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Abstract
We introduce ABBY, an open-source side-channel leakage
profiling framework that targets the microarchitectural layer.
Existing solutions to characterize the microarchitectural layer
are device-specific and require extensive manual effort. The
main innovation of ABBY is the collection of data, which can
automatically characterize the microarchitecture of a target
device and has the additional benefit of being scalable.

Using ABBY, we create two sets of data which capture the
interaction of instructions for the ARM CORTEX-M0/M3
architecture. These sets are the first to capture detailed in-
formation on the microarchitectural layer. They can be used
to explore various leakage models suitable for creating side-
channel leakage simulators. A preliminary evaluation of a
leakage model produced with our dataset of real-world cryp-
tographic implementations shows performance comparable
to state-of-the-art leakage simulators.

1 Introduction

Kocher et al. [33] showed that showed that the power con-
sumption of a device correlates with the data it processes,
allowing the recovery of a cryptographic key. This interaction
appears in physical side-channel(s) such as power [3, 10, 35],
electromagnetic emanation [2, 47] or photonic emission [13].
An adversary can take advantage of these side channels and
learn secret information during processing. Many studies
show successful side-channel attacks leading to the recov-
ery of secret keys or shares on various platforms [8, 21, 22,
26, 30, 41]. Technological advancements and twenty years
of sustained effort by the cryptographic community signif-
icantly increased the workload required for successful key
extraction. However, the problem of implementing a secure
cryptographic algorithm on a given target device is not solved.
The challenge for a developer is to balance the presence of
countermeasures against information leaks. As the product
changes during development, it is important to understand
whether the changes are beneficial or, in contrast, whether
they compromise the security of the implementation.

The appeal of side-channel leakage simulators, which
model the instantaneous power consumption of a device, is
evident from the effort towards creating such tools [12]. A
leakage simulator generates side-channel measurements from
a sequence of instructions with the help of a leakage model,
a function that describes how the target devices consume
power. In the absence of tools such as leakage simulators,
a security researcher tasked with hardening a cryptographic
implementation, will measure traces, detect leakage, change
the implementation and reiterate until the implementation
stops leaking. The process is slow, error-prone, and expensive.
Moreover, the absence of leakage does not guarantee that
there is no attack possible. A leakage simulator can automate
the detection of side-channel leaks and, more importantly, can
be used to explain the cause of a leak. A leakage simulator
can automate the detection of side-channel leaks and, more
importantly, can be used to explain the cause of a leak.

A leakage simulator transforms high-level code into traces
similar to those collected from the target architecture. When
adequate and informative, leakage simulators assist in the de-
sign of secure cryptographic implementation provided that the
leakage model accurately reflects the reality of a key recovery
attack. As in [43], we distinguish between value and transi-
tion-based leakage models. A leakage model is value-based if
it takes the intermediate values of a cryptographic algorithm
as arguments. Examples include the Hamming weight (HW)
or the identity model (ID). A leakage model is transition-
based if it takes as parameters any pairwise combination of
intermediate values [43] such as the Hamming distance (HD)
model which captures events such as the update of a register.

A popular defense against side-channel attacks is masking,
where each secret value uses multiple shares [14, 32] to break
the dependency between the power consumption and the pro-
cessing of a given variable. Capturing interactions between
intermediate variables is essential for verifying the correctness
of a masked cryptographic implementation. However, theoret-
ically secure masking implementation often fails in practice
due to unexpected interactions between variables [9, 45].

Creating a transition-based leakage model is specific to the
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Figure 1: Overview of ABBY, ELMO, and ROSITA in appli-
cation level design

target and requires intensive manual effort [36, 37, 50, 61].
Capturing the interaction of intermediate values requires pro-
filing the microarchitectural layer, which may contain hidden
storage elements where unexpected interactions between in-
structions can occur. Although the importance of transition-
based leakage models has been established [7, 25, 36, 50],
the details of microarchitectural implementation are often
considered a trade secret and, therefore, not public informa-
tion. By automating the creation of leakage models, more
side-channel simulators, such as ELMO [37] which cover
different architectures can be created with reasonable effort.
Automated microarchitectural profiling, which captures the
interaction between variables due to microarchitecture op-
timization is necessary for creating leakage simulators for
different architectures.

Leakage simulators are the building block for rule-
driven code rewriting engines such as ROSITA [50] and
ROSITA++ [49] that patch the code automatically once the
leakage is detected. Fig 1 shows the functional relation-
ship between these tools, from an architectural profiler to
a side-channel code rewriter engine. For example, ELMO
as a side-channel simulator developed its microarchitectural
profiler based on Thumbulator [58](an Instruction Set Sim-
ulator). ROSITA developed a code rewrite engine based on
the ELMO* (upgraded ELMO) simulator combined with an
assembly code modifier.

Although the methodology for building leakage simulators
is known, the main limiting factor for their wide adoption
is the limited number of supported target devices, a direct
consequence of the effort required to reverse engineering
the microarchitectural implementation. As the main barrier
to overcome for the widespread deployment of leakage sim-
ulators is the characterization of the target device, we ask
the following question: Can we automate microarchitectural
profiling of a chip to speed up the process for side-channel
simulator design ?
Summary of contribution. This paper makes the following
contributions:

• We present ABBY, the first generic framework to auto-
mate the creation of training data used for creating a
side-channel leakage simulator;

• Using ABBY we create two data sets ABBY-CM0 and
ABBY-CM3 which capture the interaction of instructions
for the ARM Cortex-M0 and Cortex-M3 boards.

• We applied a qualitative and quantitative analysis on
ARM Cortex-M0 and Cortex-M3 leakage models con-
ducted with statistical tests, dedicated leakage test vec-
tors, and correlation power analysis.

• We demonstrate that deep learning can be used for real-
istic leakage models.

