) = 1]− Pr [D(View[H6]|r) = 1]| ≥ 1/p′(n)

Proof. Identical to Subclaim 1, but using the values w1 and 0 for the commitment c1. Note that
the ZK proof zk2 is independent of the value of w1 (as it is computed using w1 = (⊥,⊥)).
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Simulator SS
1. Generate trapdoor t← {0, 1}n and randomness rx ← {0, 1}∗.
2. Compute cx = Com(1n, (id, PR), 0||t; rx).
3. Compute (msg1, σNISC)← NISC1(1n, (0, rx, t)).
4. Compute (zk1, σZK)← ZK1(1n).
5. Send (msg1, zk1, cx) to the adversary.

6. Receive output (msg2, zk2, c1, c2) from the adversary.
7. Let v = (msg1,msg2, cx). If ZK3(zk2, (v, c1, c2), σZK) 6= Accept, terminate with output ⊥.
8. Use the helper to decommit w1 ← H(c1). Parse w1 = (rNISC, y

∗).
9. Verify that msg2 = NISC2(msg1, (cx, y

∗,⊥,⊥); rNISC); if not, terminate with output ⊥.
10. Send y∗ to the ideal functionality Tf .

Figure 5: Simulator for a corrupted sender.

Since the view of H6 is by inspection identically distributed to the simulated experiment ExpSim,
this suffices to complete the proof of the overall claim by a standard hybrid argument (i.e., if there
were a D∗ contradicting the claim, it would necessarily also contradict one of the above subclaims
1-6 by distinguishing the respective distributions with probability 1/6p∗(n)).

5.2 Corrupted Sender

In this case, the simulator S will run SS as given in Figure 5 in the experiment ExpSim; we again
use a sequence of hybrids:

� Let H0 be identical to ExpReal, with the exception that the honest receiver sends x to an
instance of the ideal functionality Tf , uses the decommitment helper H to retrieve the value
w1 ← H(c1), parses w1 = (rNISC, y

∗) and sends y∗ to Tf on behalf of the sender (or ⊥ if w1

fails to parse).

Views are identically distributed.

� Let H1 be identical to H0, with the exception that the receiver, rather than using NISC1 and
NISC3 to honestly generate the NISC messages and output, instead uses the corrupted sender
simulator S ′S for the underlying NISC π and the corrupted sender A. Specifically, in H1, the
receiver:

– Sends the simulated message msg′1 from S ′S to the corrupted sender instead of msg1.

– Upon receiving the corrupted sender’s message, verifies that:

* w1 ← H(c1) parses as w1 = (rNISC, y
∗),

* ZK3(zk2, (v, c1, c2), σZK) = Accept, and

* msg2 = NISC2(msg1, (cx, y
∗,⊥,⊥); rNISC).

Terminates with output ⊥ if not true.

– Otherwise, returns the output z from Tf .

The real and simulated first messages are indistinguishable by the simulation-based security
of π with respect to Tπ(·)-time distinguishers. Furthermore, by soundness of the ZK proof
(with respect to TZK(·)-time adversaries) and weak CCA security of the commitment scheme,
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the corrupted sender, if it provides an accepting proof, must with overwhelming probability
provide a valid witness to part (a) of the ZK language; in that case, we can show that the
outputs are identical.

� Let H2 be identical to H1, with the exception that the receiver computes the commitment to
x as cx = Com(1n, (id, PR), 0||t; rx) rather than cx = Com(1n, (id, PR), x||t; rx).

Follows from weak CCA security of the commitment scheme (Com,Open); however, the CCA
security adversary cannot run the full simulator S ′S, so instead the simulated first message of
the NISC is hard-coded as non-uniform advice. Note that, since the first message of the NISC
is simulated, the receiver’s first message is no longer dependent on x.

� Let H3 be identical to H2, with the exception that the receiver no longer uses the simulator
S ′S and instead computes (msg1, σNISC)← NISC1(1n, (0, rx, t)). Note that H3 is now identical
to the experiment ExpSim where the adversary interacts with the simulator SS and the honest
receiver outputs the result z from the ideal functionality Tf .

Follows from the simulation-based security of π.

We claim the following:

Claim 2. For the case where the sender is corrupted in the session of Π, there exists no polynomial-
time distinguisher D∗ with oracle access to H such that, for some polynomial p∗(·):

|Pr [D∗(ViewReal) = 1]− Pr [D∗(ViewSim) = 1]| ≥ 1/p∗(n)

Proof. As before, this will follow from a series of subclaims proven by fixing the randomness r of the
experiment prior to the session of Π. First, observe that View[H0] is trivially identically distributed
to ViewReal, since the way the receiver generates its messages and output is unchanged. Next:

Subclaim 7. There exists no TCom(n)·poly(n)-time distinguisher D such that, for some polynomial
p′(·) and some fixed randomness r prior to the session of Π:

|Pr [D(View[H0]|r) = 1]− Pr [D(View[H1]|r) = 1]| ≥ 1/p′(n)

