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Cryptanalysis of a Type of White-Box
Implementations of the SM4 Block Cipher

Jiqiang Lu, Jingyu Li

Abstract—The SM4 block cipher was first released in 2006 as
SMS4 used in the Chinese national standard WAPI, and became a
Chinese national standard in 2016 and an ISO international stan-
dard in 2021. White-box cryptography aims primarily to protect
the secret key used in a cryptographic software implementation
in the white-box scenario that assumes an attacker to have full
access to the execution environment and execution details of an
implementation. Since white-box cryptography has many real-life
applications nowadays, a few white-box implementations of the
SM4 block cipher has been proposed with its increasingly wide
use, among which a type of constructions is dominated, that use
an affine (or extremely even linear) diagonal block encoding to
protect the original output of an SM4 round function and use the
encoding or its inverse to protect the original input of the S-box
layer of the next round, such as Xiao and Lai’s implementation in
2009, Shang’s implementation in 2016, Yao and Chen’s and Wu
et al.’s implementations in 2020. In this paper, we show that this
type of white-box SM4 constructions is rather insecure against
collision-based attacks, by devising attacks on Xiao and Lai’s,
Shang’s, Yao and Chen’s and Wu et al.’s implementations with
a time complexity of respectively about 219.4, 235.6, 219.4 and
217.1 to recover a round key, and thus their security is much
lower than previously published or expected. Thus, such white-
box SM4 constructions should be avoided unless being enhanced
somehow.

Index Terms—White-box cryptography, SM4 (SMS4) block
cipher, collision attack.

I. INTRODUCTION

IN 2002, Chow et al. [9], [10] introduced white-box cryp-
tography and proposed white-box implementations of the

AES [28] and DES [29] block ciphers. White-box cryptogra-
phy works under the white-box security model, which assumes
an attacker has full access to the execution environment and
execution details (such as intermediate values, CPU calls,
memory registers, etc) of a software implementation, giving
the attacker more power than the black-box and grey-box
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security models. Nowadays, white-box cryptography has many
real-life application scenarios like TV boxes, mobile phones
and game consoles, and some white-box cryptography solu-
tions have been in use.

The primary security threat for white-box cryptography is
key extraction attack, which aims to extract the key used
in white-box implementation. Chow et al.’s white-box AES
implementation has been cryptanalysed extensively [6], [19],
[25], [32], and the main attack results are as follows. In 2004,
Billet et al. [6] presented an attack with a time complexity of
230 (referred to below as BGE attack). In 2013, Lepoint et
al. [19] improved the BGE attack to have a time complexity
of 222, and presented a collision-based attack with a time
complexity of 222. There are also a few attacks [15], [16], [22],
[35] on Chow et al.’s white-box DES implementation. On the
other hand, a number of different white-box implementation
designs have been proposed [1], [3], [8], [17], [24], [36], but
almost all of them have been broken with a practical or semi-
practical time complexity [3], [11], [19], [26], [27]. Generally
speaking, it has been well understood that the line of white-
box implementation for an existing cryptographic algorithm is
hardly possible to achieve the full security under the black-
box model, but it is expected that it can still provide some
protection with realistic significance.

The SM4 block cipher was first released in 2006 as the
SMS4 [12] block cipher used in the Chinese national standard
WAPI (WLAN Authentication and Privacy Infrastructure),
which has a 128-bit block length and a 128-bit user key with
a total of 32 rounds. SMS4 became a Chinese cryptographic
industry standard in 2012, labeled with SM4, which then
became a Chinese national standard [13] in 2016 and an
ISO international standard in 2021 [14]. The main white-
box implementation results of SMS4/SM4 are as follows.
In 2009, Xiao and Lai [37] proposed the first white-box
SM4 implementation in a relatively traditional way with a
series of lookup tables and affine transformations. In 2013,
Lin and Lai [20] attacked Xiao and Lai’s white-box SM4
implementation with a time complexity of around 247 by
combining the BGE attack with other techniques like differ-
ential cryptanalysis [5]. In 2015, Shi et al. [31] proposed a
lightweight white-box SM4 implementation based on the idea
of dual cipher [4]. In 2016, Shang [30] improved Xiao and
Lai’s white-box SM4 implementation mainly by merging two
individual lookup tables for two S-boxes into a larger whole,
and got a security complexity of around 248; and Bai and
Wu [2] proposed a white-box SM4 implementation with an S-
box input being divided into two shares. In 2018, Lin et al. [21]
applied Biryukov et al.’s affine equivalence technique [7] to
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attack Shi et al.’s white-box SM4 implementation with a time
complexity of 249. In 2020, Yao and Chen [38] proposed a
white-box SM4 implementation with some original internal
states expanded by dummy states under the control of a secret
random number, and got the lowest attack complexity of about
251 among a variety of attack techniques; and Wu et al. [34]
proposed a white-box SM4 implementation with lookup tables
and linear transformations, and showed it was resistant against
BGE attack. In 2021, Wang et al. [33] applied Lepoint et
al.’s collision-based idea to attack Shi et al.’s white-box SM4
implementation with a time complexity of around 223.

In this paper, we are concerned with Xiao and Lai’s,
Shang’s, Yao and Chen’s and Wu et al.’s white-box SM4
implementations, which are more or less different one another
from a structural view but fundamentally all employ the
construction method that uses an affine (or extremely even
linear) diagonal block encoding to protect the original output
of an SM4 round function and uses the inverse of the encoding
to protect the original input of the S-box layer of the next
round. Especially, we focus on Yao and Chen’s white-box
SM4 implementation due to its representativeness, and apply
Lepoint et al.’s collision-based idea to devise an attack with
a total time complexity of about 219.4; in particular, we first
find that the effect of those dummy states can be bypassed
without any workload by devising an appropriate collision
function, then we find a trick to recover the linear parts of
the concerned affine output encodings at ease, and finally
we use another trick to the collision function to recover the
constant parts of the affine output encodings and the round
key. The attack significantly reduces the security of Yao and
Chen’s white-box SM4 implementation, from the designers’
estimated semi-practical level 251 to a very practical level. The
attack is likewise applied to Xiao and Lai’s white-box SM4
implementation with a time complexity of about 219.4 too,
reducing much the best previously published attack complexity
of 232 based on affine equivalence technique, and is applied
to Shang’s and Wu et al.’s white-box SM4 implementations
with a time complexity of about 235.6 and 217.1, respectively,
with more or less modifications due to their respective speci-
fications. These suggest that their security is much lower than
previously published or expected, their realistic significance
is reduced, and such white-box SM4 constructions should be
avoided unless being enhanced somehow.

