
Towards Post-Quantum Security for Cyber-Physical Systems:
Integrating PQC into Industrial M2M Communication∗

SEBASTIAN PAUL†, Robert Bosch GmbH, Germany
PATRIK SCHEIBLE, ESCRYPT GmbH, Germany
FRIEDRICH WIEMER, Robert Bosch GmbH, Germany

The threat of a cryptographically relevant quantum computer contributes to an increasing interest in the
field of post-quantum cryptography (PQC). Compared to existing research efforts regarding the integration of
PQC into the Transport Layer Security (TLS) protocol, industrial communication protocols have so far been
neglected. Since industrial cyber-physical systems (CPS) are typically deployed for decades, protection against
such long-term threats is needed.

In this work, we propose two novel solutions for the integration of post-quantum (PQ) primitives (digital
signatures and key establishment) into the industrial protocol Open Platform Communications Unified
Architecture (OPC UA): a hybrid solution combining conventional cryptography with PQC and a solution
solely based on PQC. Both approaches provide mutual authentication between client and server and are
realized with certificates fully compliant to the X.509 standard. We implement the two solutions and measure
and evaluate their performance across three different security levels. All selected algorithms (Kyber, Dilithium,
and Falcon) are candidates for standardization by the National Institute of Standards and Technology (NIST).
We show that Falcon is a suitable option – especially – when using floating-point hardware provided by our
ARM-based evaluation platform. Our proposed hybrid solution provides PQ security for early adopters but
comes with additional performance and communication requirements. Our solution solely based on PQC
shows superior performance across all evaluated security levels in terms of handshake duration compared to
conventional OPC UA but comes at the cost of increased handshake sizes.

In addition to our performance evaluation, we provide a proof of security in the symbolic model for our
two PQC-based variants of OPC UA. For this proof, we use the cryptographic protocol verifier ProVerif and
formally verify confidentiality and authentication properties of our quantum-resistant variants.

Additional Key Words and Phrases: cyber-physical systems, post-quantum cryptography, formal security
models, OPC UA, ProVerif.

1 INTRODUCTION
Google’s recent shot at quantum supremacy attracted much public attention, but the road to a stable
and large-scale quantum computer is still long and uncertain [7]. Once one is built, however, it will
be able to solve mathematical problems previously thought to be intractable. As a consequence,
public key primitives that have become the “security backbone” of our digital society will be broken.
This threat can be mitigated by deploying new cryptographic primitives that withstand attacks
from both quantum and traditional computers, i.e. post-quantum cryptography. NIST addressed
this issue by starting a PQC standardization process in 2016, which is currently in its second round.

∗This is an extended version of “Towards Post-Quantum Security for Cyber-Physical Systems” that originally appeared in
Computer Security – ESORICS 2020, Springer, pp. 295–316, DOI: 10.1007/978-3-030-59013-0_15.
†Corresponding author.

© Paul, Scheible, and Wiemer, 2021. The definitive, peer reviewed and edited version of this article is published in Journal of
Computer Security, pp. 1-31, 2021, DOI: 10.3233/JCS-210037.
Authors’ addresses: Sebastian Paul, sebastian.paul2@de.bosch.com, Corporate Sector Research and Advance Engineering,
Robert Bosch GmbH, Renningen, Germany; Patrik Scheible, patrik.scheible@escrypt.de, Consulting Cyber Security Solutions,
ESCRYPT GmbH, Stuttgart, Germany; Friedrich Wiemer, friedrich.wiemer@de.bosch.com, Cross-Domain Computing
Solutions, Robert Bosch GmbH, Stuttgart, Germany.

HTTPS://ORCID.ORG/0000-0002-3840-1390
https://doi.org/10.1007/978-3-030-59013-0_15
https://doi.org/10.3233/JCS-210037
https://orcid.org/0000-0002-3840-1390

2 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

Eventually, NIST will standardize quantum-resistant key encapsulation mechanisms (KEMs) and
digital signature algorithms (DSAs).1
A migration to new primitives requires various forms of cryptographic agility, which typically

is not present in existing systems [52, 63]. Therefore, research how to securely and effectively
integrate PQC into protocols and applications is required. Furthermore, it is essential to plan for the
cryptographic transition, especially for devices with long life spans and high-security requirements.
Several governmental institutes have proposed to use hybrid modes for this cryptographic transition
[12, 28]. In such a hybrid mode at least two cryptographic primitives are applied simultaneously.
On the one hand, a hybrid approach implies various advantages: 1) As long as one of the involved
schemes remains unbroken, the “entire” security property holds. Therefore, early adopters can
benefit from additional security against quantum adversaries but don’t have to fully rely on relatively
new primitives; 2) Being compliant to industrial or governmental standards that have not been
updated yet to include PQC; 3) Provide backward compatibility to legacy devices. On the other hand,
hybrid modes negatively affect performance and increase the required communication bandwidth
as well as memory footprint.

One domain where components have long life spans and many industrial (or even governmental)
regulations are in place are industrial control systems (ICS). In recent years, ICS have shifted
away from isolated networks and serial communication towards highly connected networks and
IP-based communication, ultimately, providing access to the Internet. In fact, modern industrial
communication has shifted away from proprietary protocols towards standardized machine-to-
machine (M2M) protocols such as OPC UA [57, 66, 77]. Taking into consideration that CPS deployed
today could still be in use when a cryptographically relevant quantum computer is available, a
migration plan towards PQC is highly recommended. Such a migration plan is even more critical
regarding confidentiality because any communication passively recorded today can be retroactively
decrypted once sufficiently powerful quantum computers become available. The fact that attacks
related to industrial espionage play a major role in ICS further emphasizes the need for long-term
confidentiality of transmitted data [75]. Although authentication can not be broken retroactively,
we consider a preliminary investigation beneficial. As components of ICS are seldom updated
during their long lifetime, they should support PQ DSAs rather sooner than later. As a consequence,
we address the integration of PQC (KEM and DSA) into the widespread industrial communication
protocol OPC UA in this work. Previous research efforts largely focused on the integration of PQC
into common Internet protocols, mainly, concentrating on PQ key exchange. To the best of our
knowledge, this is the first work that evaluates the integration of PQC into an industrial protocol.

1.1 Contribution
In this work, we integrate post-quantum means of key establishment and authentication into
OPC UA’s security handshake, demonstrating that industrial CPS are capable of handling the
increased cost of PQC. Furthermore, we formally analyze the security of our proposed quantum-
resistant variants in the symbolic model. The main contributions of our work are summarized as
follows:

→ We investigate all lattice-based schemes of NIST’s second round standardization process
with regards to a security-size trade-off and conduct a standalone performance analysis of
selected candidates on our evaluation platform.

1Our initial performance analysis conducted in [64] was based on algorithm specifications from the second round of NIST’s
standardization process. In February 2021, NIST released the third round candidates. Nevertheless, all selected algorithms
(Kyber, Dilithium, and Falcon) are among the finalists. As submission teams were only allowed to slightly alter existing
specifications, the performance results presented hereafter remain valid.

Towards Post-Quantum Security for Cyber-Physical Systems 3

→ We propose two novel integrations of PQC into OPC UA’s security handshake: Hybrid
OPC UA and PQ OPC UA. The first makes use of hybrid constructions for key exchange,
digital signatures, and X.509 certificates. The latter is solely based on post-quantum schemes
including PQ X.509 certificates. Both solutions do not alter the existing structure of the
security handshake, and our hybrid approach provides backward compatibility to legacy
devices. Besides that, we present a novel way for verifying hybrid X.509 certificates using
the cryptographic library mbedTLS.

→ We implement and evaluate the two solutions on our ARM-based evaluation platform and
provide detailed performance measurements for three NIST security levels. By combining
post-quantum key exchange and post-quantum digital signatures we evaluate the total
impact of PQC on OPC UA.

→ We analyze the security of our quantum-resistant variants in the symbolic model via the
state-of-the-art cryptographic verifier ProVerif. As our integrations target post-quantum
confidentiality as well as authentication, we proof both properties in our symbolic models.
We construct the formal models of our OPC UA variants in ProVerif’s dialect of the applied
pi calculus. All formal models presented in this work are available at https://github.com/
boschresearch/pq_opc-ua_formal_analysis.

→ Finally, we show that our PQ solution outperforms conventional OPC UA in terms of hand-
shake duration at all evaluated security levels. In addition, in four of our six instantiations,
we make use of Falcon’s highly efficient floating-point implementation, which – to the best
of our knowledge – has not been examined in previous performance studies.

1.2 Outline
In Section 2, we introduce the reader to OPC UA and its security mechanisms and, in addition, we
provide preliminaries on PQC and formal, computer-aided security analysis. Section 3 highlights
related work. In Section 4, we describe our two integrations of PQC into OPC UA. Section 5 presents
the symbolic models of our PQ-enabled OPC UA variants. Furthermore, we discuss the results of
our formal security analysis. The performance measurements of our two proposed solutions are
presented in Section 6. Section 7 concludes our paper.

2 PRELIMINARY BACKGROUND
2.1 OPC UA in Industrial Communication
OPC UA has been specified by the International Electrotechnical Commission (IEC) in the standard
series 62541. Furthermore, OPC UA is widely considered a de facto standard for future industrial
applications. Because of its service-oriented architecture, OPC UA offers a standardized interface
to exchange data between industrial applications independent from manufacturer of automation
technology. Recently, it has also been adopted by popular cloud services demonstrating its increasing
popularity [9, 54]. OPC UA offers two modes for the transfer of information: a client-server mode
and a relatively new publish-subscribe mode [57]. In this work, we focus on the client-server mode
since it is widely deployed in current automation systems and fully supported by open-source
implementations.

OPC UA provides mutual authentication based on X.509 certificates and it ensures integrity and
confidentiality of communication. The bottom layer of OPC UA’s security architecture handles the
transmission and reception of information. A secure channel is created within the communication
layer and is crucial for meeting the aforementioned security objectives. The exchange of information
is realized within sessions, which are logical connections between clients and servers.

https://github.com/boschresearch/pq_opc-ua_formal_analysis
https://github.com/boschresearch/pq_opc-ua_formal_analysis

4 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

Generate client nonce

Decrypt response message

Derive keys

Verify client certificate

Derive keys

Decrypt request message

Generate server nonce

OpenSecureChannel Response

Message header

Security header

Sequence header

Message body

Padding

Signature

Security token

Server nonce

Encrypted with pkclient Signed with skserver

Signed with skclient Encrypted with pkserver

OpenSecureChannel Request

Message header

Security header

Sequence header

Message body

Padding

Signature

Client certificate

Requested lifetime
Client nonce

OPC UA Client OPC UA Server

Verify server certificate

DiscoveryEndpoint

GetEndpoint Request

GetEndpoint Response

OpenSecureChannel

Verify signature

Verify signature

Fig. 1. High-level overview of OPC UA’s conventional security handshake.

Figure 1 shows OPC UA’s certificate-based authenticated key exchange. The following description
of this security handshake is based on the relevant parts of the official specification [58, 59]. Before
client and server establish a transport connection, the client issues a GetEndpoint Request (GetEP
Req.) to the DiscoveryEndpoint. In turn, the DiscoveryEndpoint sends a GetEndpoint Response (GetEP
Res.) containing EndpointDescriptions, which later allow the client to access services or information
offered by the server. In addition, the response contains information required for the security
handshake: server certificate, message security mode, and security policy. The server certificate
contains the authenticated public key of the server, which the client verifies before initiating the
security handshake. OPC UA offers different message security modes for established sessions: None,
SignOnly, and SignAndEncrypt. As the name suggests, SignAndEncrypt offers confidentiality of
communication as well as authenticity, hence, we only consider this security mode in the remainder
of this work.
The set of cryptographic mechanisms used during the handshake phase and in subsequent

sessions are specified using SecurityPolicy Profiles. For example, the security policy Basic256Sha256
uses RSA2048 to encrypt/decrypt (RSA-OAEP) and sign/verify messages (RSA-PKCS1.5) during the
security handshake; symmetric keying material is derived using the hash function SHA256 in a
pseudorandom function (PRF); within sessions, AES256 in Cipher Block Chaining mode is used
for encryption, and a keyed-hash message authentication code (HMAC) based on SHA256 is used
for signatures. In contrast to TLS, OPC UA so far only offers a security handshake that relies on
RSA.2 In essence, it is based on encrypting random client and server nonces that are used to derive
session keys.

The following characteristics of the security handshake are specified in the SecureChannel Service
Set. First, the client sends an OpenSecureChannel Request (OSC Req.) to the server. This request

2It should be noted that the OPC Foundation plans to standardize a security policy that supports Diffie–Hellman (DH) key
exchange based on elliptic curve cryptography (ECC) in the near future [60].

Towards Post-Quantum Security for Cyber-Physical Systems 5

contains a cryptographically secure random number (client nonce), a client certificate (including
a certificate chain), and a requested lifetime (RT) for the secure channel. The request message is
encrypted using the authenticated public key of the server and signed using the secret key of the
client. In case the verification of the client certificate succeeds, decryption and signature verification
take place. Afterwards, the server generates a cryptographic random number (server nonce). In order
to derive the required session keys, both nonces serve as inputs to a PRF. Two sets of symmetric
keys are derived this way: one is associated with the server and the other is associated with the
client. The message body of the OpenSecureChannel Response (OSC Rsp.) contains a server nonce
and a security token (ST), the server certificate is placed in the security header of the response
message. Secure channels are identified by security tokens, which expire after a specified lifetime.
Therefore, the revised lifetime, which is part of the security token, tells the client when to renew
the secure channel. The response message itself is encrypted using the client’s authenticated public
key and signed using the server’s private key. After decryption and signature verification, the client
derives the keying material from its own nonce and the received server nonce by applying the
same PRF as the server. Finally, client and server end up with an identical set of cryptographic
keys completing OPC UA’s security handshake. The security properties of this handshake have
been formally analyzed and the entire security architecture has been investigated in previous
works [27, 68].