Proof. We begin by analyzing the views through the first message sent by the (honest) receiver.
Letting View∗i [H0]|r denote View[H0]|r with all messages after the receiver’s first message in Π
removed (and respectively for H1), we show:

Subclaim 8. There exists no TCom(n)·poly(n)-time distinguisher D such that, for some polynomial
p′(·) and some fixed randomness r prior to the session of Π:

|Pr [D(View∗i [H0]|r) = 1]− Pr [D(View∗i [H1]|r) = 1]| ≥ 1/p′(n)
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Proof. This will follow from the simulation-based security of the NISC protocol π. Assuming for
the sake of contradiction that there exists some TCom(n) · poly(n)-time distinguisher D which dis-
tinguishes the respective truncated views with non-negligible probability 1/p′(n), we can construct
a distinguisher D′ which distinguishes between the real and simulated executions of π on the same
inputs x, y, aux as those given to the session of Π.

D′, given some view (m1,m2, out) of the messages and receiver’s output from either the real
interaction (between the corrupted sender and honest receiver) or the ideal interaction (between
the corrupted sender and simulator S ′S), does as follows:

� Run the experiment given by H0 until the session of Π, using the fixed randomness r. Inter-
nally run the TCom(n)-time oracle O in place of the decommitment helper H throughout the
experiment. (This will require time TCom(n) · poly(n).)

� During Π, replace the honest receiver’s first NISC message msg1 by m1.

� After the receiver sends their first message, run D on the resulting view and output the result.

If the given view is the real execution of the NISC protocol π, the view given to D will be
identically distributed to View∗i [H0]|r||aux; if the view is the simulated execution using S ′R, then the
view given to D will be identically distributed to View∗i [H1]|r||aux. Hence, D′ must distinguish the
views of the real and simulated interactions with probability 1/p′(n), contradicting the definition
of simulation-based security of π.

It suffices, then, to compare the honest receiver’s output between the two hybrids. In particular,
notice that the verification performed in H1 is precisely the verification of the ZK proof with the
addition that ⊥ will be returned if the malicious sender provides an invalid witness w1 (i.e., it either
provides a witness w2 or both invalid witnesses).

So, if the ZK proof zk2 fails to verify given the malicious sender’s inputs, the receiver will return
⊥ in both cases; if the ZK proof accepts and the sender used a statement (v, c1, c2) and witness
w1 = (rNISC, y) satisfying part (a) of the language L (which, in particular, proves that c1 is a valid
commitment to w1 and that the NISC was correctly generated with respect to the same y∗ as in
w1), then both experiments will return ⊥ if cx is not correctly input by the sender and otherwise
return f(x, y∗), where y∗ is the value committed to in c1 (which, by perfect binding of (Com,Open),
must be unique). Hence, there are two cases where it is possible for the outputs of the receiver to
differ:

1. The malicious sender provides a proof zk2 for a statement (v, c1, c2) 6∈ L which accepts. (In
this case, the commitments c1 and c2 to the witnesses w1 and w2 may be invalid.)

2. The malicious sender provides a witness w2 = (rNISC, t, z) proving that (v, c1, c2) satisfies part
(b) of the language L with respect to the trapdoor t chosen by the receiver, in such a way
that the NISC in H0 outputs something besides ⊥. (Note that H1 will always result in output
⊥ if the sender provides a witness w2.)

The following two subclaims, then, complete the proof by demonstrating that the receiver’s
outputs are in fact statistically closely distributed between the two hybrids:

Subclaim 9. Case (1) above can occur with probability at most negligible in n during the session
of Π comprising View[H0]|r.
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Proof. This follows from adaptive soundness of the ZK protocol (ZK1,ZK2,ZK3); specifically, as-
suming that case (1) does occur with some non-negligible probability 1/p′′(n), we can use this to
construct a cheating prover P ∗ which runs in time TCom(n) · poly(n) and breaks adaptive sound-
ness by simply running the experiment H0 with randomness r fixed (and internally running the
TCom(n)-time oracle O in place of the CCA helper H) and, in the session of Π, selecting the state-
ment (v, c1, c2) returned by the malicious sender and the proof zk2. Since we assumed that, with
probability 1/p′′(n), (v, c1, c2) 6∈ L and ZK3(zk2, (v, c1, c2), σZK) = Accept, this directly implies
that the cheating prover P ∗ will provide an accepting proof of a statement (v, c1, c2) 6∈ L with
non-negligible probability. This contradicts the TZK(·)-time adaptive soundness of (ZK1,ZK2,ZK3),
since the cheating prover runs in time TCom(n) · poly(n)� TZK(n).

Subclaim 10. Case (2) above can occur with probability at most negligible in n during the session
of Π comprising View[H0]|r.

