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Abstract

In the model of Perfectly Secure Message Transmission (PSMT), a sender Alice
is connected to a receiver Bob via n parallel two-way channels, and Alice holds an
£ symbol secret that she wishes to communicate to Bob. There is an unbounded
adversary Eve that controls ¢ of the channels, where n = 2t + 1. Eve is able to corrupt
any symbol sent through the channels she controls, and furthermore may attempt to
infer Alice’s secret by observing the symbols sent through the channels she controls.
The transmission is required to be (a) reliable, i.e., Bob must always be able to recover
Alice’s secret, regardless of Eve’s corruptions; and (b) private, i.e., Eve may not learn
anything about the Alice’s secret. We focus on the two-round model, where Bob is
permitted to first transmit to Alice, and then Alice responds to Bob.

In this work we provide tight upper and lower bounds for the PSMT model when
the length of the communicated secret ¢ is asymptotically large. Specifically, we first
construct a protocol that allows Alice to communicate an ¢ symbol secret to Bob by
transmitting at most 2(1 4 o(1))nf symbols. We complement this with a lower bound
showing that 2n¢ symbols are necessary for Alice to privately and reliably communicate
her secret. Thus, we completely determine the optimal transmission rate in this regime,
even up to the leading constant.

1 Introduction

Background. Perfectly secure message transmission (PSMT) was first introduced by
Dolev et al. in [DDWY93|]. This problem involves two parties, the sender Alice and the
receiver Bob. Alice wishes to communicate a secret to Bob over n parallel channels in the
presence of a computationally unbounded adversary Eve. Eve is able to take control of up
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to ¢t channels in such a way that she can listen to and/or overwrite the message passing
through these ¢ corrupted channels. Eve considered here is static, i.e., she chooses up to
t channels to corrupt before the protocol and will not change corrupted channels during
the protocol. The goal of PSMT is to devise a procedure permitting Alice and Bob to
communicate the secret reliably and privately. More precisely, it is guaranteed that Bob
always completely recovers the secret (reliability) and Eve learns absolutely nothing about
the secret (privacy). PSMT can be done in multiple communication rounds. During each
round, one party acts as a sender and another party acts as a receiver. They are not
allowed to change their roles in one round. It is clear that for ¢ > n/2, PSMT is not
possible, regardless of how many rounds the protocol uses. One can treat all the message
transmitted over these n channels as a codeword of length n. Assume c; represents the
secret 1 and cg represents the secret 0 that Alice wants to communicate to Bob. Since the
distance of these two codewords is at most n and the number of errors ¢ is more than the
half the distance between c; and cg, unique decoding is not possible.

The original paper in [DDWY93] showed that one-round PSMT is possible if n > 3t+1.
The same paper also showed that PSMT is possible when n > 2t + 1 if two or more rounds
are performed. There have since been a number of efforts to devise improved PSMT
protocols in various settings. The most challenging case is two-round PSMT with n = 2t+1
channels. To measure the performance of a PSMT protocol in this case, we use the metric
of transmission rate, which is the total number of bits transmitted divided by the length
(in bits) of the secret communicated.

In what follows, we focus on the case that n = 2t + 1. Sayeed and Abu-Amara [SA96]
first presented a two-round PSMT achieving transmission rate O(n?). Agarwal et al.
[ACdHO6] further improved it to O(n) which is asymptotically optimal as the lower bound
of n was proved in [SNR04]. However, implementing this protocol requires an inefficient
exponential-time algorithm. A breakthrough was achieved by Kurosawa and Suzuki [KSO0S|
whose protocol achieves transmission rate 6n, and can be run in the polynomial time.
Inspired by this protocol, Spini and Zémor [SZ16] further reduced the transmission rate
to 5n, and moreover their protocol is arguably simpler than those that preceded it. They
also answer in the affirmative an open problem posed in [KS08] of whether it is possible to
achieve O(n) transmission rate for a secret of size at most O(n?logn).

Hence, in reviewing the literature on PSMT, we note that the only known lower bound
on the transmission rate for two-round PSMT is n, while the current state-of-the-art con-
struction in [SZ16] achieves transmission rate 5n. While both bounds are ©(n), there is
still a gap of 4n between the lower bound and the upper bound. In this work, we close this
gap by showing that the optimal transmission rate is exactly 2n.



Our Results. Our results are two-fold. Our first contribution is a two-round PSMT
protocol with transmission rate 2(1 + 0(1))nE| This protocol improves over the state-of-
the-art protocol in [SZ16] by 3n. Furthermore, our protocol reaches this transmission rate
when Alice and Bob merely communicate an w(nlogn)-bit secret, and moreover achieves
transmission rate O(n) when they communicate an Q(nlogn)-bit secret as in [SZ16].

Our second contribution is a lower bound on any protocol for two-round PSMT. Specif-
ically, we show that Alice and Bob have to transmit at least 2nf bits so as to securely com-
municate an ¢-bit secret. Note that this lower bound implies that our two-round PSMT
protocol actually achieves the optimal transmission rate. In this sense, we settle the optimal
transmission rate for two-round PSMT. As a byproduct, we also show that communicating
a 1-bit secret via any two-round PSMT requires transmitting at least n+mnlogn bits, which
also improves upon the previous lower bound of n.

Our Techniques. As mentioned above, we obtain tight upper and lower bounds for
communicating an ¢-bit secret in the model of two-round PSMT. We start by outlining the
upper bound proof.

Upper Bound. For the upper bound, we construct a two-round PSMT protocol achiev-
ing transmission rate ~ 2n. Instead of presenting our optimal protocol immediately, we
first present a simplified protocol which allows for communicating a log n bit secret securely,
which we view as a symbol m € F, with ¢ > n.

Bob first sends t 4+ 1 codewords ¢y, ..., ci+1 which are picked independently and uni-
formly at random from a [n,t+ 1,n — t]E| Reed-Solomon code over F,. Alice receives the
corrupted codewords €; = c¢; + e;. She uses the parity check matrix of this Reed-Solomon
code to calculate the syndrome vectors H¢; = s;. Since Eve can corrupt at most ¢ channels,
there exist coefficients Aq,...,A\i41 € Fy, not all zero, such that Zfi} Ais; = 0. From this
one can show Zfﬂ Aie; = 0 and thus Zfﬁ Aic; = Zfﬁ Ai€;; we denote this codeword by
C.

Let h € F} be a vector of weight n that is not orthogonal to the [n,t + 1,n — ¢] Reed-
Solomon code. Alice broadcastsﬂ A1, ...y A1 together with (h,¢) +m to Bob where m is

the secret; (h, c) is a mask for the secret. Bob first uses Aq,..., Ay1 to recover ¢ and then
obtains m by removing the mask (h, ¢) from the last broadcasted message.
The privacy analysis is quite straightforward. First, Eve can calculate Aq,..., A\i+1 by

herself since each s; = He; is available to her. This means we can reduce the privacy argu-
ment to the last message (h, c)+m which is an immediate consequence of the [n,t+1,n—t]

'Here and throughout, o(1) denotes a quantity which tends to 0 as the length of the secret increases,
holding n fixed.

2A [n, k, d] Reed-Solomon code has length n, dimension k and distance d = n — k + 1.

3To broadcast A € F,, Alice sends A through every channel; note that Bob can easily recover A by
choosing the majority symbol.



Reed-Solomon code we use. This protocol allows Alice and Bob to securely communicate
the secret m € F, at the cost of n?logn communication complexity (measured in bits).

Observe that if the syndrome space spanned by si, ..., s;4+1 has dimension r, Alice only
needs to send r + 1 coeflicients instead of ¢ + 1 so as to share a common codeword with
Bob. This observation leads to our most efficient two-round PSMT.