We propose ABBY, an open-source framework that auto-
matically captures microarchitectural leakage. Furthermore,
we offer the ABBY-CM0 dataset for ARM Cortex-M0 chips
(STM32F0 families) produced with the ABBY framework.
Based on our knowledge, this is the first open-source dataset
to profile the microarchitectural layer, which can be used to
study a target device’s profiling further. In addition, we de-
velop different transition-based leakage models, which allow
us to create different simulators. We investigate the model’s
performance based on statistical parameters and learn how
different microarchitectural features contribute to leakage.
We compare the performance in detecting leakage of these
simulators with ELMO and show that the performance is com-
parable to ELMO. We believe it is possible to improve further
the leakage model.
Paper organization: Related works on microarchitectural
leakage simulators are mentioned in Section 2. Section 3
briefly introduces the background on side-channel attacks and
leakage detection and describes the hardware setup we used.
Section 4, discusses building transition-based leakage models.
We introduce our dataset in Section 5. In Section 6, we build
several leakage simulators using the ABBY-CM0 data set
and discuss their performance. Section 7 concludes the article.

2 Related works

Pinpas [20] is the first side-channel leakage simulator. Soon
many more followed [19, 23, 44, 54]. However, the first open-
source side-channel leakage simulator was SILK [56], which
captures no specific hardware architecture and targets data-
dependent power consumption. SAVRASCA [57] takes as
input the compiled binary code and, using the tracing feature
of the SimulAVR tool, will output simulated power traces
for the AVR architecture. SAVRASCA was used to report a
bug in the implementation code used for the DPAv4 trace set.
ASCOLD [43] checks violations of the AVR architecture’s
independent leakage assumption (ILA). It takes as input the
assembly file of the masked implementation and a configura-
tion file of the system. The device shows the location of the
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leak (line number) and the rule that was violated. The phys-
ical causes of the ILA breaching effects are device-specific
(cannot be generalized) and counterintuitive when related to
the assembly description of the target.
Going one level lower are the simulators, which capture some
of the microarchitectural effects of the target. These simu-
lators capture a more descriptive target model at the cost of
a larger engineering effort. MAPS [34] is a power simula-
tor designed for the ARM Cortex M3, which takes as input
the source code of the masked implementation and outputs
a simulated power trace. To capture the microarchitectural
details, the authors used an HDL file of the target architecture
and mainly focused on the leakage caused by the pipeline. In
most cases, however, the target’s HDL files are unavailable.
We consider ELMO [37] to be the first transition-based leak-
age simulator for the ARM-Cortex M0/M4 family. ELMO
models power consumption as a linear combination of values
and transitions. Most remarkably, the simulator was created
without detailed information on the hardware description or
the target microprocessor. ELMO* [50] improves the leakage
model of ELMO by capturing interactions that span multiple
cycles. ROSITA [50] is a rule-driven code rewrite engine that
automatically patches the code once a leakage is detected.
ROSITA starts with a (masked) implementation of a crypto-
graphic algorithm, cross-compiled to produce both the assem-
bly and the binary executable. A very compelling feature of
ROSITA is that it extends an existing leakage detection tool,
ELMO [37], to report instructions that leak secret information.
The new detection framework (ELMO∗) uses the binary file
to detect leakage and identify the offending machine instruc-
tion; ROSITA then applies a set of rules that replace the leaky
instruction with an equivalent one (functionally) that does not
leak. ROSITA repeats the process until no more leakage is
detected. While the importance of microarchitectural details
in a security analysis has been established [25], [36] access
to its implementation is typically not available. The authors
of ELMO had to reverse engineer the microarchitectural im-
plementation of the target ARM Cortex M0 processor. The
current state of the art allows reverse engineering a commer-
cial ARM Cortex-M3 microprocessor [18, 25]. The authors
note that the current methodology involves intensive man-
ual effort. However, it is worth considering, as it shows the
importance of capturing microarchitectural effects. A large
body of works targets the creation of pre-silicon side-channel
simulators [27, 29, 31, 42, 48, 51, 52, 60], which use design
information of the target device to create the leakage model.

3 Background

3.1 Side channel.
Power consumption and EM signals emitted from a device
correlate with the processed data and the executed instructions.
The amount of power required to maintain a signal’s value de-

pends on the signal’s logical state. In CMOS technology, the
predominant choice when manufacturing integrated circuits,
changing the value of a bit requires a different power level
than keeping a bit constant. Therefore, the power consump-
tion of a circuit directly correlates with the data processed by
the circuit. Monitoring the physical properties of devices can
reveal information about the operations and data processed.
To perform a side-channel attack, an attacker attempts to cor-
relate the observed physical side channels with the values
processed by the device. Other effects, such as variations
in signal propagation time or cross-capacitance effects, con-
tribute to the device’s power consumption and correlate with
the data processes.
Leakage modeling. Let the set X be the data that we wish to
monitor. When using side-channel analysis, X is typically the
set of intermediate values created when transforming plaintext
into ciphertext. We denote by L(X) the leakage model of the
variable X . An adversary collecting side-channel traces has
access to variable y, defined using Equation 1. The measured
power traces are conventionally considered noisy, and this
Gaussian noise N(0,σ2) is independent of leakage L(X) [24].

Y = L(X)+N(0,σ2) (1)

As L(X) depends on the architectural design of the target and
originates from the interaction between software and hard-
ware. To improve this estimation and get it close to the real
leakage, we consider the most relevant microarchitectural fea-
tures of the target, such as instruction interaction, pipeline
effects on instructions, operand values, and memory interac-
tions. In this study, we consider the target as a “gray box“
model. Although we do not have access to the design of the
chip hardware description layer (white box), we have access
to the instruction set architecture (ISA) and full control of
firmware execution.
Leakage assessment. Test Vector Leakage Assessment
(TVLA) [28] is one of the most popular methods for leakage
detection due to its simplicity and relative effectiveness. It
is based on statistical hypothesis tests and comes in two fla-
vors: specific and non-specific. The ’fixed-vs-random’ is the
most common nonspecific test and compares a set of traces
acquired with a fixed plaintext with another set of traces ac-
quired with random plaintext. In the case of a specific test, the
traces are divided according to a known intermediate value
tested for leakage. In both cases, Welch’s two-sample t-test for
equality of means is applied for all trace samples. A difference
between two sets larger than a given threshold is evidence of
a leak’s presence. Despite its simplicity, it is easy to misuse
this test [59].