The remainder of the paper is organised as follows. We
describe the notation and the SM4 block cipher in the next
section, and present our attacks on Yao and Chen’s, Xiao and
Lai’s, Shang’s and Wu et al.’s white-box SM4 implementations
in Sections III to VI, respectively. Section VII concludes this
paper.

II. PRELIMINARIES

In this section, we give the notation used throughout this
paper, and briefly describe the SM4 block cipher.

A. Notation

We use the following notation throughout this paper.

⊕ bitwise exclusive OR (XOR)

� right shift of a bit string
≪ left rotation of a bit string
|| bit string concatenation
◦ functional composition

B. The SM4 Block Cipher

SM4 [12], [13] is a generalised Feistel cipher with 32
rounds, a 128-bit block size and a 128-bit key length. Denote
by (Xi, Xi+1, Xi+2, Xi+3) the 128-bit input to the i-th round,
by rki the 32-bit i-th round key, where Xi ∈ GF(2)32 and
i = 0, 1, . . . , 31.

Define the nonlinear function τ : GF(2)32 → GF(2)32 that
applies the same 8-bit S-box S four times in parallel as

x 7→
(
S(x[31...24]),S(x[23...16]),S(x[15...8]),S(x[7...0])

)
;

and define the linear function L : GF(2)32 → GF(2)32 as

x 7→ x⊕(x≪ 2)⊕(x≪ 10)⊕(x≪ 18)⊕(x≪ 24). (1)

Then, the invertible transformation T : GF(2)32 ×GF(2)32

→ GF(2)32 is defined to be

(x, rki)→ L(τ(x⊕ rki)),

and the round function F : GF(2)128 × GF(2)32 → GF(2)128

under round key rki is

((Xi, Xi+1, Xi+2, Xi+3), rki) 7→ (Xi+1, Xi+2, Xi+3,

Xi ⊕T
(
Xi+1 ⊕Xi+2 ⊕Xi+3, rki)

)
. (2)

The encryption procedure of SM4, as depicted in Fig. 1,
consists of the 32 round functions F’s and finally a reverse
transformation R : GF(2)128 → GF(2)128 defined as

(X32, X33, X34, X35) 7→ (X35, X34, X33, X32).

The decryption process of SM4 is the same as the encryption
process, except that the round keys are used in the reverse or-
der. We refer the reader to [12], [13] for detailed specifications.

X0 X1 X2 X3

X1 X2 X3 X4

X2 X3 X4 X5

Xi Xi+1 Xi+2 Xi+3

Xi+1 Xi+2 Xi+3 Xi+4

X31 X32 X33 X34

X32 X33 X34 X35

Y0 Y1 Y2 Y3

round 0

X

Y

round 1

round i

round 31

rk0

Xi

Xi+1

⊕ L τ

T

⊕

Xi+1 Xi+2 Xi+3

Xi+4

rki

Xi+2 Xi+3

rk1

rk31

Figure 1. SM4 encryption procedure
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Particularly, it is easy and worthy to note that the linear
transformation L (as described in Eq. (1)) of SM4 can also be
represented as an invertible 32× 32-bit matrix

B1 B2 B2 B3

B3 B1 B2 B2

B2 B3 B1 B2

B2 B2 B3 B1

 , (3)

with B1, B2 and B3 being invertible 8× 8-bit block matrices.
Let x0, x1, x2, x3 be four byte variables, represent L as

four 32× 8-bit matrices
[
L0 L1 L2 L3

]
, and define

L0(x) = x ·
[
B1 B3 B2 B2

]T
,

L1(x) = x ·
[
B2 B1 B3 B2

]T
,

L2(x) = x ·
[
B2 B2 B1 B3

]T
,

L3(x) = x ·
[
B3 B2 B2 B1

]T
,

then L(x0||x1||x2||x3) = L0(x0)⊕L1(x1)⊕L2(x2)⊕L3(x3).

III. COLLISION-BASED ATTACK ON YAO AND CHEN’S
WHITE-BOX SM4 IMPLEMENTATION

In this section, we first describe Yao and Chen’s white-box
SM4 implementation, and then present our attack on it.

A. Yao and Chen’s White-Box SM4 Implementation

Yao and Chen’s white-box SM4 implementation [38] is
based on internal state expansion, particularly, the 32 × 32-
bit matrix representation described in Eq. (3) of the linear
transformation L is expanded to the following 64 × 64-bit
matrix L̂ with the 8× 8-bit zero matrix 0:

L̂ =



B1 0 B2 0 B2 0 B3 0
0 B1 0 B2 0 B2 0 B3

B3 0 B1 0 B2 0 B2 0
0 B3 0 B1 0 B2 0 B2

B2 0 B3 0 B1 0 B2 0
0 B2 0 B3 0 B1 0 B2

B2 0 B2 0 B3 0 B1 0
0 B2 0 B2 0 B3 0 B1


.

Represent the matrix L̂ as four 64 × 16-bit matrices, that is,
L̂ =

[
L̂0 L̂1 L̂2 L̂3

]
. Then, an encryption round of Yao

and Chen’s white-box SM4 implementation consists of the
following three parts according to Eq. (2), as depicted in Fig. 2.
Note first that Xl is the corresponding original value protected
with an affine output encoding Pl(x) = Al · x ⊕ al, where x
is a 32-bit variable, the linear part Al is a secret (randomly
generated) general invertible 32 × 32-bit matrix, the constant
part al is a secret (randomly generated) 32-bit vector, and
l = 0, 1, · · · , 35.

1) Part 1 – Implement Xi+1 ⊕ Xi+2 ⊕ Xi+3 7→ X: In
order to obtain the original value of Xi+1 ⊕ Xi+2 ⊕ Xi+3

from the protected forms Xi+1, Xi+2 and Xi+3, apply first the
inverses P−1i+1, P−1i+2 and P−1i+3 of the three output encodings
respectively to Xi+1, Xi+2 and Xi+3, followed by an identical
diagonal output encoding Ei = diag(Ei,0, Ei,1, Ei,2, Ei,3),
where Ei,0, Ei,1, Ei,2, Ei,3 are four general invertible 8 × 8-
bit affine transformations (i = 0, 1, . . . , 31).