2.2 Post-Quantum Cryptography
Once a cryptographically relevant quantum computer becomes available, current public key primi-
tives based on the mathematical problem of integer factorization (RSA) and (elliptic curve) discrete
logarithm (DH and ECDH) will be broken because of Shor’s quantum algorithm [70]. The last
decade has seen an increased interest from academia and industry in finding novel cryptosystems
that can withstand attacks from quantum computers. In essence, one needs to find a NP-hard
problem that is not solvable in polynomial-time by quantum and classical computers.

PQ schemes can be grouped into five families: code-based, lattice-based, hash-based, multivariate,
and supersingular EC isogeny cryptography. Out of the five families lattice-based cryptography
has arguably attracted the most attention in research: 12 of the remaining 26 schemes in NIST’s
standardization process are based on lattice problems. Besides that, lattice schemes offer effi-
cient implementations, reasonably sized public keys and ciphertexts, as well as strong security
properties [53]. Consequently, we focus on lattice-based cryptography in this work.

A lattice consists of a set of points in a n-dimensional space with a periodic structure. By using
n-linearly independent vectors any point in this structure can be reproduced. The security of
lattice-based cryptographic primitives are based on NP-hard problems of high-dimensional lattices,
such as the shortest vector problem (SVP). All lattice schemes submitted to NIST’s standardization
process rely on variants of the learning with errors (LWE) problem, learning with rounding (LWR)
problem, or NTRU. These problems can be related to aforementioned NP-hard lattice problems via
reductions. We investigate the following lattice-based KEMs for potential integration into OPC UA:
CRYSTALS-Kyber [8], FrodoKEM [3], LAC [78], NewHope [2], NTRU [31], NTRU-Prime [15],
Round5 [10], Saber [34], and ThreeBears [40]. In addition, we investigate the following lattice-based
signature schemes: CRYSTALS-Dilithium [37], Falcon [38], and qTESLA [17]. Table 4 and Table 3
in the Appendix list all lattice-based schemes considered in this work including characteristics of
their parameter sets.
NIST defined five security levels corresponding to different security strengths in bits for its

PQC standardization process. We focus on level 1, 3, and 5 in this work. NIST security level 1
corresponds to 128 bit (classical) security, whereas level 3 and 5 correspond to 192 bit and 256 bit
security respectively. KEMs consist of a triple of algorithms: key generation, encapsulation, and

6 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

decapsulation. Key generation is a probabilistic algorithm that generates a public and private
key pair. The probabilistic encapsulation requires a public key as input and generates a shared
secret and the corresponding ciphertext. Input to the decapsulation algorithm is a ciphertext and a
private key, it either returns a shared secret or an error. Many lattice-based schemes show a small
(cryptographically negligible) failure probability during the decapsulation step, in such cases a
shared secret cannot be derived. Typically, KEMs offer either indistinguishability under chosen
plaintext attack (IND-CPA) or indistinguishability under chosen ciphertext attack (IND-CCA).
IND-CPA offers security against passive adversaries, i.e. no information is learned by observing
ciphertexts being transmitted. IND-CCA offers a stronger notion of security and provides security
in presence of active adversaries. For the integration into OPC UA we rely on an ephemeral key
exchange scheme. Any KEM can be easily transformed into an ephemeral key exchange as follows.
An initiator generates a public and private key pair and sends its ephemeral public key to a receiving
entity. The receiving entity generates a random secret, encrypts it using the received ephemeral
public key (encapsulation), and sends the resulting ciphertext back to the initiator. Ultimately, the
initiator decrypts the received ciphertext using its ephemeral private key (decapsulation) giving
both parties a shared random secret.
Similar to KEMs, signature schemes consist of a triple of algorithms: key generation, signature

generation, and signature verification. Key generation returns a public and private key pair. Signa-
ture generation takes a private key and a given message to produce a signature. The deterministic
signature verification algorithm takes a public key, a message, and a signature and either rejects or
accepts the signature. The standard security notion for DSAs is existential unforgeability under
chosen message attack (EUF-CMA). NIST required all submitted signature schemes to reach this
notion. For specific details of the schemes, we refer the reader to the corresponding specifications.

2.3 Mechanized Security Analysis
Designing cryptographic protocols, such that specific security goals are achieved, is non-trivial
and prone to errors, as many past examples have shown [42, 51, 74]. In order to promote trust in
cryptographic protocols, their security can be demonstrated via formal analyses or proofs. While
it is still common to verify security properties of protocols manually, this approach is no longer
recommended by experts for the three following reasons [11]:

(1) Formulating security arguments manually is a complex and time-consuming task. When
done on paper, errors tend to go unnoticed.

(2) To make manual analysis feasible protocols are represented as simplified models. In case of
over-simplifications, design flaws could be missed.

(3) Over the last decade (semi-)automated verification tools have matured, resulting in trust-
worthy formal analyses of widely deployed protocols [14, 41, 47, 50, 79].

In the realm of computer-aided verification, two strains of mathematical models have solidified:
security analysis in the symbolic model and in the computational model. While computational models
are more realistic, they are burdensome and error-prone to model – especially when considering
complex protocols. Besides that, proofs in the computational model are only semi-automatic, i.e.
require user input. The symbolic model, on the other hand, allows for complete automation, even
with complex protocols [11]. As a result, we focus on tool-based verification in the symbolic model
in this work. For the sake of completeness, we also briefly discuss the computational model in the
following.

2.3.1 Computational Model. In the computational model, adversaries are represented as prob-
abilistic Turing machines, messages are modeled as bit strings and cryptographic primitives as

Towards Post-Quantum Security for Cyber-Physical Systems 7

probabilistic functions from bit strings to bit strings [22]. Computer-aided proofs in the compu-
tational model are typically game-based.3 In fact, a proof methodology called game-hopping is
applied: the goal is to demonstrate that breaking a specific security property is possible only with
negligible probability. Starting at the original game with unknown success probability, sequential
transformations allow to reach games that enable the computation of the adversary’s success
probability. Via reductions to known complexity assumptions, e.g. discrete logarithm problem, it is
possible to infer the adversary’s success probability for the original game.

Compared to symbolic models, proofs based on computational models yield stronger guarantees.
However, formal analyses in the computational model are very difficult to mechanize; so far, only
semi-automated tools exist.

CryptoVerif. The first tool to tackle mechanized verification of computational models was Crypto-
Verif [24]. During the formal analysis, it generates intermediate games automatically with little
to no user interaction – depending on protocol complexity. CryptoVerif is capable of proving
confidentiality and authentication properties. As its input language is based on applied pi calculus,
it is especially well suited for protocol analysis.

2.3.2 Symbolic Model. The symbolic model is a simpler, abstract model and is due to Dolev and
Yao [36] as well as Needham and Schroeder [56]. Messages are modeled as terms that cannot be
split into compound bit strings. Cryptographic primitives are represented by black-box functions
that operate on these terms. Furthermore, perfect cryptography is assumed. This implies the
following [41]:

• Encrypted messages reveal nothing about the plaintext.
• Signatures are unforgeable.
• Hash functions are, in essence, random oracles with no collisions.
• Random numbers are truly random with no repetitions.

For instance, to break confidentiality properties the adversary needs to be in possession of the
secret decryption key. Furthermore, it is possible to add cryptographic primitives by defining them
as new rewrite rules or equations. For example, we formally model KEMs in our PQC-enabled
OPC UA variants using function symbols and rewrite rules (see Section 5). Note that for all added
(post-quantum) cryptographic constructions the perfect cryptography assumption applies as well.

The attack model considers the classical Dolev–Yao model [36]. Consequently, the adversary has
complete control over the network, eliminating the need to model dishonest parties [22, 25]. In
essence, the Dolev–Yao model enables an adversary to read, remove, replay, and modify messages
at will. However, the computational capabilities of this powerful adversary are restricted to the
defined primitives.

Two classes of symbolic security properties exist: trace properties and equivalence properties. On
the one hand, trace properties state that a specific property holds on every protocol run. Confiden-
tiality may be defined based on trace properties, meaning an adversary does not obtain knowledge
of certain data, such as secret keys. Authentication is typically expressed using correspondence
assertions, which is a subclass of trace properties. Equivalence properties, on the other hand, express
that an adversary is not capable of differentiating between two protocols. One intuitive example of
an equivalence property is that an adversary cannot distinguish between a protocol containing the
real secret or a random value [11].
While it is easier to automate formal protocol verification in the symbolic model than in the

computational model, certain challenges remain – mainly because of the infinite state space to
3Any security game consists of an adversary and a challenger. In case the adversary achieves a goal condition, it wins the
game, i.e. breaks the scheme.

8 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

explore [22]. Furthermore, the absence of attacks in the symbolic model does not generally prove it
secure in the computational model. However, security analyses of protocols in the symbolic model
have been highly appreciated, especially in the standardization of new protocols (see Section 3.2).
Due to this mechanized approach protocol changes are also easier to regulate than in the pen-and-
paper approach. This makes tool-based verification in the symbolic model a valuable approach for
detecting logical flaws in protocols.

Over the past years several symbolic verification tools have been introduced: CPSA, F7, Maude-
NPA, ProVerif, Scyther, Tamarin, and Verifpal [11, 48]. In the domain of automated symbolic verifi-
cation tools, Tamarin and ProVerif stand out and are considered state-of-the-art tools. In fact, they
both have been used to evaluate large-scale, real-world protocols like TLS 1.3 and Noise. As we
build on the already existing symbolic proof for OPC UA in [68], which is based on ProVerif, we
use ProVerif for our proofs of the PQC-enabled OPC UA variants.

ProVerif. As mentioned above, ProVerif stands out in the realm of symbolic verification tools [21–
23, 25]. In fact, many real-world protocols have been verified using ProVerif: Signal [47], Noise [45],
TLS 1.3 [16], and others [14, 50, 79]. As is common for symbolic models, ProVerif allows to verify
various trace and equivalence properties. In addition, it analyzes protocols with respect to an
unbounded message space and an unbounded number of sessions.
Protocols are modeled using a variant of the applied pi calculus language [1]. ProVerif then

translates the modeled protocol into a set of Horn clauses, which it automatically verifies. For the
verification process, the security properties also need to be translated into derivable queries on the
resulting Horn clause representation. In case ProVerif does not find an attack, the desired property
is proven secure. Moreover, ProVerif has also been proven to not miss any attacks [48]. Note that
false attacks may be found, especially when modeling protocols with global states [22, 50]. And
since ProVerif does not bound the number of executed protocol sessions and message space, it does
not always terminate. Apart from these two minor drawbacks, it has proven to be of great value in
the verification of cryptographic protocols.

3 RELATEDWORK
3.1 Integration of PQC into Protocols
There have been a lot of research efforts integrating PQC into widespread Internet protocols such
as TLS, SSH (Secure Shell), and IKEv2 (Internet Key Exchange version 2). Since OPC UA’s security
handshake is loosely inspired by TLS’s handshake protocol, we focus on previous works in this
area. In general, existing integration studies can be grouped into the following three categories:
standardization efforts, implementation works, and experimental studies. Two active Internet
Engineering Task Force (IETF) Internet-Drafts exist that describe the integration of hybrid key
exchange into TLS 1.2 [30] and TLS 1.3 [72]. Many experimental studies have been conducted under
real network conditions [26, 49, 71] or under lab conditions [33, 62]. In aforementioned studies, the
authors typically make use of already existing open source implementations of PQC. For example,
Open Quantum Safe provides prototypical integrations of PQ schemes into the popular library
OpenSSL [73]. Other works exist where PQC has been either integrated into embedded libraries [29]
or has been optimized for specific platforms [44]. Our implementations of PQ schemes are mainly
based on PQClean,4 which provides portable implementations for an easy integration into other
codebases. When investigating authentication, another difficulty must be dealt with: a long-term
public key is involved, which is typically stored and distributed via certificates. Previous works
proposed hybrid certificates for the post-quantum transition where extension fields are used to bind

4https://github.com/PQClean/PQClean.

https://github.com/PQClean/PQClean

Towards Post-Quantum Security for Cyber-Physical Systems 9

an additional public key to an entity using an additional PQ signature scheme [18, 20]. In addition,
the impact of hybrid and PQ certificates on various Internet protocols has been investigated [43, 71].

Since it enables confidentiality against future quantum adversaries, hybrid key exchange has so
far attracted themost attention. If authentication and key exchange are considered, they are typically
evaluated separately, hence not showing the entire impact of PQC. Hybrid authentication has been
addressed, but it was evaluated separately from key exchange and no performance measurements
were conducted [33]. The authors of [29] investigated the combined impact of PQ key exchange
and authentication on TLS for embedded devices, but only considered one set of PQ primitives at
one security level.