3.2 Regression model evaluation
The goal of most statistical models is to predict future events
or to help explain reality [11]. In the former case, the quality
of the model is defined by its predictive power. In contrast, the
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quality of the model in the latter is related to the number of
relevant factors it can identify. In leakage simulators, predic-
tive models are used to estimate the power consumption of an
intermediate variable. Although many options can fit the leak-
age model, we only consider linear regression in this paper.
We use coefficient of determination (R2) and cross-validation
to judge the quality of the model we use, as these are popular
choices to evaluate regression models [24]. For readability,
we use the notation [24], [37].
R2 measures how much of the variation in the dependent
variable can be explained by the independent (explanatory)
variable(s). An R2 value close to one shows a good fit be-
tween the predicted and measured values. To compute R2, we
need to compute two types of sum of squares (SS). The first
parameter is called residual sum of square(RSS) which
measures how much of the explanatory variables’ variation
can not be explained by the model. It represents the sum of
the squared differences between the actual measurement yi
and the predicted value L̃(Zi)(equation 2).

RSS=
n

∑
i=1

(yi − L̃(Zi))
2 (2)

where n is the number of samples. The second parameter
explained sum of square (ESS) measures the variation
of the explanatory variables(equation 3).

ESS=
n

∑
i=1

(L̃(Zi)− ȳ)2 (3)

The total sum of square(TSS) is the sum of ESS and
RSS(equation 4).

TSS= RSS+ESS=
n

∑
i=1

(yi − ȳ)2 (4)

The coefficient of determination R2 can be calculated with
equation 5 [24].

R2 =
ESS

TSS
= 1− RSS

TSS
(5)

The disadvantage of using the R2 metric is that its value
increases with increasing number of explanatory variables
included in the model. To penalize additional explanatory
variables added to the model and adjust this metric against the
overfitting problem, we look at R2 adjusted denoted by R2

ad j.

R2
ad j = 1− (1−R2)(n−1)

(n− p−1)
(6)

n is the number of samples, and p represents the number of
explanatory variables fed to the model. According to Equa-
tion 6, if the number of explanatory variables is negligible
compared to the number of samples(n ≫ p) then R2 ≈ R2

ad j.
F-test. To investigate the effect of adding different explana-
tory variables to the model, we used the F test introduced

in [37]. We investigate the importance of explanatory vari-
ables based on their contribution to the model’s performance.
We check if a reduced model (fitted by a subset of explanatory
variables) is missing a significant contribution compared to a
full model, which consists of the full explanatory variables.
Let us consider that B is a reduced model of model A. There-
fore the number of explanatory variables of model A (pA) is
larger compared to the number of explanatory variables of
model B (pB), so we have pA > pB. In this example, the null
hypothesis states that the extra parameters present in model
A do not affect the model performance. The F-statistic is
computed based on the residual sum of squares (RSS), while
pA − pB and n− pA are degrees of freedom as shown in equa-
tion 7.

F=
(RSSB −RSSA

pA − pB
)

( RSSA
n− pA

)
(7)

For a specific significance level (normally α = 5%), if the F
value is more than the critical value under the FpA−pB,n−pA

distribution, the null hypothesis is rejected, which means that
the parameters of model A, which are not present in model B
have a significant effect.

3.3 Cortex-M0 Vs Cortex-M3 architecture

Cortex-M0 is based on ARMv6-M architecture with three
stages pipeline. This architecture has the full support of the
Thumb-1 instruction set and some of the Thumb-2 instruc-
tions, a total of 56 instructions [5]. Cortex-M3 with three
stages pipeline is developed based on ARMv7-m architecture,
having full instruction coverage for Thumb-1 and Thumb-2
with a total coverage of more than 90 instructions [6]. One
of the key components used in this study for cycle count-
ing is Data Watchpoint and Trace unit (DWT). All Cortex-
M3 microcontrollers support the DWT register. Although
ARMv6-M supports this feature, not all the cortex-M0 micro-
controllers support the DWT register. Especially the chip that
ELMO developed based on.
(Data Watchpoint and Trace) DWT is a debug unit that
provides watchpoints, system profiling, and data tracing. This
unit contains a cycle counter called Clock Cycles Counter
(CYCCNT) to count the CPU clock cycle. We configure DWT
in a hardware watchpoint mode to read DWT_CYCCNT register
after each instruction processing to calculate the needed ex-
ecution cycle for each instruction. There are two problems
with using hardware breakpoints for each instruction. First,
there are four available breakpoints. Second, breaking the
normal process would affect the pipeline. We need to reuse
available breakpoints (only one breakpoint is used) to solve
the former problem simply. To investigate the second problem
in detail, we can check it with a simple assembly code snippet
like three LDR in a row. If we run this code without halting
the process, it would take 4 cycles for these three LDR to get
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executed, while halting the processor for each LDR takes 6
CPU cycles. The reason for this difference is related to the
optimization that is happening in the pipeline which every
LDR separately takes two cycles while for a series LDR in a
row, only the first one takes two cycles and the rest would
take one cycle to execute.

To solve the process halting effect on the pipeline and cycle
counting, we are recording DTW_CYCCNT register while
moving the breakpoint instruction by instruction until we
reach the end of the target assembly snippet code Fig.13. In
this way, we can calculate the cycle count for the first instruc-
tion(LDR) by a simple subtraction X2−X1 To make sure
that there are no other related instructions in the beginning
that can affect the target assembly code snippet, we add 10
NOP instruction after and before the target assembly code.