E−1

i,1

E−1

i,2

E−1

i,3

Ŝ

Ŝ

Ŝ

Ŝ

E−1

i,0 L̂0

L̂1

L̂2

L̂3

SR

SR

SR

SR

Qi,0

Qi,1

Qi,2

Qi,3

xi,0

xi,1

xi,2

xi,3

X

Ei

Ei

Ei

X ′

i+1

X ′

i+2

X ′

i+3

⊕

P−1

i+1

P−1

i+2

P−1

i+3

Xi+1

Xi+2

Xi+3

Yi = Yi0||Yi1 (Qi)
−1
t P ′′

i+4
Y ′

i0Yi0

P−1

i P ′

i+4

⊕
Xi+4

X ′

iXi

⊕

extract useful
information

Part 3Part 2Part 1

Figure 2. An encryption round of Yao and Chen’s white-box SM4 imple-
mentation

This part can be summarised as

X ′i+j = Ei ◦ P−1i+j(Xi+j), j = 1, 2, 3;

X = X ′i+1 ⊕X ′i+2 ⊕X ′i+3,

where X is a 32-bit variable. Observe that the final result of
this part X = Ei ◦(P−1i+1(Xi+1)⊕P−1i+2(Xi+2)⊕P−1i+3(Xi+3))
is the original value of Xi+1 ⊕ Xi+2 ⊕ Xi+3 protected
with the output encoding Ei in such a way that its four
bytes are protected respectively with the four 8-bit encodings
Ei,0, Ei,1, Ei,2, Ei,3.

2) Part 2 – Implement T(X, rki) 7→ Yi(= Yi0||Yi1): The
input X of the second part is the output of the first part, rep-
resent X as 4 bytes X = (xi,0, xi,1, xi,2, xi,3), and represent
the round key rki as 4 bytes rki = (rki,0, rki,1, rki,2, rki,3),
where i = 0, 1, . . . , 31. Next, construct four lookup tables that
map from 8-bit input to 64-bit output each, as follow:

Tablei,0 = Gi,0 ◦ L̂0[Ŝ(E
−1
i,0 (xi,0), rki,0, αi,0)ti,0 ],

Tablei,1 = Gi,1 ◦ L̂1[Ŝ(E
−1
i,1 (xi,1), rki,1, αi,1)ti,1 ],

Tablei,2 = Gi,2 ◦ L̂2[Ŝ(E
−1
i,2 (xi,2), rki,2, αi,2)ti,2 ],

Tablei,3 = Gi,3 ◦ L̂3[Ŝ(E
−1
i,3 (xi,3), rki,3, αi,3)ti,3 ],

where
• αi,j is an 8-bit random number (j = 0, 1, 2, 3);
• L̂j is the corresponding j-th 64× 16-bit part of L̂;
• (ti,0, ti,1, ti,2, ti,3) (ti,j ∈ {0, 1}) is a 4-bit random

vector, and

Ŝ(E−1i,j (xi,j), rki,j , αi,j)ti,j

=

{
S(E−1i,j (xi,j)⊕ rki,j) || S(E

−1
i,j (xi,j)⊕ αi,j), ti,j = 0;

S(E−1i,j (xi,j)⊕ αi,j) || S(E
−1
i,j (xi,j)⊕ rki,j), ti,j = 1.

That is, the Ŝ operation is constructed by expanding the
original S operation with a dummy S operation under the
control of the 1-bit ti,j parameter.

• Gi,j is the composition of a shift matrix SR and an
output encoding Qi,j . The shift matrix SR transforms the
expanded 64-bit value after L̂j into such a 64-bit value
that the former half is the original 32-bit part (without ex-
pansion) and the latter half consists only of some dummy
bits. Qi,j is of the affine form Qi,j(x) = LQ ·x⊕CQi,j

,
here x is a 64-bit variable, the linear part LQ is a
block diagonal matrix being composed of eight 8 × 8-
bit matrices, and the constant part CQi,j consists of eight
concatenated 8-bit vectors.
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The final output of this part is the XOR of the four 64-
bit outputs of the four lookup tables, which is denoted by
Yi = Yi0||Yi1 with Yi0 being supposed to be the original useful
32-bit value.

3) Part 3 – Implement Yi0 ⊕ Xi 7→ Xi+4: This part
first extracts the original useful 32-bit value from the 64-bit
expanded output of the second part, and then calculates Xi+4,
as follows.

Y ′i0 = P ′′i+4 ◦ (Qi)−1t (Yi0),

X ′i = P ′i+4 ◦ P−1i (Xi),

Xi+4 = Y ′i0 ⊕X ′i,

where (Qi)
−1
t represents the corresponding part of the inverse

of the encodings LQ · x ⊕ (CQi,0
⊕ CQi,1

⊕ CQi,2
⊕ CQi,3

)
of the second part, and P ′i+4 and P ′′i+4 are new affine output
encodings of the forms P ′i+4(x) = Pi+4⊕a′i+4 and P ′′i+4(x) =
Pi+4⊕a′′i+4, respectively, so that Xi+4 is a protected form with
an affine output encoding Pi+4(x) = Ai+4 ·x⊕ai+4, like Xi.

As a result, the whole white-box SM4 implementation can
be obtained by iterating the above process for all the 32 rounds
with possibly independent encodings.

Yao and Chen analysed its security against a variety of
attack techniques like BGE, and got that the attack complexity
using affine equivalence technique was 297, and the lowest
attack complexity was 251 among all used attack techniques.

B. Attacking Yao and Chen’s White-Box SM4 Implementation

In this subsection, we apply Lepoint et al.’s collision-based
idea to attack Yao and Chen’s white-box SM4 implementation
with a time complexity of about 219.4. AES and SM4 have
different structures, and Yao and Chen’s white-box SM4
implementation is distinct from Chow et al.’s white-box AES
implementation: there are dummy states with indeterminate
positions and the encoding used in Xi+4 involves a general
32× 32-bit matrix, which does not allow us to apply Lepoint
et al.’s attack idea efficiently within one round, as for Chow et
al.’s white-box AES implementation. However, after a detailed
investigation we find an appropriate collision function by
considering two consecutive rounds in Yao and Chen’s white-
box SM4 implementation, plus a trick that can recover the
linear parts of the concerned encodings, to bypass the effects
due to the dummy states and etc.