3.2 Automated Security Analysis of Cryptographic Protocols
The first automated verification tools arrived roughly two decades ago [55, 76]. While these
tools were considered impressive advances in the academic community, they were not suitable
for analyzing complex real-world protocols. They often lacked completeness, did not guarantee
termination, and, in addition, could not prove the absence of attacks since they only analyzed a
subset of the state space.
Eventually, powerful verification tools, such as ProVerif [21, 23, 32], emerged. Over they years,

ProVerif has amassed a remarkable track record in verifying and detecting flaws in numerous
protocols [14, 47, 50, 79]. In fact, it even played a major role in the standardization process of
TLS 1.3 [16, 45]. With the introduction of tools that promise high accessibility and usability, e.g.
Verifpal [48], tool-based verification of protocols may be on the verge of broader adoption in the
realm of practitioners.
OPC UA’s security handshake has been verified in the symbolic model using ProVerif [68].

This analysis focused on confidentiality and authentication properties. Attacks were found that
affected authentication properties within the security modes Sign and SignAndEncrypt. The authors
of [68] provided countermeasures that have been communicated and clarified with the OPC
Foundation [67]. In essence, the public key of the receiving entity (in form of a hash of the certificate)
must be included in the OpenSecureChannel Request and Response otherwise man-in-the-middle
attacks are possible. Note that we base the ProVerif models of our proposed PQ variants on the
fixed model presented in [68].

In further related works, the integration of PQC into other protocols have been formally verified
in the symbolic model. For instance, in [41], the authors introduce a post-quantum variant of the
WireGuard VPN protocol, which they formally verify using the Tamarin protocol prover [13].

4 INTEGRATION OF PQC INTO OPC UA
4.1 Hybrid OPC UA
In hybrid modes, different options for combining cryptographic material exist. We use the XOR-
then-MAC combiner from [19] regarding confidentiality of data, which is provably secure against
fully quantum adversaries. Besides the integration of a hybrid key exchange scheme, we need to
convey two long-term public keys and two digital signatures for authenticity and integrity. For
reasons of backward compatibility, we work with X.509 certificates that consist of two non-critical
extensions as proposed in [18]. The first contains the public key of the additional PQ signature
scheme, the second holds the signature over the certified data. Messages are signed independently
from each other using two different signature schemes. The security properties of this concatenation
combiner have been estblished in [20]. While the merits of a hybrid key exchange are obvious,
there is a slightly weaker need for hybrid authentication and hybrid digital signatures. However,
applications will have to support conventional and PQ schemes in order to be backward compatible

10 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

Generate client nonce

Decrypt request message

Verify hybrid client certificate

Derive classical keys

Decrypt request message

Generate server nonce

OpenSecureChannel Response

Message header

Security header

Sequence header

Message body

Padding

Signature

Security token
Server nonce

Encrypted with pkclient,RSA Signed with skserver,RSA

PQ KEM ciphertext

Signed with skserver,PQ

PQ Signature

MAC

Signed with skclient,RSA Encrypted with pkserver,RSA

OpenSecureChannel Request

Message header

Security header

Sequence header

Message body

Padding

Signature

Requested lifetime
Client nonce

Signed with skclient,PQ

PQ Signature

OPC UA Client OPC UA Server

Verify hybrid server certificate

DiscoveryEndpoint

GetEndpoint Request

GetEndpoint Response

OpenSecureChannel

Generate PQ KEM key pair

PQ KEM public key
Hybrid client certificate

PQ KEM encapsulation

Expand PQ shared secret

Derive PQ keys

Combine keys: XOR-then-MAC

Derive classical keys

PQ KEM decapsulation

Expand PQ shared secret

Derive PQ keys

Combine keys: XOR-then-MAC

Verify MAC

Verify hybrid signature

Verify hybrid signature

Fig. 2. High-level overview of Hybrid OPC UA (yellow: operations/data related to PQC; gray: operations/data
related to XOR-then-MAC combiner).

with applications, which have not been upgraded yet. Therefore, we also consider hybrid signatures
and authentication in this work to fully understand its impact on OPC UA.

The integration of hybrid modes into the security handshake of OPC UA requires modifications
to the SecureChannel Service Set. Figure 2 gives an overview of our hybrid integration of PQC into
OPC UA’s security handshake; modifications related to PQC are marked in yellow, while changes
related to the XOR-then-MAC construction are marked in gray. At first, we define a new security
policy Hybrid{1,3,5}_Basic256 that the server suggests to the client within the GetEndpoints Response.
In our approach, this response contains the hybrid X.509 certificate (including the certificate chain).
First, the client verifies the entire certificate chain assuming a hybrid root certificate has been
preinstalled. In addition to a random client nonce, the ephemeral key generation function of a
PQ KEM needs to be called (pkPQ , skPQ). The hybrid OSC Req. is initialized using the client nonce,
pkPQ , and the security settings obtained from the GetEndpoints Response. The additional public
key is positioned within the security header, which also includes the hybrid client certificate.
Before the request is sent to the server in form of an OPC UA message, it is signed using the
aforementioned hybrid signature scheme: A hash is computed over the entire message that is then
signed conventionally and by a PQ signature scheme. According to the specification of OPC UA, the
sequence header, the message body containing the client nonce, and the message footer containing
RSA-padding fields and signatures are encrypted. We avoid expensive RSA encryption/decryption
by placing the additional values of our hybrid solution (pkPQ and PQ signature) outside the encrypted
message parts.
Once the server receives the request, it verifies the hybrid client certificate (including the

certificate chain). After the certificate verification, the conventionally encrypted message parts are

Towards Post-Quantum Security for Cyber-Physical Systems 11

PQ KEM ciphertext

OpenSecureChannel Response

Security token

Server nonce

Signed with skserver,PQ

Message header

Security header

Sequence header

Message body

PQ Signature

Signed with skclient,PQ

OpenSecureChannel Request

Message header

Security header

Sequence header

Message body

PQ Signature

PQ client certificate

Requested lifetime
Client nonce

PQ KEM public key

OPC UA Client OPC UA ServerDiscoveryEndpoint

GetEndpoint Request

GetEndpoint Response

OpenSecureChannel
Verify PQ server certificate

Generate client nonce

Generate PQ KEM key pair

Verify PQ client certificate

Derive keys

Verify PQ signature

Generate server nonce

PQ KEM encapsulation

Expand PQ shared secret

Verify PQ signature

Derive keys

PQ KEM decapsulation

Expand PQ shared secret

Fig. 3. High-level overview of PQ OPC UA (yellow: operations/data related to PQC).

decrypted and the two signatures are verified. As in conventional OPC UA, the server then creates
his server nonce. For our proposed hybrid mode, the encapsulation function of the respective PQ
KEM is called using the received public key pkPQ as input. This generates a ciphertext ctPQ and a
shared secret ssPQ . In order to maintain the original structure of OPC UA’s security handshake,
we expand the shared secret using a PRF to obtain additional nonce values. Further calls to PRFs
generate two types of keying material: a conventional set and a post-quantum set. In a subsequent
step, the two sets are combined using XOR. To complete the XOR-then-MAC combiner, we compute
a MAC over the ciphertext ctPQ and the original server and client nonce using the generated server’s
symmetric signing key. The ciphertext and MAC are placed in the security header. We keep the
server nonce inside the body of the response message alongside the revised lifetime of the secure
channel. The response message is signed using the aforementioned concatenation combiner. After
signing the message, the sequence header, the message body, and message footer are encrypted.
Again, this avoids expensive encryption of the additional, potentially large cryptographic material:
post-quantum ciphertext ctPQ and signature.
The client receives the response, conventionally decrypts it, and verifies the included hybrid

signature. Utilizing the received PQ ciphertext ctPQ and the client’s own PQ KEM secret key skPQ ,
the corresponding decapsulation function of the respective KEM is called, which outputs the shared
secret ssPQ . As in processing the OSC Req., this shared secret is expanded to create additional
nonce values. Having obtained all required nonces, we generate two types of keying material
(conventional and PQ) and combine them using XOR. We verify the received MAC by using the
computed symmetric signing key completing our hybrid security handshake.

4.2 Post-Quantum OPC UA
Once PQ schemes have been standardized, they will be adopted in protocols and will be considered
state-of-the-art. Consequently, hybrid modes will not be required any longer. For our PQ OPC UA

12 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

solution, we keep the structure of the original security handshake but replace conventional asym-
metric primitives with PQ key encapsulation and digital signature schemes. Figure 3 provides an
overview of the modified security handshake only based on PQC primitives; modifications are
marked in yellow.
We introduce a new security policy PQ{1,3,5} that is sent to the client in GetEndpoints Response.

The conveyed server certificate contains a single PQ public key and is signed with a PQ signature
scheme. The client verifies the server certificate including the certificate chain. Again, we assume
the PQ root certificate has been preinstalled on both client and server. The generation of the
OSC Req. is the same as in our hybrid mode. First, a random client nonce is created and then
the ephemeral key pair of a PQ KEM (pkPQ , skPQ). Since we base the key exchange of our PQ
solution solely on a PQ KEM, we do not require secrecy of the random client and server nonce. As
a consequence, sequence header, message body, and message footer of the OSC Req. and OSC Rsp.
are sent unencrypted. The resulting OSC Req. is signed using the client’s private PQ signing key,
the certificate containing the corresponding PQ public key is part of the request message sent to
the server.

The server verifies the PQ client certificate (including the certificate chain) and the signature of
theOSC Req. using the client’s authenticated public key. After the verification step, the encapsulation
function of the KEM is invoked resulting in a ciphertext (ctPQ) and shared secret (ssPQ). Besides that,
we generate a random server nonce. The shared secret and both random nonces serve as input to a
PRF. We consider the output of the PRF our master secret. Subsequently, we use the master secret as
input to another PRF to obtain symmetric keying material. By keeping the random nonces from the
conventional security handshake and by using them as input to the first PRF we ensure that both
parties contribute to the master secret. The OSC Rsp. contains the generated ciphertext, the server
certificate, the server nonce, and the revised lifetime of the secure channel. The response is signed
using the server’s private PQ signing key, and the signature is appended to the response message.
Once the client receives the OSC Rsp., the signature is verified using the server’s authenticated

public key. Then, the client calls the decapsulation function of the PQ KEM resulting in the shared
secret (ssPQ). Again, this shared secret serves as input to a PRF alongside the client and server nonce.
The output is fed to another PRF to compute the final keying material. Server and client derive
the same keying material, which is used in subsequent communication sessions. This completes
OPC UA’s handshake solely based on PQ schemes: Client and server are mutually authenticated
via PQ certificates and signatures; Keying material is derived using a key exchange scheme based
on a PQ KEM.

4.3 Selection ofQuantum-Resistant Primitives
In principle, our generic approach allows us to integrate any KEM and DSA. Our criteria for the
selection of PQC algorithms are as follows. We require lattice-based schemes that offer a balanced
trade-off in terms of estimated security, public key + ciphertext/signature size, and performance
since the time to establish a secure channel should not substantially increase. In addition, we
only consider algorithms that are part of NIST’s ongoing PQC standardization process (Round 2).
Consequently, their official specification should offer various parameter sets that cover different
security levels; KEMs should provide IND-CCA. Integration into OPC UA needs to be possible
without any modifications to cryptographic algorithms since we do not want to invalidate any of
their security claims.

4.3.1 Security-Size Trade-Off. First, we study the trade-off in terms of security and size of all
remaining lattice-based Round 2 submissions. The size metric is important to allow for an easy
integration into existing protocols. In our case, the size metric for KEMs consists of the public

Towards Post-Quantum Security for Cyber-Physical Systems 13

64

128

192

256

320

S
e
c
u

ri
ty

 E
s
ti

m
a
te

 [
b

it
]

Public Key + Ciphertext [bytes]

Kyber
LAC
NewHope
NTRU-HRSS
NTRU Prime
Saber
Three Bears
Round5
Frodo

128

192

256

10 K 30 K 50 K

(a) Key encapsulation mechanisms.

64

128

192

256

320

S
e
c
u

ri
ty

 E
s
ti

m
a
te

 [
b

it
]

Public Key + Signature [bytes]

Dilithium

Falcon

qTESLA

64

128

192

256

1 K 2 K 3 K 4 K 5 K

(b) Digital signature algorithms.

Fig. 4. Security-size trade-off for lattice-based quantum-resistant schemes.

key and ciphertext size since both need to be transmitted in our proposed solutions. Regarding
DSAs, we use public key and signature size as metric. Both are transmitted via certificates to other
nodes during the handshake. Considering the security metric, we use security strength estimations
provided in the specification of each submission. These figures are based on the estimated cost
of the best known attacks against the underlying lattice-problem, typically core-SVP hardness is
evaluated.