3.4 Hardware Setup
For Cortex-M0 We use two different chips based on Armv6-
M architecture manufactured by ST Microelectronics with
STM Discovery Boards [38, 39]. The target boards have the
STM32F051R8T6 or STM32F030R8T6 chip [40] and an exter-
nal crystal oscillator (8MHz). Although we initially tested our
framework on both boards, we continued on STM32F030R8T6
target to compare the result with the ELMO. We modified
the boards to filter the measurement noise by removing the
power line capacitors and measuring the current through a
current probe (Riscure CP271), which is used as a proxy
for the target’s power consumption. We used a PicoScope
3207B for data acquisition at a sampling rate of 500MS/s
while the target runs at 8MHz. This oscilloscope can store
up to 512Ms due to memory limitations. We used a physical
48MHz low-pass filter for the measurement. We are using
two acquisition channels, a power signal, and a trigger signal.
The trigger is fed by a GPIO of the target when the desir-
able segment of the code is running. The oscilloscope will
be armed for signal recording as soon as the trigger signal
is detected. Figure 2 shows the configuration block diagram.
The setup for Cortex-M3 is as same as Cortex-M0 except
for the clock source of the chip, which is fed by an external
clock. The Cortex-M3 microcontroller has based on armv7-
M architecture and is manufactured by ST Microelectronics
(STM32F107vct) [40].

4 Automated Microarchitectural Profiler

In this section, we explain the challenges and innovations
behind ABBY methodology to create an automated microar-
chitectural profiler. We address important questions such as
1) Why do we need automation? 2) what are the design re-
quirements? 3) what are the design challenges? and 4) How
does the ABBY framework tackle it?

Why do we need automation? Designing a side-challenge
simulator like ELMO has different steps. These steps

Figure 2: Setup Block Diagram

include selecting relevant instructions to decrease data space,
profiling selected instructions, clustering instructions based
on their profile, adding support for sequence dependency,
and training a simulator model. despite the amount of effort
and time-consuming, each step needs an expert decision
to continue to the next step. Moreover, the ELMO model
only supports symmetric crypto algorithms to reduce the
effort in different design steps. We need automation to put
all aforementioned efforts into a toolchain to design more
sophisticated side-channel simulators.

Design requirements.Requirement 1: We need a model
that covers as many instructions as possible from the tar-
get instruction set to not limited to some specific algorithms.
Requirement 2: we need to remove human expert decisions
between each step to decrease the needed effort. Requirement
3: we need a method to be scalable for other ARM Cortex-M
families or even more different architectures.
Challenges. To satisfy the aforementioned requirements, we
have some challenges to tackle. Challenge 1: To cover more
assembly instructions, we need to consider how the instruc-
tions combination grows dramatically due to the pipeline
effect. For instance, for a Cortex-M0 chip with 56 supported
Thumb instructions, there are 563 ≈ 175K combinations.
Challenge 2: to annotate the power trace with executing in-
struction in each clock cycle, we need to know how many
cycles a specific instruction needs to be executed. Challenge
3: clock-drift might affect this annotation.

ABBY solution. ABBY Framework tackles these chal-
lenges by offering a methodology shown in Fig 3. ABBY
framework handles the needed effort by adding more as-
sembly instructions through an automated Random Assembly
Generator block, which automatically generates, programs,
and captures power traces for each firmware. To collect mi-
croarchitectural features, ABBY uses QEMU [53] and Genu
Debugger(GDB) tools which are standard for not only dif-
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Figure 3: ABBY Cortex-M series block design

Figure 4: ABBY Cortex-M0 block design

ferent ARM cortex-M families but also other architectures.
ABBY uses Dynamic Watchpoint (DWT) register for instruc-
tion cycle counting while feeding the target a precise external
clock using a TCXO component. These two techniques help
us label our power trace precisely with the related instruc-
tion processed in a specific clock cycle. The labeling process
occurs in the Combiner block Fig 3.

Engineering challenges. Engineering challenges to fitting
ABBY on a specific architecture are as follows.

– Supported by QEMU or support JTAG debugger

– Support GDB basic commands

– Support a cycle counter register like DWT

To extract microarchitectural features from a specific
firmware, We can run it on a real target with a JTAG de-
bugger or an emulation tool. ABBY uses a popular emulator
called QEMU to speed up the process. QEMU supports many
ARM Cortex-M families and many others under development.
Even if QEMU does not support a specific target, using the
JTAG debugger is an alternative option supported by all ARM
Cortex-M families and even more architecture, as well as
GDB.

All ARM Cortex-M families support the DWT register for
cycle counting except Cortex-M0. To solve the cycle counting
problem for Cortex-M0, we applied some modifications to
the block design of ABBY. To annotate the power trace, we
use the ELMO model that gives us a simulated trace with
annotations. Next, we align the simulated trace by ELMO
with the measured power trace using the DTW algorithm. As
ELMO was developed based on Thumbulator, we replaced
QEMU with Thumbulator for feature extraction.

5 Dataset creation

5.1 Feature Selection

The critical observation made by McCann et al. [37] when
building the ELMO leakage model is that the power consump-
tion of the current instruction, Ic depends on the preceding
instruction, Ip and the subsequent instruction Is [55]. The
reason behind this observation can be found in the three-stage
design of the target pipeline. Not only the instructions but
also the operand values of these instructions contribute to the
power consumption of the chip [37].
Instruction coverage of classical leakages model. Although
executing instructions is one of the main contributors to the
chip’s power consumption, traditional leakage models only
look at the HW or HD of each operand with its previous
value. These models cover neither the pipeline effect nor
instructions.
ELMO instruction coverage. ELMO is instruction-accurate,
which has the advantage of allowing the quick identification
of a leaky instruction. Following a cluster analysis to group
“similar instructions” (that is, that leak information in the same
way), the authors identify five groups, all of which include 21
instructions, see appendix Fig 12.