1) Devising a Collision Function: As illustrated in Fig. 3 at
a high level, the collision function used in our attack takes as
input the two 32-bit input parameters (xi,0||xi,1||xi,2||xi,3, Xi)
in the second part of an encryption round of Yao and Chen’s
white-box SM4 implementation, and ends with the output of
an Ei+1,j operation of the Xi+4 branch in the first part of
the next encryption round (j = 0, 1, 2, 3). Observe that Ei
and Ei+1 are diagonal affine transformations, Ei,j and Ei+1,j

are invertible 8 × 8-bit affine transformations, and xi,j is
the original input byte to the j-th original S-box of the i-th
encryption round in a protected form with Ei,j .

The collision function is functionally equivalent and can
be simplified to the one depicted in Fig. 4. In our attack
and all subsequent descriptions, we set Xi such that P ′i+4 ◦
P−1i (Xi) = 0, and denote the constant A−1i+4 · a′′i+4 ⊕ A

−1
i+4 ◦

E−1

i,1

E−1

i,2

E−1

i,3

Ŝ

Ŝ

Ŝ

Ŝ

E−1

i,0 L̂0

L̂1

L̂2

L̂3

SR

SR

SR

SR

Qi,0

Qi,1

Qi,2

Qi,3

xi,0

xi,1

xi,2

xi,3

Yi = Yi0||Yi1 (Qi)
−1
t P ′′

i+4
Y ′

i0Yi0

P−1

i P ′

i+4

⊕
Xi+4

X ′

iXi

⊕

extract useful
information

P−1

i+4

Ei+1,1

Ei+1,2

Ei+1,3

Ei+1,0

Figure 3. Our collision function on Yao and Chen’s white-box SM4
implementation

P ′i+4 ◦ P
−1
i (Xi) = A−1i+4 · a′′i+4 by εi. We now explain where

the value εi comes from. Let X̂ denotes the original 32-
bit value immediately after the L operation under the input
X = (xi,0, xi,1, xi,2, xi,3), then we have

P−1i+4 ◦ (Y
′
i0 ⊕ P ′i+4 ◦ P−1i (Xi))

= P−1i+4(Y
′
i0)⊕Ai+4 ◦ P ′i+4 ◦ P−1i (Xi)

= P−1i+4 ◦ P
′′
i+4(X̂)

= P−1i+4 ◦ (Pi+4(X̂)⊕ a′′i+4)

= P−1i+4 ◦ (Ai+4(X̂)⊕ ai+4 ⊕ a′′i+4)

= A−1i+4 ◦ (Ai+4(X̂)⊕ ai+4 ⊕ a′′i+4 ⊕ ai+4)

= X̂ ⊕A−1i+4 · a
′′
i+4,

which is equal to X̂ ⊕ εi under P ′i+4 ◦ P
−1
i (Xi) = 0.

As a consequence, the collision function denoted by
f(xi,0, xi,1, xi,2, xi,3, Xi), or simply f(xi,0, xi,1, xi,2, xi,3)
under P ′i+4 ◦ P

−1
i (Xi) = 0, is

f(xi,0, xi,1, xi,2, xi,3)

=


Ei+1,0

Ei+1,1

Ei+1,2

Ei+1,3

 ◦ ⊕εi ◦ L ◦

S ◦ ⊕rki,0 ◦ E−1i,0 (xi,0)
S ◦ ⊕rki,1 ◦ E−1i,1 (xi,1)
S ◦ ⊕rki,2 ◦ E−1i,2 (xi,2)
S ◦ ⊕rki,3 ◦ E−1i,3 (xi,3)

 .
Furthermore, we express f as a concatenation of four byte

functions f0, f1, f2 and f3:

f(xi,0, xi,1, xi,2, xi,3)

=[f0(xi,0, xi,1, xi,2, xi,3), f1(xi,0, xi,1, xi,2, xi,3),

f2(xi,0, xi,1, xi,2, xi,3), f3(xi,0, xi,1, xi,2, xi,3)]
T ;

and define Sj function as

Sj(·) = S ◦ ⊕rki,j ◦ E−1i,j (·)
= S(rki,j ⊕ E−1i,j (·)), j = 0, 1, 2, 3. (4)

2) Recovering Sj Functions: Next we try to recover the
functions S0, S1, S2 and S3 by exploiting collisions on the
output of the functions fj . We first use the following collision
to recover S0 and S1:

f0(α, 0, 0, 0) = f0(0, β, 0, 0), (5)
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Figure 4. Equivalent of collision function on Yao and Chen’s white-box SM4
implementation

where α, β ∈ GF(2)8. By the linear transformation L in
Eq. (3), Eq. (5) immediately means the following equation:

Ei+1,0 ◦ ⊕εi,0 ◦
(
B1 ◦ S0(α)⊕B2 ◦ S1(0)⊕

B2 ◦ S2(0)⊕B3 ◦ S3(0)
)

= Ei+1,0 ◦ ⊕εi,0 ◦
(
B1 ◦ S0(0)⊕B2 ◦ S1(β)⊕

B2 ◦ S2(0)⊕B3 ◦ S3(0)
)
,

where εi,0 is the corresponding byte of the constant εi. Since
Ei+1,0 is a bijection, we have the following equation:

B1 ◦ S0(α)⊕B2 ◦ S1(0) = B1 ◦ S0(0)⊕B2 ◦ S1(β).

For convenience, define um = S0(m) and vm = S1(m),
then we have

B1 ◦ (u0 ⊕ uα) = B2 ◦ (v0 ⊕ vβ). (6)

Since α 7→ f0(α, 0, 0, 0) and β 7→ f0(0, β, 0, 0) are
bijections, we can find 256 collisions. After removing (α, β) =
(0, 0), we get 255 pairs (α, β) satisfying Eq. (5), each pro-
viding an equation of the form of Eq. (6). In the same way,
we use other fj functions (j ∈ {1, 2, 3}) to generate similar
equations with different coefficients in {B1, B2, B3}. Finally,
we get 4 × 255 linear equations with all 512 unknowns, as
follows: 

B1 ◦ (u0 ⊕ uα) = B2 ◦ (v0 ⊕ vβ);
B3 ◦ (u0 ⊕ uα) = B1 ◦ (v0 ⊕ vβ);
B2 ◦ (u0 ⊕ uα) = B3 ◦ (v0 ⊕ vβ);
B2 ◦ (u0 ⊕ uα) = B2 ◦ (v0 ⊕ vβ).

