
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 1

Interpreting and Mitigating Leakage-abuse Attacks
in Searchable Symmetric Encryption

Lei Xu, Huayi Duan, Anxin Zhou, Xingliang Yuan, Cong Wang

Abstract—Searchable symmetric encryption (SSE) enables
users to make confidential queries over always encrypted data
while confining information disclosure to pre-defined leakage
profiles. Despite the well-understood performance and potentially
broad applications of SSE, recent leakage-abuse attacks (LAAs)
are questioning its real-world security implications. They show
that a passive adversary with certain prior information of a
database can recover queries by exploiting the legitimately admit-
ted leakage. While several countermeasures have been proposed,
they are insufficient for either security, i.e., handling only specific
leakage like query volume, or efficiency, i.e., incurring large
storage and bandwidth overhead.

We aim to fill this gap by advancing the understanding
of LAAs from a fundamental algebraic perspective. Our in-
vestigation starts by revealing that the index matrices of a
plaintext database and its encrypted image can be linked by
linear transformation. The invariant characteristics preserved
under the transformation encompass and surpass the information
exploited by previous LAAs. They allow one to unambiguously
link encrypted queries with corresponding keywords, even with
only partial knowledge of the database. Accordingly, we devise
a new powerful attack and conduct a series of experiments to
show its effectiveness. In response, we propose a new security
notion to thwart LAAs in general, inspired by the principle of
local differential privacy (LDP). Under the notion, we further
develop a practical countermeasure with tunable privacy and
efficiency guarantee. Experiment results on representative real-
world datasets show that our countermeasure can reduce the
query recovery rate of LAAs, including our own.

Index Terms—Encrypted Search, Cryptographic databases,
Leakage abuse attack, Linear Algebraic.

I. INTRODUCTION

UNDER active research for years, searchable symmetric
encryption (SSE) [1] is considered as a promising build-

ing block to enable practical keyword search in encrypted
databases [2]. It allows clients to make confidential queries di-
rectly over encrypted data, confining information disclosure to
reasonably defined leakage profiles. Despite fruitful progress
on enriched query types [3]–[5] and improved efficiency [6],
it is concerned that SSE is still not ready for deployment,
because the security implications of its leakage have not been
adequately understood.

L. Xu is with the School of Mathematics and Statistics, Nanjing Uni-
versity of Science and Technology, Nanjing, 210094, China. E-mail: xule-
icrypto@gmail.com.

H. Duan, A. Zhou, C. Wang are with the Department of Computer Science,
City University of Hong Kong, Hong Kong SAR, China, and are also with the
City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057,
China.E-mail: anxizhou-c@my.cityu.edu.hk, hduan2-c@my.cityu.edu.hk, con-
gwang@cityu.edu.hk

X. Yuan is with the Faculty of Information Technology, Monash University,
Melbourne, VIC3800, Australia. E-mail: xingling.yuan@monash.edu.

Manuscript received April 10, 2021; revised August 3, 2021.

Recent studies [7]–[11] warn that those legitimately admit-
ted leakage profiles, while seemingly innocent, can be ex-
ploited to devastate the security guarantee of SSE. With certain
prior knowledge of a dataset, which is often a reasonable
assumption in practice, an adversary can recover the content
(i.e., searched keyword) of the query from the revealed access
pattern. The most known leakage-abuse attack (LAA) against
SSE (i.e., count attack) and its recent variants demonstrate
that various leakage profiles, such as query result volumes
and co-occurrence counts (derived from the access patterns
of a sequence of queries), can be used to match the prior
knowledge of the database [8], [9] for query recovery.

While several countermeasures have been suggested, we
found they are still with certain limits in defeating LAAs.
Database padding [8], [12] or specialized data structures with
volume-hiding properties [9], [13], [14] only deal with a
certain type of leakage profiles, e.g., the length of each query
response. Ignoring other information derived from leakage like
query co-occurrence patterns or individual document volume
patterns, particularly in SSE schemes supporting document
retrieval, may fail to defend against sophisticated adversaries.
Most recently, response-hiding multi-map encryption schemes
have received wide attentions [5], [15]. These constructions
suggest to introduce multiplicities to hide the co-occurrence
of different values. However, in the context of document
search, this structure usually refers to the inverted index [5],
[15], where labels are the keywords, values are the document
identifiers, and index entries are label-identifier pairs [16]. As
a result, after the query, the user needs to fetch the documents
from the server. And if no countermeasure is enforced on
the documents, such a direct application will still leak the
individual document volume, which might lead to possible
LAAs. In short, we believe there is still some gap in literature
about how the pre-defined leakage can be linked to the broader
privacy risk in SSE, which has motivated our work.