Figure 4 shows the trade-off for estimated security and size for lattice-based schemes remaining in
NIST’s PQC process. Note that for submissions containing multiple schemes or multiple parameter
sets, we only consider one scheme or one set of parameters. In case of NTRU, we consider the
recommended KEM parameter set NTRU-HRSS; for NTRU Prime, we only consider the parameter
sets of Streamlined NTRU Prime. For Round5, which specifies a total of 21 parameter sets, we only
consider their specified IND-CCA secure KEM with ring parameter set and no error correction, i.e.
R5ND_CCA_0d_KEM.
Our evaluation shows that parameter sets for Kyber (Kyber512, Kyber768, and Kyber1024),

Round5 (R5ND_1CCA_0d, R5ND_3CCA_0d, and R5ND_5CCA_0d), and Saber (LightSaber, Saber,
and FireSaber) offer a very good trade-off in terms of public key + ciphertext size and estimated
security strength. Consequently, we select these three schemes for a further performance evaluation.
From the trade-off in Fig. 4(a), LAC seems like another promising candidate. However, attacks on
LAC that allow to fully recover the secret key have been discovered decreasing our trust in this
scheme [35, 39]. We do not select other schemes for further evaluation because (a) their parameter
sets imply an imbalanced security-size trade-off (NTRU-HRSS, NewHope, and Frodo), (b) they have
not attracted much attention in previous experimental studies (Three Bears and NTRU Prime), or
(c) known attacks significantly reduce their security estimations (LAC).

The security-size trade-off for digital signature schemes is shown in Fig. 4(b). After an update
to its Round 2 specification, qTESLA only provides provably-secure parameter sets that come
with very large sizes for signatures and public keys. Ultimately, we select the remaining two
signature algorithms – Falcon and Dilithium – for a further performance evaluation. Both seem to
be promising signature algorithms since public key and signature are reasonably sized and they
provide parameter sets for different security strengths (level 1: Falcon512 and Dilithium2, level 3:
Dilithium4, level 5: Falcon1024).

14 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

0.70

0.95

1.20

1.45

1.70

1.95

2.20

Kyber Saber Round5

Key Generation

Encapsulation

Decapsulation

M
il

li
o

n
 C

y
c

le
s

(a) Level 1 parameter sets.
M

il
li

o
n

 C
y
c

le
s

1.25

1.75

2.25

2.75

3.25

3.75

4.25

Kyber Saber Round5

Key Generation

Encapsulation

Decapsulation

(b) Level 3 parameter sets.

M
il

li
o

n
 C

y
c

le
s

2.25

2.75

3.25

3.75

4.25

4.75

5.25

Kyber Saber Round5

Key Generation

Encapsulation

Decapsulation

(c) Level 5 parameter sets.

Fig. 5. Average performance of selected key encapsulation mechanisms.

4.3.2 Preliminary performance evaluation. We continue with an evaluation of the standalone perfor-
mance of the selected algorithms on our target platform – Raspberry Pi 3 Model B (see Section 6.2).
In order to obtain cycle-accurate measurements, we added a kernel extension that enables access to
the CPU cycle count register [5]. Our goal is to select parameter sets for three security levels with
a balanced trade-off in terms of security, size, and performance. Our implementations of Kyber
and Saber are based on code from PQClean. Round5 has not been integrated there; consequently,
we work with code from the official Round5 submission package.5 Figure 5 shows the average
cycle counts of 100 executions of the selected KEMs. Across all security levels Kyber shows the
best performance. Considering all processing steps of KEMs, Kyber is significantly faster than
Round5 (in average 3.6 × 106 cycles at each security level) and also faster than Saber (in average
1.5 × 106 cycles at each security level). In comparison, the standalone performance of an ECDHE
key exchange based on SECP256R1, which corresponds to security level 1, takes 2.1 × 107 cycles on
our evaluation platform, whereas Kyber512 only takes 2.9 × 106 cycles. Kyber has also been part of
several previous studies resulting in a similar assessment of its performance [29, 62]. Consequently,
we select the three parameter sets of Kyber for instantiating our solutions.

Having analyzed KEMs, we turn to the two selected signature schemes. Exploiting Falcon’s
floating-point arithmetic requires an underlying hardware floating-point unit (FPU) to support
double-precision floating-point as defined by the IEEE 754 standard [65]. For devices without
hardware FPU, an implementation exists that emulates floating-point precision (Falcon-EMU). The
ARMv8 instruction set of the Raspberry Pi 3 fulfills the aforementioned requirement, which allows
us to evaluate both implementations, i.e. Falcon-FPU and Falcon-EMU [6]. Our implementation
of Dilithium is based on code from PQClean. For the implementation of Falcon, we make use of
reference code from the official website.6 Figure 6 shows the average cycle counts of signature
generation and verification of the selected DSAs in comparison with ECDSA and RSA over 100
executions. Please note, we do not report performance measurements of key generation since
generation of new signing keys is typically required only rarely. Enabling floating-point operations
by using Falcon-FPU increases signature generation in average 11.4 times compared to Falcon-EMU.
Furthermore, Falcon’s highest security parameter set is even 1.9× 106 cycles faster than Dilithium’s
level 1 configuration in case floating-point operations are enabled. All parameter sets of Dilithium
and Falcon-FPU outperform the conventional signature scheme ECDSA based on the elliptic-curve
SECP256R1, which corresponds to security level 1. The total runtime (signature generation plus
verification) of SECP256R1 corresponds to 3.2×107 cycles on our evaluation platform. In comparison,
Falcon512-FPU only takes 4.7 × 106 cycles and Dilithium2 1.1 × 107 cycles. Since Falcon provides
very efficient sizes for signatures and public key and since our evaluation platform is able to use
5https://github.com/round5/code/tree/master/configurable.
6https://falcon-sign.info.

https://github.com/round5/code/tree/master/configurable
https://falcon-sign.info

Towards Post-Quantum Security for Cyber-Physical Systems 15

0

25

50

75

100

RSA2048
(PKCS1.5)

ECDSA
(SECP256R1)

Falcon512
(EMU)

Falcon1024
(EMU)

Falcon512
(FPU)

Falcon1024
(FPU)

Dilithium2 Dilithium4

Sign Verify

0

3

6

9

12

Falcon512
(FPU)

Falcon1024
(FPU)

Dilithium2 Dilithium4

M
il

li
o

n
 C

y
c

le
s

Fig. 6. Average performance of selected digital signature algorithms.

Falcon’s floating-point arithmetic, we select it for instantiating our proposed solutions. However,
Falcon does not offer a parameter set covering security level 3. Therefore, we use Dilithium4 within
the instantiation targeting that security strength. Besides that, we are not aware of any works that
have shown fundamental weaknesses in either Falcon or Dilithium, and both have been part of
previous experimental studies [62, 71].
In accordance with our initial requirements, we instantiate our two proposed solutions with

the following algorithms: We use Kyber512 and Falcon512-FPU regarding NIST security level 1,
for security level 3 we use Kyber768 and Dilithium4, and for level 5 we work with Kyber1024 and
Falcon1024-FPU.

5 MECHANIZED SECURITY ANALYSIS OF PROPOSED INTEGRATIONS
Next, we present our security analysis in the symbolic model of the proposed OPC UA variants.
First, we revisit the formal model of conventional OPC UA presented in [68], which forms the basis
of all our ProVerif models.7 Second, we present the formal models of our two variants: Hybrid and
PQ OPC UA. As we rely on the symbolic model for our proofs, we assume perfect cryptography
and the Dolev–Yao attack model (see Section 2.3 for details). Besides that, we only consider the
security mode SignAndEncrypt since it is the only setting offering confidentiality of communication
as well as mutual authentication between client and server.

We use the following notation in our subsequent graphical depictions of our models:
– asym_enc(m; pkX) and asym_dec(c; skX): The former denotes that a message m is asym-

metrically encrypted under the public key pkX, while the latter denotes the decryption of
the ciphertext c under the corresponding secret key skX.

– sign(m; skX) and verify(sig,m; pkX): A message m is signed using the secret key skX and
the resulting signature can be verified using the corresponding public key pkX. In case of
our proposed variants, the index X also states whether a classical (RSA) or post-quantum
public key primitive (PQ) is used.

– kem_keygen(), kem_encap(pkPQ), and kem_decap(ctPQ ; skPQ): Our integrations of PQC
into OPC UA require KEM constructions for establishing a shared secret. A key pair (skPQ ,
pkPQ) is first generated using the KEM’s key generation function. The encapsulation op-
eration takes as input a KEM public key pkPQ and outputs a shared secret ssPQ and the
corresponding ciphertext ctPQ . The shared secret can be obtained by the entity holding
the respective KEM secret key via the decapsulation function, which takes as input the
ciphertext ctPQ and the secret key skPQ .

– h(m): Applies a hash function h to the message m.

7We used ProVerif version 2.02pl1 for our proofs presented in this work.

16 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

Listing 1. Main process of the conventional OPC UA model in ProVerif.
process
(* Construct key pairs and output public keys of
all involved parties on the public communication channel *)
let pkC = pk(skC) in out(c, pkC);
let pkS = pk(skS) in out(c, pkS);
let pkEP = pk(skEP) in out(c, pkEP);

(* Start protocol *)
(
!process_client(skC , skEP , skS) |
!process_server(skC , skEP , skS) |
!process_endpoint(skC , skEP , skS)
)

Listing 2. Analyzed security properties in our OPC UA models.
(* Queries *)
query attacker(messageCli_S(pk(skC), pk(skS))).
query attacker(messageSrv_S(pk(skC), pk(skS))).
query attacker(messageCli_C(pk(skS), pk(skC))).
query attacker(messageSrv_C(pk(skS), pk(skC))).

(* Correspondence Assertions *)
query X: host , Y: host , N: nonce ; event(terminateOSC_Server(X, Y, N)) ==>

event(initiateOSC_Client(X, Y, N)).
query X: host , Y: host , N: nonce ; event(terminateOSC_Client(X, Y, N)) ==>

event(initiateOSC_Server(X, Y, N)).

– PRF(x, s): The pseudorandom function PRF takes as input the variable x and a secret seed
value s.

– MAC(m; k) and verify_MAC(mac, m; k): As our hybrid variant relies on the XOR-then-MAC
combiner, we use a MAC function, which takes as input a message m and a MAC key k, to
generate a MAC-tag. To verify the MAC-tag we use the function verify_MAC, which takes
as input the received tag, a message m, and the corresponding MAC key k.

As the symbolic proofs of our proposed OPC UA variants build on the existing proof in [68], we
rely on their assumptions in our ProVerif models. Besides that, we limit our analysis to the security
mode SignAndEncrypt andmodify their originalmodel to reflect OPCUA’smost current specification.
As a result, we assume that clients always accept the proposed security mode SignAndEncrypt,
which is part of the GetEndpoint Response sent by the DiscoveryEndpoint. In industrial networks, this
can be achieved via administrative policies and by restricting clients and servers to only support the
security mode SignAndEncrypt, which offers the most security guarantees, i.e. confidentiality and
authentication. As in [68], we model certificates as public keys and, thus, consider the complexities
of an underlying public key infrastructure (PKI) and its respective operations out of scope, e.g.
certificate verification, renewal, and revocation. We expect this assumption not to exclude attacks on
the desired authentication properties since in highly regulated industrial control systems certificate
management is typically achieved via out-of-band mechanisms. In our models, we place the public
keys of the three involved parties (OPC UA Client, DiscoveryEndpoint, OPC UA Server) on the
communication channel in the main process of our models, which are then implicitly trusted by the
different entities. For instance, this is highlighted in Listing 1, which shows the main process of the
conventional OPC UA model written in ProVerif’s variant of the applied pi calculus language: the
public keys are placed on the communication channel first and then OPC UA’s security handshake
is initiated.

Towards Post-Quantum Security for Cyber-Physical Systems 17

OPC UA Client (C) OPC UA Server (S)DiscoveryEndpoint

GetEP Req.

GetEP Rsp. = [pkS, SM:=SignEncrypt, SP]

Knows identity pkS

New NC

OSC Req. = [pkC, pkS, REQenc = asym_enc(NC, RL, REQsig = sign(h(pkC, pkS, NC, RL); skC); pkS)]

Has identity skC, pkC

Knows identity pkC

(NC, RL, REQsig) = asym_dec(REQenc; sks)

Verify(REQsig, h(pkC, pkS, NC, RL); pkC)

New NS

(keyS,enc, keyS,sig) = PRF(NC, NS)

(keyC,enc, keyC,sig) = PRF(NS, NC)

OSC Rsp. = [pkS, pkC, RESenc = asym_enc(NS, ST, RSPsig = sign(h(pkS, pkC, NS, ST); skS); pkC)]

(NS, ST, RSPsig) = asym_dec(RSPenc, skC)

Verify(RSPsig, h(pkS, pkC, NS, ST); pkS)

(keyC,enc, keyC,sig) = PRF(NS, NC)

(keyS,enc, keyS,sig) = PRF(NC, NS)

Has identity skS, pkSKnows identity pkS

Fig. 7. Formal model of conventional OPC UA in security mode SignAndEncrypt.

Regarding security objectives, we consider confidentiality as well as authentication properties
in our models. Confidentiality of the resulting client and server keying material is checked using
queries. By testing the resulting client and server keyingmaterial individually we are able to examine
their confidentiality properties separately in case of any failures. Authentication properties are
analyzed using correspondence assertions. In essence, correspondence assertions allow to study the
relationship between events that resemble important protocol stages but do not affect the overall
protocol flow. In case of our OPC UA models, we place events at the beginning and the end of the
respective client and server processes. By doing so we prove the following properties: Whenever
the server S reaches the end of OPC UA’s security handshake it believes it has done so with client
C – and vice versa.

We query confidentiality and authentication properties in similar fashion in all proposed models.
Listing 2 shows the defined queries and correspondence assertions in case of the conventional model.
In case of our PQC-enabled OPC UA variants, they are modified to account for the KEM-based
keying material.

