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Abstract. Blind signatures are a fundamental cryptographic primitive with numerous practical
applications. While there exist many practical blind signatures from number-theoretic assumptions,
the situation is far less satisfactory from post-quantum assumptions. In this work, we provide the first
overall practical, lattice-based blind signature, supporting an unbounded number of signature queries
and additionally enjoying optimal round complexity. We provide a detailed estimate of parameters
achieved — we obtain a signature of size slightly above 45KB, for a core-SVP hardness of 109 bits. The
run-times of the signer, user and verifier are also very small.

Our scheme relies on the Gentry, Peikert and Vaikuntanathan signature [STOC’08] and non-interactive
zero-knowledge proofs for linear relations with small unknowns, which are significantly more efficient than
their general purpose counterparts. Its security stems from a new and arguably natural assumption which
we introduce, called the one-more-ISIS assumption. This assumption can be seen as a lattice analogue
of the one-more-RSA assumption by Bellare et al [JoC’03]. To gain confidence in our assumption, we
provide a detailed analysis of diverse attack strategies.

1 Introduction

Blind signatures are a fundamental cryptographic primitive with numerous applications in e-cash [25], e-
voting [48] cryptocurrencies [78] and many others. In a blind signature scheme [25], a user U, holding a public
key and message, may request a signature from a signer S, holding a signing key, such that the signer is not
able to link a message-signature pair with a protocol execution, and the user is not able to forge signatures
even after multiple interactions with the signer.

Blind signatures have been studied for several decades, and admit instantiations from a variety of
assumptions [26, 70, 39, 50, 40, 41, 37, 56]. Given their wide applicability, there has been a significant thrust
towards obtaining practical efficiency. Constructions based on standard assumptions are primarily feasibility
results [41, 37] which do not admit practical instantiations. In light of this, in the number-theoretic regime,
reasonable new assumptions were introduced to obtain efficient constructions. For instance, in the group
setting, several candidates [26, 67, 70, 46, 39] are based on the hardness of the non-standard ROS/mROS
problem (note that the ROS problem was recently broken [16]) or rely [1, 76] on the algebraic group [50] and
the generic group [66] models, which are very strong idealizations. The situation is analogous in the regime of
pairings [20, 18, 40] or RSA [14].

Post-Quantum Regime. Under post-quantum assumptions, the situation is much more unsatisfactory — even
disregarding efficiency, several lattice-based blind signatures [72, 6, 5, 22, 53, 68] were found to have errors
in their security proofs [47]. The recent construction by Hauck et al. [47] aimed to fix the errors but the
resulting construction is completely impractical — using their suggested parameters, the constructed blind
signature has size ~ 7.73MB, for security against adversaries limited to getting 7 signatures. The very recent
work of Lyubashevsky et al. [56] achieves better parameters (signature size of about 150KB), but the cost of
their signing algorithm grows linearly in the maximum number of signatures that an adversary can query.
This makes it impractical for situations where the number of signatures is large or cannot be apriori bounded.
Finally there are constructions based on codes [17] and systems of algebraic equations [69] but these are
either impractical or do not satisfy the standard definition of security.
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Subsequent to the public appearance of the present work, del Pino and Katsumata [28] also provided a
two round lattice-based blind signature. Their techniques and final result are incomparable to ours — on one
hand, their signature is of size 102.6KB, which is more than twice as large as ours, and their transcript size is
851KB, which is about 18 times as large as ours. On the other hand, their construction relies on the hardness
of the standard MSIS and MLWE assumptions, while ours relies on a new hardness assumption called the
one-more-ISIS assumption (described below). Additionally, they show how to upgrade their construction to
be secure in the quantum random oracle model (albeit at the cost of making the transcript size 770 times
larger than ours) while we do not consider this extension in the present work.

Our Results. In this work, we provide the first overall practical, lattice-based blind signature, which additionally
enjoys optimal round complexity. Our scheme relies on the Gentry, Peikert and Vaikuntanathan (GPV)
signature [42] and non-interactive zero-knowledge proofs for linear relations with small unknowns, which
are significantly more efficient than their general purpose counterparts. Its security stems from a new and
arguably natural assumption which we introduce, called one-more-ISIS. This assumption can be seen as a
lattice analogue of the one-more-RSA assumption by Bellare et al. [JoC’03]. Informally, the one-more-ISIS
assumption states that for any polynomially bounded ¢, it is difficult to forge ¢ + 1 GPV signatures [42], even
when given access to up to £ inversions of arbitrarily chosen syndromes.

Our construction supports an unbounded number of signatures and is overall more efficient than all prior
candidates. While it is based on a new assumption, we believe that for a practice oriented primitive like blind
signatures, it is justified to introduce plausible assumptions as was done in the number-theoretic regime. We
provide detailed cryptanalysis to justify our new assumption.

1.1 Our Techniques

The starting point of our work is a two round blind signature by Fischlin [37], which relies on the CRS
model. To begin, we adapt this scheme to the ROM and instantiate it with efficient lattice based signatures
and non-interactive zero knowledge proofs (NIZK). Due to the extensive research in efficient lattice based
signatures [42, 55, 35, 44, 38, 12, 31] and proof systems [54, 29, 15, 77, 21, 35, 33, 59] over the last 15 years,
this already provides a candidate which is “somewhat reasonable” in practice.

Adapting Fischlin’s Protocol. Our adaptation of Fischlin’s protocol uses a public key encryption scheme PKE
and a non-interactive zero knowledge argument of knowledge NIZKAoK as building blocks. To begin, we
consider the honest signer model for blindness, in which it is assumed that the signing and verification keys
are generated honestly, though the signer can deviate arbitrarily from the signing protocol. This assumption
will subsequently be removed. We summarize this protocol next. In what follows, we assume some familiarity
with the signature scheme of Gentry, Peikert and Vaikuntanathan (GPV); please refer to [42] for a refresher.

In the setup phase, we run (PKE.pk, PKE.sk)«+-PKE.KeyGen(1*) and discard PKE.sk. Next, following the
GPV signature scheme, we sample a matrix C € Zy*™ together with a trapdoor Tc € Z™*™ of it. We set
the signing key of the blind signature as BSig.sk = T, and the verification key as BSig.vk = (C, PKE.pk).

To sign the message u, the user U samples PKE.Enc randomness r and computes ct = PKE.Enc(PKE.pk, p; 7).
It sends ct to the signer. Upon receiving ct, the signer S computes a GPV signature on ct and returns this to
the user. In more detail, it computes H(ct) and uses the trapdoor T¢ to sample y such that y is short and
Cy = H(ct) (modulo ¢). It sends y to the user. Here H is a hash function, modeled as a random oracle in
the security proof.

Upon receiving y, the user U verifies that y is small and that Cy = H(ct) and aborts if this fails. It
generates a non-interactive zero-knowledge argument of knowledge (NIZKAoK) 7 for following statement:
Given BSig.vk = (C, PKE.pk) and u, there exists PKE randomness r and a vector y such that

Iyl <8 A Cy = H(Enc(PKE.pk, pi; 7).

In the above, 8 is some appropriate bound. Finally, the user outputs 7 as the signature. To verify the blind
signature, the verifier checks that the proof 7 is valid. Thus, the final signature in the blind signature protocol
is a NIZKAoK that the user knows a GPV signature for an encryption of the message.



For full-fledged blindness, it suffices to ensure that PKE.pk has been honestly generated by the adversarial
signer, without a corresponding decryption key. This can be achieved, for example, by choosing PKE such
that PKE.pk is computationally indistinguishable from uniform, and then setting PKE.pk as the output of
another hash function H’ modeled as a random oracle, on an arbitrary public input.

Since the witness of the NIZKAoK includes the randomness r used to compute the ciphertext, and the
ciphertext is inside a (complex) hash function, the statement that we require to prove becomes very complex
and resorting to general purpose NIZKAoK seems unavoidable. Despite amazing recent advances in efficient
general purpose NIZKAoK [15, 9], the resulting parameters are formidable — as discussed in Section 3, we
estimate a proof size of more than 100KB and prover time complexity of one hour or more. Even worse, the
prover of the NIZKAoK is the user in the blind signature, who is generally expected to be computationally
light. This leads to a blind signature with very large user time complexity, which is very dissatisfying, both in
theory and practice.

An Efficient Construction from one-more-ISIS. We begin by observing that general purpose NIZKAoKs are
the primary source of inefficiency in the above protocol, and “lightening” the usage of NIZKAoK would result
in a significantly lighter overall protocol. Intuitively, some usage of NIZKs feels unavoidable if we want to
stick to a two round protocol, but can we simplify the statement that is proved? Our main new idea is to
leverage a new, arguably natural assumption, which we call one-more-ISIS so that the problematic general
purpose NIZKAoK above may be replaced by an efficient lattice based NIZK for linear statements with small
unknowns, for which practical constructions have been developed recently [33, 59, 57]. Armed with these
ideas, we provide a simple, overall efficient protocol as follows.

For setup, we run (PKE.pk, PKE.sk)<PKE.KeyGen(1*) and discard PKE.sk. Again, discarding PKE.sk can
be achieved in the real world by setting PKE.pk as the output of a hash function on a public value (this
requires ensuring that the distributions match). Next, we sample a matrix C together with trapdoor T¢ as
before. At this stage, we depart from the previous protocol — instead of encrypting the message p to achieve
blindness, we will rely on a much simpler “one time pad” style blinding mechanism. For this, we sample
another matrix A and set BSig.sk = T, BSig.vk = (C, A, PKE.pk). For full fledged blindness, we would also
need to set A as the output of a random oracle, together with PKE.pk as discussed above.

For signing a message p, a user U samples a vector x from a suitable distribution such that Ax is
indistinguishable from uniform. It computes t = Ax + H(u) and sends t to the signer. Note that for suitable
choice of x, the term H(u) and hence p is hidden from the view of the signer. Upon receiving t, signer
S uses the trapdoor T¢ to sample a short vector y such that Cy = t (modulo ¢). It sends y to the user.
Upon receiving y, user U verifies that y is short and satisfies Cy = t. It samples PKE.Enc randomness r and
computes

ct = PKE.Enc(PKE.pk, x||y; r).

It generates a NIZK = for following statement: Given BSig.vk = (C, A, PKE.pk), ct and p, there exist r and
vectors x,y such that

x| <A A |yl <B2 A Cy—Ax=H(p)
A ct = PKE.Enc(PKE.pk, x||y; r).

In the above, 81 and 2 are appropriate parameters and H is the random oracle hash function. The signature
is (m, ct), and verification consists in verifying the NIZK 7 as before.

Note that the above statement also involves the hash function H which is modeled as a random oracle in
the security proof. But, crucially, the input u to H is known, implying that H(u) can be seen as a public
quantity and this does not make the proof complex. By using Regev’s encryption scheme [71] (or variants of
it), one can ensure that the statement to be proved is linear in the unknowns, which are themselves required
to be small. As a result, we can circumvent the use of a general-purpose NIZKAoK and can instead rely on
NIZK for linear relations with small unknowns [33, 59, 57]. This lets us reduce the signature size to 45.19KB,
as against more than 100KB. More importantly, the cost of generating and verifying the proof becomes very
small.