The groups correspond to the same processor component:
ALU instructions in one group, shift instructions in another
group, load and stores that interact with the memory are two or
more groups and the MULS instruction with a distinct profile
due to its fit in the implementation of the single cycle in
a separate group. These groups also represent the internal
structure we could expect from an ARM core since shift,
multiplication, and arithmetic operations do not use the same
CPU part.
ABBY-CM0 instruction coverage Similar to ELMO, ABBY
captures the interaction between instructions in the pipeline
registers and memory leakage. No assumptions about the
operand interaction are made to simplify data collection and
training. To keep the data collection process simple, ABBY
leaves the modeling of the relation between operands for
preprocessing. ABBY also adds memory read/write values
for current and previous memory access to cover memory
leaks, as these were shown to be important in [50].

As part of the effort to simplify training, we further remove
the clustering of instructions. We keep the thumb instruc-
tions for crypto algorithms, representing 44 instructions for
ARM Cortex M0, including arithmetic, shift, store, load, and
multiplication operations. We do not profile branching, stack
operations PUSH, POP, LDR/STR sp, or operations changing
the PC register (Fig. 12) as these operations are not used for
implementing cryptographic algorithms. For the storage and
loading operations, we reserved a register r0 to put the mem-
ory address of an empty data section. Furthermore, ignoring
instructions such as branching B, BEQ, BL makes sense as
block ciphers avoid using them to be time constant and to
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Figure 5: Possible instruction space in gray vs. ABBY and
ELMO in green and blue respectively

prevent leaks from branch prediction.
For a 3-stage pipeline microprocessor, and considering 56
possible Thumb-instructions for Cortex-M0, the entire in-
structions space is 563. Figure 5 shows the coverage of the
instruction space of ELMO vs. ABBY. We see that ABBY
covers more instruction combinations compared to ELMO.

ABBY-CM3 instruction coverage.

The data collection phase is the same as CM0, with
these differences that we target just one of the processing
components in a CM3 chipset. Based on our knowledge,
there is no cycle-accurate instruction simulator for CM3
like Thumbulator, and it’s not our goal here to develop
such a simulator. We reduced profiling space to the ALU
component of CM3 as it guaranteed to consume one cycle
per each different supported instruction of this unit[refernce
of arm developer about this], and also this unit provides many
popular instructions which are used in crypto algorithm [37].
We covered seven different instructions of ALU including
ADD, AND,CMP, EOR,MOV,ORR, and SUB. Moreover, for these
instructions, we considered different possible variants, like
the version with suffix S or with and without immediate value
and the extended version with suffix .W, which ended up
with 17 different variants for these seven instructions. We
implement 50 different firmware, each including 80 triplets
of randomly chosen instructions from the aforementioned
instruction space. For each instruction, we are collecting
1000 different traces while each of them is fed with ran-
dom operands through the serial port. We ended up with
50×80×1000 = 4M data samples.

5.2 Automated Firmware creation
We automatically generate randomized assembly firmware,
including triplet Thumb instructions, to cover the 3-stage
pipeline of the target. We analyze the output to ensure that
the instructions are uniformly chosen, and their operand value
is uniformly distributed. As we do not have the clustering
limitation (all instructions in one cluster), we keep all Thumb
instructions typical for cryptographic implementations. The
result is a group of 44 instructions for the ARM Cortex M0,
including arithmetic, shift, store, load, and multiplication op-
erations. For Cortex-M3, the result is 17 different instructions
of the ALU component.

5.3 Dataset construction
Cortex-M0. Using the generated firmware, we collect 1,000
triplets 1 (or pipeline states) in a single acquisition. By
generating and flashing2 50 000 different Random assembly
firmware automatically, we collect for each triplet of instruc-
tions (with random operands) 50000×1000

443 ≈ 587 data points.
Firmware with random instructions is loaded on the target
device, and power consumption is measured while the target
executes the firmware.
Cortex-M3. It is the same as the Cortex-M0 process except
for the number of data points. We collect for each triplet of
instructions (with random operands) 4M

173 ≈ 815 data points.

5.4 Dataset labeling.
Cortex-M0. To label the measured power samples, we need
to identify the corresponding triplet of instructions. A chal-
lenge when annotating the measured traces with the executed
instructions is that different instructions might take different
cycles, depending on the optimizations made by the manufac-
turer.

Our solution, dictated by the simplicity of the ARM Cortex
M0 processor, is not perfect, but it is effective. We use ELMO
as an initially estimated power consumption to compare with
the feature annotation. Next, we replace the value generated
by ELMO with the corresponding value extracted from the
measured traces. ELMO is not cycle-accurate; the measured
and estimated traces do not have the same number of sam-
ples. Our solution for aligning two-time series of varying
sizes is Dynamic Time Warping (DTW), a popular algorithm
used for speech recognition. This technique solves the signal
alignment problem and finds the corresponding power con-
sumption value for each instruction triplet (Figure 4). DTW
is not perfect, and alignment errors are possible. As a re-
sult of the first attempt to align the data, 22% of instructions

1A compromise between the oscilloscope memory and the duration of
running Dynamic Time Warping for alignment (t ∼ O(n2)).

2We could run from RAM to preserve flash endurance, but it influences
leaks and the number of cycles per instruction. Running the firmware from
the flash is closer to real-world scenarios.
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are dropped. We also expect errors in the remaining data, so
we perform several passes. We observe that the alignment
distance converges after four passes (there is no significant
improvement with more iterations).
Cortex-M3. Dataset labeling for CM3 is a challenge due to
the following limitations:

1. Lack of an open source ISS like Thumbulator

2. Lack of an available power model like ELMO

Lack of an open source ISS. Thumbulator is working only
on ARMV6-m architecture. Based on our knowledge, there
is no open-source cycle-accurate simulator for ARMV7-m
that is the based architecture for CM3. To solve the feature
extraction problem without an ISS tool, we take advantage of
GNU Debugger (GDB). After loading firmware on the real
target by one of the scripts, another script would run to extract
features by using GDB-related commands through a J-link
debugger. [Add a picture about how it can be done]. After
we ran feature extraction using GDB on a real target, we
observed that this process was time-consuming as we needed
to stop on every assembly instruction to collect all operand
values and related registers. We solved this problem using a
well-known emulator called Quick Emulator (QEMU) [53].
By using QEMU, the process would be at least 10 times
faster, and you would not need a physical setup for feature
extraction. Fig. [add a figure] shows the architectural

