
Ascon PRF, MAC, and Short-Input MAC
Christoph Dobraunig3,4, Maria Eichlseder1, Florian Mendel2,

and Martin Schläffer2
1Graz University of Technology, Austria
2Infineon Technologies AG, Germany

3Intel Labs, USA
4Lamarr Security Research, Austria

https://ascon.iaik.tugraz.at

The cipher suite Ascon v1.2 already provides authenticated encryp-
tion schemes, hash, and extendable output functions. Furthermore, the
underlying permutation is also used in two instances of Isap v2.0, an
authenticated encryption scheme designed to provide enhanced robust-
ness against side-channel and fault attacks. In this paper, we enrich
the functionality one can get out of Ascon’s permutation by providing
efficient Pseudorandom Functions (PRFs), a Message Authentication
Code (MAC) and a fast short-input PRF for messages up to 128 bits.

Keywords: Pseudorandom function ·MAC · Ascon.

1 Introduction

The Ascon family of authenticated encryption schemes [DEMS14] was first pub-
lished in the beginning of 2014 as a submission to the CAESARCompetition [Cae14].
After 5 years of public scrutiny, the authenticated encryption schemesAscon-128 and
Ascon-128a (v1.2) [DEMS16] were recommended as the first choice for lightweight
applications in the final portfolio of CAESAR for resource-constrained environ-
ments. Furthermore, the cipher suite Ascon v1.2 [DEMS21a; DEMS21b] containing
Ascon-128 and Ascon-128a, as well as the hash function Ascon-Hash and extend-
able output function Ascon-Xof, are finalists in the NIST lightweight cryptography
(LWC) standardization process [Nat18]. Ascon’s permutation also serves as a basis
for two instances of Isap v2.0 [DEM+20; DEM+21], an authenticated encryption
scheme designed to provide enhanced robustness against side-channel and fault
attacks on algorithmic level. Isap v2.0 is also a NIST LWC finalist.
In this paper, we define two lightweight and efficient pseudorandom function (PRF)
families, Ascon-Prf and Ascon-PrfShort. Ascon-Prf processes inputs of arbitrary

1

https://ascon.iaik.tugraz.at


length and produces outputs of length up to 232 bits. In contrast, Ascon-PrfShort
operates only on short inputs ≤ 128 bits producing outputs of short length ≤ 128
bits. Ascon-Prf and Ascon-PrfShort are adaptions of the full-keyed sponge (FKS)
mode [BDPV07; BDPV12; MRV15; DMV17]. Ascon-Prf uses a rate of 256 bits
during absorption and a rate of 128 bits in the squeezing phase. Overall, Ascon-Prf
is an efficient choice for general-purpose lightweight message authentication, so we
define the correspondingmessage authentication code (MAC)Ascon-Mac based on
Ascon-Prf. Ascon-PrfShort excels whenever short data needs to be authenticated,
e.g., the authentication of pointers, in challenge-response protocols, or protocols
that derive symmetric keys of entities from a master key.

2 Specification

In this section, we introduce the state layout and notation for our functions and
specify the modes of operation for the PRFs and the MAC.

2.1 State and Notation

Our algorithms operate on a 320-bit state S which is updated using the a-round
permutation pa. The state S is divided into an outer part of r bits and an inner part
of c bits, where the rate r and capacity c = 320− r depend on the variant.
For the description and application of the round transformations (Section 3), the
320-bit state S is split into five 64-bit words xi, as illustrated in Figure 3a:

S = x0 ∥ x1 ∥ x2 ∥ x3 ∥ x4 .

Whenever S needs to be interpreted as a byte-array (or bitstring) used in the sponge
interface, the array starts with the most significant byte (or bit) of x0 as byte 0 and
ends with the least significant byte (or bit) of x4 as byte 39. Table 1 lists the notation.