The astute reader may wonder why the witnesses x||y are being encrypted. In the unforgeability proof, this
allows to circumvent rewinding when extracting GPV preimages from the output of the adversary. Rewinding
would incur a loss that is exponential in the number of preimages that the attacker requested from the signer.
Please see Section 4 for more details.

The resultant protocol is extremely simple and appears quite similar to the first protocol we presented,
which in turn is a natural adaptation of Fischlin’s protocol from 2006 [37]. The reader may wonder whether
replacing the ciphertext computed by the user in the first step by a one time pad is the only difference from
the first scheme, and if so, why efficient lattice-based blind signatures have remained elusive for so long. The
key new insight of our work is in formulating a meaningful new assumption that allows reducing security of
this very natural construction to it. We describe our assumption next and discuss how it implies security of
our candidate.

The one-more-ISIS Assumption. The one-more-ISIS, ;,.m o8 assumption is defined using the following
experiment between a challenger C and adversary A. First, C uniformly samples a matrix C € ngm
and sends it to A. Then A adaptively makes two types of queries: syndrome queries, to which C replies with a
uniformly sampled vector t «<— Zg, and preimage queries, where A queries a vector t' e Zy , to which C replies
with a short vector y’ <— Dzm , such that Cy’ = t’. If £ is the total number of preimage queries, we ask
the adversary to output £ + 1 pairs of the form {(y;,t;)};e[e+1], such that Cy; = t;, |ly;|| < 8 and t; were
provided via syndrome queries, for all j € [¢ + 1]. We say that the one-more-ISIS, ;, i o3 problem is hard if
the probability that A succeeds in the above game is negligible.

Note that this definition is reminiscent to the chosen target version of the one-more-RSA inversion problem
from [14]. Tt is also closely related to the k-SIS problem [19] which was introduced in the context of linearly
homomorphic signatures. The £-SIS problem is as follows: Given a matrix C € Zg*™, and k short vectors
ey,...,e € Z™ satisfying A -e; = 0 mod ¢, find a short vector e € Z™ satisfying A-e = 0 mod ¢, such that
e is not in Q-span(ey,...,ex). In [19], the linearly homomorphic signature must intuitively sign a subspace.
Hence for k-SIS, the goal is to restrict the attacker to the subspace of the signatures it has already seen; this
prevents it from obtaining signatures of vectors out of the vector subspace that has already been signed. In
contrast, in our one-more-ISIS, we do not want to restrict the subspace and indeed allow the attacker to query
the oracle more times than the dimension of the whole space. But we are more demanding on the norm of
the vector that the attacker must find.

In particular even if the attacker manages to obtain a trapdoor for the matrix C via repeated preimage
queries to the vector 0, this trapdoor will not be of sufficiently good quality to lead to an attack. In more
detail, such a trapdoor enables sampling preimages to arbitrary images, and hence the attacker can output
£+ 1 pairs of the form {(y;,t;)};ee+1), such that Cy; = t; and t; were provided via syndrome queries, for
all j € [¢+ 1]. However, it will be unable to meet the constraint that ||y,|| < 8. We believe this assumption is
very natural and are optimistic that it may have other applications.

Given our new assumption, one more unforgeability follows very naturally. In the proof, the challenger
can sample the PKE public and secret keys using the PKE setup algorithm, and not discard the secret key.
Assuming correctness of PKE and with knowledge of PKE.sk, the challenger can extract the pairs (x;,y;)
corresponding to the signature of each message ;. We have by soundness of the NIZK that Cy; —Ax; = H(y;).
By setting A = C - R for a low norm matrix R, we can (i) use the leftover hash lemma to argue that A
appears uniform, and (ii) rewrite Cy; — Ax; as C(y; — Rx;). Finally, by programming the random oracle so
that H(u;) is a syndrome queried by the one-more-ISIS adversary yields the proof. Please see Section 4 for
more details.

To justify our assumption, we attempted to cryptanalyze it. For some parameter regimes, the problem can
be solved in polynomial time but, as far as we know, the problem is exponentially hard for the regimes that we
use in the blind signature scheme. Broadly, we consider two approaches to solve one-more-1SIS: combinatorial
and lattice-based algorithms, and we provide complexity results for one-more-ISIS using these approaches. We
also formulate new cryptanalytic questions that the one-more-ISIS assumption raises. Please see Section 4.5
for more details.



Estimating Performance. We provide a detailed analysis of the performance of our new candidate in Section
4.4. To instantiate our new protocol based on one-more-ISIS,; we use the following building blocks:

— For the hash function, we use SHA-3-256;

For the trapdoor generation and preimage sampling, we follow Falcon-512 [38];

For the IND-CPA secure PKE, we adapt the CRYSTALS-Kyber encryption scheme [10];
— For the NIZK scheme, we follow the recent protocol of [57, Figure 10].

To make these building blocks compatible with each other, we need a working modulus which must satisfy
the following constraints:

— Its prime factors must be sufficiently large to avoid soundness improving repetitions in the zero knowledge
proof;

— The moduli of the underlying signature and encryption schemes should divide the working modulus so
that the relations required to be proven are simpler;

— The polynomial 2'2% + 1 defining the ring used in the NIZK scheme should split in exactly two prime
factors modulo all factors of the working modulus, due to technical reasons related to the NIZK.

Satisfying the above constraints requires a delicate balancing of parameters, which results in a number of
changes in the building blocks. First, we must modify Falcon’s modulus because 2% + 1 splits completely
modulo the original Falcon modulus, which violates the last constraint above. We must also instantiate the
CRYSTALS-Kyber framework so that it complies with the zero-knowledge proof 7 from [57] and enjoys
perfect correctness. Since it is the zero-knowledge proof that makes most of the overall signature size as
well as the complexity to generate it, we are mainly interested in making the generation of 7 efficient, while
potentially sacrificing the efficiency of the other routines.

We provide a detailed guideline on how to instantiate the NIZKAoK protocol from [57, Figure 10], and
how to choose the parameters for the other building blocks so as to obtain a concrete estimate for all the
parameters of the resultant blind signature scheme. We provide a python script (included with the submission)
that estimates the concrete security of the building blocks, as well as the size of the resulting signatures. The
resulting protocol has security relying on Ring-LWE [74, 61], Module-LWE [23, 52] and the Module-SIS [52]
variant of one-more-ISIS.

Using our script, we obtain a signature of size less than 44KB, for a classical core-SVP hardness of 109
bits (following the security methodology from [7]). Note that bit security is typically estimated to be higher
than core-SVP hardness (see [10]), and we expect it to be of the order of 128 bits. The transcript has size less
than 1.5KB. The costs of the signer and user in the signing protocol, as well as that of the verifier are also
very low. To see this, note that the signer must simply compute a GPV pre-image, the user must compute a
ciphertext and proof for a linear statement with small unknowns, while the verifier must verify this proof.
Thus, in the end, we obtain a protocol which enjoys security under a post-quantum assumption and is overall
more efficient than all prior candidates.

Other Related Works. Aside from lattice based blind signatures, there are a few other constructions from
conjectured post-quantum assumptions. The most relevant to our work is the code-based construction of
Blazy et al. [17], relying on the CFS signature scheme [27] and Stern zero-knowledge proofs [75]. Like in our
one-more-ISIS construction, their construction relies on a new assumption, related to CFS. However, there
are important differences with our work. In CFS, not all syndromes can be inverted, and the procedure needs
to be repeated if no inversion is possible. Hence, the resulting blind signature scheme is not round optimal.
Moreover, due to the poor scaling of CFS signatures and the use of Stern proofs, their construction achieves
signature size of several MB. A blind signature based on multivariate polynomial systems was described
in [69], with a non-standard unforgeability security property.

2 Preliminaries

Notation. We write vectors with bold small letters and matrices with bold capital letters. Let S be any
set, then |S| represents the cardinality of S, while in case of any = € R, |z| represents absolute value of z.



For any n € N, we let the set {1,2,...,n} be denoted by [n]. For a distribution D over a countable set X,
we let Hoo(D) = —max,ex log, D(z) denote the min-entropy of D. The statistical distance between two
distributions Dy and Dy over X is defined as . 4 |Do(z) — D1(z)].

We use standard definitions for pseudo-random functions (PRF), public-key encryption (PKE) and
signatures.

We place ourselves in a setup that allows the attackers to run in time 2°* and succeed with
probability 27°) | but that forbids them to make more than poly()\) interactions with honest users. Compared
to the setup of polynomially bounded attackers, this allows to better reflect practice and to better differentiate
between operations that the adversary can do on its own and are only limited by the adversary runtime (such
as hash queries) and operations that require interaction with a honest user and are much more limited (such
as signature queries). We note that if we limit ourselves to polynomially bounded adversaries, then all our
reductions of our security proofs involve polynomial-time reductions and would not require subexponential
hardness assumptions.

2.1 Blind Signatures

To begin, we introduce some notation for interactive executions between algorithms X and Y. By (a,b) +
(X(x),Y(y)), we denote the joint execution of X and ) where X has private input z, ) has private input y
and X receives private output a while ) receives private output b.

Definition 2.1 (Blind Signature). A blind signature scheme BS consists of PPT algorithms Gen, Vrfy
along with interactive PPT algorithms S, U such that for any A:

e Gen(1*) generates a key pair (BSig.sk, BSig.vk).

e The joint execution of S(BSig.sk) and U(BSig.vk, 1), where pn € {0,1}*, generates an output o for the user
and no output for the signer; this is denoted as (L, o) + (S(BSig.sk),U (BSig.vk, u)).

e Algorithm Vrfy(BSig.vk, u, o) outputs a bit b.

The scheme must satisfy completeness: for any (BSig.sk, BSig.vk)+
Gen(1*), u € {0,1}* and o output by U in the joint execution of S(BSig.sk) and U(BSig.vk, i), it holds that
Vrfy(BSig.vk, 1, 0) = 1 with probability 1 — A=),

Blind signatures must satisfy two security properties: one more unforgeability and blindness [49].

Definition 2.2 (One More Unforgeability). The blind signature BS = (Gen,S,U,Vrfy) is one more
unforgeable if for any polynomial Qs, and any algorithm U* with run-time 2°N | the success probability of U*
in the following game is 2= ;

1. Gen(1) outputs (BSig.sk, BSig.vk), and algorithm U* is given BSig.vk.
2. Algorithm U* interacts concurrently with Qg instances SéSig'sk, . 7SECSQSSig.sk'
3. Algorithm U* outputs (p1,01, - HQs+1, OQg+1)-

Algorithm U* succeeds if Vrfy(BSig.vk, p;, 0;) = 1 for all i € [Qs + 1] and the p;’s are distinct.

The blindness condition says that it should be infeasible for any malicious signer §* to decide which of
two messages po and py of its choice has been signed first in two executions with a honest user . If one of
these executions has returned L, then the signer is not informed about the other signature either. We will
focus on the following notion of honest signer blindness.