Proof. This follows from CCA security of the commitment scheme (Com,Open). Assume towards
a contradiction that, in the experiment H0, the malicious sender, with some probability 1/p′′(n),
provides a statement (v, c1, c2) and a witness w2 = (rNISC, t, z) which proves that the NISC message
msg2 was correctly generated with respect to the trapdoor t, and in addition that this trapdoor t
is the same trapdoor chosen by the receiver, so that the NISC in H0 outputs something besides
⊥. (Notice that, if t is the incorrect trapdoor, the NISC in H0 will output ⊥, since it must receive
y = ⊥ as an input for w2 to be valid.) Given this, we can construct a polynomial-time adversary
ACom that breaks CCA security of the underlying commitment scheme, as follows:

� Run the experiment given by H0 with the following differences:

– Use the fixed randomness r prior to the session of Π.

– Use CCA oracle queries in place of queries to the decommitment helper H for commit-
ments using corrupted parties’ identifiers.

– Respond with ⊥ to commitment queries using honest parties’ identifiers.

– When the trapdoor t is generated, send values t and t′ (for an arbitrary t′ 6= t) and tag
(id, PR) to obtain a commitment c∗ of a randomly chosen one of the two values under
the respective tag. ACom continues the experiment as before, but substitutes c∗ for ct.

– Substitute c∗ for c2 whenever it occurs in the session of Π.

� On receiving a second message (msg2, zk2, c1, c2) from the corrupted sender, verify zk2, and
return 0 if it fails.

� Otherwise, extract a witness w2 by running the CCA oracle on c2. If w2 is a tuple (rNISC, t
∗, z)

such that t∗ = t, then return 1; otherwise return 0.

Notice that c2 (in order to verify) must be generated with the tag (id, PS) and the receiver
is honest, so the condition that the CCA oracle is never called on the tag (id, PR) is satisfied.
If c∗ is a commitment of t, then the experiment is identically distributed to H0; hence, by the
assumption that case (2) occurs with probability 1/p′′(n), ACom returns 1 with probability at least
1/p′′(n). Otherwise, if c∗ is a commitment of a random t′ 6= t, the verification will only succeed
either if w1 and c1 are valid or if w2 is a decommitment of c∗, which, by perfect binding, can only
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be true for some witness (rNISC, t
′, z). Since t′ 6= t, ACom will always return 0 in this case, unless

the sender returns both a valid witness w1 and a witness w2 that does not verify but commits
to t; this latter case can happen with at most probability negligible in n since the input to the
sender is completely independent of t. Hence, ACom distinguishes between commitments of t and
t′ with probability 1/p′′(n) − ν(n) (for some negligible ν(·)), thus breaking CCA security of the
commitment scheme.

Subclaim 11. There exists no polynomial-time distinguisher D with oracle access to the decom-
mitment helper H such that, for some polynomial p′(·) and some fixed randomness r prior to the
session of Π:

|Pr [D(View[H1]|r) = 1]− Pr [D(View[H2]|r) = 1]| ≥ 1/p′(n)

Proof. We can prove this by using the CCA security of (Com,Open). Assume for the sake of
contradiction that there exists a distinguisher D, running in polynomial time but with oracle access
to H, that distinguishes between View[H1]|r and View[H2]|r with probability 1/p′(n). In particular,
this means that there exists some sequence r′ of the receiver’s first-round randomness (including
the randomness used to generate the simulated NISC message msg1) such that D distinguishes
between View[H1]|r||r′ and View[H2]|r||r′ with probability 1/p′(n). We can use this to construct a
polynomial-time adversary ACom which breaks the CCA security of (Com,Open). A will receive as
non-uniform advice the first-round message msg1 generated from the randomness r′ (since it cannot
run the Tπ(n)-time NISC simulator), and proceeds as follows:

� Send the values x||t and 0||t and the tag (id, PR) to the challenger to receive a commitment
c∗ of a randomly chosen one of the two values.

� Run the experiment given by H1 with the following differences:

– Use the fixed randomness r prior to the session of Π.

– Use the randomness r′ during Π, and, rather than running the simulator S ′S , send msg1

as the first NISC message.

– Use CCA oracle queries in place of queries to the decommitment helper H for commit-
ments using corrupted parties’ identifiers.

– Respond with ⊥ to commitment queries using honest parties’ identifiers.

– Substitute c∗ for cx whenever it occurs in the session of Π.

� Once the experiment finishes, run the distinguisher D on the final view and output the result.

Since R is honest, ACom never makes a CCA oracle query using the challenge commitment’s
tag (id, PR). When c∗ commits to x||t, the view given to D is identically distributed to View[H1]|r;
meanwhile, when c∗ commits to 0||t, the view is identically distributed to View[H2]|r. Hence, if
D distinguishes between View[H1]|r and View[H2]|r with probability 1/p′(n), ACom can distinguish
between the experiments Exp0 and Exp1 in the CCA security game with probability 1/p′(n) and
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Simulator SN
1. Generate trapdoor t← {0, 1}n and randomness rx ← {0, 1}∗.
2. Compute cx = Com(1n, (id, PR), 0||t; rx).
3. Compute (msg1, σNISC)← NISC1(1n, (0, rx, t)).
4. Compute (zk1, σZK)← ZK1(1n).
5. Send (msg1, zk1, cx) to the adversary.