We now present the general protocol. Assume Alice and Bob want to communicate an
£log n-bit secret securely. We first split it into £ secrets my, . . ., my, each of size log n, which
we think of as lying in [F, with ¢ > n. Bob first sends ¢ + ¢ codewords cy,...,cq ¢ which
are picked independently and uniformly at random from a [n,t + 1,n — t] Reed-Solomon
code over [F,. Alice receives the corrupted codewords ¢; = c¢; + e; for ¢ € [t + ¢]. She
uses the parity-check matrix of this Reed-Solomon code to calculate the syndrome vectors
Héi = 8S;.

Assume that the space spanned by sq,...,s;¢ has dimension r. Let S C [t + /] be the
index set of s; that form the basis of this syndrome space. Without loss of generality, let us
assume S = {t+{—r+1,t+{—r+2,...,t+L}, the last r elements of [t+/]. For each i € [{],
there exist not all zero coeflicients \;; for j € S such that s; = > ,cg Aijs;. In analogy to
what we did in the simpler protocol, we let €; := ¢; — 3 ;cg AijCj = € — X jeg Nij€y-

Before entering into the second round, we need to do the same thing as in [SZ16] so as
to reduce communication complexity. That is, we spot a corrupted codeword with error
weight at least TE| by applying linear operations to the €¢;’s. We take a different approach
which simplifies the argument; for details, please see Algorithm [2] Assume that Alice has
managed to spot a corrupted codeword € = ;- Aj€; with error weight at least r. Alice
first broadcasts the index set S together with A; for j € S and € to Bob. Then, Alice uses
an [n,r + 1,n — r] Reed-Solomon code to encode message \i;,j € S and (h,c;) + m; for
i€ 4.

Once Bob receives the messages, he can correctly recover the index set S and A; for
j € S and € as these messages are broadcasted. By applying the same linear operation on
the codewords in S, Bob will obtain ¢ = _,cg Ajc; which is at least distance r away from
¢. Bob then ignores the r channels that cause the inconsistency between ¢ and ¢. Bob can
decode the rest of Alice’s messages correctly which were encoded by the [n,r + 1,n — r|
Reed-Solomon code since Eve can only cause r erasures and ¢ —r errors now. The recovery
procedure is exactly the same as in the first protocol. The privacy argument is also quite
straightforward. First of all, the coefficients A;; can be computed by Eve on her own.
Then, the privacy of the secret m; can be reduced to the privacy of ¢; for i € [r] which is
guaranteed by the [n,t+ 1,n — t] Reed-Solomon code.

4Note that Eve has to corrupt at least r channels so as to make the syndrome space have dimension r.

To simplify our discussion here, we assume r < %; otherwise the protocol will be little more complicated.

Specifically, Alice first broadcasts a corrupted codeword with error weight é and then sends all corrupted

codewords in S to Bob via a [n, %, n— %Jr 1] Reed-Solomon code. This extra cost will not affect transmission

rate as we can amortize it out by communicating ¢logn = Q(nlogn)-bits secret. The interested reader can
find the details in our proof.



It remains to bound the communication complexity. The first-round communication
complexity is (¢ +t)nlogn. The second-round communication complexity is nrlog(t+¢) +
(r+n)nlogn+ 25 (r+1)¢logn. Thus, the transmission rate is 2n + O("Tf) which becomes
2(1 4 o(1))n if Alice communicates to Bob an ¢logn = w(nlogn)-bit secret.

Lower Bound. Assume that Alice wants to communicate an ¢-bits secret s securely to
Bob via a two-round PSMT. In the first round, Bob sends a vector a = (ay,...,ay) to
Alice, and Alice receives a corrupted vector a. Based on a and the secret s € [2¢], Alice
sends back a vector b = (by,...,b,) to Bob. On receiving the corrupted vector b, Bob tries
to decode the correct secret s with the help of a. Since PSMT is reliable, we can assume
that the algorithm used by Alice and the algorithm used by Bob to decode is deterministic.
That means b is uniquely determined by a and s.

Next, we design an adversary to force Alice and Bob to transmit at least 2¢n bits so as
to securely send the ¢-bit secret. In the first round, Eve does nothing. That means Alice
will receive a correct vector a. Moreover, she has no idea which channels are corrupted.
She must therefore assume that any subset of ¢ channels are equally likely to be corrupted
in the second round. Given a, Alice has to use a code of distance n = 2t + 1 to encode the
secret s € [2] so as to achieve reliability. This gives a lower bound #n on the second round
communication complexity.

Meanwhile, from this argument, we can see that Eve knows exactly b if she does nothing
in the first round. To achieve perfect security, Alice and Bob must share a private key of
size £ in the first round. We also notice that the message sent by Bob in the first round is
independent of Eve’s strategy, which means that the lower bound on the communication
complexity of the first round can be applied to the case Eve does nothing in the first round.

We construct a secret sharing scheme by treating a = (a1, ..., a,) as n shares and this
private key as a secret. Since the adversary can listen to ¢ channels, this means any ¢
shares should learn nothing of this secret. This implies that such a secret sharing scheme
has t-privacy. We next show that such secret sharing scheme must have t+1-reconstruction.

Let a; be any share vector of secret s; and as be any share vector of secret so. If a;
and ag are within distance ¢, the adversary may inject ¢ errors to change a; to as. Then,
Alice and Bob will share a wrong key and thus Alice fails to recover the correct secret.
This implies the share vectors associated with different secrets must have distance ¢ + 1
and thus any n— (t+1) 41 = t 4 1 shares can reconstruct the secret. As we have t-privacy
and t + 1-reconstruction, our secret sharing scheme is threshold, which implies that the
number of bits communicated in the first round is also at least fn. Putting it all together,
we obtain the desired 2¢n lower bound on the communication of the two-round PSMT.



2 Preliminaries

Notations. For an integer n > 1, we denote [n] := {1,2,...,n}. By default, log denotes
the base-2 logarithm.

Throughout, F, denotes the finite field with ¢ elements, for ¢ a prime power. We let
n denote the number of channels through which Alice and Bob may communicate and ¢
the number of channels Eve may corrupt; we focus exclusively on the n = 2t + 1 case.
The complexity measure of a protocol that concerns us is its transmission rate, defined
as the total number of symbols communicated divided by the number of symbols of the
transmitted secret. The length of the transmitted secret is denoted by £.

Remark 2.1. As usual, a bit refers to an element of {0, 1}, while in this work, a symbol refers
to an element from the field F,, and we will need ¢ > n. While it is most natural to measure
the total communication in bits, as our protocols will involve transmitting elements of F,
it is more convenient for us to talk about the number of symbols transmitted. Note that
when we compute the transmission rate and we assume the length of the secret is a growing
parameter, whether we measure the communication in bits or symbols does not matter.
However, when we present our lower bound proof in Section [4] it will be most convenient
for us to talk about bits.

Codes. As in previous works, our protocols rely crucially on linear codes with desirable
properties. For two vectors x and y in Fp, the (Hamming) distance between them is
d(x,y) := [{i € [n] : & # y}|. Given a vector x and a subset Y C F; we denote
d(x,)) = min{d(x,y) : y € Y}. The (Hamming) weight of a vector is wt(x) := d(x,0).
The support of x is supp(x) := {i € [n] : z; # 0}. Note that wt(x) = |[supp(x)| and
d(x,y) = |[supp(x — y)|- By a (linear) code, we refer to a linear subspace C < Fy; n is
the block-length, k = dim(C) is the dimension and d = min{wt(c) : ¢ € C \ {0}} is the
(minimum) distance. We refer to such a code as an [n, k, d], code.