Definition 2.3 (Honest Signer Blindness). The blind signature BS = (Gen, S, U, Vrfy) satisfies honest

signer blindness if for any algorithm S* with run-time 2°™ | the advantage of S* in the following game
is 279N

1. Gen(1*) outputs (BSig.sk, BSig.vk) and gives it to S*; algorithm S* outputs two messages g, i1 of its
choice.



2. A random bit b is chosen and 8* interacts concurrently with Uy := U(BSig.vk, uy) and Uy = U(BSig.vk, uz)
possibly maliciously; when Uy and Uy have completed their executions, the values oy, 03 are defined as

follows:
o If either Uy or Uy aborts, then (op,03) := (L, L).
o Otheruwise, let oy, (resp. o) be the output of Uy (resp. Uy).
Algorithm 8* is given (09, 01).
3. Algorithm S8* outputs a bit b'.

Algorithm S8* succeeds if b/ = b. If succ denotes the latter event, then the advantage of S* is defined as
|Pr[succ] — 1/2|.

Full-fledged blindness lets the adversary S* sample its own pair (BSig.sk, BSig.vk) at Step 1 (possibly
maliciously), and gives BSig.vk to the challenger.

2.2 Non-Interactive Zero Knowledge Arguments

Definition 2.4 (Non Interactive Zero Knowledge Argument). A non-interactive zero-knowledge
(NIZK) argument system II for an NP relation R consists of three PPT algorithms (Gen,P,V) with the
following syntax:

e Gen(1*)—crs: On input a security parameter )\, the Gen algorithm outputs a common reference string crs;
in the random oracle model, this algorithm may be skipped, since the crs can be generated by P and V by
querying the random oracle on some fixed value.

e P(crs,x,w)—m : On input the common reference string crs, a statement = € {0, l}p"lyo‘), a witness w such
that (z,w) € R, the prover P outputs a proof .

e V(crs, z, m)—raccept/reject : On input a common reference string crs, a statement x € {0,1}P°Y) and a
proof m, the verifier V outputs accept or reject.

The argument system II should satisfy the following properties.
e Completeness: For any (x,w) € R, we have
Prlcrs + Gen(1%), 7w P(crs, z, w) : V(crs, z, m) =1] > 1 — A\«
e Soundness: Let L be the language corresponding to NP relation R. For any x € {0, 1}p01y(’\) such that
x ¢ L and any 2°N time prover P*, we have
Prlcrs < Gen(11), 7w « P*(crs, z) : V(ers, z, ) = 1] < 2790,

e Honest Verifier Zero Knowledge: There is a PPT simulator Sim such that, for all statements x for
which there exists w with R(xz,w) = 1, for any 2°) time adversary A, we have:

| Pr[1« A((crs,z,m) : crs < Gen(1Y), 7 + P(crs, z,w)) |
—Pr[1+ A((crs,z,m) @ (crs,m) « Sim(1*,2)) ] | < 2770,

Definition 2.5 (Argument of Knowledge). The argument system (Gen, P, V) is called an argument of
knowledge for the relation R if it is complete and knowledge-sound as defined below.

e Knowledge Sound: For any 2°™ time prover P*, there exists an extractor €& with expected run-time
polynomial in X and the run-time of P*, such that for all PPT adversaries A

crs < Gen(1%),
(x,s) « Alcrs),
Pr 7 < P*(crs, x, 8), | (z,w) & RAb=accept| <2770,
b« V(crs,x,7*),
w  EPT(sm:9) (crs 7, D)

If an argument of knowledge is also non-interactive zero knowledge, it is termed as a non-interactive zero
knowledge argument of knowledge, abbreviated as NIZKAoK.



2.3 Lattices and Discrete Gaussians

An m-dimensional integral lattice A is a full-rank subgroup of Z™. Among these lattices are the “g-ary”
lattices defined as follows: for any integer ¢ > 2 and any A € Zg*™, we define

AX(A) = {e€Z™: A -e=0modq}.

q

For a vector u € Zy, we define the following coset of A(JI-(A):
AY(A):={ecZ™: A-e=umodg}.

We have AP} (A) = Af]-(A) + t for any t such that A -t =umod gq.
For any vector ¢ € R™ and any real ¢ > 0, the (spherical) Gaussian function with standard deviation
parameter o and center parameter ¢ is defined as:

2
X—c
Vx € R", pge(x) =exp (—202|> .
The Gaussian distribution is Dy ¢(X) = po.e(X)/0".
The (spherical) discrete Gaussian distribution over a lattice A with standard deviation parameter o > 0
and center parameter ¢ is defined as:

Vx € A, Dyge= Lo

Pao,c (A) ,

where py.c(A) = > 4 c 4 Poc(x). When ¢ = 0, we omit the subscript c.

2.4 Lattice Trapdoors

We will use algorithms for generating a random lattice with a trapdoor, and for sampling short vectors in a
lattice coset. The first algorithm is derived from [3, 42, 63], whereas the second is derived from [51, 42, 24].

Lemma 2.6. Let q,n,m be positive integers with ¢ > 2 and m > 6nlog, q.

There is a PPT algorithm TrapGen(q,n,m) that with probability 1 — 2=°™) outputs a pair (A, T) €
Zy*™ x Z™*™ such that A is within 2=(") statistical distance to uniform in Zy*™ and T is a basis
Jor A7 (A).

There is a PPT algorithm SamplePre(A, T, u, o), which takes as input the above pair (A,T), a vector
u € Z7 and a sufficiently large o = 2(y/nlog qlogm) and outputs a vector e from Dju(a),o- Further, with

probability 2= | we have |le|| < oy/m.
We assume that the SamplePre algorithm provides the same output when invoked with the same input — this

can be ensured by generating the randomness used by the algorithm using a PRF (with the given input as
argument).

2.5 Hardness Assumptions

We will need the Learning With Errors (LWE) problem, which is known to be at least as hard as certain
standard lattice problems in the worst case [71, 24] when it is appropriately parameterized.

Definition 2.7 (Learning With Errors (LWE)). Let ¢,n,m,« be functions of a parameter A. For a
secret s € Ly, the distribution Ag .y as over Zy X Z, is obtained by sampling a<Zy and an e<Dz o4, and
returning (a, (a,s) +€) € Z;’“, The Learning With Errors problem L\WE ;, m o is as follows: For s<Zy, the
goal is to distinguish between the distributions:

Dy(s) == U(Z*" D) and Di(s) := (Agn,as)™



We say that a 2°V-time algorithm A solves LWE 1.m,o if it distinguishes Do(s) and D1(s) with 2-w(A)
advantage (over the random coins of A and the randomness of the samples), with 2= probability over the
randomness of s.

Definition 2.8 (Short Integer Solution (SIS)). Let ¢,n, m, 8 be functions of a parameter \. An instance
of the SISy ym.p problem is a matriv A<Zy*™. A solution to the problem is a nonzero vector v € Z™ such
that ||v]| < 8 and A - v = 0 mod q.

Like LWE, the SIS problem is known to be at least as hard as certain lattice problems in the worst
case [2, 64, 42], when it is appropriately parameterized. The same holds for the inhomogeneous version of the
SIS problem stated below.

Definition 2.9 (Inhomogeneous Short Integer Solution (ISIS)). Let ¢,n,m,3 be functions of a
parameter \. An instance of the ISISy . m. g problem is a matriz A«Zy*™ and a vector t<Zy. A solution to
the problem is a vector v € Z™ such that ||v]| < 5 and A-v =t mod q.

2.6 Other Useful Lemmas

Lemma 2.10 (Leftover Hash Lemma). Let H = {h : X =Y} be a 2-universal hash function family. Then
for any random variable X € X, for e > 0 such that log|Y| < Hoo(X) — 2log(1/¢), the distributions

(h, h(X)) and (h,U(Y))

are within statistical distance €.
Further, the family {A € Zy*™ : v+ Ar} is 2-universal for any prime q.

Lemma 2.11 ([55, Lemma 4.4]). The following hold.

1. For any k > 0, Pr[|z| > ko; 2¢-Dz,,] < 2exp(—k?/2).
2. For any o > 3/V2n, Hoo(Dzm ) > m.
3. For any k > 1,

Pr(||z|| > kov/m; z2+Dgm ] < K™ exp(%(l —k?)).

3 Starting Point: Instantiating Fischlin’s Blind Signature

A simple way to obtain a two-round blind signature from lattices is to instantiate Fischlin’s construction [37].

3.1 Construction
The construction uses the following building blocks:

1. A hash function H : {0,1}* — Zj that will be modeled as random oracle in the unforgeability proof.
2. A CPA-secure PKE scheme PKE that is perfectly correct.
3. A NIZKAoK for the statement of Equation (3.1) (see Figure 1).

The construction is provided in Figure 1. The parameters g, n, m, o are set such that n = 2(\), Lemmas 2.6
and 2.10 are applicable, and SIS, 1, 5 25 is hard with 8 = oy/m. The completeness of the scheme follows from
the choice of 8 (using the Gaussian tail bound from Lemma 2.11) and the completeness of the NIZKAoK.

Note that Steps 1 and 2 of the signing algorithm can be implemented quite efficiently. Step 3 is much
more costly and results in a large signature bit-size. This is because the statement of Equation (3.1) involves
the hash function H (in particular, the input of H must be kept secret). Note that we make a non-black-box
use of H in the scheme, but require it to be modeled as a random oracle in the unforgeability proof.



Setup. Gen(lk): Upon input the security parameter A, define n,m, q, 0, 3 = o1/m as functions of A such that ¢ is prime,
SISy, n,m,28 is hard and the scheme is both efficient and complete; then do the following:
e Run (PKE.pk, PKE.sk)«PKE.KeyGen(1*) and discard PKE.sk.
e Compute (C, Tc) < TrapGen(n, m,q).
e Output BSig.sk = T¢, BSig.vk = (C, PKE.pk).

Signing. (S(BSig.sk), U (BSig.vk, p1)):
1. User: Given the key BSig.vk and a message u, user U does the following:
e It samples PKE.Enc randomness r and computes ct = PKE.Enc(PKE.pk, u; 7).
e It sends ct to the signer.
2. Signer: Upon receiving ct, signer S does the following:
e It computes H(ct) and samples y<+SamplePre(C, Tc, H(ct), o); we have that y is short and Cy = H(ct).
e It sends y to the user.
3. User: Upon receiving y, user U does the following:
o It verifies that ||y|| < 8 and Cy = H(ct) and aborts if this fails.
o It generates a NIZKAoK = for following statement: Given BSig.vk = (C, PKE.pk) and p, there exists r and a
vector y such that
Iyl <8 A Cy = H(Enc(PKE.pk, i 7). (3.1)

e The signature is 7.

Verifying. The verifier accepts if the proof 7 is valid, and rejects if it is not.

Fig.1 Adaptation of Fischlin’s Blind Signature.

3.2 Security
We show that the construction satisfies one more unforgeability and blindness.

Theorem 3.1. Assume that SISy, m.25 s hard and the NIZKAoK is knowledge sound. Then the blind
signature scheme in Figure 1 is one more unforgeable in the random oracle model.

Proof. We argue one more unforgeability using the following hybrids.

Hybrid,: This is the genuine one more unforgeability experiment.

Hybrid;: In this hybrid, the challenger (which plays the role of the signer) does not discard the decryption
key PKE.sk. For every sign query c;, it uses PKE.sk to decrypt ¢; into a plaintext p; (which can be L in
case decryption fails). It stores the f1;’s.