6. Receive the output z from the ideal functionality Tf (after the honest receiver and sender have
sent their respective inputs).

7. Generate randomness rNISC ← {0, 1}∗.
8. Compute msg2 ← NISC2(msg1, (cx,⊥, t, z); rNISC).
9. Let v = (msg1,msg2, cx), w1 = (⊥,⊥), and w2 = (rNISC, t, z). Compute c1 =

Com(1n, (id, PS), 0; r1) and c2 = Com(1n, (id, PS), w2; r2).
10. Compute zk2 ← ZK2(1n, zk1, (v, c1, c2), (w1,⊥, w2, r2)).
11. Send (msg2, zk2, c1, c2) on behalf of the sender. Send z as the receiver’s final output.

Figure 6: Simulator for the case where neither party is corrupted.

without making queries to commitments with the challenge tag, contradicting the CCA security
of (Com,Open). (Furthermore, since ACom is given the hard-coded simulated NISC message msg1

instead of running the NISC simulator, it runs in polynomial time with access to the CCA oracle.)

Subclaim 12. There exists no TCom(n)·poly(n)-time distinguisherD such that, for some polynomial
p′(·) and some fixed randomness r prior to the session of Π:

|Pr [D(View[H2]|r) = 1]− Pr [D(View[H3]|r) = 1]| ≥ 1/p′(n)

Proof. Identical to Subclaim 8, since only the first message changes between the two hybrids.

Since the view of H3 is by inspection identically distributed to the simulated experiment ExpSim,
this suffices to complete the proof of the overall claim by a standard hybrid argument (i.e., if there
were a D∗ contradicting the claim, it would necessarily also contradict one of the above subclaims
7-12 by distinguishing the respective distributions with probability 1/3p∗(n)).

5.3 Honest Receiver and Sender

Lastly, if both parties are honest in the session of Π, the simulator S will run SN as given in
Figure 6 in the experiment ExpSim. We omit the proofs for the following hybrids, as they all mirror
their counterparts in the corrupted sender or receiver case (with the exception that the constructed
adversaries will run the honest protocol instead of the corrupted sender or receiver).

� Let H0 be identical to ExpReal, with the exception that both parties send their respective
inputs x and y to an instance of the ideal functionality Tf and the receiver outputs the result
from Tf .

Views are statistically close by correctness of Π.
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� Let H1 be identical to H0, with the exception that the sender computes the commitment c2 as
c2 = Com(1n, (id, PS), w2; r2) (where w2 = (rNISC, t, z)), rather than as c2 = Com(1n, (id, PS), 0;
r2).

See Subclaim 1.

� Let H2 be identical to H1, with the exception that the sender computes the second ZK message
as zk2 ← SimZK(zk1, (v, c1, c2)) rather than computing it as zk2 ← ZK2(zk1, (v, c1, c2), (w1, r1,
w2,⊥)).

See Subclaim 2.

� Let H3 be identical to H2, with the exception that both parties compute their respective
NISC messages using the honest sender/receiver simulator S ′N for the underlying NISC π.

See Subclaim 3; note that the simulator S ′N generates both the sender’s and receiver’s messages
in this case.

� Let H4 be identical to H3, with the exception that the receiver computes the commitment to
x as cx = Com(1n, (id, PR), 0||t; rx) rather than cx = Com(1n, (id, PR), x||t; rx).

See Subclaim 11.

� Let H5 be identical to H4, with the exception that the sender computes the second NISC
message as msg2 ← NISC2(msg1, (cx,⊥, t, z))—that is, using the trapdoor—rather than com-
puting it using the simulator S ′R as in H3.

See Subclaim 4.

� Let H6 be identical to H5, with the exception that the sender computes the second ZK message
as zk2 ← ZK2(zk1, (v, c1, c2), (w1,⊥, w2, r2)), where w1 = (⊥,⊥) and w2 = (rNISC, t, z), rather
than computing it as zk2 ← SimZK(zk1, (v, c1, c2)).

See Subclaim 5.

� Let H7 be identical to H6, with the exception that the sender computes the commitment c1

as c1 = Com(1n, (id, PS), 0; r1), rather than as c1 = Com(1n, (id, PS), w1; r1). Note that H7

is now identical to the experiment ExpSim where the adversary observes messages from the
simulator SN .

See Subclaim 6.

The above sequence of hybrids is sufficient to prove the following claim, which completes the
proof of Lemma 1 and in turn Theorem 6:

Claim 3. For the case where neither party is corrupted in the session of Π, there exists no
polynomial-time distinguisher D∗ with oracle access to H such that, for some polynomial p∗(·):

|Pr [D∗(ViewReal) = 1]− Pr [D∗(ViewSim) = 1]| ≥ 1/p∗(n)
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6 Minimality of Assumptions

In this section, we prove that the protocol we construct in Theorem 6 can be constructed using
nearly minimal assumptions—that is, that a NISC protocol satisfying externalized UC security
implies both a (polynomial-time) stand-alone secure NISC protocol with superpolynomial-time
simulation and weakly CCA-secure commitments. Thus, these primitives are not only sufficient
but also necessary for the existence of an externalized UC-secure NISC. The only gap between
the sufficient and necessary conditions is that Theorem 6 requires a stand-alone NISC having
simulation-based security with respect to subexponential-time distinguishers, whereas one can only
construct a polynomial-time secure stand-alone NISC from our definition of UC security.