2.2 Algorithms

Pseudorandom functions. Ascon-Prf is parameterized by the key length of k bits,
output rate of r bits, internal round number a, and maximum output length of
0 < t < 232 bits (or t = 0 for unlimited output). The algorithm Gk,r,a,t takes as its
input a secret key K with k bits, input data M of arbitrary length, and a requested
output length ℓ ≤ t. It returns an output T of size ℓ bits:

Gk,r,a,t(K, M, ℓ) = T .

Ascon-PrfShort is parameterized by the key length k bits, input length m ≤ 128
bits, internal round number a, and output size t ≤ 128 bits. The algorithm Fk,m,a,t
takes as its input a secret key K with k bits and some input data M of m bits. It
produces an output T of size t bits:

Fk,m,a,t(K, M) = T .

2



Table 1: Notation used for Ascon’s interface, mode, and permutation
K Secret key K of k ≤ 128 bits
M, D, T Message M, data D, output/tag T (in r-bit blocks Mi, Di, Ti)
S The 320-bit state S of the sponge construction
p, pa Permutation paconsisting of a update rounds p
x ∈ {0, 1}k Bitstring x of length k (variable if k = ∗)
0k Bitstring of k bits (variable length if k = ∗), all 0
|x| Length of the bitstring x in bits
⌊x⌋k Bitstring x truncated to the first (most significant) k bits
⌈x⌉k Bitstring x truncated to the last (least significant) k bits
x ∥ y Concatenation of bitstrings x and y
x⊕ y Xor of bitstrings x and y
x mod y Remainder in integer division of x by y
⌈x⌉ Ceiling function, smallest integer larger than x

pC, pS, pL constant-addition, substitution and linear layer of p = pL ◦ pS ◦ pC
x0, . . . , x4 The five 64-bit words of the state S
x0,i, . . . , x4,i Bit i, 0 ≤ i < 64, of words x0, . . . , x4, with x·,0 the rightmost bit (LSB)
x⊕ y Bitwise xor of 64-bit words or bits x and y
x⊙ y Bitwise and of 64-bit words or bits x and y (denoted x y in the ANF)
x ≫ i Right-rotation (circular shift) by i bits of 64-bit word x

Message authentication. Ascon-Mac is parameterized by the key length k bits,
output rate r, internal round number a, and tag length t. It specifies an authentica-
tion algorithm Ak,r,a,t and a verification algorithm Vk,r,a,t, both calling Gk,r,a,t. The
authentication algorithm Ak,r,a,t takes as its input a secret key K with k bits and a
message M of arbitrary length. It produces a tag T of length t as its output:

Ak,r,a,t(K, M) = T .

The verification procedure Vk,r,a,t takes as input the key K, message M and tag T,
and outputs either pass if the verification of the tag is correct or fail if it fails:

Vk,r,a,t(K, M, T) ∈ {pass, fail} .

2.3 Recommended Parameter Sets

Table 2 lists our recommended instances for PRFs. Table 2 shows our recommended
instance for the MAC and specifies its parameters, including the key size k, the rate
r, the maximum tag length t, and the number of rounds a for the permutation pa.

2.4 Arbitrary-Length Pseudorandom Functions

The mode of operation of Ascon-Prf is based on full-state keyed sponge modes
[BDPV07] such as the DonkeySponge [BDPV12] mode. The PRF is illustrated in
Figure 1 and specified in Algorithm 1.

3



Table 2: Parameters for recommended Pseudorandom Functions (PRF) andMes-
sage Authentication Codes (MAC). Unlimited input/output lengths (‘un-
lim.’) are implicitly limited by the security claim to ≤ 272 bits.

Name Algorithms Bit size of Rounds
key data (block) output (block) pa

k m t r a

Ascon-Mac A,V128,128,12,128 128 unlim. 256 128 128 12
Ascon-Prf G128,128,12,0 128 unlim. 256 unlim. 128 12
Ascon-PrfShort F128,∗,12,∗ 128 ≤ 128 128 ≤ 128 128 12

IV∥K∥0∗

pa

Initialization

M1
256

pa

64

Ms−1
256

pa

64

Absorb Message

Ms
256

64

0∗∥1

pa

T1
r

pa

c

T⌈ℓ/r⌉−1
r

pa

c

T⌈ℓ/r⌉
r

Figure 1: Pseudorandom Function Gk,r,a,t with output length ℓ (ℓ ≤ t or t = 0).