Hybrid,: The difference between this hybrid and the previous one is in how the hash and sign queries
are answered. On a fresh input ¢ for a hash query, the challenger first samples y<Dzm , and returns
H(c) = Cy. To answer a signing query for an input ¢, the challenger returns the corresponding y that it
must have sampled while answering the hash query for c. If the sign query is made before the corresponding
hash query, then the challenger first sets the hash value as above and then returns the corresponding y.

Indistinguishability of hybrids

1. The differences between Hybrid, and Hybrid; are only concerning the inner computations of the challenger
and not its interactions with the adversary. Hence, the two hybrids are identical in the view of the
adversary.

2. By Lemmas 2.6, 2.10 and 2.11, the views of the adversary in Hybrid; and Hybrid, are within statistical
distance (Qg + Q) - 2~ ™ from one another, where Qg is the number of signing queries and Q is the

number of hash queries'.

! We note here that SamplePre is assumed to be deterministic (see Section 2.4), without which the claim would not
be true.
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Assume now that the adversary succeeds in Hybrid, with probability e. When it succeeds, it generates
distinct messages (i;)i<gs+1 and corresponding signatures, i.e., proofs (7;);<gs+1 for the statement of
Equation (3.1), such that all these proofs are accepted. As the adversary makes at most Qg sign queries, at
least one of these y;’s cannot be part of the u;’s stored by the challenger: let 1* be an arbitrary such message
and 7* be its associated proof.

Using the knowledge soundness of the NIZKAoK on 7*, the challenger extracts a witness (r*,y*) such that
ly*|| < 8 and Cy* = H(ct*) with ct* = Enc(PKE.pk, u*;r*). By perfect correctness of PKE, the ciphertext
ct* decrypts to pu*. By definition, the message u* cannot have been queried for a signature. However, it
must have been queried for a hash, as otherwise the equality Cy* = H(ct*) would hold with probability at
most ¢~ ™. This implies that the challenger has previously sampled a vector y<Dzm , such that Cy = H (ct*).
By Lemma 2.11, we have ||y|| < § = oy/m with probability 1 — 2-?*) and y = y* with probability 272,
We conclude that y — y* is non-zero, has norm < 2/ and satisfies C(y — y*) = 0, providing a solution to the
SIS; n,m,23 instance C.

Theorem 3.2. Assume that PKE is IND-CPA secure and the NIZKAoK is zero-knowledge. Then the blind
signature scheme in Figure 1 satisfies honest signer blindness.

Proof. We argue blindness using the following hybrids.

Hybrid,: This is the genuine honest signer blindness experiment.
Hybrid;: In this hybrid, the proofs 7, and m; are replaced with simulated proofs.
Hybrid,: In this hybrid, the ciphertexts ct; and ct; are changed to independent encryptions of 0.

Indistinguishability of hybrids

1. Hybrid, and Hybrid, are indistinguishable in the view of the adversary, because of the zero-knowledge
property of the NIZKAoK.

2. Hybrid; and Hybrid, are indistinguishable in the view of the adversary, because of the IND-CPA security
of PKE.

In Hybrid,, the distinguishing advantage of the adversary is 0, because its views for b = 0 and b = 1 are
statistically identical.

Full-Fledged Blindness. Note that the scheme as stated may not satisfy full-fledged blindness. In particular, if
the malicious signer does not discard PKE.sk in the setup phase, it could use it to decrypt the ciphertexts
in the challenge phase and break blindness. However, the security proof above can be extended to handle
full-fledged blindness if we can ensure that PKE.pk has been honestly generated by the adversarial signer,
without a corresponding decryption key. For example, if PKE.pk is computationally indistinguishable from
uniform, then we could replace PKE.pk in the scheme by the output of another hash function H’ modeled
as a random oracle, on an arbitrary public input. Since the secret key must anyway be discarded in the
construction, setting the public key as the output of the random oracle ensures that the adversarial signer
cannot know the corresponding secret key. In the (full fledged blindness) security proof, we would then
introduce a very first game in which the output of H’ is replaced by a properly generated PKE.pk. Note that
a maliciously generated C has no impact on blindness since it is not involved in the user’s message to the
signer.

3.3 Efficiency Estimate

We consider the following instantiation of the building blocks.

e For PKE, we can take any lattice-based public-key encryption scheme. It is only required to be IND-CPA,
but it must be perfectly correct. The latter property can typically be guaranteed by tail-cutting error
distributions and increasing the working modulus sufficiently. Also, lattice-based encryption schemes
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typically have public keys that are computationally indistinguishable from uniform, as required for the
full fledged blindness adaptation described above. For example, one could use a variant of the NEWHOPE
scheme [7], modified to provide perfect correctness. It is expected that ciphertexts will be of bitlengths
below a few KB.

e For the underlying signature scheme, we recommend using the FALCON scheme [38], which is an efficient
instantiation of the TrapGen-SamplePre framework from [42]. With this choice, the second transcript will
have size below 1KB. Also, that makes the signer particularly efficient — for instance, using FALCON [38],
signing time is in the range 0.15 — 0.3 ms depending on choice of parameters.

e As the hash function is modeled as a random oracle in the unforgeability proof, one could use SHA-3-256.
With the above choices for the public-key encryption and signature schemes, one may need more than 15
sponge absorbing steps for reading the input and 7 sponge squeezing steps to write the output.

e Unfortunately, as the statement of Equation (3.1) involves a hash function H that is modeled as a random
oracle in the unforgeability proof, it seems we are bound to use an all-purpose NIZKAoK. For example, one
could use an instantiation of AURORA [15]. Estimating a precise cost is difficult, but we do not expect a
proof of size below 100KB. We also do not expect the prover runtime to be below 1 hour, whereas verifier
runtime could be significantly lower. It could be beneficial to use hash functions designed to be compatible
with all-purpose NIZKAoK, such as [8, 43].

4 Two Round Blind Signature from One-More-ISIS

In this section, we describe a significantly more practical scheme, under a new assumption.

4.1 The One-More-ISIS Assumption

We first introduce the one-more-1SIS hardness assumption. As it is a new assumption, we provide a detailed
assessment of potential attacks, in Subsection 4.5.

Informally, the one-more-ISIS assumption states that for any polynomialy bounded /¢, it is difficult to
forge £ + 1 GPV signatures [42], even when given access to up to £ inversions of arbitrary syndromes. We
stress that these are not signature queries, as a query for a message u corresponds to a uniformly distributed
syndrome H (u) (modelling H by a random oracle), whereas here the attacker is allowed to make inversion
queries for arbitrary syndromes. As a result, one-more-1SIS could possibly be easier to solve than it is to break
the chosen-message security of the GPV signature scheme.

Definition 4.1. Let ¢,n,m, 0, B be functions of security parameter A. The one-more-ISIS, . m 0,8 assumption
1s defined using the following experiment.

1. The challenger C uniformly samples a matriz C € Zy*"™ and sends C to adversary A.
2. The adversary adaptively makes queries of the following types to the challenger, in any order.

e Syndrome queries. The adversary A requests C for a challenge vector, to which C replies with a
uniformly sampled vector t <— Zy. We denote the set of received vectors by S.
e Preimage queries. The adversary A queries a vector t' € Ly, to which C replies with a short vector

y' < Dzm o such that Cy’ =t'. We denote by { the total number of preimage queries.
3. In the end, the adversary A outputs £ 41 pairs of the form {(y;,t;)};e[e+1-
4. The adversary wins if Cy; =t;, |ly;|| < B8 and t; € S for all j € [( +1].

The one-more-ISIS, ;, .08 assumption states that for every adversary A running in time 20N ‘making at
most \°M) preimage queries and 2°™ syndrome queries, the probability (over the randomness of A and C)
that A wins is 2720,

The definition is reminiscent to the chosen target version of the one-more-RSA inversion problem from [14].
We could define a variant of one-more-ISIS inspired from the known target version of the one-more-RSA
inversion problem from [14], in which the set S is restricted to be of size £ 4+ 1. The choice (chosen target) of
formulation made in Definition 4.1 is driven by the security proof of the blind signature scheme. In the RSA
setting, the chosen and known target versions reduce to one another, but this seems difficult to adapt to the
ISIS setting.
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4.2 Construction
The construction uses the following building blocks:

1. A hash function H : {0,1}* — Zj that will be modeled as random oracle in the unforgeability proof.
2. A NIZK for the statement of Equation (4.1) (see Figure 2).
3. A CPA-secure PKE scheme PKE that is perfectly correct.

The construction is provided in Figure 2. The parameters g, n, m, o are set such that Lemmas 2.6 and 2.10 are
applicable, the distribution of Ax is close to uniform at Step 1 of the signing algorithm (using Lemmas 2.10
and 2.11 with standard deviation parameter o/m = £2(1)), and one-more-ISIS, ., », ».25 is hard with 8 = oy/m.

Completeness We make the following observations to argue completeness. From the correctness of SamplePre,
the vector y is small and satisfies Cy = t, where t = Ax+ H (). This gives us Cy — Ax = H(u). Furthermore,
the vector x is small by design and ct = PKE.Enc(PKE.pk, x||y; ) by construction. Hence, the proof 7 for
Equation (4.1) verifies and the user accepts the proof because of the completeness of NIZK.

We now make a few remarks about the construction. Observe that we choose x to have norm at most
B/m, which is a factor m smaller than that of y. This is because in the security proof, we will construct
solutions to the one-more-ISIS, ;, 1 0,28 problem as y — Rx (see Step 5 of the unforgeability proof), where
R < {0,1}™>*™. Thus, choosing ||x|| < 5/m and |y|| < 8 allows us to bound the norm of the one-more-ISIS
solution by 2/ as desired. Note that by increasing the ratio between the norms of x and y further, one can
decrease the quantity 2/ to a value that is arbitrarily close to 8 (hence possibly weakening the hardness
assumption). Another important component is the inclusion of ciphertext ct = PKE.Enc(PKE.pk, x||y;r) in
the signature. It enables to circumvent rewinding in the extraction of all the witnesses (x;||y;) of the Qs + 1
message-signature pairs output by the adversary, in the proof of unforgeability (see Step 5). Without it, the
reduction may need to rewind Qg + 1 times to extract all the pairs (x;,y;), to construct the one-more-1SIS
solution, leading to a security loss exponential in Qg.

4.3 Security
We show that our construction satisfies one more unforgeability and blindness.

Theorem 4.2. Assume that NIZK is sound. Then if there exists an adversary A in the random oracle model
that issues Qs signing queries and any number of hash queries and outputs Qg + 1 signatures with probability
0, then there exists an algorithm B that runs in essentially the same time as A and requests Qg preimage
queries and wins the one-more-1SIS, ., 1 525 game with probability at least § —2~ M) —(Q5+1)(27°M) 4-¢77).

Proof. We construct the proof using the following hybrids.

Hybrid,: This is the genuine one more unforgeability experiment.

Hybrid, : In this hybrid, the challenger does not discard the decryption key PKE.sk. For every signature o; =
(mj,ctj) output by the adversary (for j € [Qg =+ 1]), it uses PKE.sk to decrypt ct; into a plaintext (x;||y;)
(which can be L in case decryption fails). It stores the (x;]|y;)’s.