Theorem 7. Assume the existence of a protocol Π = (π1, π2, π3) for non-interactive computation
of any polynomial-time Turing-computable functionality f(·, ·); further assume that Π satisfies the
notion of UC security with respect to some superpolynomial-time helper H. Then there exist
both a stand-alone secure non-interactive two-party computation protocol (for any polynomial-
time Turing-computable functionality h(·, ·)) with superpolynomial-time simulation and a non-
interactive weakly CCA-secure commitment scheme.

Proof. The first implication is immediate; since stand-alone SPS security is strictly weaker than
externalized UC security, any NISC protocol satisfying externalized UC security is already stand-
alone secure with SPS.

So, it suffices to prove that externalized UC-secure NISC implies weakly CCA-secure commit-
ments; formally, we prove the following:

Lemma 2. Assume a protocol Π = (π1, π2, π3) for non-interactive computation of the functionality
which, on inputs x and y, returns f(x, y) = 1 if x = y and f(x, y) = 0 otherwise; further assume
that Π satisfies the notion of UC security with a superpolynomial-time helper. Then there exists
a commitment scheme (Com,Open) which satisfies correctness, perfect binding, and weak CCA
security.

Proof. We define the weakly CCA secure commitment scheme (Com,Open) as follows:

� Com(1n, id, x) generates random padding p ← {0, 1}n and outputs c ← π1(1n, (id, 1), x||p) as
well as the session identifier id.

That is, c is the first (receiver’s) message of a new instance of Π with receiver input x, padded
by the random p, and session identifier id.

Note: We shall assume throughout that the player identifiers in any instance of Π are equal
to 1 for the sender and 2 for the receiver.

� Open(c, x, (p, r)) outputs Reject if c 6= π1(1n, (id, 1), x||p; r), and otherwise recovers the re-
ceiver’s state σ after π1 and outputs b← π3(π2(c, x), σ).

That is, Open first verifies that the commitment c is validly generated with respect to the
value x and the receiver’s randomness; if not, it returns Reject. Otherwise, it returns the
result (Accept if 1, Reject if 0) of running the sender of Π given the initial message c and
sender’s input x to produce a message m, and finally running the receiver of Π given m as
the sender’s message.
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Correctness of (Com,Open) will follow directly from the correctness of Π. For the other two
properties, we prove the following claims:

Claim 4. (Com,Open) satisfies perfect binding.

Proof. Perfect binding will follow from the correctness and security of Π. Fix the simulator S
(and superpolynomial-time helper H) given by the definition of H-EUC security for Π as a se-
cure implementation of the equality functionality. Then assume for the sake of contradiction
that there exists a commitment c and two pairs (x, (p, r)) and (x′, (p′, r′)) such that x 6= x′ but
Open(c, x, (p, r)) = Accept and Open(c, x′, (p′, r′)) = Accept both with non-zero probability.

First, note that this implies that c is both a correctly generated commitment to x under (p, r)
and a correctly generated commitment to x′ under (p′, r′), as otherwise the respective opening
will return Reject with probability 1. And, given that the commitments are correctly generated
(and thus honestly generated first-round messages of Π), correctness6 of Π implies that, in fact,
Open(c, x, (p, r)) = Accept and Open(c, x′, (p′, r′)) = Accept both with probability 1; this follows
since both of these are the result of running the honest protocol Π with the valid first message c,
and thus must return the correct result from Π (either Accept or Reject) with probability 1, which
must be Accept due to our earlier assumption that Open returns Accept with non-zero probability
on both of these commitments.

Towards our contradiction, we examine the security of Π by constructing an environment Z
for any sufficiently large security parameter n ∈ N (i.e., any n such that x||p and x′||p′ are valid
inputs). Letting id be the identity corresponding to c, Z, on input x∗, will do as follows:

� Start an instance of Π with a corrupted receiver, session identifier id (and player identifiers 1
for the receiver and 2 for the sender), and input x||p for the receiver and x∗ for the sender.

� Substitute c for the receiver’s first message to the honest sender, and receive the sender’s
response m.

� Run the standard final round π3 of the receiver’s protocol using m as the sender’s message
and r as the randomness to produce an output π3(m)|r.

Considering the real execution of the above, on input x∗ = x||p for the sender, we notice that
by perfect correctness the output must be 1 with probability 1, whereas if instead we provide input
x∗ 6= x||p the output must be 0 with probability 1. So, by the security of Π, it must be the case
that the final output of the ideal execution is 1 except with negligible probability when the sender’s
input is x||p and 0 except with negligible probability when the input is anything else. However, in
the ideal version of the execution, notice that the only input to the simulator S that is dependent
on the sender’s input is the output from the ideal functionality Tf .