A code is called mazimimum distance separable (MDS) if d = n—k+1. Such codes exist
whenever ¢ > n and are furnished by the well-known Reed-Solomon (RS) codes defined via
the evaluations of degree < k — 1 polynomials. However, in this work, we will not directly
use the specific structure of RS codesE| so we will state our results for arbitrary linear MDS
codes.

Any linear code C may be described as the kernel of a matrix, i.e., C = {x € Fy: Hx =

0}. Such a matrix H € ]F(qn_k)xn is called a parity-check matriz.

Given two vectors X,y € Fy we define their inner product via (x,y) = >2i"; z;y;. We
will need the following lemma from [SZ16]. It states that there exists an MDS code C < Fy
of dimension ¢ for n = 2¢ 4+ 1 for which one can find a vector h € Fy such that, even

5Although in order to implement the protocol efficiently we will use the existence of efficient encoding
and decoding algorithms for RS codes.



once t coordinates are revealed from a codeword c € C, the inner-product (h,c) € F, is
completely unconstrained.

Lemma 2.2 (Lemma 1 from [SZ16]). For any n and any t < n there exists a linear MDS
code C of parameters [n,t + 1,n — t] and a vector h € Fy is such that given a random
codeword ¢ € C, the scalar product (h,c) is completely undetermined even when any t
symbols of ¢ are known.

Remark 2.3. We note that any such vector h must not lie in the dual of C, and moreover
that it must have weight at least ¢ + 1.

Broadcast. Next, observe that since Eve controls at most ¢ < n/2 of the channels, if
Alice transmits the same symbol through all n channels, then Bob can always recover
Alice’s intended symbol by choosing the majority symbol. Of course, such a procedure
does not guarantee any privacy, i.e., Eve will always learn the symbol Alice transmits to
Bob.

2.1 Pseudobases

An important technical tool in our protocols are pseudobases, as introduced in the work
of Kurosawa and Suzuki [KS08]. Before providing the definition, we explain their utility.
Consider the scenario where Bob has sent a codeword ¢ € C to Alice by sending the i-th
coordinate c; through the i—th channel. In order to guarantee privacy, as Eve can observe
t of the channels, it must be that dimC > ¢t + 1. However, by the Singleton bound, that
forces the distance of C to be at most n— (t+1)4+1 =n—¢ = t+ 1, which means that Bob
can uniquely decode Alice’s transmission only if Eve introduces < ¢/2 errors. However,
as Eve can introduce up to ¢ errors, it appears that we do not have an effective means of
enforcing reliability.

However, consider the following scenario: instead of sending a single codeword through
the channel in this way, Bob sends many codewords c;, ..., c,. Privacy is preserved so long
as the transmissions are not correlated in any way (say, each one is sampled independently
and uniformly at random). However, Alice now has an advantage in decoding: all of the
corruptions introduced by Eve are confined to the same set of ¢t coordinates. The idea is to
exploit this fact to allow Alice and Bob to agree on some codeword ¢ of which Eve knows
at most t coordinates (which in turn means that (h,c) can effectively mask the secret m).
Using the concept of pseudobases, it turns out that this is possible (so long as the distance
of C is at least t 4 1, as is the case when C is MDS).

We now provide the formal definition of a pseudobasis.

Definition 2.4 (Pseudobasis [KS08|). Let yi,...,ys € Fy be vectors. A pseudoba-
sis for y1,...,ys is a subcollection y;,,...,y;. with 1 < i3 < --- < i, < s such that
Hy;,,...,Hy; € Fg_k is a basis for the linear space span{Hy,...,Hy,}.



In other words, one computes a basis for the space spanned by Hyq,...,Hys € Fg_k,
and then the preimage of the basis vectors in [y provides a pseudobasis. Observe that, given
access to H, such a pseudobasis can be found in time polynomial in n, and furthermore
that it consists of at most n — k vectors.

Remark 2.5. Note that if we have a code C < [ with parity-check matrix H and we write
yvi = ¢; + e; for each i € [s] with ¢; € C, then as

Hy; = H(c; + ¢;) = Hc; + He; = He;

we conclude that y;,,...,y;, forms a pseudobasis for yi,...,ys if and only if e;,,...,e;
forms a pseudobasis for eq,...,e;.

This observation will be crucial for us in our privacy analysis. We will be in the
scenario that Alice has received potentially corrupted codewords from Bob, which we write
as ¢; = ¢; + e;, where e; denotes the errors introduced by Eve. Alice will then broadcast
some information about a pseudobasis for her received vectors to Bob. This does not leak
any information to Eve, as she could have computed the same pseudobasis from the error
vectors e; that she knows.

T

3 The Protocol

In this section, we present our protocol which allows Alice to privately and reliably transmit
an ¢ symbol secret (my,...,my) € ]Ff; to Bob. In order to ease readability, we present two
simplifications of our full protocol first before presenting the full construction. The first
construction, presented in Section@ allows Alice to transmit a one symbol secret m € F,.
Despite being fairly simple, it already introduces the most crucial idea for our protocol,
which is a method for Alice and Bob to agree on a random codeword that is not completely
revealed to Eve.

Next, in Section we show how to generalize the protocol to the case of ¢ > 1, and
achieve communication rate (4 + o(1))n. Intuitively, this requires Alice and Bob to agree
on ¢ random codewords that are not completely known to Eve. In order to guarantee
small transmission rate, we need a few more tricks. As in [SZ16], one useful technique we
employ is a method for Alice to find a vector which indicates many of the channels that Eve
is corrupting, allowing Bob to safely ignore those channelsﬁ Informally, this transforms
symbol corruptions into erasures, and erasures are easier to recover from. In particular,
Alice can encode her data with a code of higher rate and Bob will still be able to uniquely-
decode. To get our final protocol achieving transmission rate (2 + o(1))n, we note that we
only need to do something different if Eve invests many corruptions in the first roundm
In order to handle this, we ask Alice to send a bit more information to Bob to indicate a

5There is a procedure with the same guarantee in [SZ16]; however, we believe our procedure is simpler,
and moreover does not use the specific structure of RS codes.
"More precisely, if the dimension of the syndrome space exceeds t/3.



larger number of corrupted channels, which transforms more of the symbol corruptions into
erasures in the subsequent transmissions, and hence allows Alice to use an error-correcting
code of higher rate. We describe the necessary modifications in Section [3.3

Throughout, C < Fy denotes an MDS code of dimension ¢ + 1 and h € Fy a vector
satisfying the conclusion of Lemma Also, H € IFf]X" denotes a parity-check matrix for
C. Lastly, we denote by E C [n] the set of ¢t channels that Eve controls. Of course, this set
is unknown to Alice and Bob; we introduce this notation exclusively for the analysis.

3.1 A Simple Protocol for / =1

We begin by describing a simple protocol which allows Alice to transmit one secret symbol
m € F, to Bob.

Algorithm 1 A first protocol for transmitting a one symbol secret m € F,,.
1: procedure ROUND 1: BOB TRANSMITS
2 Bob samples ¢y, ..., ci4+1 € C independently and uniformly at random.
3 For j =1,...,t+1, Bob transmits the i-th coordinate of c¢; through the i-th channel.
4: end procedure
5: procedure ROUND 2: ALICE TRANSMITS
6:
7
8
9

For j =1,...,t+ 1, Alice receives the vectors ¢; where d(c;,¢;) < t.
For j =1,...,t+ 1, Alice computes s; = H¢; € ]Ff].
Alice finds a coordinate p € [t + 1] such that s, € span{s; : j # p}.