Hybrid, : This hybrid differs from the previous one in the way matrix A is chosen. The challenger first
samples a binary matrix R « {0, 1}"*™ and sets A = CR.

Indistinguishability of hybrids
omuf

In the following, we let Adv represent the advantage of A in the one more unforgeability game in

Hybrid;. Then Advg™" = 4.

1. The differences between Hybrid, and Hybrid; are only concerning the inner computations of the challenger
and not its interactions with the adversary. Hence, the two hybrids are identical in the view of the
adversary. Thus Adve™" = Adve™ = §.

13



Setup. Gen(lk): Upon input the security parameter A, define n,m, q, 0, 3 = o1/m as functions of A such that ¢ is prime,
one-more-1SISy 1, .m,0,2p is hard and the scheme is both efficient and complete; then do the following:

Run (PKE.pk, PKE.sk)+PKE.KeyGen(1*) and discard PKE.sk.

Compute (C,Tc¢) < TrapGen(n,m,q).

Sample A < Zy*™.

Output BSig.sk = T¢, BSig.vk = (C, A, PKE.pk).

Signing. (S(BSig.sk), U (BSig.vk, 11)):

1. User: Given the key BSig.vk and a message p, user U does the following:
e It samples X <= Dzm o /m-
e It computes t = Ax + H(u).
e It sends t to the signer.

2. Signer: Upon receiving t, signer S does the following:
e It samples a short vector y«SamplePre(C, Tc,t,0); we have Cy = t.
e It sends y to the user.

3. User: Upon receiving y, user U does the following:
e It verifies that ||y|| < 8 and satisfies Cy = t.
e It samples PKE.Enc randomness r and computes

ct = PKE.Enc(PKE.pk, x||y; ).

o It generates a NIZK 7 for following statement: Given BSig.vk = (C, A, PKE.pk), ct and pu, there exists r and
vectors x,y such that

x| <B/m A |yl <BAN Cy—Ax = H(u) A ct = PKE.Enc(PKE.pk, x|ly; 7). (4.1)

e The signature is (7, ct).

Verifying. The verifier accepts if the proof 7 is valid, and rejects if it is not.

Fig. 2 Blind Signature from one-more-ISIS.

2. The only difference between Hybrid; and Hybrid, is that in the latter A is computed as CR, where R is
a uniform binary matrix, instead of sampling it uniformly randomly from Zj*™. The two hybrids are
indistinguishable because Lemmas 2.10 and 2.11 imply that (C, A) is within statistical distance 2~
from (C, CR). Thus Adv§™" > Advo™f — 2-200) — § — 220,

We conclude with the following claim.

Claim 4.3 Assume that the NIZK argument system is sound. Then if there is an adversary A in the random
oracle model that makes at most Qg signing queries and succeeds in generating Qs + 1 signatures with
probability € in Hybrid,, then there exists a one-more-ISIS adversary B, with essentially the same run time as
A, with Qg preimage queries with success probability at least ¢ — (Qg + 1)(27%XN) 4 ¢=™).

Proof. The reduction B is as follows.

1. Upon being challenged by the one-more-ISIS challenger C, with matrix C, algorithm B does the following:
e It uniformly samples a binary matrix R and sets A = CR.
e It samples (PKE.pk, PKE.sk) - PKE.KeyGen(1%).
e It invokes A with (A, C,PKE.pk) as verification key.

2. In response to each (fresh) hash query on input p from A, algorithm B makes a syndrome query to C.
Challenger C returns a uniform vector t € Zj', which B forwards to A as H(u).

3. To answer a signing query on input t’, algorithm B forwards t’ to C as a preimage query. Challenger C
returns a short vector y’, such that Cy’ = t’. Algorithm B forwards y’ to A.

4. Eventually, adversary A outputs Qs + 1 message-signature pairs {1, (7;,ct;)} c(0s+1]-
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5. If the 7;’s pass verification, then algorithm B decrypts the ct;’s and obtains g + 1 corresponding
pairs of short vectors (x;,y;). If all u;’s have been hash-queried by A and the vectors (x;,y;) satisfy
Equation (4.1) for all j € [Qs + 1], then B outputs {(y; — Rx;, H(1;))} e[0s+1)- If any decryption fails
or any of the above conditions is not satisfied, then B aborts.

First note that by the soundness of NIZK, the probability that a statement with a valid proof is false
is bounded above by 2. Now, since the ciphertext ct is part of the statement, we have by perfect
correctness of PKE that it decrypts to the correct value. Hence, the overall probability that a decryption
fails is < (Qg + 1) - 27, Next, we claim that for each i, adversary A must have issued a corresponding
hash query to B. This is because otherwise, there is only a ¢~" probability that a fresh H(y;) is equal to
Cy; — Ax;. Additionally, by the soundness of NIZK, it holds that for all j € [Qg + 1]:

x5l < B/m Alyill <8 A Cyj = Axj = H(p;).

Observe that because of the way hash queries are answered by B, the value H (y;) is one of the syndromes
returned by C. Define t; = H(p;). Then we get, for all j € [Qs + 1],

tj = Cy] — AXj = Cy] — CRXj = C(y] — RXj).

Since R is a binary matrix, we have ||y; — Rx;|| <28 for all j.

Note that B issues one preimage query for each signing query from 4. Since A can issue at most Qg
signing queries, algorithm B also issues at most Qg preimage queries to C. Hence B is a valid adversary in
the one-more-ISIS game.

Next we show that the construction satisfies honest signer blindness.

Theorem 4.4. Assume that NIZK is zero-knowledge. Then if there exists a signer S* in the random oracle
model that wins the honest signer blindness game for the blind signature scheme in Figure 2 with advantage 0,
then there exists an adversary B, with essentially the same runtime as S*, that wins the IND-CPA security
game for PKE with advantage at least §/2 — 2~%),

Proof. We argue blindness using following hybrids.

Hybrid, : This is the genuine honest signer blindness experiment.

Hybrid, : This hybrid differs from the previous one in the way the proofs my and 7 are computed: instead of
genuinely computing the NIZKs, the challenger simulates them without using the witnesses.

Hybrid, : This hybrid differs from the previous hybrid in that both cty and ct; encrypt O instead of (x¢|yo)
and (x1]|y1), respectively.

Hybrid; : This hybrid differs from the previous hybrid in the way the challenger computes to and t;. Instead
of sampling xo (resp. x1) and computing to = Axg + H(up) (resp. t1 = Axy + H(yy)), it samples ug
(resp. uy) uniformly and sets tg = ug + H(up) (resp. t1 =uy + H(uz)).

Indistinguishability of hybrids
In the following, we let AdvE’I represent the advantage of S* in the honest signer blindness game in Hybrid,.
Then Adv) = 4.

1. The only difference between Hybrid, and Hybrid, is in the way my and 7; are computed. The two hybrids
are indistinguishable because of the zero-knowledge property of the NIZK. Thus AdvlfI > AdvgI —27020) =
§— 27920,

2. The only difference between Hybrid; and Hybrid, is in the messages being encrypted by cty and ct;.
The two hybrids are computationally indistinguishable because of the IND-CPA security of PKE. In
particular, if the advantage of S* in the honest signer blindness game in Hybrid,, is Advg'7 then there exists
an adversary B against IND-CPA security of PKE with advantage Advinp-cpa such that 2Advinp-cpa >
AdvlfI — AdvgI > 5 — 2700 — Advgl. (Here, we consider twice of Advinp-cpa since both ctg and ct; are
replaced with encryptions of 0 and hence the IND-CPA security of PKE is called twice.).
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3. The only difference between Hybrid, and Hybrids is in the choice of the masking term for H(u). Since
the vectors xg and x; are only used in the computations of the vectors ty and t;, we have by the
leftover hash lemma? (Lemmas 2.10 and 2.11), that Ax and Ax; are statistically indistinguishable from
uniform up and u;. Hence, Hybrid, and Hybrid; are statistically indistinguishable. More concretely, we
have Adv) > Advy — 2720 > § — 272 — 2Advinp-cpa — 2720,

However, in Hybrid;, the adversary S&* has zero advantage in guessing the bit b since it is information
theoretically hidden. Hence 6§ — 2=%®) — 2Advinp-cpa — 272 < 0, which is equivalent to Advinp-cpa >
§/2 — 2700,

Full-Fledged Blindness. Similarly to the construction in Section 3, the security proof above can be extended
to handle full-fledged blindness if we can ensure that PKE.pk has been honestly generated by the adversarial
signer, without a corresponding decryption key and that the matrix A is uniform. By choosing a suitable
encryption scheme so that PKE.pk is computationally indistinguishable to uniform, one can set PKE.pk as
the output of a random oracle on a publicly-known value. To ensure A is uniform, it can similarly be set as
the output of a random oracle on a publicly known value. Please see Appendix A for more details.

4.4 Concrete Instantiation

The goal of this section is to describe a concrete instantiation of the scheme from Figure 2, and analyze the
size of the resulting signature. We rely on the following building blocks:

— for the hash function, we use SHA-3-256;

— for the trapdoor generation TrapGen and preimage sampling SamplePre algorithms, we follow Falcon-
512 [38];

for the IND-CPA secure PKE, we use an instantiation of the scheme from [60] under the Module-LWE
assumption, which may be viewed as a simplification of CRYSTALS-Kyber [10];

— for the NIZK scheme, we follow the protocol from [57, Figure 10].

Since it is the NIZK scheme that makes most of the signature size as well as the cost to generate it, we are
mainly interested in making the generation of the proof 7 efficient, while potentially sacrificing the efficiency
of the other components.

Choosing the moduli. For compatibility with [58], the modulus of the ZK proof is chosen as a product of
primes that are congruent to 5 modulo 8. Further, we require these primes to be above 2128, to avoid too many
soundness-boosting repetitions. The smallest such prime is 7213. Concretely, we set the preimage sampling
modulus to ¢r = 7213, the PKE modulus to gpke = 72132 and the ZK modulus to ¢, = 72132 - 123637. We
chose ¢,k as a multiple of gr and gpke to simplify the linear relations to be proven (see [57, Section 6.3]).

Trapdoor generation and preimage sampling. We instantiate Falcon-512 over the ring Rs12 = Z[z]/(2°'? + 1),
where the computations are taken modulo prime gr = 7213. It allows us to build our TrapGen algorithm
as [38, Algorithm 5] that generates an NTRU secret key as the trapdoor, and to use Klein’s sampler [51]
(also known as the GPV sampler [42]) for our SamplePre algorithm. Our modulus ¢ slightly differs from
the one proposed in [38], since the zero-knowledge proof construction we use requires 2% + 1 to have only
few (two in our case) factors modulo gr. Note that our modulus is a little smaller than Falcon’s (12289): as
discussed in [36], moduli in this range have limited impact on the security. Also, this modulus change does
not significantly impact the efficiency of the Falcon-512 preimage sampler [38, Algorithm 10], as the modulus
plays a limited role in it.