We can in fact use this to deduce that the input extracted by the simulator S from c and sent to
the ideal functionality on behalf of the corrupted sender is x||p with overwhelming probability. If
not, then there exists a proper subset X of all x∗ not containing x||p such that S extracts a member
of X with some non-negligible probability 1/p(n). But this means that, comparing the case where
the sender’s input is x||p to a case where the sender’s input is x∗ 6= x||p but also is a non-member
of X, the inputs to the simulator are identically distributed with non-negligible probability (i.e.,
when Tf returns 0 because a member of X was selected), and thus it is impossible for the output

6Note that our definition specifies perfect correctness, as is indeed satisfied by our construction in Theorem 6.
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of the ideal interaction in the former case to be 1 except with negligible probability and the output
of the ideal interaction in the latter case to be 0 except with negligible probability as is required
for security, as for that to be true the distributions would have to share only a negligible fraction
of probability mass.

This in itself is not a contradiction; however, if we consider a similar experiment to the above
but using x′||p′ as the receiver’s input rather than x||p (and r′ as the respective randomness), we
can use the same logic to arrive at the conclusion that the input extracted by the simulator S from
c and sent to the ideal functionality on behalf of the corrupted sender is x′||p′ with overwhelming
probability. Clearly, this cannot be true simultaneously with the above fact; thus, by contradiction,
(Com,Open) must satisfy perfect binding.

Claim 5. (Com,Open) satisfies weak CCA security.

Proof. Fix the simulator S and superpolynomial-time helper H implied by the definition of H-EUC
security of the protocol Π. Assume for the sake of contradiction that there exists an adversary A
which can contradict the definition of weak CCA security (Definition 9). We first show that A,
which is by definition polynomial-time with oracle access to a weak CCA decommitment oracle O∗,
can also be effectively implemented in polynomial time with oracle access to the helper functionality
H.

Subclaim 13. Any polynomial-time adversary A against weak CCA security with oracle access
to the oracle O∗ defined in Definition 9 can also be implemented in polynomial time using oracle
access to the helper functionality H instead, with error at most negligible in the security parameter
n of Π7, and with the additional property that H will never be queried using a session identifier sid
that is the same as the identifier used in A’s challenge commitment.

Proof. Consider replacing each of A’s queries to O∗ by the following process, which runs in poly-
nomial time given oracle access to H:

� Receive a commitment c to decommit, with tag id.

� Start a new instance of Π with a corrupted receiver and session identifier id (and player
identifiers 1 for the receiver and 2 for the sender).

� Run the simulator S (which uses the helper H) on the respective instance of Π, substituting
c for the corrupted receiver’s message. S will generate an input x∗||p to send to the ideal
functionality; return x∗ to A.

We claim that, if the above process does not generate correct responses to all oracle queries with
overwhelming probability (i.e., 1− ν(n) for some negligible ν(·)), then there exists an environment
Z able to distinguish between the real and simulated executions with non-negligible probability.

First, we consider a number of “hybrid” oracles O0,O1, . . ., where in Oi the first i queries are
answered by the true oracle O∗ and all other queries are answered by the procedure above. Assume
then for the sake of contradiction that there exists some fixed randomness r for the CCA security
adversary such that, in the respective instance of the security game, the poly-time implementation

7We comment that, while the implementation of O∗ does not decommit successfully with probability 1, decom-
mitting with overwhelming probability is sufficient as it creates at most a negligible error in the adversary’s output
in the CCA security game.
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of O∗ gives at least one incorrect decommitment with some non-negligible probability 1/p(n). Then
there necessarily exists some i ∈ N such that the oracle’s outputs in Oi and Oi−1 differ with non-
negligible probability 1/q(n) (since the adversary in the CCA security game is restricted to at most
a polynomial number of oracle queries).

We use this fact to construct our distinguishing environment Z. Specifically, Z receives as
non-uniform advice the ith query c and (padded) decommitment x||p (which can be ⊥ if c is an
invalid commitment), which are deterministic given fixed randomness r and the responses from the
true CCA oracle to the first i− 1 queries, and does as follows:

� Start a single instance of Π with a corrupted receiver, session identifier given by the tag of c
(and player identifiers 1 for the receiver and 2 for the sender), and receiver and sender input
both equal to x||p.

� Replace the receiver’s first message with c, and return the output of the protocol.

By perfect correctness of Π, and the assumption that c is a valid first-round message on input
x||p, Z outputs 1 in the real interaction with probability 1; however, by our assumption that the
responses to oracle queries in Oi and Oi−1 differ with non-negligible probability 1/q(n), we know
that in the ideal interaction S must send some x′||p′ with x′ 6= x to the ideal functionality on behalf
of the corrupted receiver with at least probability 1/q(n). Therefore, since the honest sender’s input
to the ideal functionality is always x||p, we observe that Z outputs 0 in the ideal interaction with
probability 1/q(n), thus contradicting security of Π by distinguishing the real and ideal interactions
and completing our argument.