: Alice finds \; € Fy for j € [t + 1] \ {p} such that s, = 3>, ., Ajs;.

10: C<4 Cp— Zj;ﬁp AjC;

11: Alice broadcasts p, (\; : 7 # p) and the symbol m + (h, c).

12: end procedure

13: procedure OUTPUT PHASE

14: Bob receives p, (A; : j # p) and the symbol m/.

15: ¢/ cp— 22 NiCy

16: return m’ — (h, c’).

17: end procedure

We now sketch why the protocol indeed yields a PSMT.

Reliability. First, observe that we may choose \; € F for j € [t+1]\{p}, assi,...,8¢41 €
Ff] are t + 1 vectors in a t-dimensional space, and therefore satisfy a nontrivial linear de-
pendence. Hence, Line [9] from the algorithm is justified.

The important observation is that since the code C has distance t + 1, we have ¢/ = c.



Indeed, first note that ¢ € C, as

Hc=H (& — > N& | =He, - Y NHE =s,— > Ajs; =0.
J#p J#p J#p

Now, if E C [n] denotes the channels that the adversary controls, then the coordinates
on which each c; can disagree with ¢; are confined to the set E. Thus, the support of
(cp =2 ip )\jcj) — (ép =2 ip )\jéj) is also contained in the set E. As |E| < t, we
conclude that the codewords ¢’ = ¢, — > j#pAiCj and € = €, — > 4, A;€; are distance at
most ¢ from one another; as C has distance ¢ + 1, they must be the same vector.

Thus, in particular, (h,c’) = (h,¢), som’ — (h,c’) = m+ (h,¢) — (h,c¢’) = m, i.e., Bob
returns Alice’s intended secret m.

Privacy. As Eve can only see t symbols from each transmitted codeword and the code C
has dimension ¢ + 1 and is MDS, Eve learns only ¢ symbols from c1,...,ctr1. Now, after
seeing (p, \; : j # p), Eve knows that

0=s,— Y Ns;=He,— Y A\HE =e,— > )\He; .
J#p J#p J#p
However, as she already knows eq,...,e;+1 and H, she does not learn anything from this
transmission. In particular, Eve still only knows ¢ symbols of ¢/ = ¢ = ¢, — > j#p Ni€j
which is a codeword distributed uniformly at random in C, and so Lemma guarantees
that Eve has no information on (h,c). Thus, even after observing m + (h,c), she has no
information on m, as desired.

Communication Cost. In the first round, Bob transmits (¢+1)n ~ n?/2 symbols. In the
second round, Alice transmits log,(t+1) +tn+n ~ n?/2 symbols. Hence, to communicate
a single symbol, the total communication requirement of Algorithm [1|is ~ n?. In terms of
bits, as we require ¢ > n, we conclude that Alice and Bob must transmit ~ n?logn bits.

3.2 A Protocol with (4 + o(1))n Transmission Rate

In this subsection, we provide a protocol that will allow Alice to transmit an ¢ symbol
secret to Bob requiring only ~ 4nf symbols to be communicated. We begin by outlining
some of the new ingredients we need.

Generalized Broadcast. One technique that we will use in our protocol is generalized
broadcast, as introduced in previous works. The situation that motivates the idea of gen-
eralized broadcast is the following: imagine that in some way, Bob has become aware that
Eve is controlling some set R C [n] of the channels. Then, when decoding a transmission

10



from Alice, he can replace the symbols he receives through the channels in R by an erasure
symbol. Thus, instead of decoding from ¢ symbol corruptions, he only has to perform the
easier task of decoding from ¢ — r symbol corruptions and r erasures, where r = |R).

In particular, to uniquely decode from ¢ errors where n = 2t + 1, if Alice wants to
guarantee that the codeword she transmits can be uniquely-decoded by Bob, then she
must use a code with distance 2t + 1 = n: by the Singleton bound, she must use an
MDS code of dimension 1, i.e., she can only send a single symbol. A natural example
of a dimension 1 MDS code is the repitition code: this precisely recovers broadcast as
introduced earlier.

However, if Bob knows a subset R as above, then he can uniquely decode so long as
the code has distance at least 2(t — ) + 7 + 1 = n — r. Thus, if Alice uses an MDS
code of dimension r 4+ 1, Bob can recover her intended transmission. We refer to this as
r-generalized broadcast, which we now formally define.

Definition 3.1 (Generalized Broadcast). For an integer r > 0, r-generalized broadcast
refers to the procedure where Alice uses an [n,7 + 1,n — 7], code C, to transmit r + 1
symbols (z1,...,Z,41) € IF;H by encoding the message (z1,...,x,+1) into a codeword
c € C,, and sending the i-th symbol of ¢ through the i-th channel for each i € [n].

For succinctness, we write Alice r-broadcasts (1, ...,x,41) to indicate that Alice uses
the r-generalized broadcast to transmit the data (x1,...,2,4+1) to Bob.

Remark 3.2. Assuming Alice and Bob communicate with a dimension r + 1 Reed-Solomon
code, then both encoding the message and decoding from r erasures and ¢t — r symbol
corruptions can be done in polynomial time [WBS86].

Thus, r-generalized broadcast allows Alice to reliably transmit r+1 times more informa-
tion to Bob than standard (i.e., 0-)broadcast, which can greatly improve the transmission
rate of the protocol if r is sufficiently large.

Finding a Set of Corrupted Channels. In light of the above discussion, we would
like to allow Bob to find a large set of corrupted channels. For general £, we will have
Bob transmit ¢ + ¢ uniformly random codewords in the first round, and Alice receives the
corrupted codewords €; = c; + ej, where the support of each e; is contained in the ¢
channels Eve controls, E.

Now, if Alice were aware that e; has large weight for some j, then she could just
broadcast ¢; and the index j to Bob. Bob could then compute the set supp(¢; — ¢;) and
subsequently ignore the transmissions sent through those channels. However, one problem
is that there might not be e; that has sufficiently large weight. More concerningly, Alice
does not actually know ey, ..., e !

Dealing with the first issue, note that it actually suffices to find multipliers A; such
that >>; Aje; has large weight: then Alice can broadcast the A;’s and y := }_; A;¢;, and
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then Bob can compute supp (y -2 )\jcj> and ignore the subsequent transmissions sent
through those channels.

Actually, in order to ensure a good transmission rate it will be important that the
linear dependency is chosen to be relatively short; in particular, it should be independent
of £. It will turn out that we can find such a vector y which is a linear combination of
a pseudobasis for the vectors €y, ..., ¢r¢. Recalling that the dimension of the syndrome
space is at most ¢, this guarantees that we don’t need to transmit too many multipliers A;.

However, we still haven’t addressed the issue that Alice does not have direct access to
the e;’s. But it turns out that this is not an problem: given a set of vectors with linearly
independent syndromes, we will be able to find a linear combination }_; A;¢; that is far
from every codeword. So, in particular, it will be far from }_; Ajc;, as required.

Specifically, if » < t/3 and y1,...,y, € Fj are vectors such that the syndromes
Hyi,...,Hy, € F f] are linearly independent, then Algorithm |2[ finds a vector y in the
span of y1,...,y, that satisfies d(y,C) > r. There is a procedure in [SZ16] with the same
guarantee; however, we believe our algorithm is a bit simpler, so we have chosen to present
it. In particular, we do not need to apply a unique-decoding algorithm as is required by
the procedure in [SZ16]; we just use simple linear-algebraic operations.