2 We observe that in place of LHL, we can also use LWE in this step, by letting A = (A'||T) and x" = (x"||e").
This would change statistical closeness to computational indistinguishability. We use this variant in the concrete
instantiation described below.
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The TrapGen routine generates an NTRU secret key f, g € Rs512, with coefficients of each polynomial f and

g taken from DZ,1.17 Jar/@512) (see [38, Algorithm 5]), and builds up a short basis for the corresponding NTRU

lattice (as in [38, Algorithm 5]). The public key is h = g/f mod g¢r, defining the NTRU lattice {y = (y1]|y2) €
R2,5 :h-y; +y2 = 0mod gr}. The short basis enables a SamplePre routine that, given on input t, outputs a

preimage y = (y1|ly2) such that ||y|| < 1.1-/2 - 5120, where op = 1717\/qp -log(4-512- (14 V128 -264))/2
(see [38, Eq. (2.13-2.14)]). For this instantiation, the relation “Cy = t” from Figure 2 translates into

h -y, +y2=tmod gr. (4.2)

Another minor difference with Falcon-512 is that we perform rejection sampling to guarantee that y; has
infinity norm below a prescribed bound. Concretely, this bound is set to [4.15 - o] so that this acceptance
probability is > 0.52. This is to ensure that y; always belongs to the plaintext space of the encryption scheme
described below.

With all the above, we now have concrete values for the parameters n,m,q, 5: n = 512, m = 1024, q = g,
8 =1.1-4/2-512 op. Going forward, the transcript of the blind signature scheme will consist of t and y;
(note that ys can be recovered as t — h - y1). Using the figures above, we obtain a transcript size of 1.37KB.

Blinding the message. We now explain how we instantiate Step (1) of the signing protocol in Figure 2. We
sample h’ € Rs515 uniformly modulo gg: the vector (h’||1) plays the role of A from Figure 2. We then choose
X1,Xs € Rs12 with coefficients bounded in ¢,.-norm and set

t =h'x) +x2 + H(p) mod gr. (4.3)

In particular, we choose ||(x1]/x2)]lco < 2, and use the Ring-LWE assumption to argue the computational
indistinguishability of t from uniform (as opposed to a statistical argument as in the proof of Theorem 4.4).

Important for our construction is the ability to transform mod-gr linear relations defined over the ring
Rs512 to mod-gr linear relations defined over Rq25. Following [58, Section 2.8] we can map one linear relation
from Rs12 to 4 linear relations from Riag, thus Egs. (4.2) and (4.3) can both be viewed as 4 relations over
R12s. This will become relevant in the zero-knowledge proof.

IND-CPA secure PKE We use Rios = Z[x]/(2'2® + 1) as underlying ring, by compatibility with the proof
system (though we could have kept Kyber’s Z[z]/(22°¢ + 1) and viewed it as an extension of Rq2g). We let S,
denote the set of elements from Rj2g with £oo-norm < 7. The rank of the plaintext space (12) is 3 times the
Falcon dimension, as we will encrypt m = (y1||x1]|x2): note that we do not encrypt yo as it can be recovered
from m and H(u) by using Eqs. (4.2) and (4.3). The {.-norm bound on all small variables (7 = 3) and the
Module-LWE rank (8) are set to obtain a sufficiently high hardness.

In Figure 3, all computations are performed modulo gpke = 72132, which is set high enough to guarantee
correctness. Note that we rely neither on ciphertext compression nor on the binomial distribution as in
CRYSTALS-Kyber, for the sake of simplicity. With these parameters, the ciphertext occupies 8.01KB.

The correctness follows from the fact that for a properly formed ciphertext ct = (c1,c¢2), we have t =
Sy -s+ez— Sy -e; +pm mod gpke. For well-chosen parameters, this is < gpke/2, and we recover Sg - s+ €3 —
S - e1 + pm mod gpke over the integers. To recover m, it suffices to take the quotient modulo p (provided
that So - s + ea — Sy - e is sufficiently small). Overall, for the decryption to be (perfectly) correct we require
that

(I) ||IS2-s+ex—S1 e +pml|s < gpre/2, so that ca — Sy - ¢; is not scrambled in the first step of the
decryption algorithm;

(IT) ||S2-s+ ez —S1 -e1loo < Pp/2, so that Sy -s+ ez — S - €1 is not scrambled in the second step of the
decryption algorithm.

These requirements should hold for all S, S, sampled during key generation, and for all s, e, es, m as small
as guaranteed by the zero-knowledge proof. Note that the latter is more demanding than requesting it for
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Setup
e 7: /oo-norm bound on all short elements in the scheme
e gpke: a modulus
e p < gprke: a positive integer
KeyGen()
e Sample A; € Rf;sg uniform modulo gpke
Sample S1, Sy + U(SF2*8)
Compute Az =S; - A1 +Ss
Set pk = (A1, A2) and sk = S;
Enc(pk = (A1,A2), m € RiZg)
e Sample s,e; < U(S?), and e + U(S}?)
e Compute c; = A;-s+e;
e Compute co = As-s+ex+p-m
e Return ct = (c1,c2)
Dec(sk = S1, ct = (c1,¢2))
e Computet =c2 —S;1-c1
e Return (t — t mod p)/p

Fig. 3 Instantiation of PKE for Figure 2

s, e1, ez, m as small as honestly generated, because the proof is for the ¢o-norm (rather than £.,-norm) and it
batches several norm bounds together to reduce the number of proved norm bounds, at the expense of a
constant factor increase in norm bound. The above conditions are satisfied for p = 49126 .

Zero-knowledge proof We instantiate the zero-knowledge proof using [57, Figure 10]. We need to prove
knowledge of y = (y1]ly2) and x = (x1[|x2) with y1,y2,X1,X2 € Rs15 = Risg with small norms, such that
(combining Egs. (4.2) and (4.3)):

h-y; —h' - x; +y2 —x2 = H(p) mod gp. (4.4)

We also need to prove the well-formedness of ct, i.e., the existence of s,e1 € Ry and ey € Ri3¢ that are small
and satisfy the relations of the Enc algorithm from Figure 3 (modulo gpkg) for the message m = (y1||x1[|x2).

We commit to the vector (y1|lyz|/x1||xz2|/s|le1]lez), prove two linear relations involving this vector (one
coming from Eq. (4.4) and the other from the encryption), and prove three ¢3-norm bounds:

@ Nylly2ll <5,
(ID) | (xallx2)ll < v2-512- 2,
(1) [I(sllerlle2)]| < 7-+/(8+8+12)-128.

We shall not repeat the steps of the zero-knowledge proof from [57], but instead make a guideline on how to
instantiate the protocol in [57, Figure 10]. The reader is advised to follow it using Table 1. Note that the two
linear relations we need to prove incur negligible additional cost in terms of size, see [57, Figure 4].

For concrete parameter selection, we refer the reader to Table 2. We instantiate the variables «,[,n, v as
in [57].

The parameters 71, ¥2, Ve are rejection sampling parameters. They are set so that the expected number of
rejections before producing a valid signature is small. Using [57, Section 6.1], we obtain that the expected
number is ~ 2exp(}7‘11 + ﬁ + 2—% + ﬁ) ~ 10.4.

The parameter m; =4-4+2-8 4 12 4+ 3 = 47 counts the length of the committed message as a vector
over Ri28 (adding 3 as we have three norm equations). The parameters n and ms are chosen such that the
Module-SIS and Module-LWE problems that underlie the zero-knowledge protocol are sufficiently hard.
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variable description instantiation
p # of quadratic egs. 0
Peval # of evaluations with const. coeff. 0 0
Ve # exact norm proofs 3
Vd # non-exact norm proofs 0
s1 committed message in the Ajtai part (ylIxlIs|le1]lez)
m committed message in the BDLOP part 0
s (s1]/m) (vlIxlslle1le2)
E; public matrix proving that |[Eis — vi|| < 51 (1‘341348 8 8 8 8)
B upper bound on ||Eis — v1|| Jé;
E, public matrix proving that ||E2s — va| < B2 (8 81341348 8 8)
B2 upper bound on ||Egs — va| V25122
0000Idg 0 0
E; public matrix proving that ||Ess — vs| < B3 (0 000 0Idg 0 )
0000 0 0 Idjy
B3 upper bound on ||Ezs — vs|| T-4/28-128
v1, V2, v3| public vectors proving that ||E;s — v;|| < 8; 0,0,0
i norm of ((817)% — |[Eis — vi||?); V3128
P1, P2, P3 number of rows of E1, Es, E3 8, 8,28
@ 128 -3, (pi + 1) 6016
a'®  |lupper bound on ||(Eis — vi]|...||Ess — v3||x)|| 5840

Table 1 Instantiation of the protocol from [57, Figure 10]. The left-most column ‘variable’ and the middle
column ‘description’ refer to the notations from [57, Figure 10], the right-most column ‘instantiation’ refers
to our notations.

Following the compression technique of [31], we can reduce the proof size by cutting low-order bits of the
commitment. There are two variables responsible for this cut: v and D. To choose these variables we follow
the approach from [57, Section 6.1].

With these parameters, the proof 7 has size 37.18KB, and the overall signature (including 7 and ct) has size
45.19KB. (Recall the transcript has size 1.37KB.) This is for classical core-SVP hardness of 109 bits. Below,
we give precise figures for our security estimates. These estimates as well as the sizes of signature components
can be verified via a script available at https://gitlab.com/ElenaKirshanova/onemoresis_estimates.
For concrete estimates of ModuleLWE and ModuleSIS assumptions we rely on the work from [10], and for
the NTRU assumption security — on the work from [32]. To compute the proof size 7, we adapt the strategy
from [57, Section 6.1] to our setting with the exception that we take the estimates on the entropy of a discrete
Gaussian variable from [34]. This choice is inline with the recent work [36, Section 5].

variable value variable | value || variable | value
Qzk 6432507821053 K 2 n 11
l 2 A 10 my 47
a1 10 n 59 mo 34
Y2 1.5 v 1 V4 0
Ve 5 D 16 v 2%

Table 2 Concrete parameter selection for the zero-knowledge protocol from [57, Figure 10]. The columns
‘variable’ refer to the notations from [57].

Security Let us summarize our security assumptions and their corresponding bit security levels.
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1. The security of Falcon’s signature scheme relies on two assumptions:

(I) Key recovery security relies on the NTRU assumption (i.e., it is hard to recover f, g from h = g/h).
The estimator from [32] states that this has core-SVP hardness of 135 bits.

(IT) Forgery security relies on Module-SIS hardness. To estimate it, we use the Dilithium script [31],
which states that this has core-SVP hardness of 129 bits.

2. Given h/, we argue that h’x; + x5 hides x1, x5 under the Module-LWE assumption. Again, we use the
script from [31], which states that this has core-SVP hardness of 122 bits.

3. The security of the encryption scheme (for both the secret key and the ciphertext) relies on the Module-
LWE assumption. Here we reach core-SVP hardness of 120 bits.

4. The zero-knowledge proof relies on the Module-SIS and Module-LWE assumptions (technically, the
construction of [57] relies on the so-called Extended-Module-LWE, whose hardness is conjectured to be
the same as plain Module-LWE). For both Module-SIS and Module-LWE, we obtain 109 bits of core-SVP
hardness.