Lastly, we note that, during the H-aided reimplementation of the adversary A, H will never
be queried using a session identifier sid that is the same as the identifier used in the challenge
commitment. This follows from the restriction that the simulator S may never query H using an
honest party’s identifiers (sid, pid): the only corrupted parties are those with sid equal to the tags
of the queried commitments, which by the definition of weak CCA security may never be identical
to the tag of the challenge.

We also show the following, which together with the previous claim will provide a contradiction:

Subclaim 14. (Com,Open) satisfies hiding against any polynomial-time adversary A, even if the
adversary is given oracle access to the helper functionality H, as long as A never queries H using
a session identifier sid that is the same as the identifier used in the challenge commitment.

Proof. First, let us consider an “ideal” commitment scheme (Com′,Open′), defined identically to
(Com,Open) except that, rather than using the protocol Π, (Com′,Open′) runs the idealized version
of the protocol, which we shall call Π′, where the sender’s and receiver’s inputs in π1 and π2 are
sent to an ideal functionality Tf that computes and outputs the result of the function f (i.e., the
equality function) and messages are generated independently of the respective inputs by using the
simulator S.

We claim that (Com′,Open′) trivially satisfies hiding, even against unbounded-time adversaries;
this follows since, given a randomly generated commitment c to some value x, the respective re-
ceiver input to the idealized protocol Π′ is x||p for some random padding p← {0, 1}n. Furthermore,
since the commitment c is given by the simulated first-round message of the idealized protocol, it
is generated completely independently of x or p. So, given an adversary A which picks two values
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x0 and x1 and receives a commitment to a random one of the two, the only way A can receive
any information about the committed value is by attempting to open the commitment—i.e., by
interacting with the ideal functionality. However, since the receiver input contains not only the
value x committed but also the random padding p, the ideal functionality will return 0 unless the
adversary manages to guess both x and p correctly. And since the ideal functionality computes
f only once, and the commitment c by construction is independent of x||p, A can guess p with
probability at most 2−n. The remainder of the time, it receives inputs which are entirely indepen-
dent of the committed value, meaning that it clearly cannot distinguish the two commitments with
non-negligible probability even if given unbounded time.

This is precisely what we need to prove the claim, since the remainder follows by the relativized
universal composition theorem and the H-EUC security of Π. Consider the following protocol G
defining the hiding security game between the adversary and the challenger:

� The adversary, given input 1n and some auxiliary input z, selects values x0 and x1 and sends
them to the challenger.

� The challenger, given input 1n, session identifier id, and b ∈ {0, 1}, receives the input from the
adversary and generates a commitment c← Com(1n, id, xb), which it sends to the adversary.

� The adversary receives c and produces an arbitrary output.

Let G′ be defined identically to G except that G′ will use the idealized Com′ in place of Com.
G′ is clearly a Tf -hybrid protocol (recall that Tf is the ideal equality functionality implemented by
Π), and Π H-EUC-realizes Tf by assumption; therefore, G, which is simply the composed protocol
where Π replaces Tf , H-EUC-emulates G′. This means that, given any polynomial-time adversary
A in the hiding security game—even if A has access to the superpolynomial-time helper H—and
any inputs 1n, id, z, b, no polynomial-time distinguisher D can distinguish the distribution of the
adversary’s output in the ideal execution of G′ from the distribution of the adversary’s output in
the real execution of G. That is, if for b ∈ {0, 1} we let Expb(A, n, z) be the adversary’s output
distribution in G with inputs 1n, z, b, as in Definition 9, and Exp′b(A, n, z) defined respectively for G′,
we are guaranteed that there exists negligible ν(·) such that, for any polynomial-time distinguisher
D:

|Pr[D(Expb(A, n, z)) = 1]− Pr[D(Exp′b(A, n, z)) = 1]| ≤ ν(n)

But hiding in the ideal world provides that:

|Pr[D(Exp′0(A, n, z)) = 1]− Pr[D(Exp′1(A, n, z)) = 1]| ≤ 2−n

and so we have:

|Pr[D(Exp0(A, n, z)) = 1]− Pr[D(Exp1(A, n, z)) = 1]| ≤ 2ν(n) + 2−n

which is sufficient to prove hiding as desired. Notice, however, that H-EUC security requires the
environment Z to query the helper H only on behalf of corrupted parties. Since the challenge
commitment c, given its tag id, requires an instance of Π to be started with honest parties and
session identifier id, the above holds only if the adversary A does not query H with the same session
identifier.
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So, given an adversary A that contradicts weak CCA security using polynomial time and oracle
access to the CCA oracle O∗, Subclaim 13 implies that there is a reimplemented adversary A′
that likewise contradicts weak CCA security and uses polynomial time and oracle access to the
superpolynomial-time helper functionality H without invoking the helper using a session identifier
equal to the tag of the challenge commitment. But this directly contradicts Subclaim 14, since weak
CCA security without access to the CCA oracle is equivalent to hiding, and the subclaim shows
that A′ cannot break the hiding property of (Com,Open) without invoking H using the challenge
commitment’s tag. Therefore, by this contradiction, (Com,Open) satisfies weak CCA security, as
desired.
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A 2-round SPS-ZK from SPS-NISC