Algorithm 2 A procedure for Alice to find a vector whose distance from C is at least r
for r < L.
=3

1: procedure MANY-ERRORS(y1,-..,yr)

2: Fori=1,...,r, let x; € C denote the codeword agreeing with y; on the last ¢t + 1
coordinates. > This is possible, as every subset of ¢ + 1 coordinates forms an
information set for C.

3: Fori=1,....r, ; <+ y; — x;.

4: Let M denote the matrix in ]FSX” whose rows are eq,...,e,.

5: Using Gaussian elimination, put M in reduced row echelon form; let ej,..., e

denote the rows.

6: if 3i € [r] s.t. wt(e) > r then e < €]

7: else

8: for j=2,3,...,r do

9: if wt ( 5:1 ej) > r then e + ZZ:1 e;
10: end if

11: end for

12: end if

13: Choose Ay,..., A\, € F, such that e = >7;_; \je;.
4y i AiYi

15: return y

16: end procedure

12



Lemma 3.3. Letyy,...,y, have linearly independent syndromes and assume r < % Then
the vector y returned by Algorithm[3 has distance at least r from C.

Proof. By assumption, we have that the syndromes s; = Hy; € F; fore =1,...,r are
linearly independent. We claim that the vectors ey, ..., e, € Fy are linearly independent.
Suppose A1, ..., A, € F, are such that > ;_; \;e; = 0. Then

T T T
0= Z)\iHei = Z )\Z'H(yi — XZ') = Z )\isi .
i=1 i=1 i=1

As sy, ...,s; are linearly independent, this implies Ay = --- = A, = 0, as desired.
Now, we note that if e = >_/_; A\;e; is found such that d(e,C) > r, then it also follows
that y = Y74 \y; satisfies d(y,C) > r. Indeed,

d(y,C)=d <e + Z/\ixi,C> =d (e,C + Z)‘ixi> =d(e,C) >r
i=1 i=1
as y ;1 \ix; € C.
Now, for e € span{ey,...,e.}, to ensure d(e,C) > r, note that it is sufficient to show
that r < wt(e) <t —r 4+ 1. Indeed, as we have d(0,e) = wt(e) > r, it suffices to verify
that for all nonzero codewords ¢ € C\ {0} we have d(e,c) > r. And indeed, this follows as

t+1<4d(0,c) <d(0,e)+d(e,c) <t—r+1+d(ec),

and so d(e,c) > 7.
Hence, we now show how the algorithm finds a vector e € span{ei,...,e,} which
satisfies r < wt(e) <t —r + 1. Consider the matrix

€1
e2 XN
M = | € F,
e,
whose rows are given by vectors ey, ..., e,.

Consider putting the matrix M into reduced row echelon form; denote the resulting
rows ej,...,e . By the definition of row operations, span{ei,...,e,} = span{ej,..., e},
so it suffices to find a vector e* € span{ej, ..., e’} satisfying r < wt(e*) <t —r+1.

As the vectors ey, ..., e, are linearly independent, there is a set R C [n] of r pivot

points: that is, we have indices 1 < j; < ja < -+- < jr < n such that for each i,p € [r]:

1 ifi=p
(ei)jp:{

0 otherwise
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Therefore, for each ¢ € [r] we have supp(e}) C ([t] \ R) U{ji}, so wt(e}) <t —r+ 1. Thus,
if we are in the case that for some i € [r] we have r < wt(e}), we can just return the vector
e;.

“Assume now that for each i we have wt(ej) < r. Consider the sequence of vectors
J_,effor j =2,...,r. Note that supp (Yi_; €f) D R, so wt (>i_; ef) > |R| = r. Hence,

there exists 2 < j < r such that:

. Wt( gzlez‘) > ]

o forall 1 <j <j, Wt( glzlef) <r.

We claim that e* := >>7_; e} satisfies r < wt(e*) < ¢+ 1 —r. The lower bound is obvious
by the definition of j. For the upper bound, we note that

J Jj—1
wt Ze;‘ <wt Zef +wt(e]) <r+r<t+l-r,
i=1 i=1

where the upper bound on the weight of Ef;ll e; is again by the definition of j and the
upper bound on Wt(e;f) follows from our earlier assumption. That 2r <t + 1 — r follows
from r <t/3. O

The Protocol. We are now in position to give our PSMT for transmitting an ¢ symbol
secret.

Theorem 3.4. Algorithm[3is a PSMT with transmission rate (4 + o(1))n.

Proof. We first verify that the protocol is reliable. After, we show that it is private. Lastly,
we compute its transmission rate.

Reliability. We first make a few observations to justify the algorithm. First, we note that
the definition of 7" on Line [12|is valid: indeed, r = |S| < t since a pseudobasis has size at
most ¢, so there are at least £ elements in [t +/]\ S. Also, we note that z =} g \jc; € C,
so since y is at distance at least 7’ from C, we have |supp(z —y)| = d(z,y) > 1/, as stated
in Line Furthermore, as y = 3.5 Aj€;, if £ C [n] denotes the set of channels that
Eve controls, then supp(y — z) C E. Hence, for each i € [¢], the transmission from Alice
to Bob of (A\;j : j € S) and (h, ¢p,) + m; via r’-generalized broadcast is reliable.

As in the analysis in Section [3.1] the reliability of Algorithm [3] follows from the fact
that for 7 = 1,...,¢, we have ¢,, = c;i. And once again, the argument proceeds by
demonstrating that both ¢, and c;, are elements of C. This is clear for c), ; for ¢,,, we use
the parity-check matrix H:

H(_Zpi =H épi — Z )\ijéj = Sp;, — Z )\Z'ij =0.
jes JES
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Algorithm 3 A protocol for transmitting an ¢-symbol secret (mg,...,my) € IFf;, which
achieves transmission rate (4 + o(1))n.

1

10:
11:

12:
13:

14:
15:
16:
17:
18:

19:
20:

21:
22:

: procedure ROUND 1: BOB TRANSMITS

Bob samples cy,...,c;1¢ € C independently and uniformly at random.

For j =1,...,t+{, Bob transmits the i-th symbol of ¢; through the i-th channel.
end procedure
procedure ROUND 2: ALICE TRANSMITS

For j =1,...,t+ ¢, Alice receives the vectors ¢; where d(c;,¢;) < t.

For j =1,...,t+{, Alice computes s; = H¢; € F},.

Alice computes a pseudobasis for €1,...,¢s1¢. Let S C [t 4 £] index the elements of

the pseudobasis.

r < |S] and " = min{r, [t/3]}.

Let S’ C S denote a subset of size 7.

Let y <~ MANY-ERRORS(E; : j € §'); write y = 37, \j€;. > Of course, for
Jj €S\ 'S, we may put \; = 0.

Let T = {p1,...,p¢} denote the £ smallest elements of [t + ¢] \ S.

For i € [f], choose coefficients \;; € F, such that s, = >7.,c¢ Aijsj, and define
Cp; < Cp; = 2 jes NijC;-

Alice broadcasts the information (S, (\; : j € S),y).

For each i € [¢], Alice r’-broadcasts the data (X\;; : j € S) and (h,cp,) + m;.
end procedure
procedure OUTPUT PHASE

Bob recovers (S, (A; : j € S),y) and defines z < > ;-5 Ajc;. He also lets T' =
{p1,...,pe} denote the ¢ smallest elements of [t + ¢] \ S.
Bob ignores the channels in the set supp(y — z), a set of cardinality at least 1.
For each i € [{], Bob recovers the information (\;; : j € S) and mj, defines c;, <
— > jes Aijcj, and then defines m; <= mj — (h, ¢, ).
return (mq,...,my).
end procedure

Cp;

K3
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Now, since supp(c; — €;) € E for each j € [t + /], we also have supp(c),, — €,,) =
)

supp ((cpi —2jes )\ijcj> — (épi — > jes )\ijéj)) C E, which implies d(c;,,¢;,,) < |E| < t.
As C has distance t + 1, it follows that ), = ¢,,. In particular, we have (h,c, ) = (h,c,,).
Hence, for each i € [{], m} — (h,c;,) = m; + (h,¢,,) = m;, demonstrating reliability.