A. Our Motivation and Contributions

This work aims to advance the understanding of LAAs from
a fundamental linear algebraic perspective and develop a more
effective and efficient countermeasure to mitigate such attacks.
Refined Leakage and New LAA. We begin with the obser-
vation that, the impact of LAAs is far from been reported
by prior arts. Specifically, leakages in LAAs are not fully
utilized and they can potentially lead to a more effective attack
with higher recovery rates. When modelled as index matrices,
the plaintext and encrypted databases can be linked through a
series of elementary linear transformations, i.e., column and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 2

row switching. As such, for an SSE with no padding, we show
the existence of invariant characteristics (including but not
limited to volume or query co-occurrence) that will always
be preserved under the linear transformations. These invariant
characteristics can be used to unambiguously link encrypted
queries (identifiers) and plaintext keywords (identifiers). We
find that they, especially relationship between encrypted and
plaintext identifiers, remain quite useful for LAAs even with
only partial prior knowledge about the dataset.

To validate the effectiveness of our algebraic modeling,
we exploit the identified characteristics to devise an LAA
that achieves much higher recovery rate than all existing
counterparts, based on the abuse of access pattern leakage.
Specifically, we first propose to recover document identifiers to
foster query recovery, which has shown particularly effective
in the partial knowledge scenario. Unlike prior attacks whose
attack performance is mainly dominated by known knowledge
rate [9], [17], our attack will not introduce error terms and
significantly narrow down candidate keywords during query
recovery and improves attack performance. In other words,
with the same leakage, our revised LAA recover more queries
than prior arts. The above improvement makes our attack
outperform prior padding countermeasures [8], [12]. Even for
the recent countermeasure which suggests using encrypted
multi-maps to store documents directly [9], we show that if
the individual document is not pre-padded with equal size,
then the countermeasure can be weakened, and thus are also
subject to our proposed attack.
Local Differential Privacy and New Countermeasure. In
order to overcome the limitation of SSE, our key observation
is to obscure the invariant characteristics of the database so as
to disrupt the distinct linkages between the plaintext database
and its encrypted image of SSE. In the literature, some careful
efforts have been made. Initially, random padding [7], [8] is
suggested to hide the query result length, i.e., the number
of documents returned by a query. After that, volume-hiding
multi-maps [13], [14] are proposed to protect the total volume
(size) of the query response. In above schemes, returned query
results always have the same volume, or volumes perturbed
from it via differential privacy techniques. Most recently,
Blackstone et al. [9] propose a countermeasure which focuses
on hiding the query co-occurrence pattern. This scheme still
overlooks the volume of individual document. As we state in
the experiment parts, our refined leakage profiles cannot be
effectively protected by prior countermeasures.

As known in the literature [8], [12], [14], the original
definition of SSE may not fully capture real-world adversaries.
While some work [12] has been aware of this problem and
proposed to establish the security notion upon the adversarial
prior background knowledge of the database, as acknowledged
by the authors themselves, it appears very hard to achieve
constructive designs with provable security against LAA ad-
versaries. However, doing so will pose very big practical
challenges to SSE. Therefore, how to provide a practical secure
notion of SSE while still provide meaningful privacy is the
problem tackled in the rest of this paper.

We first generalize a new security notion, by introducing an
adjustable balance parameter ε between privacy and efficiency.

Our security intuition is to introduce random perturbations
on the plaintext index matrix, so as to effectively mitigate
LAAs without much extra storage cost compared to prior
arts. The mitigation effect on the resulting design would be
effective against all LAA attempts with past, present, and
future leakages. Then our problem becomes how to achieve
such an efficient perturbation scheme, such that the leakage
learned by the adversary is obfuscated and hard to be utilized
to recover queries. A similar problem has been well studied in
the area of local differential privacy (LDP) [18], [19], which
focuses on perturbing data before publishing and thereby
preventing the adversary from deanonymizing records with
linkage attacks. Here linkage attack function just likes LAA,
and it matches “anonymized” records (access pattern) with
non-anonymized records (prior knowledge) in the plaintext
dataset.