Lack of available power model for CM3. Another limita-
tion to extending the previous model for CM3 chips, is that
there is no available power model to apply DTW based on it.
To create our labeled dataset we need to annotate recorded
power traces from a real measurement with the extracted fea-
tures from the same execution. The main challenge for this
annotation is that even with a slight drift in the signal an-
notation, like 100 nanoseconds in our case, as our target is
running on 10MHz, we are not annotating the desired instruc-
tion but the next or previous instruction in the subsequent
based on a positive or negative drift. So, if drift happens in
power annotation, consequently it’s leading to false labeling
in the dataset and a corrupted dataset would not guarantee
what the ML model would learn even if it learns anything of
this dataset. One solution for this problem would be a precise
execution timing to be able to calculate the execution timing
of each instruction. For this precise calculation, first, we need
to calculate the cycle count for each instruction and ensure
that the target is fed with a precise clock. For the former,
we know that our target execution cycle is deterministic, and
the ARM developer manual guarantees it [4]. Based on the
developer manual, all the ALU instructions need one clock
cycle to execute. We confirm it in practice with the following
methods:

1. Using Data Watchpoint and Trace unit (DWT)

2. Clock signal recording

Clock Signal Recording. As we record the clock signal
fed to the Processor beside the power signal, we can count the
number of clock cycles needed for our target assembly code
to execute. This way, we can double-check the calculated
clock with the ARM developer manual. For clock precision,
We cannot rely on the chip’s internal clock, as it’s prone
to drifts and changes by voltage or temperature changes.
Among the options for external clock sources, we used
a TCXO (Temperature compensated crystal oscillator)
based clock source equipped with temperature changes
compensation component. This solution provides a precise
and steady enough clock cycle to can use for execution
timing measurement. Fig. 3 shows this technique.

5.5 The ABBY dataset specification
ABBY-M0 dataset. The ABBY-CM0 dataset is a CSV file
which includes ≈ 35 million samples with 12 columns rep-
resenting all extracted features alongside the chip’s power
consumption while executing related features.

• Assembly Instructions. Concerning the three stages
pipeline of the target, three different instruction columns
exist in the ABBY-CM0 dataset. These columns repre-
sent the current executing instruction (Ic), previous in-
structions that have been executed (Ip), and subsequent
instruction, which is in the decoding phase to get exe-
cuted (Is).

• Operand Values. These columns are related to the
data processing by current and previous instructions.
op1_value_current and op2_value_current Rep-
resent registers value used for executing Ic while
op1_value_previous and op2_value_previous Rep-
resent values of corresponding registers used by previous
instruction.

• Memory transactions. These features represent
the data values to store to or load from the
memory processing by STR or LDR assembly in-
structions. The readbus_value_current and
the readbus_value_previous are presenting the
loaded data on the memory bus while the current
or previous load operation processing, respec-
tively. The writebus_value_current and the
writebus_value_previous present the same scenario
for the store operation.

• Power sample. Shows a proxy value of target power
consumption at the moment that all other features are
processing.

We must pre-process features to fit any simulator model on
the data set. Categorical data, Assembly instructions (IP, IC,
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and IS), are hot-encoded and numerical data are represented
in a 32-bit binary system (ID32) 3 instead of the decimal
system (ID10) to decompress information. Furthermore, we
also add HW of operand and memory transaction values with
their previous values. Moreover, the HD of each operand
value is calculated and located in the dataset. Fig.?? shows
the shape and dimension of the data set before preprocessing.

ABBY-M3 dataset. We have two versions of the CM3
dataset, ABBY-M3V1 and ABBY-M3V2.

ABBY-M3V1. It’s a CSV file with 4M samples and includes
eight columns of data representing all extracted features
alongside the target power consumption. All features are
the same as ABBY-M0 except, in ABBY-M3V1, there are
no memory transaction columns as we only cover the ALU
component.

ABBY-M3V2. The only difference between this dataset with
the previous version is the power consumption column. In
this dataset, instead of considering the maximum value of
the power sample in each clock as a proxy for the power
consumption of the target, We simply add all ten samples we
are acquiring per each clock cycle. In this way, we are not
losing any information because of the downsampling, and our
dataset represents the transient power consumption of the chip
during the execution of an instruction with specific features.

6 Fitting Power Simulators using the ABBY
dataset

In this section, we implement different power simulators
based on the ABBY dataset and evaluate each model’s perfor-
mance. The leakage model is the heart of a simulator, and it’s
a bridge that connects the side-channel signal (power in this
study) to the processing data (instructions and operands value)
in the target. More precise leakage models can help detect
more leakages. We analyze conventional linear regression and
nonlinear deep learning models in this study.

6.1 Fitting Linear regression models on ABBY-
M0

We constructed different leakage models using linear regres-
sion to evaluate the ABBY-M0 dataset and investigate mi-
croarchitectural leakage. In Equation 8, Y is the estimated
power consumption of the target, β0 is a constant, while βi
is the coefficient of the explanatory variable Xi, and ε is the
error. A regression model aims to find the best coefficients
for each explanatory variable.

Y = β0 +β1X1 +β2X2 + ...+βnXn + ε (8)

3ID represent the identity model in side-channel

In this study, Y would be our leakage model Y = L(X). In
this section, we fit different leakage models to investigate
how the different microarchitectural features contribute to the
leakage.
HW \HD classic leakage model As discussed in Section 4,
classical leakage models do not consider instructions but
operands. HW and HD are the most popular classical leakage
models. We fit a leakage model based on the HW of the pre-
vious instruction and the current instruction operand values.
Moreover, the HD between each operand’s current and previ-
ous values was added to the model. Furthermore, we add HW
for memory interactions. Equation 9 shows the fitted leakage
model.