(7)

Define u′m = u0 ⊕ um and v′m = v0 ⊕ vm, with m ∈
{1, 2, . . . , 255}, so that the number of unknowns is reduced
to 2× 255 = 510. Thus, Eq. (6) can be rewritten as

B1 ◦ u′α = B2 ◦ v′β ,

meaning that the linear system of Eq. (7) can be represented
with 510 unknowns as

B1 ◦ u′α = B2 ◦ v′β ,
B3 ◦ u′α = B1 ◦ v′β ,
B2 ◦ u′α = B3 ◦ v′β ,
B2 ◦ u′α = B2 ◦ v′β .

The 4 × 255 equations yield a linear system of rank 509;
and in such a linear equation system, all other unknowns can
be expressed as a function of one of them, say u′1, that is,

there exist coefficients ai and bi such that u′m = am · u′1 and
v′m = bm · u′1. That is,

um = am · (u0 ⊕ u1)⊕ u0,
vm = bm · (u0 ⊕ u1)⊕ v0. (8)

Next we can recover the S0 function by exhaustive search
on the pair (u0, u1), and at last we use the following equation
from the definition of the S0 function to verify whether the
obtained S0 function is right or not:

S−1 ◦ S0(·) = rki,0 ⊕ E−1i,0 (·).

Since E−1i,0 is an 8× 8-bit invertible affine transformation, the
above function has an algebraic degree of at most 1. For a
wrong pair (u0, u1), a wrong candidate function S∗0 would be
got which is an affine equivalent to S0, namely there exists
an 8× 8-bit matrix a and an 8-bit vector b such that S∗0(·) =
a · S0(·) ⊕ b, with a 6= 0 and (a, b) 6= (0, 1). The function
S−1 ◦ S∗0(·) satisfies

S−1 ◦ S∗0(·) = S−1
(
a · S

(
rki,0 ⊕ E−1i,0 (·)

)
⊕ b
)
.

In this case, S−1 ◦ S∗0(·) has an algebraic degree greater than
1 with an overwhelming probability. More specifically, we
set the function ĝ(·) = S−1 ◦ S∗(·), used Lai’s higher-order
derivative concept [18] to calculate the first-order derivative
of ĝ, and finally ran ten thousand tests without obtaining a
function with an algebraic degree of 1 or less. For instance,
the first-order derivative ϕ̂ at point (01) is set to

ϕ̂(x) = ĝ(x⊕ 01)⊕ ĝ(x),

and we verify whether ϕ̂(x) is constant with at most 27 inputs
of x, since ϕ̂(x) = ϕ̂(x ⊕ 01). For each wrong pair, the
probability that ϕ̂(x) is constant is roughly 2−8, so wrong
guesses can be quickly removed.

After recovering S0, we can use Eq. (8) to recover S1 by
exhaustive search on v0, and similarly recover S2 and S3 with
other equations finally.

3) Recovering the Linear Parts of Output Encodings
Ei+1,j: After the Sj functions have been recovered (j =
0, 1, 2, 3), however it is not as easy to recover the output
encodings Ei+1,j as Lepoint et al.’s attack on Chow et al.’s
white-box AES implementation, because of the existence of
the unknown constant εi, which is partially due to the different
structures of Feistel and SPN ciphers and the design of Yao
and Chen’s white-box SM4 implementation. Anyway, we find
a trick to recover the linear part of the output encodings
Ei+1,j . Since Ei+1,j is an invertible affine transformation, we
write Ei+1,j(·) = Ci+1,j(·) ⊕ ci+1,j , where the linear part
Ci+1,j is a general invertible 8× 8-bit matrix and ci+1,j is an
8-bit constant.

Given a 32-bit input X = (xi,0, xi,1, xi,2, xi,3) to the f
collision function, denote the original 32-bit value immediately
after the L̂ operation as follows:

Y =
[
Y0 Y1 Y2 Y3

]T
= L0 ◦ S0(xi,0)⊕ L1 ◦ S1(xi,1)⊕

L2 ◦ S2(xi,2)⊕ L3 ◦ S3(xi,3).
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As L is public and we have recovered Sj above (j =
0, 1, 2, 3), we can compute Yj . The output of the f collision
function is

f =
[
f0 f1 f2 f3

]T
=


Ei+1,0(Y0 ⊕ εi,0)
Ei+1,1(Y1 ⊕ εi,1)
Ei+1,2(Y2 ⊕ εi,2)
Ei+1,3(Y3 ⊕ εi,3)

 ,
where (εi,0, εi,1, εi,2, εi,3) = εi.

Subsequently, to recover Ei+1,j , we need to know the
8-bit unknown constant εi,j . A straightforward way is to
try by exhaustive search, which would cause an additional
complexity factor of 28. However, we find we can recover the
linear part Ci+1,j at ease with a negligible time complexity,
as follows.

First, we consider the output of the arbitrary 32-bit input
X = (xi,0, xi,1, xi,2, xi,3) under the f0 collision function,

f0(X) = Ei+1,0(Y0 ⊕ εi,0)
= Ci+1,0(Y0)⊕ Ci+1,0(εi,0)⊕ ci+1,0, (9)

where Y0 is defined above, which denotes the corresponding
original 8-bit value immediately after the L operation under
the input X .

Next, we choose the 32-bit input X0 = (x̂i,0, x̂i,1, x̂i,2, x̂i,3)
to the f collision function, so that the original 32-bit value
immediately after the L operation is 0; this can be done easily
by choosing X0 such that

(S0(x̂i,0),S1(x̂i,1),S2(x̂i,2),S3(x̂i,3)) = L−1(0) = 0.

Thus, its corresponding output under the f0 collision function
is

f0(X0) = Ci+1,0(εi,0)⊕ ci+1,0. (10)

At last, XORing Eq. (9) and Eq. (10), we get f0(X) ⊕
f0(X0) = Ci+1,0(Y0). As a consequence, we can recover
the linear part Ci+1,0 of the output encodings Ei+1,0. The
linear parts of other output encodings Ei+1,j can be recovered
similarly.