2.4.1 Initialization

The 320-bit initial state of Ascon is formed by the secret key K of k bits and an
IV specifying the algorithm. The 64-bit IV of Ascon-Prf specifies the algorithm
parameters in a similar format as for Ascon, including k and the rate r each written
as an 8-bit integer and round number a encoded as an 8-bit integer as 27 + a = 80⊕ a,
followed by the maximum output length of t bits as a 32-bit integer, or t = 0 for
arbitrarily long output:

IVk,r,a,t ← k ∥ r ∥(1∥07)⊕ a ∥ 08 ∥ t

S← IVk,r,a,t ∥K ∥ 0256−k

In the initialization, the a-round permutation pa is applied to the initial state:
S← pa(S)

2.4.2 Absorb Message

The PRF processes the padded message M, in blocks of 256 bits. The padding
process appends a single 1 and the smallest number of 0s to M such that the length
of the padded message is a multiple of 256 bits. The resulting padded message is
split into s blocks of 256 bits, M1 ∥ . . . ∥Ms:

M1, . . . , Ms ← 256-bit blocks of M ∥ 1 ∥ 0255−(|M|mod 256)

4



Algorithm 1: PRF
PRF Gk,r,a,t(K, M, ℓ) = T

Input: key K ∈ {0, 1}k, input M ∈ {0, 1}∗, output bitsize ℓ ≤ t or ℓ arbitrary if t = 0
Output: output T ∈ {0, 1}ℓ

Initialization
S← pa(IVk,r,a,t ∥K ∥ 0256−k)

Absorbing
M1 . . . Ms ← 256-bit blocks of M∥1∥0∗
for i = 1, . . . , s− 1 do

S← pa(S⊕ (Mi ∥ 064))
S← pa(S⊕ (Ms ∥ 063 ∥ 1))

Squeezing
u=⌈ℓ/r⌉
for i = 1, . . . , u− 1 do

Ti ← ⌊S⌋r
S← pa(S)

Tu ← ⌊S⌋r
return ⌊T1 ∥ . . . ∥ Tu⌋ℓ

The message blocks Mi with i = 1, . . . , s− 1 are processed as follows. Each block
Mi is xored to the state S, followed by an application of the a-round permutation pa

to S. For the last message block Ms a single 1 is xored to the state in addition to the
message block:

S←
{

pa(S⊕ (Mi ∥ 064)) if 1 ≤ i ≤ s− 1
pa(S⊕ (Mi ∥ 063 ∥ 1)) if i = s

2.4.3 Squeeze Tag

Then the output is extracted from the state in r-bit blocks Ti until the requested
output length ℓ ≤ t (or ℓ arbitrary if t = 0) is completed after u = ⌈ℓ/r⌉ blocks.
After each extraction (except the last one), the internal state S is transformed by the
a-round permutation pa:

Ti ← ⌊S⌋r
S← pa(S), 1 ≤ i ≤ u = ⌈t/r⌉

The last output block Tu is truncated to ℓ mod r bits and ⌊T1 ∥ . . . ∥ Tu⌋ℓ is returned.

2.5 Message authentication

Themessage authentication code Ascon-Macmainly relays inputs to the underlying
PRF algorithm Gk,r,a,t and, for verification, checks if the transmitted tag T matches
the computed tag T∗. The MAC is specified in Algorithm 2.