5. Finally, we estimate the hardness of solving one-more-ISIS with the norm bound to be the norm of the
extracted solution. For this, we assume that h’ is set as x} - h + x} in the unforgeability proof instead
of “A = CR” (see the proof of Theorem 4.2), using the same Module-LWE assumption as we did to
argue computational indistinguishability from uniform of x; - h' + xa, i.e., with ||x]]/co, [|X5]|cc < 2. The
extracted solution is (y; — x;x}|ys — X;X5 — X,), which has fo-norm < /32424 .512-4 422512 - 2.
Having h, the hardness of finding a preimage of such norm is again a Module-SIS instance, which we
estimate to be at 109 bits of core-SVP hardness. The one-more-ISIS attacks described in the next section
all have higher costs.

4.5 Security Analysis of One-More-ISIS

The purpose of this section is to argue why we believe that the new computational problem we introduce,
one-more-ISIS, is hard. We did not succeed in obtaining a reduction from a well-studied problem to one-more-
ISIS, but we still expect that for the parameter ranges relevant to our constructions, this problem cannot be
solved by polynomial or even sub-exponential time attackers.

The hardness of the one-more-ISIS problem as stated in Definition 4.1 primarily depends on the precise
relation between [, the upper bound on the norm of the vectors y;’s the adversary must output, and the
dimensions m and n of the input matrix C. We also assume that o — the standard deviation parameter of
the preimage queries — is of order £2(1/m), which what we would expect from an efficient sampler, e.g. [42].
Note that a significantly smaller standard deviation, e.g., of order O(1), would invalidate the hardness of the
one-more-1SIS assumption as extremely short y’s would enable an adversary to solve one-more-ISIS (see the
discussion below). In this section we make the hardness of the one-more-ISIS problem explicit by describing
the parameter regimes for which this problem can be solved in polynomial time, and for which, as far as we
know, the problem is exponentially hard. We consider two approaches to solve one-more-1SIS: combinatorial
attacks and lattice-based attacks.

Combinatorial attacks. We start by showing an elementary polynomial time algorithm that achieves 8 =
O(y/mno) and requires (q - n) ISIS preimage oracle calls.

Consider the set of n-dimensional vectors A = {e; - a: i € [n],a € Z,}, where the e;’s are the canonical-
basis vectors. The set A is of size ¢ - n. The adversary runs preimage queries for all vectors from A and
receives Gaussian vectors y”’s. Thanks to the Gaussian tail bound (see Lemma 2.11), we have ||y’|| < 2v/mo
with probability greater than 1 — 27" for all y’’s. Any element from Zq, and thus the challenge t, can be
expressed as a sum of at most n vectors from A (one for each coordinate). The adversary then sums the
corresponding y’’s it received from the ISIS preimage oracle and obtains a new y such that Cy = t. The
resulting y is a valid one-more-ISIS solution for 3 = ©(y/nm - ¢) with probability 1 — 2~("),

The algorithm can be generalized to a larger set A. The generalization, presented in Figure 4, makes the
attack less efficient, but reduces the bound on (. It is parametrized by @), the upper bound on the number of
the preimage queries the attacker can issue. This is also the assumed upper bound on the memory capacity
of the attacker, since the attack requires that all the responses are stored.
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Input: The ISIS preimage oracle O'S'S(-), a number Q of queries to O™ and t € Zg .
Output: A short vector y € Zg" such that Cy =t mod gq.

1. Set w = | 2527 |

<max{w-i,n}

2. Let A= Z w-(i—1)<j €j - aj Vi e ”%—l] , a5 € Zq} .

3. For all a € A, set T[a] = O™"®(a).
Write t =a;, +...+ Aif, -

=~

Fig.4 Combinatorial Attack on one-more-ISIS.

The correctness of the algorithm in Figure 4 is direct: any t € Zj can be efficiently written as a sum of
at most [n/w] elements from the set A constructed on Step 2. Note that |A| < n%¢™: by definition of w,
the algorithm makes < @ queries. Finally, we can bound the norm of the output as |y[| < 2/[%] -m -0 =

e ( 1+ log(g% -/m - 0), with probability greater than 1 — 270" The algorithm is correct for any

1 < w < n computed on Step 1, providing a trade-off between the runtime (which is essentially the number Q
of preimage queries) and the bound on 3.

Lattice-based attacks. A strategy to attack one-more-ISIS is to use a discrete Gaussian sampler algorithm [51, 42].
This allows to solve one-more-ISIS in poly(m) time with 8 = 2(mo) using O(m?) preimage queries. More
precisely, the attacker performs the following:

1. Given C, compute a basis of Ay (C).
2. Query the preimage ISIS oracle ©(m?) times for t = 0. From the oracle’s answers and from the basis of
AZ(C) constructed in the previous step, compute a basis B for A-(C) = {y € Z™ : Cy = 0 mod ¢} such

that the norms of Gram-Schmidt orthogonalization B of B are bounded from above.

3. Given an input t € Zg find any z € Z™ such that Cz = t.

4. Run Babai’s Nearest Plane algorithm [11] on input (B, z). Let v € Ay (C) be the output. Return z — v
as a one-more-ISIS solution for t.

Let us analyse the quality of the vectors returned by the above procedure. First, thanks to standard
properties of lattice Gaussian distributions, it indeed suffices to query the ISIS preimage oracle ©(m?) times
in Step 1, in order to obtain a set of m linearly independent vectors from Aql(C) with at least constant
probability bounded away from 0 (see [71, Corollary 3.16]). According to [19, Proposition 4.7.], these linearly
independent vectors will be of norm bounded from above and below by ©(y/mo). Out of this set we can
efficiently extract m linearly independent vectors by checking which ones form a subspace of the desired rank.
Using [62, Lemma 7.1] we can convert this set to a basis B, such that ||B|| < v/mo. Finally, Babai’s Nearest
Plane algorithm in Step 4 outputs a vector v such that ||v —z|| < (32 ]||l~)i||2)1/ 2 where the right-hand

side of the inequality is bounded from above by mo with probability greater than 1 — 2~(™) Furthermore,
the returned vector e = z — v satisfies Ce = Cz — Cv =t as Cv = 0, hence giving a one-more-ISIS solution
for 8 = O(mo). As the vectors b; are already somewhat short thanks to the Gaussian tail bound, we do not
expect a significant decay in their norms when converting them to a basis and/or applying a basis reduction
algorithm, like LLL or BKZ, on B. Hence, the norm of e is expected to be close to the above upper bound,
resulting in the one-more-ISIS solution for 5 = O(mo).

Another strategy to improve the above bounds on S at higher costs is to obtain a basis of the lattice
A;-(C) that is shorter than what the ISIS preimage oracle offers. We can go as far as the Minkowski’s bound

i€[m

suggests, i.e., we can achieve ||B|| = A1(4; (C)) < ming, <p V' - ¢"/™" (here we assume that all lattice
minima have essentially the same norms, which is expected to be the case when C is sampled uniformly).
The latter bound is O(v/nIngq) when m = 2(nlogq). Vectors of such a small norm can be found by calling
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shortest vector problem solvers on A;-(C). The fastest known such algorithms run in time 2°(™) (see, e.g.,
[13]). This exponential time attack enables us to solve one-more-ISIS for 3 = ©(y/mnInq) by invoking Babai’s
Nearest Plane algorithm on the obtained short basis. Note that the ISIS preimage oracle is only used to obtain
a basis of A;-(C). A trade-off between the quality of 8 and the runtime is possible: a b-BKZ reduction [45, 73]
yields a basis B with ||B| < p9(m/b) . A1 (A7 (C)) in time 20 thus leading to § = b/ . \/mnInq. Note
that in order to outperform the bound on 8 we have in the polynomial time regime, the BKZ parameter b
has to be of order ©(m/logo), when m = @(nlogq).
To summarize, we have the run-times for solving one-more-1SIS:

e there exists a combinatorial algorithm that achieves

B=6 ( 1+ 10&8% . \/ﬁa) in time @ and using Q@ > nq preimage queries;

e there exists a lattice-based algorithm that achieves 3 = ©(mo) in polynomial time using O(m?) preimage
queries; except for very few queries, it is outperformed by the combinatorial algorithm;
e there exists a lattice-based algorithm that achieves

m log log T'

B =207 ) /mnlog ¢ in time T without any preimage query (except to obtain a basis of AqL(C)).

Open questions and potential directions. Let us now formulate two cryptanalytic questions that the new
one-more-ISIS hardness assumptions raises.

I. Improving algorithms for the shortest vector problem with preimage queries. One might
wonder whether we can accelerate existing shortest vector solvers, such as sieving algorithms [4, 65, 13], once
we already have a somewhat short basis. Just from the nature of sieving algorithms it does not seem to be the
case: even to obtain a small constant reduction in the norm of the current shortest vector, sieving generates
and processes 2°(™) vectors which already constitutes its asymptotic cost.

II. Improving Babai’s Nearest Plane with a short generating set. Given access to ISIS preimages,
another direction one can consider is to try to accelerate the closest vector problem (CVP) solvers on A (C),
by exploiting the fact that we have many short vectors from this lattice. The presence of many short vectors
helps to heuristically improve the Voronoi cell-based CVP algorithms [30]. Yet their heuristic correctness and
analysis rely on the presence of the shortest vectors from AqL(C), which, as we believe, the preimage ISIS
queries do not help to obtain fast.
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Appendix
A Full-fledged Blindness

In this section we provide a construction of a blind signature with full-fledged blindness. The construction
differs from the one in Figure 2 in the way the PKE encryption key PKE.pk is generated.

A.1 Construction
The construction uses the following building blocks:

1. A hash function H : {0,1}* — Zj that will be modeled as random oracle in the unforgeability proof.

2. A NIZK for the statement of Equation (A.1) (see Figure 5).

3. A perfectly correct IND-CPA secure public key encryption scheme PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec)
having the property that the public key generated by PKE.KeyGen is computationally indistinguishable
from a uniformly sampled value from its range.

4. A hash function Hpke : {} = Kpke that will be modeled as random oracle in the unforgeability proof.
Here, represents an empty bitstring and pkg is the public key space of PKE.

5. A hash function Ha : {} — Z;*™ that will be modeled as random oracle in the unforgeability proof.

The construction is provided in Figure 5.

Parameters and Completeness The parameters setting and the completeness argument are the same as in
Section 4.2.

A.2 Security
We show that our construction satisfies one more unforgeability and blindness.

Theorem A.1. Assume that NIZK is sound. Then if there exists an adversary A in the random oracle model
that issues Qg signing queries and any number of hash queries and outputs Qg + 1 signatures with probability
0, then there exist algorithms B and C, both having essentially the same runtime as A, where B requests Qg
preimage queries and wins the one-more-ISISy 1, m »,28 game with probability Advemisis and C distinguishes the
public key of the PKE scheme from uniform with advantage Advpgke such that

Adveke + Advomisis > § — 27 — (Qs +1)(27N +¢77).

Proof. We construct the proof using the following hybrids.
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Setup. Gen(lk): Upon input the security parameter A, define n,m, q, 0, 3 = o1/m as functions of A such that ¢ is prime,
one-more-1SISy 1, .m,0,2p is hard and the scheme is both efficient and complete; then do the following:

Set PKE.pk = HPKEO~

Compute (C,Tc) < TrapGen(n,m,q).