The above formalization naturally guides us to design an
effective and efficient countermeasure to tackle the problem
fundamentally. A straightforward approach is to exploit an
LDP-based binary perturbation mechanism to probabilistically
perturb the search index. With the index perturbed, the actual
index information is hidden and would not be identified by the
adversaries. Accordingly, after feeding this index into SSE, the
leakage profile derived from SSE cannot be identified as well
because such privacy is immune to post-processing [20]. In
DP, the post-processing theorem ensures that no matter what
additional processing executed on those perturbed indexes,
the finally outputs (e.g., length, co-occurrence count) will not
reveal their preimage (plaintext index). However, a significant
limitation of this approach is that it would introduce false
negatives in search results, unless introducing heavy storage
cost approximating to naive padding.

Fortunately, in the context of SSE the relationship between
the identifiers of documents at the server side (encrypted
documents) and the plaintext ones is generally unknown. Such
relationships can be formulated as an unknown permutation.
This is a default treatment of SSE and assumed commonly in
most of the existing LAAs [7], [8]. Otherwise, LAAs would be
a trivial work of performing index matching. Grounded on this
observation, we propose a non-lossy perturbation mechanism
running the noise addition operation only. The key idea is
to obfuscate the index of the keywords such that the output
access patterns of queries are indistinguishable with each other
assisted with the above inherent permutation. Note that, this
approach does not introduce extra bogus documents, because
the perturbation is performed by using the identifiers of the
existing ones, thereby reducing the storage cost. Furthermore,
we apply padding on existing documents to protect document
volumes. Compared to prior works [9], [17], [21], our design
makes an attempt to use significantly reduced extra cost to
mitigate the LAA threats from exploiting the SSE access
pattern leakages.
Overview of Evaluation Results. We conduct a series of
experiments to confirm the performance of our attacks against
various datasets. Under the assumption that the full plaintext
dataset is disclosed to the adversary, for randomly selected
queries in Enron dataset, our attack reaches a recovery rate of
85% which is much higher than that of 49% in count attack [8]

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 3

and 59% in subgraph attack [9]. While recovering queries with
low-occurrence, our attack achieves a recovery rate of 48.3%
and the rates are only 23.2% and 23.5% in other two attacks.
This superior performance is still retained in the adversarial
scenario of only knowing the partial dataset. The recovery rate
of our attack still achieves 42.1% when 50% of documents are
unknown, while the recovery rates of others are only 3% and
18.2%. As seen, our attack based on refined leakage is more
robust, with the document volume information, our attack can
still recover more than 53% queries.

We also compare the effectiveness and efficiency of our
countermeasure with prior work. From the effectiveness per-
spective, the query recovery rate of prior arts and our attack
drops to 1%. In terms of efficiency, to achieve above security
strength, we only require to introduce 3.68× storage overhead
which is much smaller than 272× in Blackstone et al.’s OPQ
scheme [9].

II. RELATED WORK

A. Searchable Symmetric Encryption

Searchable symmetric encryption (SSE) is proposed to
address the problem of confidential queries over the en-
crypted database. Striking a good balance between security
and efficiency compared to complicated cryptographic tech-
niques, SSE has attracted surging interests from the research
community. From the basic keyword query [1], [22], more
advanced range query [23]–[27] and boolean query [3], [28],
to versatile domain specific query types [15], [29]–[33], many
variants have been proposed over the years. There are also a
list of studies focusing on dynamic constructions [34], [35],
performance improvement [6], [36] and secure defense (e.g.,
padding [12], volume-hiding multi-maps [13], and hardware-
assisted approaches [37]–[39]). This paper considers the basic
yet essential case of keyword search, through which we aim
to reveal the fundamental security limits of SSE.

B. LAAs Against Searchable Encryption

Inference attacks also known as passive LAAs have gradu-
ally been studied to evaluate the security strength of searchable
encryption schemes under practical adversarial assumptions.
There are two lines of attacks categorized by query functions,
i.e., keyword search and range search.

Our work is closely related to LAAs against SSE schemes
for keyword search. It is first studied by Islam et al. [7] that the
access pattern, given some prior knowledge, can be utilized to
infer the queried keywords and infringe privacy. Later, Cash
et al. [8] show an improved attack (i.e., count attack) by using
the query co-occurrence count and query response length.
Blackstone et al. [9] propose a graph-based attack which views
the keyword and document as vertexes and their connection
as edge. It exploits document sizes and correlations within the
graph to recover the query.