Privacy. Let E C [n] denote the set of ¢ channels that Eve is observing. In the first round,
she observes (¢1)|g, ..., (ct4r¢)|£. In the second round, she first observes (S, (A; : j € 5),y).
Also, for each i € [¢], she then observes (\;; : j € S) and m) = (h,cp,) + m;.

We wish to establish that Eve learns nothing about the symbols m; for each i € [¢]. To
establish this, it suffices to show that Eve has no information on (h,c,,). And to do this,
according to Lemma it suffices to show that from Eve’s perspective, ¢,, appears to be
a uniformly random codeword from which Eve has observed only ¢ coordinates.

First, note that the data (S,(\; : j € 5)) informs Eve that {¢; : j € S} forms a
pseudobasis for €1,...,¢.4¢. However, that is equivalent to the assertion that {e; : j € S}
forms a pseudobasis for ey, ...,e. ¢ as Eve knows eg,..., ey, this does not tell her
anything she does not already know.

Now, the vector y is defined in terms of the set {¢; : j € S}, and so it may leak some
information on these vectors. However, note that for each ¢ € [¢], it does not depend on
the vector €p,. Also, the coefficients (\;; : j € S) are chosen so that s, = 37, Ajs; and
Eve knows s; = He; for all j € [t + ¢], so the data ()\;; : j € S) tell her nothing she did
not already know. Hence, even after observing (S, (\; : j € S),y,(Nij : j € 5)), Eve still
has not learned anything about the vector ¢,, beyond the ¢ coordinates of the set F that
she learned in the first round.

Hence, using that the codeword ¢,, = €5, — > ;cq AijCj = €p, — X_jeg AijCj, regardless
of how much information Eve has learned about ;. g Ajjc;, the vector ¢, still looks like
a uniformly random codeword in C that she has only observed t coordinates of. This
establishes the privacy of the transmission, as desired.

Transmission Rate. In the first round, Bob sends (¢ + ¢)n symbols. In the second

round, Alice broadcasts Tloﬁig;e) + 7+ n symbols and then r’-broadcasts ¢(r + 1) symbols:
this requires her to send
nrlog(t+¢) n
_— 1)¢
o2 ¢ +(r+n)n+(r+ )r’+1
elements from F,. Thus, if N is the total number of symbols transmitted,
N in nrlog(t+£4) rm n? (r+1)n n?  n%log/
- i =\ 0 A LI e AL Q) P o Y (R 1
T T T egg T T SO T T g ) W
where we used ¢ > n and :,‘ill < 3. Hence, as ' = min{r,t/3} and r < t, assuming
¢ = w(n) we have % ~ 4n, as promised. O
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Remark 3.5. Note that if we had been in the case that r = 7/, ie., r < %, then the
transmission rate of Algorithm [3] would have been ~ 2n. Hence, in order to get our desired
transmission rate of 2n, we will only have to amend the protocol in the case that r > %

This is what we do in the following subsection.

3.3 Protocol with (2 + o(1))n Transmission Rate

In order to decrease the transmission rate to ~ 2n, we look more carefully at the trans-
mission rate as computed in . We have a factor of ~ n from the first round when Bob
communicates to Alice, and then a factor of ~ 3n when Alice replies to Bob in the second
round. In our lower bound argument, we will show that both parties will have to commu-
nicate nf symbols in each round; hence, our only hope of getting a ~ 2n transmission rate
will be to decrease the communication of Alice in the second round.

Now, we note that the dominant term in Alice’s communication is the %E term
which comes from the ¢ r’-generalized broadcasts from Line as 7' < £ and r can be

as large as t, this term could be as large as 3nf. If Alice used r-generalized broadcast
for each of these transmissions, then this communication would cost only ~ nf symbols,
and we would get the ~ 2n transmission rate we desire. However, as y only informs Bob
of 7 corrupted channels, if 7 > ' = min{r, [¢/3]|} then Alice will have to communicate
some more information for Bob to learn of r corrupted channels, which will guarantee the
reliability of the transmission.

The solution for this is rather simple. We assume from now on that r >/, which is the
same as saying r > % First, Alice broadcasts (y, S, Aj : j € S) as before (see Line; thus,
t/3-generalized broadcast is now reliable. Next, we have Alice t/3-generalized broadcast
the entire pseudobasis to Bob, i.e., all the vectors ¢; for j € §. We claim that this implies
that r-generalized broadcast will now be reliable. Indeed, this follows from the following
simple lemma.

Lemma 3.6. Let ¢; = c; +e; for j € S with c; € C and put s; = H¢; = He;. Assume
that dim (span{s; : j € S}) =r. Then ‘Ujes supp(ej)’ >r.

Proof. Let d; € Fy denote the vector whose i-th coordinate is 1 and the remaining coordi-
nates are 0. Let R = J;cgsupp(e;); then clearly span{d; : i € R} D span{e; : j € S}, so
also

span{Hd; : i € R} D span{He; : j € S} = span{s; : j € S}.

As dim (span{Hd, : i € R}) < |R|, we conclude |R| > dim (span{s; : j € S}) = r, as de-
sired. O

Thus, suppose Alice reliably transmits to Bob the vectors ¢; for j € S. From this,
Bob can compute the set |J;cgsupp(c; — €;) = U;cgsupp(e;); this set has cardinality at
least r, and moreover it is contained in E (where, as usual, E' denotes the set of channels
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Eve controls). Hence, there are now r channels that Bob can safely ignore, so Alice may
reliably 7-broadcast the ¢ transmissions (A;j : j € S) and (h,c,,) + m;, as in Line

It is reasonable now to wonder if this will negatively impact the privacy of the protocol,
as more information is revealed to Eve. However, by observing the proof of Theorem [3.4]
one can see that even if Eve learns of ¢; for j € S, the inner-product (h,c,,) is still wholly
unknown to her, implying that they yield an effective mask for the secrets m;.

Instead of completely rewriting the protocol, we just indicate in Algorithm [4]the changes
that need to be made to Algorithm [3| to obtain the ~ 2n transmission rate.

Algorithm 4 Our final protocol for transmitting an ¢-symbol secret (mq,...,my) € Ff;,
which achieves transmission rate (2 + o(1))n. We just indicate what needs to be changed
from Algorithm [3{ when r > ' = min{r, [¢/3]}.

1: procedure ROUND 1: BOB TRANSMITS
2 Bob performs lines 23] from Algorithm
3: end procedure
4: procedure ROUND 2: ALICE TRANSMITS
5: Alice performs lines from Algorithm
6: if r =1’ then
7
8
9

Alice performs Line [T5] from Algorithm [3]
else
: Alice r'-broadcasts €; for each j € S.
10: For each i € [¢], Alice r-broadcasts the data (\;; : j € S) and (h,¢,,) +m;.
11: end if
12: end procedure
13: procedure OUTPUT PHASE
14: Bob performs lines from Algorithm 3]

15: Let r + |S|.

16: if r <t/3 then Bob performs line

17: else

18: Bob recovers ¢; for each j € S.

19: Bob ignores the channels in the set Uje g supp(€; — c¢;), which has cardinality at
least 7.