5.1 Symbolic Proof: Conventional OPC UA
As mentioned above, Puys et al. [68] already analyzed OPC UA in the symbolic model using
ProVerif. Based on this analysis, they identified a weakness that enabled an attacker to mount a
man-in-the-middle attack on OPC UA’s security handshake. Their proposed mitigation fixes this
attack.
While examining the fixed ProVerif model of Puys et al., we found that their modeled request

and response messages do not completely adhere to OPC UA’s message structure. In OPC UA, only
the sequence header, the message body (incl. padding), and the signature are encrypted. Whereas
the signature is based on all parts of the message. Hence, two header fields are only signed but

18 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

Listing 3. Modeling OPC UA’s message structure in ProVerif.
(* send OpenSecureChannelRequest *)
new RL: bitstring;
let sig_OPN_Request = sign(skClient , hash_ideal ((OpenSecureChannelRequest ,
pkClient , Server , nonce_to_bitstring(Nclient), RL))) in
let enc_OPN_Request = rsa_enc(pkServer , (nonce_to_bitstring(Nclient), RL,
sig_OPN_Request)) in
event initiateOSC_Client(Client , Server , Nclient);
out(c, (OpenSecureChannelRequest , pkClient , Server , enc_OPN_Request));

Table 1. ProVerif’s verification results of our analyzed OPC UA models.

Security Objective Entity Query/Correspondence Assertion Conventional Hybrid PQ

Confidentiality

OPC UA Client

Client Encrypting Key
(
keyC,enc

)
True True True

Server Encrypting Key
(
keyS,enc

)
True True True

Client Signing Key
(
keyC,sig

)
True True True

Server Signing Key
(
keyS,sig

)
True True True

OPC UA Server

Server Encrypting Key
(
keyS,enc

)
True True True

Client Encrypting Key
(
keyC,enc

)
True True True

Server Signing Key
(
keyS,sig

)
True True True

Client Signing Key
(
keyC,sig

)
True True True

Authentication
OPC UA Client Client→ Server True True True
OPC UA Server Server → Client True True True

not encrypted: message and security header, which include the message type, the certificate of the
sending entity, and a hash over the certificate of the receiving entity. To demonstrate this behavior
we depict the part of our modeled client process in Listing 3, where the client sends its request
message to the server. Note that OpenSecureChannelRequest, as part of the message header, as
well as pkClient and Server, as part of the security header, are sent unencrypted.

In order to ensure conformance with the official specification of the OpenSecureChannel Ser-
vice [59], we apply these modifications to our model. Figure 7 shows the resulting ProVerif model
of the conventional OPC UA handshake.
As a result, ProVerif does not find any attacks on OPC UA’s conventional handshake. In fact, it

proves all of the confidentiality and authentication queries; Table 1 summarizes the verification
results of our analysis. Considering verification runtime, our conventional OPC UA model finishes
in less than one second wall time (0.527 s) on a notebook running Ubuntu 20.04.02 LTS with an
Intel Core i7-8650 CPU clocked at 2.11 GHz and 16 GB RAM.

5.2 Symbolic Proof: Hybrid OPC UA
Having analyzed OPC UA’s conventional security handshake, we turn to our first quantum-resistant
solution: Hybrid OPC UA. Our ProVerif model of Hybrid OPC UA follows the illustration in Fig. 8.
Note that operations and data related to PQC are highlighted in yellow, while operations and data
related to the XOR-then-MAC combiner are highlighted in gray.
As our integration of PQC into OPC UA relies on KEM constructions, we have to formalize

KEMs according to their definition (see Section 2.2). To the best of our knowledge we are the
first to formally describe KEMs in ProVerif. However, a recent analysis of the Hybrid Public Key
Encryption scheme provides definitions of authenticated KEMs in CryptoVerif [4]. We adopt their

Towards Post-Quantum Security for Cyber-Physical Systems 19

OPC UA Client (C) OPC UA Server (S)DiscoveryEndpoint

GetEP Req.

Knows identity pkS,RSA, pkS,PQ

New NC

(pkPQ, skPQ) = kem_keygen()

OSC Req. = [pkC,RSA, pkC,PQ, pkS,RSA, pkS,PQ, pkPQ, REQenc = asym_enc(NC, RL,
REQsig,RSA = sign(h(pkC,RSA, pkC,PQ, pkS,RSA, pkS,PQ, pkPQ, NC, RL); skC,RSA)),

REQsig,PQ = sign(h(pkC,RSA, pkC,PQ, pkS,RSA, pkS,PQ, pkPQ, NC, RL); skC,PQ)]

Has identity skC,RSA, pkC,RSA, skC,PQ, pkC,PQ

Knows identity pkC,RSA, pkC,PQ

(NC, RL, REQsig,RSA) = asym_dec(REQenc; skS,RSA)

Verify(REQsig,RSA, h(pkC,RSA, pkC,PQ, pkS,RSA, pkS,PQ, pkPQ, NC, RL); pkC,RSA)

Verify(REQsig,PQ, h(pkC,RSA, pkC,PQ, pkS,RSA, pkS,PQ, pkPQ, NC, RL); pkC,PQ)

New NS

(ssPQ, ctPQ) = kem_encap(pkPQ)

NS,PQ = PRF(h(NC, NS) | LabelS, ssPQ)

NC,PQ = PRF(h(NS, NC) | LabelC, ssPQ)

(keyS,enc,PQ, keyS,sig,PQ) = PRF(NC,PQ, NS,PQ)

(keyC,enc,PQ, keyC,sig,PQ) = PRF(NS,PQ, NC,PQ)

(keyS,enc,conv, keyS,sig,conv) = PRF(NC, NS)

(keyC,enc,conv, keyC,sig,conv) = PRF(NS, NC)

(keyS,enc, keyS,sig) = (keyS,enc,conv XOR keyS,enc,PQ, keyS,sig,conv XOR keyS,sig,PQ)

(keyC,enc, keyC,sig) = (keyC,enc,conv XOR keyC,enc,PQ, keyC,sig,conv XOR keyC,sig,PQ)

MAC = mac(ctPQ | NS | NC; keyS,sig)

(NS, ST, RSPsig,RSA) = asym_dec(RSPenc; skC,RSA)

Verify(RSPsig,RSA, h(pkS,RSA, pkS,PQ, pkC,RSA, pkC,PQ, ctPQ, MAC, NS, ST); pkS,RSA)

Verify(RSPsig,PQ, h(pkS,RSA, pkS,PQ, pkC,RSA, pkC,PQ, ctPQ, MAC, NS, ST); pkS,PQ)

ssPQ = kem_decap(ctPQ, skPQ)

NC,PQ = PRF(h(NS, NC) | LabelC, ssPQ)

NS,PQ = PRF(h(NC, NS) | LabelS, ssPQ)

(keyC,enc,PQ, keyC,sig,PQ) = PRF(NS,PQ, NC,PQ)

(keyS,enc,PQ, keyS,sig,PQ) = PRF(NC,PQ, NS,PQ)

(keyC,enc,conv, keyC,sig,conv) = PRF(NS, NC)

(keyS,enc,conv, keyS,sig,conv) = PRF(NC, NS)

(keyC,enc, keyC,sig) = (keyC,enc,conv XOR keyC,enc,PQ, keyC,sig,conv XOR keyC,sig,PQ)

(keyS,enc, keyS,sig) = (keyS,enc,conv XOR keyS,enc,PQ, keyS,sig,conv XOR keyS,sig,PQ)

Verify_mac(MAC, ctPQ | NS | NC; keyS,sig)

Has identity skS,RSA, pkS,RSA, skS,PQ, pkS,PQKnows identity pkS,RSA, pkS,PQ

OSC Rsp.= [pkS,RSA, pkS,PQ, pkC,RSA, pkC,PQ, ctPQ, MAC, RSPenc = asym_enc(NS, ST,
RSPsig,RSA = sign(h(pkS,RSA, pkS,PQ, pkC,RSA, pkC,PQ, ctPQ, MAC, NS, ST); skS,RSA)),

RSPsig,PQ = sign(h(pkS,RSA, pkS,PQ, pkC,RSA, pkC,PQ, ctPQ, MAC, NS, ST); skS,PQ)]

GetEP Rsp. =
[pkS,RSA, pkS,PQ, SM:=SignEncrypt, SP]

Fig. 8. Formal model of Hybrid OPC UA in security mode SignAndEncrypt (yellow: operations/data related
to PQC; gray: operations/data related to XOR-then-MAC combiner).

model to receive a standard KEM construction in ProVerif. For all other cryptographic primitives,
we are able to rely on definitions from ProVerif’s official manual [25] and existing, open-source
models [16, 68].

In ProVerif, cryptographic primitives are always modeled as deterministic functions. Therefore,
we need to transform the probabilistic nature of KEMs into an intrinsically deterministic behavior.
For this, we declare two new types: kem_keypairseed and kem_seed. The former explicitly models
the required randomness within key generation kem_keygen() and the latter models a random seed
within the encapsulation step kem_encap, where it serves as additional input to the generation of a

20 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

Listing 4. KEM functionality in ProVerif.
(* Declarations *)
type kem_keypairseed.
type kem_seed.
type kem_privkey.
type kem_pubkey.
type kem_secret.
type kem_ciphertext.

(* Key Generation () -> (pk, sk) *)
fun kem_pk(kem_keypairseed): kem_pubkey.
fun kem_sk(kem_keypairseed): kem_privkey.

letfun kem_keygen () =
new s:kem_keypairseed;
let keygen_pk = kem_pk(s) in
let keygen_sk = kem_sk(s) in
(keygen_pk , keygen_sk).

(* Encapsulation(pk) -> (ss, ct) *)
fun kem_encap_r_secret(kem_seed , kem_pubkey): kem_secret.
fun kem_encap_r_enc(kem_seed , kem_pubkey): kem_ciphertext.

letfun kem_encap(pk:kem_pubkey) =
new k:kem_seed;
let encap_secret = kem_encap_r_secret(k, pk) in
let encap_ciphertext = kem_encap_r_enc(k, pk) in
(encap_secret , encap_ciphertext).

(* Decapsulation(ct, sk) -> (ss) *)
fun kem_decap(kem_ciphertext , kem_privkey): kem_secret.
equation forall k:kem_seed , ks:kem_keypairseed;
kem_decap(
kem_encap_r_enc(k, kem_pk(ks)),
kem_sk(ks)
) = kem_encap_r_secret(k, kem_pk(ks)).

shared secret (kem_encap_r_secret) and ciphertext (kem_encap_r_enc). As a result, it is ensured
that the seeds are freshly chosen at each call to the key generation and encapsulation function. The
decapsulation function kem_decap is declared as standard destructor that properly captures the
relation between decapsulation and encapsulation. Note that because of the symbolic model and
the underlying perfect cryptography assumption, the user-defined KEM functions are not capable
of modeling potential decryption failures. Treating such failures is not supported in ProVerif at the
time of writing. As this has led to certain attack scenarios in some of the proposed post-quantum
KEMs, adoptions may be required in the future to address them accordingly. Listing 4 shows the
resulting KEM model in ProVerif.
Apart from the integration of a post-quantum KEM we need to model the additional PQC

signature scheme (new long-term key pair, additional sign and verify operations), the modified
structure of request and response message, the derivation of additional nonces, and the hybrid
construction based on the XOR-then-MAC combiner. For the evaluation of our Hybrid OPC UA
model, we use the same setup as in the case of conventional OPC UA. ProVerif finishes its analysis
within seconds (8.870 s) on our notebook and finds no attacks. Table 1 gives a complete overview
of the verification results of the proposed hybrid security handshake.
As our hybrid mode promises confidentiality as long as one of the underlying two primitives

remains unbroken (conventional public key cryptography or post-quantum key encapsulation),
we also verify this presumption. Accidentally leaking either the keying material derived from
classical cryptography or the keying material derived from the quantum-resistant primitives gives

Towards Post-Quantum Security for Cyber-Physical Systems 21

OPC UA Client (C) OPC UA Server (S)DiscoveryEndpoint

GetEP Req.

GetEP Rsp. = [pkS,PQ, SM:=SignEncrypt, SP]

Knows identity pkS,PQ

new NC

(pkPQ, skPQ) = kem_keygen()

OSC Req. = [pkC,PQ, pkS,PQ, pkPQ, NC, RL, REQsig = sign(h(pkC,PQ, pkS,PQ, pkPQ, NC, RL); skC,PQ)]

Has identity skC,PQ, pkC,PQ

Knows identity pkC,PQ

Verify(REQsig, h(pkC,PQ, pkS,PQ, pkPQ, NC, RL); pkC,PQ)

New NS

(ssPQ, ctPQ) = kem_encap(pkPQ)

NS,PQ = PRF(h(NC, NS) | LabelS, ssPQ)

NC,PQ = PRF(h(NS, NC) | LabelC, ssPQ)

(keyS,enc, keyS,sig) = PRF(NC,PQ, NS,PQ)

(keyC,enc, keyC,sig) = PRF(NS,PQ, NC,PQ)

OSC Rsp. = [pkS,PQ, pkC,PQ, ctPQ, NS, ST, RSPsig = sign(h(pkS,PQ, pkC,PQ, ctPQ, NS, ST); skS,PQ)]

Verify(RSPsig, h(pkS,PQ, pkC,PQ, ctPQ, NS, ST); pkS,PQ)

ssPQ = kem_decap(ctPQ, skPQ)

NC,PQ = PRF(h(NS, NC) | LabelC, ssPQ)

NS,PQ = PRF(h(NC, NS) | LabelS, ssPQ)

(keyC,enc, keyC,sig) = PRF(NS,PQ, NC,PQ)

(keyS,enc, keyS,sig) = PRF(NC,PQ, NS,PQ)

Has identity skS,PQ, pkS,PQKnows identity pkS,PQ

Fig. 9. Formal model of PQ OPC UA in security mode SignAndEncrypt (yellow: operations/data related to
PQC).

no attacks on the confidentiality properties. Only when both sets of keying material are accessible
to the adversary the confidentiality property is broken.