LHW (X)= [HW (OPs)|HD(OPs)|HW (MRs)|HW (MWs)]β+ε

(9)
Where:
HW(OPs): a matrix that includes the HW of each operand for
the previous and current instruction.
HD(OPs): a matrix that includes HD between current and
previous instructions for each operand.
HW(MRs): a matrix that includes the HW of the value of the
read memory for the current and previous interaction.
HW(MWs): a matrix that includes the HW of the memory write
value for the current and previous interaction.

Identity leakage model. The identity model is a very simple
classical model that uses the operand values without changes.
Fitting a model based on the identity of the operand values
requires normalization of the data. We chose a binary repre-
sentation of the data instead of normalization because dividing
the values to a 32-bit size makes the result less sensitive to
small changes. Equation 11 shows the identity leakage model.
Where ID2 represents the binary representation of values, all
other parameters are the same as the HW \HD model, except
that the values are represented as binary instead of HW or
HD.

LID(X) = [ID2(OPs) | ID2(MRs) | ID2(MWs)]β+ ε (10)

Instruction-based leakage model. Based on section4, not
only the processing data (operational values), but also the
execution of operations (instructions) contribute to leakage.
Concerning the three-stage pipeline of our target, equation
11 models the leakage related to the instructions LINS(X). To
fit the mnemonic assembly instructions, we use a one-hot
encoding technique. After one-hot encoding, we end up with
a 44-bit value representing our 44 supported instructions in
the framework for each instruction level in the pipeline.

LINS(X) = [(IP) | (IC) | (IS)]β+ ε (11)

Comprehensive (CH) leakage model. To consider the effect
of operations and operand values, we build a leakage model
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Table 1: Evaluation of linear regression leakage models

Model LHW (X) LID(X) LINS(X) LCH (X)
OHE(IP,IC,IS) X X

ID(Ops) X X
ID(Mem_Bus) X X

HW(Ops) X
HW(Mem_Bus) X

R^2 adj 0.30 0.32 0.57 0.58
F-Stat 6.92e + 5 9.39e + 5 1.67e + 5 1.04e + 5

based on operand values and instructions. For operand values,
we use identity leakage model (LID(X)) as it shows slightly
better performance compared to HW \HD model4. Combining
the ID with the instruction-based leakage model, we make a
more comprehensive leakage model and call it (LCH (X)) that
models not only the instruction and corresponding operand
values but also the linear interaction between them.

LCH(X) = LID(X)+LINS(X) (12)

Considering LID(X) and LINS(X) as a reduced model of the
LCH(X) model, we applied F-test. The result shows that the
combination of characteristics in LCH (X) shows a significant
effect with α = 0.05.
Model selection. We fit all the aforementioned leakage mod-
els in the ABBY data set, and Table 1 summarizes the result.
Each column represents the constructed leakage model and
rows are representing features. The X mark shows that the
corresponding feature is used in that specific leakage model.
For each leakage model the R2ad j and F-Stat are calculated
sparately.

Although the identity leakage model shows slightly better
performance, the classical HW\HD is a very strong operand
leakage model (compared to the identity model), considering
its simplicity. The instruction-based leakage model performs
better than the operand leakage model based on the parameter
R2

ad j. Albeit the CH leakage model performance increased
slightly with combining instructions and operand values, this
model covers the leakage related to both operands and instruc-
tions.
Model evaluation The goal of a side-channel simulator is
leakage detection to help the developers during the design
phase. To evaluate our model, we applied a correlation-based
DPA attack on an AES Crypto algorithm to investigate the
performance of leakage detection for our model versus real
power trace and ELMO simulated trace while all are running
the same firmware. Based on the previous section, we chose
the CH model as the best model. For the AES implementation,
we choose a first-order protected implementation by Yao et
al. [62], which we refer to as Byte Masked AES. Although

4We didn’t consider the complexity of the model in this step and perfor-
mance came first. From a complexity point of view, we have ten coefficients
for the HW \HD model, while it is (8∗32) 256 for the ID. In addition, the
identity model might interact better with the instructions
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(b) Correlation based on the CH model
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(c) Correlation based on the ELMO model

Figure 6: DPA attack based on correlation on the first round
Sbox of byte-masked AES shows successful leakage detection
on the real power trace vs. the ELMO and the CH model.

this implementation should be secure against first-order leaks,
correlation analysis indicates leaks both on the measured
power trace and on the simulated power traces by ELMO and
CH models. Fig 6

6.2 Fitting Deep learning regression models on
ABBY-M0

In this section, we apply the deep learning method to our
dataset to evaluate nonlinear model performance on the
ABBY-CM0 dataset. Based on the problem statement, pre-
dicting the chip’s power consumption while specific features
are processing requires a regression model to estimate the
power consumption. We use the popular Multi-Layer Per-
ceptron (MLP) model to train the ABBY-CM0 dataset. We
use TensorFlow2 [1] with the Keras submodule to build a
preprocessing pipeline and an MLP model with three hidden
layers. The input layer consists of three different groups of
data, mnemonic assembly instructions, operands value for
these instructions, and memory bus values. Before delivering
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Table 2: MLP hyperparameter description

Layer Types Details

Input Fully-connected #neurons 388, Relu

Hidden Fully-connected #neurons 388, Relu
Hidden Fully-connected #neurons 16, Relu
Hidden Fully-connected #neurons 16, Relu

Output #neurons 1, Linear

input data to an MLP model, input needs to be normalized
to a number between zero and one. For mnemonic assembly
instructions which are not ordinal categorical features, we use
one-hot encoding [46]. For normalizing operands and memory
read/write values, we extended each value to a 32-bits binary
array. The input layer consists of (8×32)+(3×44) = 388
neurons. Table 2 summarizes the model architecture. The chip
power consumption is predicted by the output layer, which
consists of one neuron. After 341 training epochs, our MLP
model reached r2 = 0.771 on a training set of ≈ 35 Millions
samples with a test set of ≈ 15 Millions while 20% of the
training set used as validation. Although the r2 metric evalu-
ates the model’s performance, we apply standard side-channel
evaluation metrics to determine its usefulness for leakage de-
tection.