20: For each ¢ € [{], Bob recovers the information (\;; : j € S) and m/, defines
Cp, < Cp, — 2 jcs Aij€j, and then defines m; < m; — (h,cj, ).

21: end if

22: return (mq,...,my).

23: end procedure

Theorem 3.7. Algorithm 4| is a PSMT with transmission rate (2 + o(1))n.

Proof. As usual, we first establish reliability, then privacy, and lastly compute the trans-
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mission rate. We just indicate the changes required to the proof of Theorem [3.4] to obtain
Theorem as most of the ideas are the same.

Reliability. In light of the reliability of Algorithm [3| in order to verify the reliability of
Algorithm [4] it suffices to check that Bob can recover the information (\;; : j € §) and m}
for each i € [¢]. That is, we need to ensure that r-generalized broadcast is reliable, even
if r > t/3. This is certainaly the case if Bob knows at least  channels that Eve controls.
But this is exactly what is guaranteed by Lemma Ujes supp(€; — ¢;) is the set of r
channels controlled by Eve that Bob knows.

Privacy. When |S| > t/3, Eve learns the vectors ¢; for j € S. However, as argued in
the proof of Theorem it is still the case that the vectors ¢, = €, — > ;g Nij€j =
Cp; — 2 jes Aij€j look like uniformly random codewords from which Eve has only observed

t coordinates. So Lemma still guarantees that the masks (h,c,,) look like uniformly
random elements of I, to Eve, ensuring privacy of the transmission.

Transmission Rate. As the first round is unchanged from Algorithm [3| we simply need
to establish that in the second round, Alice sends at most nf + O(n? + nlog//logn)
symbols. As noted in Remark if » = 1/ then this is the case. Hence, we now assume
r > r’. In this case, Alice first 7’-broadcasts the r = |S| vectors ¢; for j € S in Line @

m’ < 3p2 symbols. Lastly, in Line , she uses ¢ invocations of r-generalized

r’+1
broadcast to transmit r + 1 symbols: this requires (T:r# = nf symbols. Thus, Alice

always communicates at most nf + O(n? + nlog//logn) symbols in the second round, as
desired. O

this requires

Remark 3.8. In light of our final algorithm (Algorithm |4) which occasionally requires Alice
to send the entire pseudobasis to Bob, one could imagine the following very simple pro-
tocol: Alice always just broadcasts the entire pseudobasis to Bob, and then proceeds to
r-broadcast the data (\j; : j € S) and m; + (h,cp,) for ¢ € [¢], as in Line Such a
protocol would indeed yield a PSMT with transmission rate 2n(1+o(1)). However, broad-
casting the entire pseudobasis costs ©(n3) symbols (assuming |S| = r = ©(n)), so the total
communication will include a ©(n?) term, rather than the O(n? + nlog¢/logn) term as
we have now. Hence, we would require £ = w(n?) in order to ensure a communication cost
of ~ 2n/¢; in order to match prior works (which just required ¢ = w(n)), we have presented
the more complicated Algorithm [4]

4 Lower Bound

In this section, we will show that our two-round PSMT in Algorithm [ is actually optimal
by proving a tight lower bound of 2n on the transmission rate.
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Theorem 4.1. Any two-round perfectly secure message transmission of an £-bit secret
requires commumnicating 2nf bits.

An important step in our lower bound argument involves extracting a t-threshold secret-
sharing scheme from a PSMT protocol. In order to make this precise, we provide in the
following section the definition of a t-threshold secret-sharing scheme. The reader that is
familiar with these notions may safely proceed to Section

4.1 Secret-Sharing Schemes

For more details, we refer the reader to the treatment of secret-sharing schemes provided
in [CDN15| Section 11.9]. Informally, a t-threshold secret-sharing scheme is a method for a
secret to be distributed amongst n parties so as to guarantee (a) t-privacy, which guarantees
that any set of ¢ parties can learn nothing about the secret; and (b) (¢ 4 1)-reconstruction,
which guarantees that any set of (¢t + 1) parties can fully recover the secret.

Given a vector of random variables X = (Xp, X1,...,X,) and a subset B C [n], we
denote by Xp the vector of random variables indexed by the set B. We now provide the
definition of a t-threshold secret-sharing scheme.

Definition 4.2 (t-Threshold Secret-Sharing Scheme). A ¢-threshold secret-sharing scheme
is a vector of random variables X = (Xo, X1,...,X,,) with each X; € X such that the
following holds:

e The random variable X is uniform over Aj.

e t-privacy: Given any subset B C [n] with |B| < ¢, any z9 € &p and any xp € [[;cp Xi
with Pr[Xp = xp|Xo = zo] > 0, Pr[Xo = 29|Xp = x| = 1/|A|. That is, the shares
in the set B provide no information on the secret.

e (t + 1)-reconstruction: Given any subset B C [n| with |B| > ¢t 4+ 1 and any xp €
[Licp & with Pr[Xp = xp|Xo = 9] > 0, there is a unique zy € Xp such that
Pr[Xy = 29|Xp = xp| = 1. That is, the shares in the set B uniquely determine the
secret.

Finally, we will require the following observation, which (to the best of our knowledge)
is folklore. It states that the size of each share must exceed the size of the secret.

Observation 4.3. If X = (X, X1, ..., X,) with each X; € X} is a t-threshold secret-sharing
scheme, then for all i € [n] we have |X;| > |Ap|.

The justification for this is as follows. Suppose that for some i € [n], |X;| < |Xp|, and
let B C [n]\ {i} be any set of size t. Then if the shares in B are known, as the i-th share
must determine the secret, there can be only |X;| choices remaining for the secret. But all
| Xp| elements of X should be equally likely, a contradiction.
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4.2 The Proof
We now provide the proof of Theorem [}

Proof. First of all, let us characterize the behaviours of the sender Alice and the receiver
Bob in a two-round PSMT. We can assume that in the first round Bob sends a message
to Alice and in the second round Alice sends back a message containing the information of
the secret to Bob. Otherwise, the second round communication does not help the receiver
Bob decode the secret and one can then reduce this protocol to a one-round PSMT. Under
this assumption, the following holds:

1. In the first round, Bob runs a randomized algorithm A(¢) to generate a message
a=(a,...,ap) € A; x---x A, where the randomness is only available to Bob. Bob
sends a to Alice such that a; is sent through the i-th channel.

2. Alice receives the corrupted vector a and runs the algorithm B(a, s) to generate the
message b = (by,...,b,) € By x -+ x B, where s € [2] is the secret. Then Alice
sends b to Bob such that b; is sent through the i-th channel.

3. Bob receives the corrupted vector b and runs the algorithm C(b,a) to recover the
secret. The protocol succeeds if C' outputs s and Eve learns nothing about the secret.

Next, we will characterize the capabilities of the adversary Eve in this protocol. Eve is

static, which means she has to choose up to t channels to corrupt before the beginning

of this protocol. During the protocol, she can listen to the messages and change the

messages transmitted through the corrupted channels. Eve succeeds if she learns anything

about the secret or Bob fails to recover the secret. The total communication complexity is
i=1(log [A;] + log [B;]).

Since this protocol is reliable, we can assume that the algorithms B and C' are deter-
ministic. Otherwise, they must be correct for any random bits used by the algorithms B
and C, and we can just analyze these two algorithms after setting all random bits to zero.

We first analyze the communication complexity of the second round in the scenario
that Eve does nothing in the first round. In this scenario, Alice will receive the correct
vector a and learns nothing about Eve. That means, from Alice and Bob’s perspective,
Eve can corrupt any ¢ channels in the second round. We now demonstrate that one can
extract from Bob’s transmission a code with distance 2t + 1 = n.