5



Algorithm 2: Authentication and verification procedures

Authentication
Ak,r,a,t(K, M)

Input: key K ∈ {0, 1}k, k ≤ 128,
message M ∈ {0, 1}∗

Output: tag T ∈ {0, 1}t

T ← Gk,r,a,t(K, M, t)
return T

Verification
Vk,r,a,t(K, M, T)

Input: key K ∈ {0, 1}k, k ≤ 128,
message M ∈ {0, 1}∗,
tag T ∈ {0, 1}t

Output: pass or fail
T∗ ← Gk,r,a,t(K, M, t)
if T = T∗ return pass
else return fail

2.6 Short-Input Pseudorandom Functions

Themode of operation ofAscon-PrfShort is essentially the initialization ofAscon-128
with a different initial value, and the nonce replaced by a single message block M
of length m ≤ 128 bits. The resulting PRF Ascon-PrfShort is illustrated in Figure 2
and specified in Algorithm 3.

IV∥K∥M∥0∗

pa

K

T

128

Figure 2: PRF Fk,m,a,t for short inputs

Algorithm 3: Short-input PRF. In an implementation, m and t can be inputs (instead
of parameters).

PRF Fk,m,a,t(K, M) = T

Input: key K ∈ {0, 1}k, k ≤ 128,
input M ∈ {0, 1}m, m ≤ 128

Output: output T ∈ {0, 1}t

S← pa(IVk,m,a,t ∥K ∥M ∥ 0256−k−m)

T ← ⌈S⌉t ⊕ ⌈K⌉t
return T

As shown in Algorithm 3, the 320-bit input to pa is formed by an IV specifying the
algorithm, the secret key K of k bits, and the message M of m bits. The 64-bit IV of
Fk,m,a,t includes the key length k, the size of the input block m, and the size of the
output block t, each written as an 8-bit integer, and the round number a encoded as

6



an 8-bit integer as 26 + a = 40⊕ a:

IVk,m,a,t ← k ∥m ∥(0∥1∥06)⊕ a ∥ t ∥ 032

This IV is concatenated with the secret key K and the message M. Note that no
padding is applied to M and hence, Fk,m,a,t only accepts M matching the length m.
The permutation pa is applied to this state:

S← pa(IVk,m,a,t ∥K ∥M ∥ 0256−k−m)

The last t bits of the state are then extracted as the tag T. The additional xor with
the key K is performed similarly to the authenticated encryption schemes:

T ← ⌈S⌉t ⊕ ⌈K⌉t

3 Permutation

The main component of the PRFs is the 320-bit permutation pa. The permutation
iteratively applies an SPN-based round transformation p that in turn consists of
three steps; pC, pS, pL:

p = pL ◦ pS ◦ pC .

The number of rounds a is a tunable security parameter.
For the description and application of the round transformations, the 320-bit state S
is split into five 64-bit words xi as follows: S = x0 ∥ x1 ∥ x2 ∥ x3 ∥ x4 (see Figure 3).

x0x1x2x3x4

(a) Round constant addition pC

x0x1x2x3x4

(b) Substitution layer pS with 5-bit S-box S(x)

x0x1x2x3x4

(c) Linear layer with 64-bit diffusion functions Σi(xi)

Figure 3: The five 64-bit words of the 320-bit state S and operations pL ◦ pS ◦ pC.

7



x0

x1

x2

x3

x4

1

1

1

1

1

1

x0

x1

x2

x3

x4

(a) Ascon’s 5-bit S-box S(x)

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(b) Ascon’s linear layer with 64-bit functions Σi(xi)

Figure 4: Ascon’s substitution layer and linear diffusion layer.

3.1 Addition of Constants

The constant addition step pC adds a round constant cr to word x2 of the state S in
round i (see Figure 3a). Both indices r and i start from zero and we use r = i for pa

(see Table 3):
x2 ← x2 ⊕ cr .