Most recently, Oya et al. point out that, beyond access
pattern, SSE also leaks search pattern leakage which can
further be leveraged to realize query recovery [40]. However,
the effectiveness of this attack relies on a strong assumption of
fully knowing the query frequency in the real world. Besides,

the accuracy of their attack based on maximum likelihood
estimation is also probabilistic, and it depends on the query
distribution significantly.

Some other LAAs [41]–[49] target on schemes for range
queries [25], [32], [50], [51]. They exploit the information of
result volumes, order relations of the underlying data values,
and have been demonstrated effectively in the applications
of searching numeric data. However, it is unclear whether
these attack techniques from range search can be extended
to keyword search in document retrieval.

In addition, active LAAs like file-injection attacks [9], [52],
[53] exploit the leakage in dynamic operations to compromise
the security of SSE. This paper focuses on the static case and
studies a full characterization of the leakage, explaining why
the characteristics fundamentally lead to privacy breach.

C. Countermeasures Against LAAs
A few countermeasures have been proposed to thwart the

attacks. The first suggestion is database padding [8], [12],
which aims to eliminate the unique query result size by
inserting bogus entries to the database. However, existing
padding strategies only focus on obfuscating the volume
leakage, a single characteristic in the leakage, leaving large
room for possible attacks that exploit other characteristics.
The effectiveness of the protection on other leakage such
as the query co-occurrence counts is not known. Although
ORAM(-like) constructions [15], [21], [54]–[59] are applicable
to reduce query leakage, high computation and communication
overhead will be introduced. For example, even with the state-
of-the-art Path-ORAM, it incurs O(log n) to O(log2 n) cost
when applied to SSE.

Kamara and Moataz recently propose a new data struc-
ture called volume-hiding encrypted multi-maps [13]. Their
design ensures that the actual volume associated with a sin-
gle keyword cannot be extracted from the leakage by any
computationally-bounded adversaries. Meanwhile, the storage
overhead is reduced compared to the worse-case padding.
Other variants of volume-hiding multi-map schemes adapt
differential privacy to design countermeasures [14]. Patel et
al. introduce the notion of differential privacy volume-hiding
for Multi-Maps and propose to hide the volume by perturbing
it according to a certain distribution [14]. However, as they
claimed, such mitigation is sufficient only for the multi-maps
whose volumes do not differ significantly.

To some extent, the above efforts alleviate the risk of volume
leakage. Nevertheless, as mentioned before, when applied to
SSE, these countermeasures require treating the document as
the value to remain the response-hiding property. Under this
setting, multiplicities for documents will lead to significant
storage overhead again. While if this countermeasure only
focuses on safeguarding the index information and ignores
that of document level, one can still build aforementioned
leakage profiles from documents (e.g., co-occurrence pattern,
individual document volume pattern), thus the response-hiding
property may be broken and the scheme becomes volume-
hiding only. Prior LAAs against SSE have proved that only
hiding volume in SSE is not sufficient [12], because the adver-
sary can infer query contents via co-occurrence pattern. The

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 4

TABLE I
NOTATIONS

MD the inverted index matrix of plaintext database
ME the inverted index matrix of encrypted database
wi the i-th keyword in the keyword space
qj the j-th query in the query space
rdi the identifier of the i-th plaintext document
idj the identifier of the j-th encrypted document
W the keyword space
Q the query space
|S| the cardinal number of the set S
#Di the size of the document Di

‖M[i, :]‖ the row norm of the i-th row in matrix M
M[i, j] the i, j-entry of matrix M
M[i, :] the i-th row of the matrix M
M[:, j] the j-th column of the matrix M
〈x, y〉 the inner-product of vector x and y

above observation is also confirmed in our attacks and eval-
uation later. Our later experiment evaluations in Section VII
will also validate above argument by attacking a recent SSE
construction built with response-hiding Multi-maps.

Another recent work proposed by Chen et al. [60] relies
on the generalized version of differential privacy, named
d-differential privacy access pattern. The design obfuscates
the access pattern such that queries within at most certain
distance can hardly be differentiated with the prior knowledge.
However, they leverage a fixed probability to obfuscate the
access pattern, and thus some leakage like result length can
still be inferred. In addition, to mitigate the accuracy loss,
prohibitively expensive storage cost is introduced, roughly
10× ∼ 15× larger to the original database. There are also
some work focusing on safeguarding the statistical query in
encrypted databases [61], [62], their solutions also rely on
differential private techniques.