5.3 Symbolic Proof: Post-Quantum OPC UA
For the PQ OPC UA variant, our ProVerif model follows the illustration in Fig. 9; all operations and
data related to PQC are highlighted in yellow. As the variant only based on PQC does not require a
hybrid construction for key establishment and concatenation of signatures, it is less complex and
thus easier to model. In fact, our ProVerif model of PQ OPC UA uses the same KEM definition as
in the hybrid case. Having modeled conventional OPC UA and the quantum-resistant primitives
for the hybrid approach, it is straightforward to derive the PQ-only variant: Most importantly, the
conventional key establishment is replaced by a post-quantum KEM and the conventional signature
scheme and its long-term signing key pair is replaced by a corresponding PQC signature scheme.
Furthermore, request and response message are now only signed.

Again, the two security properties, i.e. confidentiality and authentication, are successfully verified
by ProVerif within seconds (3.086 s) on our notebook. ProVerif’s verification results of PQ OPC UA
are summarized in Table 1.

5.4 Observation: Symbolic Proofs Based on Verifpal
While ProVerif is considered state of the art and delivers trustworthy results, it is accompanied by a
steep learning curve, which makes it hardly accessible to non-expert users. The recently introduced

22 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

tool Verifpal [46], on the other hand, aims to simplify protocol verification for practitioners [48].
Its modeling language tries to balance between intuitive protocol descriptions and still precise-
enough formal models. For instance, in order to avoid user error, it does not allow to model own
cryptographic primitives. In addition, it generates analysis output that is easy to interpret. At the
time of writing, Verifpal is still considered beta stage software but already produced promising
results by verifying complex protocols: the contact tracing protocol DP3T [48] and the secure
messaging protocol Signal [46].

As a consequence, we also verified our proposed OPC UA variants using Verifpal to evaluate its
accessibility promise. Compared to our initial analysis with ProVerif, Verifpal did not provide any
further insights, i.e. find any attacks. While it was straightforward to write the Verifpal models8
for conventional, hybrid, and post-quantum OPC UA, verification takes significantly longer. For
example, verifying the conventional OPC UA model took several days on a powerful remote server,
which is equipped with two AMD EPYC 7742 CPUs, each offering 64 cores, running at 2.5 GHz and
has 2 TB RAM available.
When comparing the usability of Verifpal to ProVerif, its accessibility to inexperienced users

in the domain of protocol analysis is impressive. But, we expect that it will be hard for Verifpal
to achieve similar verification speeds as ProVerif while maintaining its low entry barriers (not
mentioning the 15+ years of development ProVerif has in advance). Nevertheless, addressing this
performance gap seems to be an important target for the first full release.

6 EXPERIMENTAL RESULTS AND EVALUATION
6.1 Implementation Notes
We rely on an open-source OPC UA stack, open62541 [61], to implement our two solutions. Inte-
gration of hybrid key exchange, hybrid authentication, and hybrid signatures requires significant
changes to the codebase of open62541. To allow for backward compatibility with non-hybrid aware
nodes we implement a new security policy Hybrid{1,3,5}_Basic256. We add the respective parts
of the hybrid key exchange based on KEMs to the client and server code. The key derivation
function is adapted to generate two sets of keying material and to combine these two sets using
XOR. For our KEM combiner construction, the MAC creation and verification is added as part of
the hybrid key exchange. The handling of hybrid authentication based on certificates is integrated
and hybrid signature creation and verification is added to the source code. The quantum-resistant
signature is appended to the message buffer (not encrypted), while the additional PQ public key
and ciphertext of the respective KEM and MAC-value are added to the security header. Our PQ
solution requires fewer modifications and uses the new security policy PQ{1,3,5}. The KEM-based
key exchange is integrated in client and server code. In addition, the generation and verification of
PQ signatures and the verification of PQ certificates is implemented. The handling of request and
response message needs to be adapted accordingly.
Available tools for generating hybrid certificates either make use of combiners that are not

fully backward compatible [73] or implement only a small subset of PQ schemes [18]. Because
of these limitations, we implement a new software package capable of creating hybrid and PQ
certificates. Our software is capable of creating the X.509 certificate structure from scratch and
can freely modify the desired fields. In our case, we rely on two non-critical extensions for storing
the additional public key and signature. open62541 uses the cryptographic library mbedTLS for
all security relevant functions including the verification of certificates. Therefore, the certificate
chain and the trusted root certificates are passed to the verification function provided by mbedTLS.

8All implemented models are available at https://github.com/boschresearch/pq_opc-ua_formal_analysis/tree/master/02_
verifpal-models; the used version of Verifpal is 0.21.4.

https://github.com/boschresearch/pq_opc-ua_formal_analysis/tree/master/02_verifpal-models
https://github.com/boschresearch/pq_opc-ua_formal_analysis/tree/master/02_verifpal-models

Towards Post-Quantum Security for Cyber-Physical Systems 23

Table 2. Message and certificate sizes for both solutions (in bytes).

Solution

OSC Request OSC Response Certificate Chain
Single
Cert.

Attached
CA Cert.

Single
Cert.

Attached
CA Cert.

Single
Cert.

Attached
CA Cert.

Conventional (RSA2048) 1,597 2,373 1,601 2,377 908 1,750

H
yb

rid

1 (Kyber512 + Falcon512 + RSA2048) 4,698 7,147 4,670 7,119 2,515 4,964
3 (Kyber768 + Dilithium4 + RSA2048) 11,945 17,929 11,885 17,869 6,050 12,034
5 (Kyber1024 + Falcon1024 + RSA2048) 7,770 11,755 7,806 11,791 4,051 8,036

PQ

1 (Kyber512 + Falcon512) 3,618 5,472 3,593 5,447 1,924 3,778
3 (Kyber768 + Dilithium4) 10,211 15,598 10,154 15,541 5,457 10,844
5 (Kyber1024 + Falcon1024) 6,562 9,952 6,601 9,991 3,460 6,850

We are able to use this function without modifications since our generated hybrid certificates are
fully compliant to the X.509 standard. The verification function of mbedTLS allows to provide
an optional callback function as parameter that is called after each certificate in the chain was
verified. We use this callback mechanism to verify the additional PQ signature inside the custom
extension of our hybrid certificates. It should be noted that verification of PQ certificates takes
place outside mbedTLS since we did not integrate our selected PQ schemes into the embedded
TLS library. Instead, we rely on its mechanism to parse encoded certificates, which required minor
changes to mbedTLS because of unique algorithm identifiers used in our PQ X.509 certificates.

6.2 Measurement Setup
Our setup resembles a typical use case for OPC UA within an industrial network: Two CPS (e.g.
control unit and gateway) wish to securely exchange data, which requires the establishment of
a secure channel. We select the Raspberry Pi 3 Model B as our evaluation platform. It features
a 1.2 GHz quad-core CPU (ARM Cortex-A53), 1024 MB RAM, and requires a SD-card to store
operating system and software. As affordable single-board computer Raspberry Pis have become
very popular prototyping platforms even for industrial use cases [69]. The two Raspberry Pis
are connected to the same network via their 100 Mbit Ethernet interfaces, one is instantiated as
OPC UA client and the other as OPC UA server. For our timing measurements, we rely on the same
kernel extensions introduced in Preliminary Performance Evaluation (see Section 4.3.2). Since our
measurements also include network round-trip time and overhead of the network stack, we report
the time elapsed until completion of the OPC UA handshake in milliseconds. Therefore, we convert
the cycle counts obtained from the two Raspberry Pis to milliseconds.

Besides complete handshake duration, we report the performance of OPCUA’s security handshake
in terms of message and certificate size. Our baselinemeasurement considers a conventional OPCUA
security handshake using security policy Basic256Sha256. Both solutions are evaluated at three
NIST security levels (see Section 4.3). This leads to a total of six different test cases: Hybrid-{1,3,5}
and PQ-{1,3,5}. In addition, we evaluate each test case in two different scenarios regarding included
certificates. In the first scenario, only a single device certificate (Single Cert.) is conveyed. The
second scenario assumes that OPC UA client and server are part of a larger industrial network
containing intermediate certificate authorities (CA). In this case, the certificate chain contains the
device and one attached intermediate CA certificate (Attch. CA Cert.). For each of the above test
cases and the two scenarios, we record the establishment of 100 secure channels and report the
average values.

24 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

320

340

360

380

400

Conventional Hybrid-1 Hybrid-3 Hybrid-5

Single Cert. Attch. CA Cert.

T
im

e
 [

m
s

]

(a) Hybrid OPC UA.

0

100

200

300

400

Conventional PQ-1 PQ-3 PQ-5

Single Cert. Attch. CA Cert.

0

10

20

30

40

50

PQ-1 PQ-3 PQ-5

T
im

e
 [

m
s

]

(b) Post-Quantum OPC UA.

Fig. 10. Comparison of average handshake duration at different security levels.

6.3 Results and Evaluation
6.3.1 Hybrid OPC UA. Table 2 shows the impact of our hybrid security handshake on the size of
the OSC Req. and OSC Rsp.message at different security levels. Besides that, certificate sizes for both
scenarios are reported. As expected, because of the hybrid mode, the message sizes increase at all
levels. The highest increment compared to conventional OPC UA can be observed at security level 3:
In case an additional CA certificate is attached, the size of the OSC Req. and OSC Rsp. message
increases in average 7.5 times. Considering certificate sizes, the smallest increase is observed with
certificates containing an additional Falcon512 public key and signature (factor of 2.8).
Figure 10(a) shows the results of the conducted performance measurements. As expected, the

duration of the handshake increases at all security levels. However, the most time during the
handshake is spent conventionally decrypting and signing the request and response message. In
case a single hybrid certificate is conveyed, the fastest observed hybrid handshake adds only 11.9 ms
to the total duration (Hybrid-1), while the slowest leads to an overhead of 42.6 ms (Hybrid-3). The
extra time spent verifying an attached intermediate CA certificate is clearly visible in Fig. 10(a)
and correlates to the reported verification times in Fig. 6. Since our implementation of Falcon
makes use of floating-point operations, the overhead in Hybrid-1 and Hybrid-5 remains very small.
Because both nodes are connected via fast network interfaces, the larger message sizes have only
little impact on the total duration of the handshake: Sending the response and request message in
Hybrid-3 with an intermediate CA certificate attached takes 0.4 ms.

6.3.2 Post-Quantum OPC UA. Table 2 also shows the message and certificate sizes for our solution
solely based on PQC. Similar to our hybrid solution, we observe that all message sizes as well
as certificate sizes increase at all security levels due to the larger public keys and signatures of
the integrated PQ schemes. Besides that, instantiations using Falcon show a significantly lower
overhead.
The results of our performance measurements (see Fig. 10(b)), however, show a significant

improvement compared to OPC UA’s conventional security handshake. Across all security levels
our PQ solution is in average 11.5 times faster than conventional OPC UA. The fact that we
omit all cryptographic operations based on RSA from OPC UA’s conventional security handshake
substantially increases its performance. With a handshake duration of just 28.6 ms, PQ-5 (single
certificate) is even faster than PQ-3 (41.8 ms). As the signature generation and verification times of
Falcon and Dilithium are generally slower than Kyber’s KEM functions, client and server spend
most of the time during the handshake performing operations of the respective DSA. For example,
deriving symmetric keying material requires 3.5 ms compared to 10.2 ms spent on the creation and

Towards Post-Quantum Security for Cyber-Physical Systems 25

verification of signatures in PQ-1. Similar to our hybrid approach, message sizes have only little
impact on the overall handshake duration.

Both our solutions demonstrate that Falcon is preferable over Dilithium in case both communi-
cating nodes are capable of using its efficient floating-point arithmetic. Our Hybrid-5 and PQ-5
solutions even lead to significantly less overhead – in terms of handshake duration and size – than
Hybrid-3 and PQ-3. Since message sizes do not negatively impact the performance of the security
handshake as much as slower algorithms do, we recommend to use Dilithium2 in case security
level 1 is required and floating-point support cannot be assumed.

7 CONCLUSION
In this work, we proposed two novel solutions for the integration of post-quantum primitives,
i.e. key establishment and digital signatures, into the security handshake of the industrial M2M
protocol OPC UA. Our first solution considers hybrid key exchange, hybrid authentication, and
hybrid signatures, while the second is solely based on quantum-resistant primitives. Compared
to other previous works, this approach allows to investigate the total impact of post-quantum
cryptography. Furthermore, we formally verified confidentiality and authentication properties of
the proposed integrations in the symbolic model. These symbolic proofs are realized using the
state-of-the-art verification tool ProVerif.