4) Recovering Round Key rki: Subsequently, we cannot
recover a round key byte from the above collision function
in a way similar to Lepoint et al.’s attack on Chow et al.’s
white-box AES implementation, because there is an unknown
constant εi,0 and Ei,j is also unknown, although its linear part
Ci,j can be recovered as above. We find these problems can
be solved by modifying the collision function, as follows.

Suppose that Ei,j(·) = Ci,j(·)⊕ci,j and the linear part Ci,j
has been recovered as above, where Ci,j is a general invertible
8 × 8-bit matrix and ci,j is an 8-bit constant (j = 0, 1, 2, 3).
We first show how to recover the two unknown 8-bit constants
εi,j and Ci,j(rki,j)⊕ ci,j , that is, εi,j and Ei,j(rki,j), rather
than to recover rki,j directly. Compared with Lepoint et al.’s
attack, this increases an additional complexity factor of 28,
since we need to guess two 8-bit unknowns here, instead of
one, but it is comparable to the time complexity of the above
phase of recovering Sj’s.

According to Eq. (4) and Eq. (5), we have

f0
(
Ei,0(S

−1(x)⊕ rki,0), 0, 0, 0
)

= f0
(
Ci,0(S

−1(x))⊕ Ei,0(rki,0), 0, 0, 0
)

= Ei+1,0(B1(x)⊕ δ ⊕ εi,0)
= Ei+1,0(B1(x⊕B−11 (εi,0))⊕ δ), (11)

where δ = B2 ◦S1(0)⊕B2 ◦S2(0)⊕B3 ◦S3(0) is a constant
that can be easily computed.

We replace x with x ⊕ B−11 (εi,0) in Eq. (11), and define
the function g as

g(x) = f0
(
Ci,0(S

−1(x⊕B−11 (εi,0)))⊕ Ei,0(rki,0), 0, 0, 0
)

= Ei+1,0(B1(x)⊕ δ).

Because of the 8 × 8-bit invertible affine transformation
Ei+1,0, the function g has an algebraic degree of at most 1.
For a wrong guess r̂ki,0 6= rki,0, the function ĝ is defined as

ĝ(x) = f0
(
Ci,0(S

−1(x⊕B−11 (εi,0)))⊕ Ei,0(r̂ki,0), 0, 0, 0
)

= Ei+1,0(B1 ◦ S(S−1(x)⊕ r̂ki,0 ⊕ rki,0)⊕ δ).

In this case, with a similar test, ĝ has an algebraic degree
of more than 1 with an overwhelming probability. We ex-
tract (εi,0, Ei,0(rki,0)) by exhaustive search, that is, similarly
we verify whether the first-order derivative ϕ̂(x) = ĝ(x ⊕
01) ⊕ ĝ(x) of ĝ(x) at point 01 is constant for each guess
(εi,0, Ei,0(r̂ki,0)). For a wrong guess (εi,0, Ei,0(r̂ki,0)), the
probability that ϕ̂(x) is constant is roughly 2−8, so wrong
guesses can be quickly removed.

As a result, we can also recover (εi,j , Ei,j(rki,j)) for j =
1, 2, 3, by changing the definition of the function g. Thus, we
recover εi = (εi,0, εi,1, εi,2, εi,3), and further we can recover
the encodings Ei,j by Ei,j(Yj ⊕ εi,j) (or by deducing ci,j
under those equations like Eq. (9)). Finally, we get the round
key bytes rki,j from the recovered Ei,j(rki,j). Four round
keys enables us to determine the full secret key of SM4 in
principle.

5) Time Complexity: In the phase of recovering S0, there
are 216 candidates (u0, u1) for exhaustive search, and to verify
whether ϕ̂(x) is constant we need to calculate ϕ̂(x) for at most
27 inputs. For a wrong guess (u0, u1), the probability that
ϕ̂(x) is constant is 2−8 roughly. Thus, the expected value of
the test is 1+1/256+· · ·+1/(256127) ≈ 1. The expected time
complexity of recovering S0 is hence about 216 · 1 · 2 = 217

(dominated by S/S−1 computations).
We recover S1, S2 and S3 by exhaustive search on v0 and

produce an expected time complexity of 3 · (28 ·1 ·2) = 3 ·29.
Thus, the expected time complexity of recovering all the four
Sj’s is about 217 + 3 · 29 = 259 · 29.

The time complexity for recovering the linear part of output
encoding Ei+1,j is negligible. The expected time complexity
of recovering (εi,0, Ei,0(rki,0)) is about 216 ·1·2 = 217, so the
expected time complexity of recovering a round key is 4·(216 ·
1 · 2) = 219. To sum up, the expected total time complexity
of recovering one round key is about 259 · 29 + 219 ≈ 219.4.
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IV. COLLISION-BASED ATTACK ON XIAO AND LAI’S
WHITE-BOX SM4 IMPLEMENTATION

Xiao and Lai’s white-box SM4 implementation [37] is
similar to Yao and Chen’s white-box SM4 implementation at
a high level, except that there is no state expansion to the
S-box layer and thus the original L operation is used. Fig. 5
depicts an encryption round of Xiao and Lai’s white-box SM4
implementation, where Qi is a general invertible affine output
encoding. Therefore, we can apply our above collision-based
attack to Xiao and Lai’s white-box SM4 implementation in
the same way, and the attack’s time complexity is also about
219.4 for recovering a round key.

Ei,1

Ei,2

Ei,3

S

S

S

S

Ei,0

L

xi,0

xi,1

xi,2

xi,3

X

E−1

i

E−1

i

E−1

i

X ′

i+1

X ′

i+2

X ′

i+3

⊕

P−1

i+1

P−1

i+2

P−1

i+3
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Xi+2

Xi+3

Y = vi,0 ⊕ vi,1 ⊕ vi,2 ⊕ vi,3 Q−1

i P ′′

i+4 Y ′

P−1

i P ′

i+4

⊕
Xi+4

X ′

iXi

Part 3
Part 2Part 1

Qi

zi,0zi,0

zi,1

zi,2

zi,3

Figure 5. An encryption round of Xiao and Lai’s white-box SM4 implemen-
tation

V. COLLISION-BASED ATTACK ON SHANG’S WHITE-BOX
SM4 IMPLEMENTATION

Shang’s white-box SM4 implementation [30] is based on
Xiao and Lai’s white-box SM4 implementation, mainly by
applying two general 16-bit affine encodings Ei,0 and Ei,1
to the input of the S-box layer in parallel, each corresponding
to two S-boxes and subsequently a 32 × 16-bit component
L0 or L1 of the L matrix, and thus two 16 × 32-bit tables.
Fig. 6 depicts an encryption round of Shang’s white-box SM4
implementation.