Sample A = Ha().

Output BSig.sk = T¢c, BSig.vk = C.

Signing. (S(BSig.sk), U (BSig.vk, p1)):

1. User: Given the key BSig.vk and a message p, user U does the following:
e It computes A = Ha().
o It samples X <~ Dzm 5 /m.
e It computes t = Ax + H(u).
e It sends t to the signer.

2. Signer: Upon receiving t, signer S does the following:
e It samples a short vector y<SamplePre(C, Tc,t,0); we have Cy = t.
e It sends y to the user.

3. User: Upon receiving y, user U does the following:
e It computes PKE.pk = Hpke().
o It verifies that ||y|| < 8 and satisfies Cy = t.
e It samples PKE.Enc randomness r and computes

ct = PKE.Enc(PKE.pk, x||y; ).

e It generates a NIZK 7 for following statement®: Given C, A = Ha(), PKE.pk = Hpke(), ct and p, there exists r
and vectors x,y such that

x| <B/m A |yl <BA Cy—Ax = H(u) A ct = PKE.Enc(PKE.pk, x||y; ). (A1)
e The signature is (m,ct).

Verifying. The verifier computes PKE.pk = Hpke() and A = Ha() and accepts if the proof = is valid, and rejects if it is
not.

* Note that this is the same statement as in (4.1) in Section 4.2.

Fig. 5 Blind Signature with full-fledged blindness from one-more-ISIS.

Hybrid,: This is the genuine one more unforgeability experiment.

Hybrid; : In this hybrid, the challenger computes PKE.pk differently. It first runs (PKE.pk, PKE.sk) «+
PKE.KeyGen(1%) and then programs Hpkg() = PKE.pk. It stores PKE.sk.

Hybrid, : In this hybrid, for every signature o; = (7, ct;) output by the adversary (for j € [Qg + 1]), the
challenger uses PKE.sk to decrypt ct; into a plaintext (x;|y;) (which can be L in case decryption fails).
It stores the (x;||y;)’s.

Hybrid, : This hybrid differs from the previous hybrid in the way matrix A is computed. In this hybrid, the
challenger first samples A < Zg*™ and then programs Ha() = A.

Hybrid, : This hybrid differs from the previous one in the way matrix A is chosen. The challenger first
samples a binary matrix R < {0,1}"*™ and sets A = CR.

Indistinguishability of hybrids
In the following, we let Adv
Hybrid;. Then Advg™" = 4.

omuf
i

represent the advantage of A in the one more unforgeability game in

1. The only difference between Hybrid, and Hybrid; is in the way PKE.pk is computed. Hence if A succeeds
in the one more unforgeability game in Hybrid; with probability Adv‘{m“f, then there exists an algorithm

C which runs in essentially the same time as A and distinguishes the public key of the PKE scheme from
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uniform with advantage at least Advgmuf - Adv‘i’m”f. Let us denote the advantage of C with Advpkg. Then
Adve™f > Adve™f — Advpke = & — Advpke.

2. The differences between Hybrid; and Hybrid, are only concerning the inner computations of the challenger
and not its interactions with the adversary. Hence, the two hybrids are identical in the view of the
adversary. Thus AdvgmLIf = Advi’m”f > ¢ — AdvpkE.

3. The only difference between Hybrid, and Hybrid; is that in the latter A is first chosen uniformly from
Zy*™ and then Ha() is programmed to be A. Hence, the two hybrids are identical in the adversary’s
view in the random oracle model. Thus Advgmuf = /—\dvgme > § — Advpke.

4. The only difference between Hybrid; and Hybrid, is that in the latter A is computed as CR, where R is
a uniform binary matrix, instead of sampling it uniformly randomly from Zj*™. The two hybrids are
indistinguishable because Lemmas 2.10 and 2.11 imply that (C, A) is within statistical distance 22—
from (C, CR). Thus AdvS™" > Advg™f — 220 > § — Advpke — 2720,

We conclude with the following claim.

Claim A.2 Assume that the NIZK argument system is sound and PKE is perfectly correct. Then if there is
an adversary A in the random oracle model that makes at most Qg signing queries and succeeds in generating
Qs + 1 signatures in Hybrid, with probability €, then there exists a one-more-ISIS adversary B with Qg
preimage queries with success probability at least € — (Qg + 1)(272WN) 4 ¢—™).

Proof. The reduction B is as follows.

1. Upon being challenged by the one-more-ISIS challenger C, with matrix C, algorithm B does the following:
e It uniformly samples a binary matrix R and sets A = CR. It programs Ha() = A.

e It samples (PKE.pk, PKE.sk) <~ PKE.KeyGen(1*) and sets Hpkge() = PKE.pk.
e It invokes A with C as the verification key.

2. In response to each (fresh) hash query on input p from A, algorithm B makes a syndrome query to C.
Challenger C returns a uniform vector t € Zj', which B forwards to A as H(u).

3. To answer a signing query on input t’, algorithm B forwards t’ to C as a preimage query. Challenger C
returns a short vector y’, such that Cy’ = t’. Algorithm B forwards y’ to A.

4. Eventually, adversary A outputs Qs + 1 message-signature pairs {1, (7;,ct;)} cjos+1]-

5. If the m;’s pass verification, then algorithm B decrypts the ct;’s and obtains g + 1 corresponding
pairs of short vectors (x;,y;). If all u;’s have been hash-queried by A and the vectors (x;,y;) satisfy
Equation (A.1) for all j € [@Qs + 1], then B outputs {(y; — Rx;, H(115))}je[@s+1)- If any decryption fails
or any of the above conditions is not satisfied, then B aborts.

First note that by the soundness of NIZK, the probability that a statement with a valid proof is false
is bounded above by 27\, Now, since the ciphertext ct is part of the statement, we have by perfect
correctness of PKE that it decrypts to the correct value. Hence, the overall probability that a decryption fails
is < (Qg +1) 2770,

Next, we claim that for each u;, adversary .4 must have issued a corresponding hash query to B. This is
because otherwise, there is only a ¢~" probability that a fresh H () is equal to Cy; — Ax,. Additionally, by
the soundness of NIZK; it holds that for all j € [Qgs + 1]:

x| <B/m A lly;ll <8 AN Cy; — Ax; = H(uy).

Observe that because of the way hash queries are answered by B, the value H(u;) is one of the syndromes
returned by C. Define t; = H(p;). Then we get, for all j € [Qs + 1],

tj = Cyj - AXj = Cyj — CRXj = C(yj — RXj).

Since R is a binary matrix, we have ||y; — Rx;|| < 28 for all j. Thus, the success probability of B is at least
e—(Qs+1)27W +q7m).

Note that B issues one preimage query for each signing query from A. Since A can issue at most Qg
signing queries, algorithm B also issues at most Qg preimage queries to C. Hence B is a valid adversary in
the one-more-ISIS game.
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Theorem A.3. Assume that NIZK is zero-knowledge. Then if there exists a signer S* in the random oracle
model that wins the full-fledged blindness game for the blind signature scheme in Figure 5 with advantage
0, then there exist adversaries B and C, both running in essentially the same time as 8*, where B wins the
IND-CPA security game for PKE with advantage Advinp-cpa and C distinguishes the public key of the PKE
scheme from uniform with advantage Advpke such that

2AdV|ND-CPA + AdVPKE > o — 2_90\).
Proof. We argue blindness using the following hybrids.

Hybrid,, : This is the genuine full-fledged blindness experiment.

Hybrid; : This hybrid differs from the previous one in the way PKE.pk is computed: the challenger now
samples (PKE.pk, PKE.sk) < PKE.Setup(1?) and sets Hpkg() = PKE.pk.

Hybrid, : This hybrid differs from the previous one in the way the proofs 7y and 7 are computed: instead of
genuinely computing the NIZKs, the challenger simulates them without using the witnesses.

Hybrid, : This hybrid differs from the previous hybrid in that both cty and ct; encrypt O instead of (x¢||yo)
and (x1]|y1), respectively.

Hybrid, : This hybrid differs from the previous hybrid in the way matrix A is computed. In this hybrid, the
challenger first samples A < Zg*™ and then programs Ha() = A.

Hybrid; : This hybrid differs from the previous hybrid in the way the challenger computes to and t;. Instead
of sampling x¢ (resp. x1) and computing to = Axg + H(up) (resp. t1 = Axy + H(ugz)), it samples ug
(resp. up) uniformly and sets to = ug + H(up) (resp. t1 =uy + H(uz)).

Indistinguishability of hybrids
In the following, we let Advl;I represent the advantage of S* in the full-fledged blindness game in Hybrid,.
Then AdvgI is 4.

1. The only difference between Hybrid, and Hybrid; is in the way PKE.pk is computed. Hence if §* succeeds
in the full-fledged blindness game in Hybrid, with advantage Advtl’l7 then we can design an algorithm C
which runs in essentially the same time as S* and distinguishes the public key of the PKE scheme from
uniform with advantage at least AdvgI — Advtl’l. Thus if the advantage of C is represented by Advpke, we
get Adv®' > Advg — Advpke = & — Advpke.

2. The only difference between Hybrid; and Hybrid, is in the way my and 7 are computed. The two hybrids
are indistinguishable because of the zero-knowledge property of the NIZK. Hence /—\dvgI > Advtl’I —27020) >
6 — Advpke — 2=82(N),

3. The only difference between Hybrid, and Hybrid; is in the messages being encrypted by ctp and ct;. The
two hybrids are computationally indistinguishable because of the IND-CPA security of PKE. In particular,
if advantage of S* in the full-fledged blindness game in Hybrid; is Advgl, then there exists an adversary B
against IND-CPA security of PKE with advantage Advinp-cpa such that 2Advinp-cpa > AdvgI - AdvgI >
§ — Advpkg — 272 — Advgl. (Here, we consider twice of Advinp-cpa since both cty and ct; are replaced
with encryptions of 0 and hence the IND-CPA security of PKE is called twice.).

4. The only difference between Hybrid; and Hybrid, is in the computation of matrix A: the challenger first
samples A uniformly from Zj*™ and then programs Ha() = A. The two hybrids are therefore, identical in
the adversary’s view in the random oracle model. Hence AdeI = /—\dvgI > §—Advpke — 22 —2Advinp-cpa.

5. The only difference between Hybrid, and Hybrid; is in the choice of the masking term for H(u). Since
the vectors xg and x; are only used in the computations of the vectors ty and ti, we have by the
leftover hash lemma (Lemmas 2.10 and 2.11), that Axy and Ax; are statistically indistinguishable
from uniform uy and u;. Hence Hybrid, and Hybrid; are indistinguishable. More concretely, we have
Advgl > Advzl — 279()‘) > § — Advpkg — 279()‘) — 2AdvinD-cpA — 279()‘).

However, in Hybrids, the adversary S* has zero advantage in guessing the bit b since it is information
theoretically hidden. Hence § — Advpke — 2Advinp-cpa — 272 < 0, which is equivalent to Advpke +
2Advinp-cpa > 6 — 2770,
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