Alongside the description and formal analysis of our two solutions, we selected three algorithms
based on an investigation of all lattice-based schemes submitted to NIST’s PQC standardization
process. Subsequently, we instantiated our two solutions at three different NIST security levels using
the respective parameter sets of Kyber{512,768,1024} for key establishment and Falcon{512,1024}-
FPU or Dilithium4 for digital signatures. In our performance measurements, we compared the
handshake duration of both solutions to that of conventional OPC UA for different security levels
and certificate scenarios. Our hybrid integration leads to acceptable overhead in terms of latency
and message sizes, while our PQ solution significantly outperforms conventional OPC UA at all
security levels in terms of handshake duration. OPC UA provides mutual authentication based on
X.509 certificates. Our hybrid solution works with hybrid certificates using non-critical extension
fields to achieve backward compatibility with non-hybrid aware clients and servers. Furthermore,
our described verification of hybrid certificates using mbedTLS applies to use cases outside the
industrial domain. Ultimately, our two solutions provide comprehensive insights into the feasibility
of integrating PQC into OPC UA and demonstrate that PQC is practical for ICS. Falcon and Dilithium
are efficient options for PQ signature schemes; in case floating-point support is available, Falcon
provides faster performance at smaller public key and signature sizes. In our two solutions, Kyber
showed very efficient performance throughout all evaluated security levels.
As future work, we will continue to investigate our two solutions, particularly with regard to

potential optimizations for time-sensitive industrial applications. In addition, we plan to evaluate
our proposed solutions in industrial networks under more realistic conditions. In order to provide
additional security guarantees, we will analyze our proposed variants in the computational model
with less idealized assumptions using a semi-automatic prover such as CryptoVerif.

ACKNOWLEDGMENTS
The authors would like to thank Benjamin Lipp and Nadim Kobeissi for their helpful discussions
and support in detecting and fixing a bug in the Verifpal model. Furthermore, we appreciate the
allocated runtime for our Verifpal verifications on the computing server of the chair of cryptography
and IT-security, Ruhr University Bochum.
The work presented in this paper has been partly funded by the German Federal Ministry of

Education and Research (BMBF) under the project “FLOQI” (ID 16KIS1074).

26 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

REFERENCES
[1] Martín Abadi, Bruno Blanchet, and Cédric Fournet. 2017. The Applied Pi Calculus: Mobile Values, New Names, and

Secure Communication. J. ACM 65 (2017), 41 pages. Issue 1. https://doi.org/10.1145/3127586
[2] Erdem Alkim, Roberto Avanzi, Joppe W. Bos, Léo Ducas, Antonio De La Piedra, Thomas Pöppelmann, Peter Schwabe,

Douglas Stebila, Martin R. Albrecht, Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and Nigel P.
Smart. 2019. NewHope. NIST PQC Standardization: Round 2.

[3] Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Chris
Peikert, Ananth Raghunathan, and Douglas Stebila. 2020. FrodoKEM: Learning With Errors Key Encapsulation. NIST
PQC Standardization: Round 2.

[4] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen Riepel. 2021. Analysing the HPKE
Standard. In Advances in Cryptology – EUROCRYPT 2021, Anne Canteaut and François-Xavier Standaert (Eds.). Springer,
87–116. https://doi.org/10.1007/978-3-030-77870-5_4

[5] Matthew Arcus. 2018. Using the Cycle Counter Registers on the Raspberry Pi 3. https://matthewarcus.wordpress.com/
2018/01/27/using-the-cycle-counter-registers-on-the-raspberry-pi-3

[6] Arm Limited. 2020. Arm Architecture Reference Manual: Armv8. https://developer.arm.com/documentation/ddi0487/
latest/

[7] Frank Arute, Kunal Arya, Ryan Babbush, et al. 2019. Quantum supremacy using a programmable superconducting
processor. Nature 574 (2019), 505–510. https://doi.org/10.1038/s41586-019-1666-5

[8] Roberto Avanzi, Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schank, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. 2019. CRYSTALS-Kyber. NIST PQC Standardization: Round 2.

[9] AWS Blog. 2019. Converting industrial protocols with AWS IoT Greengrass. https://aws.amazon.com/de/blogs/iot/
converting-industrial-protocols-with-aws-iot-greengrass/

[10] Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon, Thijs Laarhoven, Rachel Player, Ronald
Rietmann, Markku-Juhani O. Saarinen, Ludo Tolhuizen, José Luis Torre-Arce, and Zhenfei Zhang. 2019. Round5. KEM
and PKE based on (Ring) Learning with Rounding. NIST PQC Standardization: Round 2.

[11] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno.
2021. SoK: Computer-Aided Cryptography. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 777–795.
https://doi.org/10.1109/SP40001.2021.00008

[12] Elaine Barker, Lily Chen, and Richard Davis. 2020. Recommendation for Key-Derivation Methods in Key-Establishment
Schemes. NIST. https://doi.org/10.6028/NIST.SP.800-56Cr2

[13] David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, and Benedikt Schmidt. 2021. Tamarin-Prover
Manual. https://tamarin-prover.github.io/manual/book/001_introduction.html

[14] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and Vincent Stettler. 2018. A Formal Analysis
of 5G Authentication. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18). ACM, 1383–1396. https://doi.org/10.1145/3243734.3243846

[15] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine Van Vredendaal. 2019. NTRU Prime.
Round 2. NIST PQC Standardization: Round 2.

[16] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017. Verified Models and Reference Implementations
for the TLS 1.3 Standard Candidate. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 483–502. https:
//doi.org/10.1109/SP.2017.26

[17] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Bareto, Johannes Buchmann, Edward Eaton, Gutoski Gus,
Juliane Krämer, Patrick Longa, Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. 2019. qTESLA. NIST PQC
Standardization: Round 2.

[18] Nina Bindel, Johannes Braun, Luca Gladiator, Tobias Stöckert, and Johannes Wirth. 2019. X.509-Compliant Hybrid
Certificates for the Post-Quantum Transition. Journal of Open Source Software 4 (2019). Issue 40. https://doi.org/10.
21105/joss.01606

[19] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Concalves, and Douglas Stebila. 2019. Hybrid Key Encapsulation
Mechanisms and Authenticated Key Exchange. In Post-Quantum Cryptography. PQCrypto 2019 (Cham) (Lecture notes
in computer science, 11505), Jintai Ding and Rainer Steinwandt (Eds.). Springer International Publishing, 206–226.
https://doi.org/10.1007/978-3-030-25510-7_12

[20] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila. 2017. Transitioning to a Quantum-Resistant
Public Key Infrastructure. In Post-Quantum Cryptography. PQCrypto 2017 (Cham) (Lecture notes in computer science,
10346), Tanja Lange and Tsuyoshi Takagi (Eds.). Springer International Publishing, 384–405. https://doi.org/10.1007/978-
3-319-59879-6_22

[21] Bruno Blanchet. 2001. An efficient cryptographic protocol verifier based on prolog rules. In 14th IEEE Computer
Security Foundations Workshop (CSFW-14). IEEE, 82–96. https://doi.org/10.1109/CSFW.2001.930138

https://doi.org/10.1145/3127586
https://doi.org/10.1007/978-3-030-77870-5_4
https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-registers-on-the-raspberry-pi-3
https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-registers-on-the-raspberry-pi-3
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://doi.org/10.1038/s41586-019-1666-5
https://aws.amazon.com/de/blogs/iot/converting-industrial-protocols-with-aws-iot-greengrass/
https://aws.amazon.com/de/blogs/iot/converting-industrial-protocols-with-aws-iot-greengrass/
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://tamarin-prover.github.io/manual/book/001_introduction.html
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.21105/joss.01606
https://doi.org/10.21105/joss.01606
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-319-59879-6_22
https://doi.org/10.1007/978-3-319-59879-6_22
https://doi.org/10.1109/CSFW.2001.930138

Towards Post-Quantum Security for Cyber-Physical Systems 27

[22] Bruno Blanchet. 2012. Security Protocol Verification: Symbolic and Computational Models. In Principles of Security
and Trust (POST 2012), Pierpaolo Degano and Joshua D. Guttman (Eds.). Springer, 3–29. https://doi.org/10.1007/978-3-
642-28641-4_2

[23] Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif. Foundations
and Trends in Privacy and Security 1 (2016), 1–135. Issue 1–2. https://doi.org/10.1561/3300000004

[24] Bruno Blanchet. 2017. CryptoVerif. A Computationally-Sound Security Protocol Verifier.
[25] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. [n. d.]. ProVerif 2.02pl1: Automatic Cryptographic

Protocol Verifier, User Manual and Tutorial.
[26] Matt Braithwaite. 2016. Experimenting with Post-Quantum Cryptography. Google. https://security.googleblog.com/

2016/07/experimenting-with-post-quantum.html
[27] BSI. 2017. OPC UA Security Analysis.
[28] BSI. 2020. Migration zu Post-Quanten-Kryptografie. [Migration to Post-Quantum Cryptography]. (available only in

German).
[29] Kevin Bürstinghaus-Steinbach, Christoph Krauß, Ruben Niederhagen, and Michael Schneider. 2020. Post-Quantum

TLS on Embedded Systems. In Proceedings of the 15th ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’20). ACM, 841–852. https://doi.org/10.1145/3320269.3384725

[30] Matt Campagna and Eric Crockett. 2019. Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM) for Transport
Layer Security 1.2 (TLS). Internet-Draft draft-campagna-tls-bike-sike-hybrid-01. IETF. https://datatracker.ietf.org/doc/
html/draft-campagna-tls-bike-sike-hybrid-01 (Work in progress).

[31] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijneveld, John M. Schank, Peter Schwabe,
William Whyte, and Zhenfei Zhang. 2019. NTRU. NIST PQC Standardization: Round 2.

[32] Vincent Cheval and Bruno Blanchet. 2013. Proving More Observational Equivalences with ProVerif. In Principles of
Security and Trust (POST 2013), David Basin and John C. Mitchell (Eds.). Springer, 226–246. https://doi.org/10.1007/978-
3-642-36830-1_12

[33] Eric Crockett, Christian Paquin, and Douglas Stebila. 2019. Prototyping post-quantum and hybrid key exchange and
authentication in TLS and SSH. Cryptology ePrint Archive, Report 2019/858 (2019). https://ia.cr/2019/858

[34] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. 2019. SABER: Mod-LWR
based KEM. NIST PQC Standardization: Round 2.

[35] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. 2019. Timing Attacks on Error
Correcting Codes in Post-Quantum Schemes. In Proceedings of ACM Workshop on Theory of Implementation Security
Workshop (TIS ’19). ACM, 2–9. https://doi.org/10.1145/3338467.3358948

[36] D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE Transactions on Information Theory 29 (1983),
198–208. Issue 2. https://doi.org/10.1109/TIT.1983.1056650

[37] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2019.
CRYSTALS-Dilithium. Algorithm Specifications and Supporting Documentation. NIST PQC Standardization: Round 2.

[38] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Prest, Thomas
Ricosset, Gregor Seiler,WiliamWhyte, and Zhenfei Zhang. 2019. Falcon: Fast-Fourier Lattice-based Compact Signatures
over NTRU. NIST PQC Standardization: Round 2.

[39] Qian Guo, Thomas Johansson, and Jing Yang. 2019. A Novel CCA Attack Using Decryption Errors Against LAC. In
Advances in Cryptology – ASIACRYPT 2019, Steven D. Galbraith and Shiho Moriai (Eds.). Springer, 82–111. https:
//doi.org/10.1007/978-3-030-34578-5_4

[40] Mike Hamburg. 2019. ThreeBears. Post-quantum cryptography proposal. NIST PQC Standardization: Round 2.
[41] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R. Zimmermann. 2021. Post-quantum

WireGuard. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 304–321. https://doi.org/10.1109/SP40001.
2021.00030

[42] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. 2015. On the Security of TLS 1.3 and QUIC Against Weaknesses
in PKCS#1 v1.5 Encryption. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS ’15). ACM, 1185–1196. https://doi.org/10.1145/2810103.2813657

[43] Panos Kampanakis, Peter Panburana, Ellie Daw, and Daniel Van Geest. 2018. The Viability of Post-Quantum X.509
Certificates. Cryptology ePrint Archive, Report 2018/063 (2018). https://ia.cr/2018/063

[44] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. 2019. pqm4: Testing and Benchmarking
NIST PQC on ARM Cortex-M4. Cryptology ePrint Archive, Report 2019/844 (2019). https://ia.cr/2019/844

[45] Nadim Kobeissi. 2018. Formal Verification for Real-World Cryptographic Protocols and Implementations. PhD thesis.
Ecole Normale Supérieure de Paris.