Table 3: The round constants cr used in each round i of pa.
p12 Constant cr p12 Constant cr

0 00000000000000f0 6 0000000000000096

1 00000000000000e1 7 0000000000000087

2 00000000000000d2 8 0000000000000078

3 00000000000000c3 9 0000000000000069

4 00000000000000b4 10 000000000000005a

5 00000000000000a5 11 000000000000004b

3.2 Substitution Layer

The substitution layer pS updates the state S with 64 parallel applications of the
5-bit S-box S(x), defined in Figure 4a, to each bit-slice of the five words x0 . . . x4
(Figure 3b). The S-box is typically implemented in bitsliced form with operations
performed on the entire 64-bit words. The lookup table of S is given in Table 4,
where x0 is the MSB and x4 the LSB.

Table 4: Ascon’s 5-bit S-box S as a lookup table.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

8



3.3 Linear Diffusion Layer

The linear diffusion layer pL provides diffusionwithin each 64-bitword xi (Figure 3c).
It applies a linear function Σi(xi) defined in Figure 4b to each word xi:

xi ← Σi(xi), 0 ≤ i ≤ 4 .

4 Security Claim

Ascon-Prf, Ascon-PrfShort, and Ascon-Mac are designed to help provide 128-
bit security against key recovery and min(128, t) security against guessing T for a
random key and newly queried M. The number of message blocks processed by
the algorithms is limited to a total of 264 blocks per key. We consider this as more
than sufficient for lightweight applications in practice.
It is beneficial that a system or protocol implementing theMAC algorithmsmonitors
and, if necessary, limits the number of tag verification failures per key. After reaching
this limit, the verification rejects all tags.
We emphasize that we do not require ideal properties for the permutation pa. Non-
random properties of the permutation pa are known and are unlikely to affect the
claimed security properties of the algorithm.

5 Software Performance

A preliminary overview of the software performance of Ascon-Mac, Ascon-Prf
and Ascon-PrfShort is given in Table 5a and Table 5b in comparison with Table 5c
and Table 5d.

Acknowledgments. The authorswould like to thank all researchers contributing to
the design, analysis, and implementation of Ascon. In particular, we want to thank
Hannes Gross and Robert Primas for all their support and various implementations
of Ascon. Furthermore, we want to thank Bart Mennink for giving feedback on this
document.
Part of this work has been supported by the Austrian Science Fund (FWF): P26494-
N15 and J 4277-N38, by the European Union’s Horizon 2020 research and innovation
programme (H2020 ICT 644052: HECTOR), and by the Austrian Government
(FFG/SFG COMET 836628: SeCoS and FIT-IT 835919: SePAG).

9



Table 5: Software performance in cycles per byte of Ascon-Mac, Ascon-Prf and
Ascon-PrfShort compared to Ascon and Ascon-128a.

(a) Ascon-Mac and Ascon-Prf

Message Length 1 8 16 32 64 1536 long
Intel® Core™ i5-6300U 427 48 24 21 13.3 6.4 6.2
Intel® Core™ i5-4200U 517 64 33 25 16.3 8.7 8.4
ARM1176JZF-S (ARMv6) 1803 237 123 89 60.1 33.1 33.4

(b) Ascon-PrfShort

Message Length 1 8 16
Intel® Core™ i5-6300U 188 23 12
Intel® Core™ i5-4200U 257 33 17
ARM1176JZF-S (ARMv6) 1098 136 72

(c) Ascon-128

Message Length 1 8 16 32 64 1536 long
Intel® Core™ i5-6300U 367 58 35 23 17.6 11.9 11.4
Intel® Core™ i5-4200U 521 81 49 32 23.9 16.2 15.8
ARM1176JZF-S (ARMv6) 2136 312 186 123 91.6 61.8 62.2

(d) Ascon-128a

Message Length 1 8 16 32 64 1536 long
Intel® Core™ i5-6300U 365 47 31 19 13.5 8.0 7.8
Intel® Core™ i5-4200U 519 67 44 27 18.8 11.0 10.6
ARM1176JZF-S (ARMv6) 2118 261 170 107 75.6 46.0 46.6

Bibliography

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Sponge functions”. Ecrypt Hash Workshop 2007. 2007. url: http:
//sponge.noekeon.org/SpongeFunctions.pdf (pp. 2, 3).