Claim 4.4. Let by = B(a,s) for s € [2°]. The set of codewords {b, : s € [2']} forms a
code with minimum distance 2t + 1.

Note that this claim implies min; log|B;| > ¢ and thus the communication complexity
of the second round ;" log|B;| > ¢n.
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Proof of Claim[{.7) We note that, for s; # s2, bs, and by, must not agree on any index.
Otherwise, Eve can inject ¢ errors to cause Bob to receive the same vector b if by, or
bs, was sent. In one of the two cases, the C(B,a) does not output the correct secret,
contradicting reliability. O

Now, we turn to lower-bounding the necessary communication in the first round. From
Claim [£.4] Eve learns the vector transmitted in the second round as the codewords have
distinct values in each coordinate. This implies that Bob and Alice must share a private
key of length £ in the first round to achieve perfect security. More precisely, in the first
round, Bob sends a vector of length n to Alice containing the information of this private
key while Eve who observes any ¢ symbols of this vector will learn nothing about this
private key. One can deduce t-privacy from this if we treat such a vector as n shares and
the private key as a secret. We formalize this as follows.

Observe that in the first round, the message sent by Bob is a function of ¢ and some
randomness only available to Bob which is independent of Eve’s strategy. This implies that
the communication complexity of the first round is the same, regardless of Eve’s strategy.

For any s € [2], consider the set Cs = {A({,7) : B(A({,7),s) = by,r € R}, where r
is the random string used by A and R denotes the set of random strings it could sample.
This is the set of possible transmissions by Bob in the first round, given that Alice responds
with the transmission b; in the second round. The following claim states that one may
extract a t-threshold secret sharing scheme from these sets.

Claim 4.5. Define the random vector X = (X, X1,...,X,) € [2/] x Ay x --- x A, as
follows.

e Sample a uniformly random secret s € [2°] and put Xy = s.

e Sample a random string r subject to the condition that A(¢,r) = a = (a1,...,an) €
Cs. For alli € [n], define X; = a; € A;.

Then the random vector X provides a t-threshold secret-sharing scheme.

Proof of Claim[{.5 We verify privacy and reconstruction.

e {-Privacy. Let B C [n] denote any set of at most ¢ coordinates. By the privacy of the
PSMT protocol, it must be that Eve learns nothing about the secret s, even after
seeing any t coordinates from the transmissions of Alice and Bob; in particular, this
applies to the coordinates in the set B. Also, from the above discussion, we know
that the transmission from Alice to Bob is completely revealed to Eve. Thus, if she
sees that the second transmission is by, even after seeing (a; : i € E), she cannot
know anything about the secret. Formally, for any fixed sy € [2¢] and ag; € S; for
each i € B, if Pr[Vi € B, a; = ap;|s = so] > 0, we have

1

2 = Pr(s = sgla; = ag;, Vi € B] = Pr[Xy = s0|X; = ap;, Vi € B],
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demonstrating privacy.

e (t+1)-Reconstruction. We notice that if for s; # so there are two codewords ag, € Cs,
and ag, € U5, within distance ¢, Eve may corrupt ¢ channels in the first round so as
to change a;, to as,. Then, if Alice wants to send the secret message s2 to Bob, she
will transmit B(as,, s2) = by to Bob. However, when Bob receives by, the algorithm
C(as,, b1) will output so instead of s; according to our definition of Cs. Thus, we
conclude that this protocol fails. From this, we conclude that the codewords in
different sets have distance at least ¢t + 1. In other words, given any set B C [n] of
n—(t+1)+1=1t+1shares (a; : i € B) = (X; : i € B), one can recover the secret
XO = S.

O

As stated in Observation [£.3] in any ¢-threshold secret sharing scheme, the share size
must be at least the secret size. We thus conclude >°7 ;log|A;| > nf, i.e., we obtain
another nf communication complexity in the first round. We emphasize that the message
sent by Bob in the first round is independent of Eve’s strategy. That means, the lower
bound on the communication complexity of the first round can be applied to the case
Eve does nothing in the first round. Therefore, we obtain the lower bound 2nf on the
communication complexity of two-round PSMT, as desired. O

From above proof, we notice that if Alice and Bob want to communicate 1-bit se-
cret via two-round PSMT, the threshold secret sharing scheme forces the communication
complexity in the first round to be nlogn [CCX13]. Thus, we have the following theorem.

Theorem 4.6. Any two-round perfectly secure message transmission of 1-bit secret requires
communicating at least n + nlogn bits.

5 Conclusion

We have precisely pinned down the optimal transmission rate in the model of perfectly
secure message transmission with two rounds of communication when a (slim) majority of
the channels are uncorrupted, i.e., when n = 2t + 1. Namely, ~ 2nf bits are necessary and
sufficient to transmit an ¢-bit message, and this is tight as soon as ¢logn = w(n).

The natural open question which remains from our work is to determine the amount of
communication necessary when £ is smaller. Of particular interest is the case when ¢ =1,
i.e., Alice’s secret consists of a single bit. Our Theorem informs us that n 4+ nlogn
bits of communication are necessary, which improves upon the previous best lower bound.
Our protocol from Section tells us that ~ n?logn bits are necessary which, other than
a slight improvement in the leading coefficient, does not improve over prior results [SZ16].
Thus, pinning down the communication complexity between the Q(nlogn) lower bound
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and the O(n?logn) upper bound for transmitting a one bit secret remains a tantalizing
open problem.

6 Acknowledgement

CY would like to thank Serge Fehr for introducing him to this problem.

References

[ACAHO6]

[CCX13]

[CDN15]

[DDWY93]

[KS08]

[SA96]

[SNR04]

[SZ16]

Saurabh Agarwal, Ronald Cramer, and Robbert de Haan. Asymptotically
optimal two-round perfectly secure message transmission. In Cynthia Dwork,
editor, Advances in Cryptology - CRYPTO 2006, 26th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006,
Proceedings, volume 4117 of Lecture Notes in Computer Science, pages 394—
408. Springer, 2006.

Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. Bounds on the thresh-
old gap in secret sharing and its applications. IFEFE Trans. Inf. Theory,
59(9):5600-5612, 2013.

Ronald Cramer, Ivan Bjerre Damgard, and Jesper Buus Nielsen. Secure mul-
tiparty computation and secret sharing. Cambridge University Press, 2015.

Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure
message transmission. J. ACM, 40(1):17-47, 1993.

Kaoru Kurosawa and Kazuhiro Suzuki. Truly efficient 2-round perfectly secure
message transmission scheme. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 324-340. Springer,
2008.

Hasan Md. Sayeed and Hosame Abu-Amara. Efficient perfectly secure message
transmission in synchronous networks. Inf. Comput., 126(1):53-61, 1996.

K. Srinathan, Arvind Narayanan, and C. Pandu Rangan. Optimal perfectly
secure message transmission. In Matthew K. Franklin, editor, Advances in
Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference,
Santa Barbara, California, USA, August 15-19, 2004, Proceedings, volume
3152 of Lecture Notes in Computer Science, pages 545-561. Springer, 2004.

Gabriele Spini and Gilles Zémor. Perfectly secure message transmission in two
rounds. In Theory of Cryptography Conference, pages 286-304. Springer, 2016.

24



[WBB86| Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block
codes, December 30 1986. US Patent 4,633,470.

25



	Introduction
	Preliminaries
	Pseudobases

	The Protocol
	A Simple Protocol for =1
	A Protocol with (4+o(1))n Transmission Rate
	Protocol with (2+o(1))n Transmission Rate

	Lower Bound
	Secret-Sharing Schemes
	The Proof

	Conclusion
	Acknowledgement