We can similarly exploit our above collision-based attack to
Shang’s white-box SM4 implementation after a few modifica-
tions. Specifically, we represent L by Eq. (3) with 16× 16-bit
blocks as

L =

[
L0,0 L0,1

L1,0 L1,1

]
=

[
L0,0 L0,1

L0,1 L0,0

]
,

S

Ei,0

L Qi

xi,0

X

E−1

i

E−1

i

E−1

i

X ′

i+1

X ′

i+2

X ′

i+3

⊕

P−1

i+1

P−1

i+2

P−1

i+3

Xi+1

Xi+2

Xi+3

Q−1

i P ′′

i+4 Y ′

iYi

P−1

i P ′

i+4

⊕
Xi+4

X ′

iXi

⊕

Part 3Part 2Part 1

Ei,1

xi,1

S

S

S

Figure 6. An encryption round of Shang’s white-box SM4 implementation

L0

P
′′

i+4

Y
′

i

P
−1

i P
′

i+4

⊕
Xi+4

X
′

iXi

L1

E
−1

i+1,0

P
−1

i+4

E
−1

i+1,1

S

Ei,0
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Ei,1
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S

S

S

Figure 7. Equivalent of collision function on Shang’s white-box SM4
implementation

define

S0(x) =

(
S
S

)(
(rki,0||rki,1)⊕ Ei,0(x)

)
,

S1(x) =

(
S
S

)(
(rki,2||rki,3)⊕ Ei,1(x)

)
,

where x ∈ GF(2)16, and define a collision function on
Shang’s white-box SM4 implementation whose equivalent f
is depicted in Fig. 7, as follows:

f(xi,0, xi,1) = [f0(xi,0, xi,1), f1(xi,0, xi,1)]
T

=

[
E−1i+1,0

E−1i+1,1

]
⊕εi ◦L ◦


(
S
S

)(
(rki,0||rki,1)⊕ Ei,0(xi,0)

)(
S
S

)(
(rki,2||rki,3)⊕ Ei,1(xi,1)

)


=

[
E−1i+1,0

E−1i+1,1

]
⊕εi ◦L ◦

[
S0(xi,0)
S1(xi,1)

]
.

Then, we consider the collision fh(α, 0) = fh(0, β), where
α, β ∈ GF(2)16 and h = 0, 1. At last, we get the following
linear system of 2 × (216 − 1) equations with 2 × (216 − 1)
unknowns:

L0,0 ◦ u′α ⊕ L0,1 ◦ v′β = 0,

L0,1 ◦ u′α ⊕ L0,0 ◦ v′β = 0,

where u′α = S0(α) ⊕ S0(0) and v′β = S1(β) ⊕ S1(0) and
(α, β) 6= (0, 0). Subsequently, by a similar process, we can
recover the Sh function with an expected time complexity
of about 234 + 218, and recover the linear part of Ei+1,h

with a negligible time complexity. Note that here each Sh
computation involves two S computations.

At last, suppose that Ei,h(·) = Ci,h(·) ⊕ ci,h and the
linear part Ci,h has been recovered as above, where Ci,h
is a general invertible 16 × 16-bit matrix and ci,h is a 16-
bit constant. Similarly, we depend on the following revised
functions to recover the key bytes rki,0||rki,1 with an expected
time complexity of about 234:

f0
(
E−1i,0

((S−1
S−1

)
(x)⊕ (rki,0||rki,1)

)
, 0
)

= f0
(
C−1i,0

((S−1
S−1

)
(x)
)
⊕ E−1i,0 (rki,0||rki,1), 0

)
= E−1i+1,0(L0,0(x)⊕ L0,1 ◦ S1(0)⊕ εi,0)
= E−1i+1,0

(
L0,0(x⊕ L−10,0 · εi,0)⊕ L0,1 ◦ S1(0)

)
,
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and

g(x) = f0
(
C−1i,0

((S−1
S−1

)
(x⊕ L−10,0 · εi,0)

)
⊕

E−1i,0 (rki,0||rki,1), 0
)

= E−1i+1,0

(
L0,0(x)⊕ L0,1 ◦ S1(0)

)
,

where εi,0 is the corresponding 16-bit part of εi.
Thus, the total expected time complexity of recovering one

round key rki from Shang’s white-box SM4 implementation
is about 234 + 218 + 2 · 234 ≈ 235.6.

VI. COLLISION-BASED ATTACK ON WU ET AL.’S
WHITE-BOX SM4 IMPLEMENTATION

In this section, we briefly describe Wu et al.’s white-box
SM4 implementation and our attack.

A. Wu et al.’s White-Box SM4 Implementation

An encryption round of Wu et al.’s white-box SM4 imple-
mentation [34] is made up of three parts, as depicted in Fig. 8,
but it is expanded to 36 rounds to produce the original output
(without protection), and there are respectively two types of
lookup tables in the second and third parts, especially, the
second type of lookup tables uses three different construction
methods for different rounds.

1) Part 1: The first part is processed as follows, and the
32-bit output X is protected by a diagonal invertible matrix
Ei:

X ′i+j = Ai,j(Xi+j), j = 1, 2, 3;

X = X ′i+1 ⊕X ′i+2 ⊕X ′i+3,

where Ai,j is a composite 32-bit invertible matrix with differ-
ent encodings (i = 0, 1, . . . , 35), as follows,

A0,1 = E0P, A0,2 = E0P, A0,3 = E0P,
A1,1 = E1P, A1,2 = E1P, A1,3 = E1R

−1
0 ,

A2,1 = E2P, A2,2 = E2R
−1
0 , A2,3 = E2R

−1
1 ,

A3,1 = E3R
−1
0 , A3,2 = E3R

−1
1 , A3,3 = E3R

−1
2 ,

A4,1 = E4R
−1
1 , A4,2 = E4R

−1
2 , A4,3 = E4R

−1
3 ,

...
...