[BDPV12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Permutation-based Encryption, Authentication and Authenticated
Encryption”. DIAC 2012. July 2012 (pp. 2, 3).

[Cae14] The CAESAR committee. “CAESAR: Competition for Authenticated
Encryption: Security, Applicability, and Robustness”. 2014. url: https:
//competitions.cr.yp.to/caesar-submissions.html (p. 1).

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, Bart Mennink, Robert Primas, and Thomas Unterluggauer.
“Isap v2.0”. In: IACR Transactions on Symmetric Cryptology 2020.S1
(2020), pp. 390–416. doi: 10.13154/tosc.v2020.iS1.390-416 (p. 1).

10

http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.13154/tosc.v2020.iS1.390-416


[DEM+21] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, Bart Mennink, Robert Primas, and Thomas Unterluggauer.
“Isap v2.0 (Submission to NIST)”. Finalist of NIST lightweight cryp-
tography standardization process, https://csrc.nist.gov/Projects/
Lightweight-Cryptography/. 2021 (p. 1).

[DEMS14] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Ascon v1”. Submission to the CAESAR competition. 2014.
url: https://ascon.iaik.tugraz.at (p. 1).

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schläffer. “Ascon v1.2”. Submission to Round 3 of the CAESAR
competition. 2016. url: https://ascon.iaik.tugraz.at (p. 1).

[DEMS21a] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schläffer. “Ascon v1.2 (Submission to NIST)”. Finalist of NIST
lightweight cryptography standardization process, https://csrc.
nist.gov/Projects/Lightweight-Cryptography/. 2021 (p. 1).

[DEMS21b] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Ascon v1.2: Lightweight Authenticated Encryption and
Hashing”. In: Journal of Cryptology 34.3 (2021), p. 33. doi: 10.1007/
s00145-021-09398-9. url: https://doi.org/10.1007/s00145-021-
09398-9 (p. 1).

[DMV17] JoanDaemen, BartMennink, andGilles VanAssche. “Full-State Keyed
Duplex with Built-In Multi-user Support”. In: ASIACRYPT 2017. Vol.
10625. LNCS. Springer, 2017, pp. 606–637. doi: 10.1007/978-3-319-
70697-9_21. iacr: 2017/498 (p. 2).

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. “Security of
Full-State Keyed Sponge and Duplex: Applications to Authenticated
Encryption”. In: ASIACRYPT 2015. Vol. 9453. LNCS. Springer, 2015,
pp. 465–489. doi: 10.1007/978-3-662-48800-3_19 (p. 2).

[Nat18] National Institute of Standards and Technology. “Submission Re-
quirements and Evaluation Criteria for the Lightweight Cryptog-
raphy Standardization Process”. https : / / csrc . nist . gov / CSRC /
media/Projects/Lightweight-Cryptography/documents/final-lwc-

submission-requirements-august2018.pdf. 2018 (p. 1).

11

https://csrc.nist.gov/Projects/Lightweight-Cryptography/
https://csrc.nist.gov/Projects/Lightweight-Cryptography/
https://ascon.iaik.tugraz.at
https://ascon.iaik.tugraz.at
https://csrc.nist.gov/Projects/Lightweight-Cryptography/
https://csrc.nist.gov/Projects/Lightweight-Cryptography/
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://eprint.iacr.org/2017/498
https://doi.org/10.1007/978-3-662-48800-3_19
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

	Introduction
	Specification
	State and Notation
	Algorithms
	Recommended Parameter Sets
	Arbitrary-Length Pseudorandom Functions
	Initialization
	Absorb Message
	Squeeze Tag

	Message authentication
	Short-Input Pseudorandom Functions

	Permutation
	Addition of Constants
	Substitution Layer
	Linear Diffusion Layer

	Security Claim
	Software Performance