[46] Nadim Kobeissi. 2020. Verifpal: User Manual.
[47] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. 2017. Automated Verification for Secure Messaging

Protocols and Their Implementations: A Symbolic and Computational Approach. In 2017 IEEE European Symposium on

https://doi.org/10.1007/978-3-642-28641-4_2
https://doi.org/10.1007/978-3-642-28641-4_2
https://doi.org/10.1561/3300000004
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://doi.org/10.1145/3320269.3384725
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-01
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-01
https://doi.org/10.1007/978-3-642-36830-1_12
https://doi.org/10.1007/978-3-642-36830-1_12
https://ia.cr/2019/858
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1109/SP40001.2021.00030
https://doi.org/10.1109/SP40001.2021.00030
https://doi.org/10.1145/2810103.2813657
https://ia.cr/2018/063
https://ia.cr/2019/844

28 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

Security and Privacy (EuroSP). IEEE, 435–450. https://doi.org/10.1109/EuroSP.2017.38
[48] Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. 2020. Verifpal: Cryptographic Protocol Analysis for the

Real World. In Progress in Cryptology – INDOCRYPT 2020, Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj
Prabhakaran (Eds.). Springer, 151–202. https://doi.org/10.1007/978-3-030-65277-7_8

[49] Kris Kwiatkowski and Luke Valenta. 2019. The TLS Post-Quantum Experiment. Cloudflare. https://blog.cloudflare.
com/the-tls-post-quantum-experiment/

[50] Timm Lauser, Daniel Zelle, and Christoph Krauß. 2020. Security Analysis of Automotive Protocols. In Computer
Science in Cars Symposium (CSCS ’20). ACM. https://doi.org/10.1145/3385958.3430482

[51] Gavin Lowe. 1996. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 1996), Tiziana Margaria-Steffen and Bernhard Steffen (Eds.).
Springer, 147–166. https://doi.org/10.1007/3-540-61042-1_43

[52] David McGrew. 2017. Cryptographic Agility in the RealWorld. In Cryptographic Agility and Interoperability: Proceedings
of a Workshop, National Academies of Sciences, Engineering, and Medicine (Ed.). The National Academies Press,
34–38.

[53] Daniele Micciancio and Oded Regev. 2008. Lattice-based Cryptography. In Post-Quantum Cryptography, Daniel J.
Bernstein, Johannes Buchmann, and Erik Dahmen (Eds.). Springer, 146–191. https://doi.org/10.1007/978-3-540-88702-
7_5

[54] Microsoft Azure. 2021. What is Industrial IoT (IIoT)? https://docs.microsoft.com/en-us/azure/industrial-iot/overview-
what-is-industrial-iot

[55] J. C. Mitchell, M. Mitchell, and U. Stern. 1997. Automated analysis of cryptographic protocols using Mur𝜑 . In 1997
IEEE Symposium on Security & Privacy (SP). IEEE, 141–151. https://doi.org/10.1109/SECPRI.1997.601329

[56] Roger M. Needham and Michael D. Schroeder. 1978. Using Encryption for Authentication in Large Networks of
Computers. Commun. ACM 21 (1978), 993–999. Issue 12. https://doi.org/10.1145/359657.359659

[57] OPC Foundation. 2017. OPC UA Specification. Part 1 - Overview and Concepts Release 1.04.
[58] OPC Foundation. 2017. OPC UA Specification. Part 4 - Services Release 1.04.
[59] OPC Foundation. 2017. OPC UA Specification. Part 6 - Mappings Release 1.04.
[60] OPC Foundation. 2020. OPCUARoadmap. https://opcfoundation.org/about/opc-technologies/opc-ua/opcua-roadmap/
[61] Florian Palm, Sten Grüner, Julius Pfrommer, Markus Graube, and Leon Urbas. 2015. Open source as enabler for OPC

UA in industrial automation. In 2015 20th IEEE Conference on Emerging Technologies & Factory Automation (ETFA).
IEEE, 1–6. https://doi.org/10.1109/ETFA.2015.7301562

[62] Christian Paquin, Douglas Stebila, and Goutam Tamvada. 2020. Benchmarking Post-quantum Cryptography in
TLS. In Post-Quantum Cryptography (PQCrypto 2020), Jintai Ding and Jean-Pierre Tillich (Eds.). Springer, 72–91.
https://doi.org/10.1007/978-3-030-44223-1_5

[63] Sebastian Paul and Melanie Niethammer. 2019. On the Importance of Cryptographic Agility for Industrial Automation.
at - Automatisierungstechnik (Special Issue: IT-Security in Automation Technology) 67 (2019), 402–416. Issue 5. https:
//doi.org/10.1515/auto-2019-0019

[64] Sebastian Paul and Patrik Scheible. 2020. Towards Post-Quantum Security for Cyber-Physical Systems: Integrating
PQC into Industrial M2M Communication. In Computer Security – ESORICS 2020, Liqun Chen, , Ninghui Li, Kaitai
Liang, and Steve Schneider (Eds.). Springer, 295–316. https://doi.org/10.1007/978-3-030-59013-0_15

[65] Thomas Pornin. 2019. PQClean - Falcon implementations (integer-only code, constant-time). https://github.com/
PQClean/PQClean/pull/210#issuecomment-513827611

[66] Stefan Profanter, Ayhun Tekat, Kirill Dorofeev, Markus Rickert, and Alois Knoll. 2019. OPC UA versus ROS, DDS, and
MQTT. In 2019 IEEE International Conference on Industrial Technology (ICIT). IEEE, 955–962. https://doi.org/10.1109/
ICIT.2019.8755050

[67] Maxime Puys. 2018. Cybersecurity of Industrial Systems: Applicative Filtering and Generation of Attack Scenarios.
PhD thesis defense.

[68] Maxime Puys, Marie-Laure Potet, and Pascal Lafourcade. 2016. Formal Analysis of Security Properties on the OPC-UA
SCADA Protocol. In Computer Safety, Reliability, and Security (SAFECOMP 2016), Amund Skavhaug, Jérémie Guiochet,
and Friedemann Bitsch (Eds.). Springer, 67–75. https://doi.org/10.1007/978-3-319-45477-1_6

[69] Sfera Labs. 2020. Strato Pi: Industrial Raspberry Pi. https://www.sferalabs.cc/strato-pi/
[70] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum

Computer. SIAM J. Comput. 26 (1997), 1484–1509. Issue 5. https://doi.org/10.1137/S0097539795293172
[71] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020. Post-Quantum Authentication in TLS 1.3. In

Network and Distributed Systems Security (NDSS) Symposium 2020. https://doi.org/10.14722/ndss.2020.24203
[72] Douglas Stebila, Scott Fluhrer, and Shay Gueron. 2019. Hybrid key exchange in TLS 1.3. Internet-Draft draft-ietf-tls-

hybrid-design-01. IETF. https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-01 (Work in progress).

https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1007/978-3-030-65277-7_8
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://doi.org/10.1145/3385958.3430482
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://docs.microsoft.com/en-us/azure/industrial-iot/overview-what-is-industrial-iot
https://docs.microsoft.com/en-us/azure/industrial-iot/overview-what-is-industrial-iot
https://doi.org/10.1109/SECPRI.1997.601329
https://doi.org/10.1145/359657.359659
https://opcfoundation.org/about/opc-technologies/opc-ua/opcua-roadmap/
https://doi.org/10.1109/ETFA.2015.7301562
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.1515/auto-2019-0019
https://doi.org/10.1515/auto-2019-0019
https://doi.org/10.1007/978-3-030-59013-0_15
https://github.com/PQClean/PQClean/pull/210#issuecomment-513827611
https://github.com/PQClean/PQClean/pull/210#issuecomment-513827611
https://doi.org/10.1109/ICIT.2019.8755050
https://doi.org/10.1109/ICIT.2019.8755050
https://doi.org/10.1007/978-3-319-45477-1_6
https://www.sferalabs.cc/strato-pi/
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.14722/ndss.2020.24203
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-01

Towards Post-Quantum Security for Cyber-Physical Systems 29

[73] Douglas Stebila and Michele Mosca. 2017. Post-quantum Key Exchange for the Internet and the Open Quantum
Safe Project. In Selected Areas in Cryptography – SAC 2016, Roberto Avanzi and Howard Heys (Eds.). Springer, 14–37.
https://doi.org/10.1007/978-3-319-69453-5_2

[74] Mathy Vanhoef and Frank Piessens. 2017. Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS ’17). ACM, 1313–1328. https:
//doi.org/10.1145/3133956.3134027

[75] Verizon. 2020. DBIR - Data Breach Investigations Report.
[76] Christoph Weidenbach. 1999. Towards an Automatic Analysis of Security Protocols in First-Order Logic. In Automated

Deduction – CADE-16, H. Ganzinger (Ed.). Springer, 314–328. https://doi.org/10.1007/3-540-48660-7_29
[77] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. 2017. The Future of Industrial Communication. IEEE

Industrial Electronics Magazine 11 (2017), 17–27. Issue 1. https://doi.org/10.1109/MIE.2017.2649104
[78] Lu Xianhui, Liu Yamin, Jia Dingding, Xue Haiyang, He Jingnan, Zhang Zhenfei, Liu Zhe, Yang Hao, Li Bao, and Wang

Kunpeng. 2019. LAC. Lattice-based Cryptosystems. NIST PQC Standardization: Round 2.
[79] Jingjing Zhang, Lin Yang, Xianming Gao, and Qiang Wang. 2020. Formal analysis of QUIC handshake protocol using

ProVerif. In 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE
International Conference on Edge Computing and Scalable Cloud (EdgeCom). IEEE, 132–138. https://doi.org/10.1109/
CSCloud-EdgeCom49738.2020.00030

ALGORITHM OVERVIEW

Table 3. Conventional and PQC signature schemes evaluated in this work.

DSA
NIST

Category
Intractable
Problem

Classical
Security

PQ
Security

sk
(byte)

pk
(byte)

signature
(byte)

RSA2048 < 1 Integer Factorization 112 bit – 256 259 256

Dilithium2

1

Module LWE 100 bit 91 bit 2800 1184 2044
Falcon512 NTRU 114 bit 103 bit 1281 897 690
qTESLAp-I Ring LWE 151 bit 140 bit 5184 14880 2592
SECP256R1 EC Discrete Logarithm 128 bit – 32 65 73

Dilithium3 2 Module LWE 141 bit 128 bit 3504 1472 2701

Dilithium4 3 ModuleLWE 174 bit 158 bit 3856 1760 3366
qTESLAp-III Ring LWE 305 bit 279 bit 12352 38432 5664

Falcon1024 5 NTRU 263 bit 230 bit 2305 1793 1330

https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1007/3-540-48660-7_29
https://doi.org/10.1109/MIE.2017.2649104
https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00030
https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00030

30 Sebastian Paul, Patrik Scheible, and Friedrich Wiemer

Table 4. Conventional and PQC key establishment schemes evaluated in this work.

KEM
NIST

Category
Intractable
Problem

Classical
Security

PQ
Security

sk
(bytes)

pk
(bytes)

ct
(bytes)

Failure
Rate

Frodo640

1

LWE 144 bit 103 bit 19888 9616 9720 2−139

Kyber512 Module LWE 111 bit 100 bit 1632 800 736 2−178

LAC-128 Ring LWE 147 bit 133 bit 512 544 712 2−116

LightSaber Module LWR 125 bit 114 bit 1568 672 736 2−120

NewHope512 Ring LWE 112 bit 101 bit 1888 928 1120 2−213

NTRU-HRSS NTRU 136 bit 123 bit 1450 1138 1138 –
R5ND-1CCA-0d General LWR 125 bit 115 bit 16 676 740 2−157

SECP256R1 EC Discrete Logarithm 128 bit – 32 65 65 –
SNTRUP653 NTRU 129 bit 117 bit 1518 994 897 –

BabyBear 2 ModuleLWE 154 bit 140 bit 40 804 917 2−156

Frodo976

3

LWE 209 bit 150 bit 31296 15632 15744 2−200

Kyber768 Module LWE 181 bit 164 bit 2400 1184 1088 2−164

LAC-192 Ring LWE 286 bit 259 bit 1024 1056 1188 2−143

R5ND-3CCA-0d General LWR 186 bit 174 bit 16 983 1103 2−154

Saber Module LWR 203 bit 185 bit 2304 992 1088 2−136

SNTRUP761 NTRU 153 bit 139 bit 1763 1158 1039 –

MamaBear 4 Module LWE 235 bit 213 bit 40 1194 1307 2−206

FireSaber

5

Module LWR 283 bit 257 bit 3040 1312 1472 2−165

Frodo1344 LWE 274 bit 196 bit 43088 21520 21632 2−253

Kyber1024 Module LWE 254 bit 230 bit 3168 1568 1568 2−174

LAC-256 Ring LWE 320 bit 290 bit 1024 1056 1424 2−122

NewHope1024 Ring LWE 257 bit 233 bit 3680 1824 2208 2−216

PapaBear Module LWE 314 bit 280 bit 40 1584 1697 2−256

R5ND-5CCA-0d General LWR 253 bit 238 bit 16 1349 1509 2−145

SNTRUP857 NTRU 175 bit 159 bit 1999 1322 1184 –

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Preliminary Background
	2.1 OPC UA in Industrial Communication
	2.2 Post-Quantum Cryptography
	2.3 Mechanized Security Analysis

	3 Related Work
	3.1 Integration of PQC into Protocols
	3.2 Automated Security Analysis of Cryptographic Protocols

	4 Integration of PQC into OPC UA
	4.1 Hybrid OPC UA
	4.2 Post-Quantum OPC UA
	4.3 Selection of Quantum-Resistant Primitives

	5 Mechanized security analysis of proposed integrations
	5.1 Symbolic Proof: Conventional OPC UA
	5.2 Symbolic Proof: Hybrid OPC UA
	5.3 Symbolic Proof: Post-Quantum OPC UA
	5.4 Observation: Symbolic Proofs Based on Verifpal

	6 Experimental results and evaluation
	6.1 Implementation Notes
	6.2 Measurement Setup
	6.3 Results and Evaluation

	7 Conclusion
	Acknowledgments
	References