We restate Theorem 5:

Theorem 8 (Theorem 5 restated). For any constants c < c′, letting subexponential functions

T (n) = nlog
c(n) and T ′(n) = nlog

c′ (n), then, if there exists a subexponentially stand-alone secure
non-interactive two-party computation protocol for any polynomial-time Turing-computable func-
tionality f(·, ·) with T (·)-time security and T ′(·)-time simulation, then there exists a two-round in-
teractive argument with T (·)-time adaptive soundness and (T (·), T ′(·))-simulatable zero-knowledge.

42

https://eprint.iacr.org/2011/264


Proof. Given an NP language L ⊆ {0, 1}∗ with witness relation RL, we define a zero-knowledge
interactive argument protocol for L as follows:

Let Π = (π1, π2, π3) be a protocol for stand-alone secure non-interactive computation of the
functionality which, on inputs ⊥ from the receiver and (x,w) from the sender, returns (x,Accept)
if (x,w) ∈ L and (x,Reject) otherwise. (Note that, since L is an NP language, this functionality is
guaranteed to be polynomial-time computable.)

To define our zero-knowledge argument ZK, the prover and verifier, on common input x and the
prover’s witness w, will simply run Π with the verifier acting as the receiver and the prover acting
as the sender, and the prover will input (x,w). The verifier will accept if Π outputs (x′,Accept)
with x = x′, and reject otherwise.

Completeness follows immediately from the correctness of Π, as if (x,w) ∈ L then the function-
ality f will always output (x,Accept). So it suffices to prove adaptive soundness and simulatability.

To prove simulatability, assume for the sake of contradiction that ZK is not simulatable—that
is, there exists some cheating verifier V ∗ such that, for any T ′(·)-time simulator Sim, there exists
polynomial p(·), distinguisher D, statement x ∈ L, witness w ∈ RL(x), and auxiliary input z such
that:

|Pr [D(x, 〈P (w), V ∗(z)〉(x)) = 1]− Pr [D(x, Sim(x, z)) = 1] | ≥ 1/p(|x|)

By stand-alone security of Π given the cheating verifier V ∗ as the adversary A, there exists a
T ′(·)-time simulator S such that, for any non-uniform polynomial-time environment Z and non-
uniform polynomial-time distinguisher D′, there exists negligible ν(·) such that, for any n ∈ N:

|Pr
[
D′(Exec′Π,V ∗,Z(1n, z)) = 1

]
− Pr

[
D′(Exec′Π′,S,Z(1n, z)) = 1

]
| ≤ ν(n)

If we define Z to be the environment which invokes a single instance of Π with an adversarial
receiver and inputs ⊥ and (x,w), if we define a simulator Sim which runs Exec′Π′,S,Z(1n, z) (i.e.,
invokes the environment Z using the simulated execution rather than the real one), if we define a
distinguisher D′ which determines x from the view of Π (note that x is part of the output) and
runs D on x and its own input, and if we let n = |x|, then we see that:

D′(Exec′Π,V ∗,Z(1n, z)) = D(x, 〈P (w), V ∗(z)〉(x))

and
D′(Exec′Π′,S,Z(1n, z)) = D(x,Sim(x, z))

Of course, this implies, by our assumption that simulatability fails, that:

|Pr
[
D′(Exec′Π,V ∗,Z(1n, z)) = 1

]
− Pr

[
D′(Exec′Π′,S,Z(1n, z)) = 1

]
| ≥ 1/p(n)

contradicting stand-alone security of Π.
To prove soundness, once again assume the opposite for the sake of contradict-ion—that is, for

some cheating prover P ∗, polynomial p(·), and n ∈ N, there is at least a 1/p(n) probability that
the prover, when selecting a false statement, can convince the verifier, or, in other words, that Π
will output (x∗,Accept) given the assumption that P ∗ (adaptively) selects some x∗ 6∈ L.

We show that this contradicts stand-alone security of Π, as follows. Consider an environment
Z which runs an instance of Π with P ∗ as the corrupted sender. In the real execution, we know by
our assumption that this interaction must return (x∗,Accept) with probability 1/p(n). However,
consider the simulated execution where, given the simulator S from the definition of stand-alone
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security, S sends a simulated first message to P ∗, receives a response, and produces an input (x′, w)
to send to the ideal functionality Tf , which will produce the final output. Because the prover P ∗

must select a statement x∗ 6∈ L, it follows that this interaction can produce (x′, w) ∈ RL, and thus
that the simulated interaction (which runs the actual functionality for the witness relation) can
return (x∗,Accept), with at most probability negligible in n, thus allowing the real and simulated
interactions to be distinguished by a distinguisher D that simply returns whether the interaction
accepts.
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