model evaluation. TVLA is one of the side-channel domain’s
most popular leakage assessment methods. See Section 3
for a brief introduction. We applied the TVLA test on two
cryptographic algorithms, AES [15] and Xoodoo [16]. We
chose the AES implementation the same as we did for the
correlation attack [62]. Although this implementation should
be secure against first-order leaks, TVLA indicates leaks on
the measured power trace as well as on the simulated power
traces by ELMO and ABBY models(Figure 7). As proof that
ABBY has learned the same leaks as ELMO, we notice how
similar the t-trace scores produced by ELMO and ABBY are,
with ABBY showing more leakage points compared to ELMO.
Notice the difference in the x-axis between the measured
traces (cycles) compared to the labels of the simulated traces
(instructions).

To confirm that the positive results obtained for Masked
AES are not just a lucky coincidence, we compare the t-test
results of ELMO and ABBY on a different cryptographic
algorithm, namely Xoodoo [16]. Xoodoo is the underlying
permutation used in Xoodyak [17], one of the finalists in the
NIST Lightweight Cryptography Standardization process. As
shown in Figure 8, we confirm that also, in this case, the
output of ABBY is comparable to the ELMO model and the
measured power traces.
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Figure 7: Byte-Masked-AES TVLA result real vs. simulation
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Figure 8: Xoodoo TVLA result real vs. simulation
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Table 3: Extended MLP model hyperparameter description

Layer Types Details

Input Fully-connected #neurons 180, Relu

Hidden Fully-connected #neurons 32, Relu
Hidden Fully-connected #neurons 32, Relu

Output #neurons 1, Linear

Figure 9: ABBY estimated power trace Vs. Measured trace

6.3 Fitting deep learning regression models on
ABBY-M3

For model fitting, we use an MLP regression model like the
previous model for CM0. The differences with the previous
model are related to the input layer and model architecture.
We have 17 mnemonic assembly instructions, ALU related,
for the input layer.

After normalization of mnemonic assembly instructions
by using one-hot encoding and using a 32-bit binary array
extension for operand values, The input layer consists of
(4×32)+(3×17)+1 = 180 neurons. Table 3 summarizes
the model architecture. Prediction of the ALU power con-
sumption is done by the output layer, which consists of one
neuron.

After 341 training epochs, our MLP model reach r2 = 0.977
on a training set of ≈ 21 Millions samples with a test set of
≈ 14 Millions while 20% of the training set used as validation.
Although the r2 metric evaluates the model’s performance, we
apply standard side-channel evaluation metrics to determine
its usefulness for leakage detection.
Model evaluation. Although the visual inspection of the es-
timated power shows a good similarity with the measured
power Fig. 9, we need a metric to compare them.

One of the popular side-channel attacks is the Differential
Power Analysis attack. This attack is one of the strong attacks
that can reveal secret information due to the microarchitec-
tural leakages of a chip. We apply correlation analysis for a
random assembly firmware designed to target ALU instruc-
tions on the measured power trace as same as the estimated

0 50 100 150 200 250 300
Sample

0.0

0.2

0.4

0.6

0.8

1.0

 C
rr 

Va
lu

e

add r7, r6

orr r7, r1
cmp r7, #imm

Correlation based on the model prediction

Figure 10: Correlation result based on the ABBY model pre-
diction

power trace, which is produced by ABBY-CM3 deep learning
model. We feed the designed firmware with 10K different val-
ues and use these values as an operand using the register r7
for different instructions.Fig 10 shows the correlation for the
ABBY model. Fig 11 compares the correlation peaks found
by the ABBY model with the correlation peaks found in the
measured traces. With this experiment, we could confirm that
the model correlation result is similar to the measured power
traces from the real target. Although the figure shows the re-
sult for some ALU instructions, for all covered ALU instruc-
tions, we observed that maximum correlation was founded,
and it was happening in the same position that is happening
for the real measurement.

7 Conclusions and Future work

We propose ABBY, the first framework to automate the profil-
ing of the architectural layer. As a result, ABBY significantly
reduces the human effort necessary to create leakage models.
ABBY is scalable and can be transferred to different archi-
tectures. The most challenging aspect of porting ABBY to
different architectures is the creation of the labeled dataset.
We used standard tools for developing the ABBY framework.
Using the ABBY-CM0 dataset, we explored several leakage
models ranging from primitive to transition-based, which in-
clude pipeline effects and instruction interaction via hidden
registers. We evaluate and compare the performance of these
leakage models using statistics metrics such as R2 and F−test
and side-channel attacks. When considering side-channel at-
tacks, we see those transition-based leakage models such as
ELMO and our CH model are superior to primitive ones.
When comparing the performance of ELMO with our deep
learning leakage model, the results are very close, demon-
strating the quality of the ABBY-CM0 dataset and ultimately
the effectiveness of the ABBY framework. We constructed
the ABBY-CM3 dataset to investigate the scalability of the
ABBY framework while we developed a side-channel power
simulator for the ALU component based on this dataset. De-
spite statistical metrics, correlation results for simulation are
close to the measured trace.

In future work, our objective is to develop a simulator for
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Figure 11: Correlation result of 1K estimated traces Vs. mea-
sured traces on ALU instructions

Cortex-M3 based on the ABBY framework that covers all the
components besides the ALU. Moreover, we will investigate
how targeted microarchitectural benchmarks such as [36] and
optimizations of the model architecture can further enhance
the performance of ABBY.

8 Availability

Our framework and dataset will be published upon the paper’s
acceptance and can be downloaded from GitHub: ABBY-
Framework
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9 Appendix A

(a) ELMO instruction clusters

(b) ABBY instructions

Figure 12: ELMO instruction clusters vs ABBY instructions Figure 13: Breakpoint effect solution
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