...
A31,1 = E31R

−1
28 , A31,2 = E31R

−1
29 , A31,3 = E31R

−1
30 ,

A32,1 = E32R
−1
25 , A32,2 = E32R

−1
26 , A32,3 = E32R

−1
27 ,

A33,1 = E33R
−1
26 , A33,2 = E33R

−1
27 , A33,3 = E33R

−1
28 ,

A34,1 = E34R
−1
27 , A34,2 = E34R

−1
28 , A34,3 = E34R

−1
29 ,

A35,1 = E35R
−1
28 , A35,2 = E35R

−1
29 , A35,3 = E35R

−1
30 ,

with P = diag(P0, P1, P2, P3) being a diagonal invertible
matrix and R0, R1, · · · , R30 being general invertible matrices.

2) Part 2: Construct four 8-bit to 32-bit lookup tables of
the first type Tablei,j (j = 0, 1, 2, 3), and XOR the outputs
of the four tables into a 32-bit Yi, as follows:

Yi =

3⊕
j=0

Tablei,j

= Qi ◦ P ◦ L ◦


S ◦ ⊕rki,0 ◦ P−10 ◦ E−1i,0 (xi,0)
S ◦ ⊕rki,1 ◦ P−11 ◦ E−1i,1 (xi,1)
S ◦ ⊕rki,2 ◦ P−12 ◦ E−1i,2 (xi,2)
S ◦ ⊕rki,3 ◦ P−13 ◦ E−1i,3 (xi,3)

 .
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⊕
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iXi
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iXi round 1 - 4
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Figure 8. An encryption round of Wu et al.’s white-box SM4 implementation

3) Part 3: Construct four 16-bit to 8-bit lookup tables of
the second type. Let (Xi, Yi) be the input of the four tables,
and Xi+4 be the output, then
• Rounds 1-4:

X ′i = Ri ◦ P (Xi), Y
′
i = Ri ◦Q−1i (Yi),

Xi+4 = Y ′i ⊕X ′i;

• Rounds 5-32:

X ′i = Ri ◦Ri−4(Xi), Y
′
i = Ri ◦Q−1i (Yi),

Xi+4 = Y ′i ⊕X ′i;

• Rounds 33-36:

X ′i = Ri ◦Ri−8(Xi), Y
′
i = P−1 ◦Q−1i (Yi),

Xi+4 = Y ′i ⊕X ′i.

B. Attacking Wu et al.’s White-Box SM4 Implementation

Note that all the encodings are linear (invertible matrices)
in Wu et al.’s white-box SM4 implementation, rather than
affine encodings as in the above three white-box SM4 im-
plementations. As a consequence, we can devise a collision
function in a similar way as above, but much easier, since
there is no effect of unknown constant parts associated with
the encodings. Fig. 9 (top) depicts a collision function on Wu
et al.’s white-box SM4 implementation, where Qi and Q−1i
are cancelled with each other.

Further, the collision function can be simplified. First, we
set Xi = 0, and thus Ri ◦ P (Xi) = 0, since Ri and P are
invertible matrices. Second, Ri and R−1i are cancelled with
each other. Thus, after we adjust the position of encoding P ,
we get a simplified collision function as depicted in Fig. 9
(bottom), that is

f(xi,0, xi,1, xi,2, xi,3)

=[f0(xi,0, xi,1, xi,2, xi,3), f1(xi,0, xi,1, xi,2, xi,3),

f2(xi,0, xi,1, xi,2, xi,3), f3(xi,0, xi,1, xi,2, xi,3)]
T

=


Êi+1,0

Êi+1,1

Êi+1,2

Êi+1,3

 ◦ L ◦

S ◦ ⊕rki,0 ◦ Ê−1i,0 (xi,0)
S ◦ ⊕rki,1 ◦ Ê−1i,1 (xi,1)
S ◦ ⊕rki,2 ◦ Ê−1i,2 (xi,2)
S ◦ ⊕rki,3 ◦ Ê−1i,3 (xi,3)

 ,
where Ê−1i,j (·) = P−1j ◦E

−1
i,j (·) and Êi+1,j(·) = Ei+1,j ◦Pj(·)

are invertible 8×8-bit matrices (j = 0, 1, 2, 3). Note that Ê−1i,j
and Êi+1,j are matrixes simply, not affine transformations, and
thus this attack is a simplified case.
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Figure 9. Collision function and its equivalent on Wu et al’s white-box SM4
implementation

Define Sj function as

Sj(·) = S ◦ ⊕rki,j ◦ Ê−1i,j (·)
= S(rki,j ⊕ Ê−1i,j (·)), j = 0, 1, 2, 3.

Then, we can similarly recover the four functions Sj’s with
an expected time complexity of about 216 · 1 · 2 + 3 · (28 ·
1 · 2) = 259 · 29. Since Êi+1,0 is an invertible 8 × 8-
bit matrix, we can recover it immediately by calculating
Êi+1,0(·) = f0(ψ

−1(·), 0, 0, 0), where ψ : α 7→ B1 ◦ S0(α)⊕
B2 ◦S1(0)⊕B2 ◦S2(0)⊕B3 ◦S3(0). Similarly for recovering
Êi+1,1, Êi+1,2 and Êi+1,3.

At last, we set function g as

g(x) =fj
(
Êi,0(S

−1(x)⊕ rki,0), 0, 0, 0
)

=Êi+1,0(B1 ◦ x⊕B2 ◦ S1(0)⊕B2 ◦ S2(0)⊕
B3 ◦ S3(0)),

and we can similarly recover the round key byte rki,0 and
finally the whole round key rki with an expected time com-
plexity of about 4 · (28 · 1 · 2) = 211. Therefore, the total
expected time complexity for recovering a round key is about
259 · 29 + 211 ≈ 217.1.

VII. CONCLUDING REMARKS

The SM4 block cipher is a Chinese national standard and an
ISO international standard, formerly known as SMS4. A few
white-box SM4 implementations have been proposed since
2009, with an increasingly wide use of SM4. In this paper,
we have analysed the security against collision-based attacks
of four white-box SM4 implementations with the construction
method that uses an affine (or linear) diagonal block encoding
to protect the original output of an SM4 round function and
uses the inverse of the encoding to protect the original input
of the S-box layer of the next round, and have presented
attacks with a practical time complexity. Thus, their security
is much lower than previously published and their realistic

significance is reduced. Our attacks indicate that a white-
box SM4 implementation with this construction method is
hardly practically secure generally, and such white-box SM4
constructions should be avoided unless improved somehow.
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