To tackle the above security and efficiency issues, we
propose a notion called ε-indistinguishablity to build our
security framework. Compared to prior works, we find that
pursuing both privacy and accuracy via this notion introduces
less storage overhead and can be demonstrated to be effective
against powerful LAAs.

III. PRELIMINARIES

A. SSE and Notations

Let W = {w1, . . . , wm} be a set of m keywords in
lexicographic order. A database DB = {D1, . . . ,Dn} is a
collection of n documents consisting keywords in W . Let rdi
be the identifier of the document Di and Wi = {wi1 , . . . , wik}
represents the set of all keywords that appear in Di. We denote
the set of identifiers that appear in DB as D = {rdi, . . . , rdn},
and denote the set of documents containing the keyword w as
DB(w) = {rdi1 , . . . , rdij}. We use |Wi| to denote the cardinal
number of Wi and #Di to denote the size of Di. With these
notations, we introduce a typical SSE scheme as follows.
Searchable Symmetric Encryption. An SSE scheme [1],
[6] allows keyword search over the encrypted documents
with sublinear time complexity. It consists of three protocols
between the client and server. Setup is a probabilistic protocol
that takes the database DB as input and outputs an encrypted
database EDB with a secret key K. TokGen is a protocol that

generates a search token tw for a query q with the secret key
K, where the object of the query is keyword w. Search is a
deterministic protocol which performs search over EDB via
tw, and returns a set of matched documents as response. In
the Search protocol, the server first gets the identifier (i.e., id)
of the encrypted documents which contain w and then fetches
the corresponding encrypted documents for the client.

The classic security model of SSE permits certain leakage
from Setup and Search algorithms, which is formalized by
leakage functions. Specifically, Lsetup outputs the total size
(DB,w) =

∑
w∈W |DB(w)| of DB. During search, Lsearch

outputs the access pattern LSearch(EDB, tw) = {idi : idi ∈
DB(w)}. Here idi denotes the identifier of the i-th encrypted
document in EDB. From the output of LSearch, the size of the
result set |DB(w)| is also exposed. For ease of presentation,
we use q to denote the search token tw.

In this paper, our analysis focuses on the widely-used index-
based SSE schemes for document databases [1], because it
leaks the minimally necessary leakage of SSE as recognized
in [8]. We would like to clarify that, in SSE, the server only
knows the encrypted identifiers of the encrypted documents
(i.e., id1, . . . , idn) and does not know the mappings to the
identifiers (i.e., rd1, . . . , rdn) of plaintext documents. In the
rest of this work, we call rdi as plaintext identifier and idi as
encrypted identifier.

B. LAA Assumptions and Definition

Following the assumption of LAA [8], we define the capa-
bility and goal of the adversary below.
Adversary: we consider a passive and persistent adversary.
He can be the server or someone who can continually monitor
and capture the communication records between the client and
server. He can also obtain the size of the encrypted database
via leakage LSetup and the client-server interaction records
through LSearch.
Knowledge: like prior attacks [7]–[9], we assume that the
adversary is able to get the full or partial knowledge of the
plaintext database DB. This setting is reasonable, because the
the data owner may build the encrypted database, and allow
authorized users to search through it. LAA can be launched
there to track/monitor users’ queries.
Target: the goal of the adversary is to recover the observed
queries (search tokens), i.e., finding the underlying keyword
corresponding to each token, and to further recover the
documents. We assume that the document identifiers have
been permuted before encryption, and the server returns the
permuted id to the client [8].

Based on above descriptions, an LAA, particularly query
recovery attack, can be formalized as follows:

Definition 1. Let DB be a collection of n documents consist-
ing of the keywords inW = {w1, . . . , wn}, Let EDB be DB’s
encrypted copy and Q = {q1, . . . , qn} are observed queries.
A leakage-abuse attack takes the query, query result and the
background knowledge on DB as input and outputs a set of
corresponding pairs {(qi, wi)}, where wj is the content of
query qi.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 5

DB rd! rd" rd# rd$ rd%
𝑤! 0 1 0 0 1
𝑤" 1 0 1 0 1
𝑤# 1 0 1 0 0
𝑤$ 0 1 1 1 1

EDB id! id" id# id$ id%
q! 0 1 0 1 0
q" 1 1 1 0 1
q# 0 0 1 0 1
𝑞$ 0 1 1 1 0

Plaintext Database DB Encrypted Database EDB

Fig. 1. Database and logic relation matrix

IV. LINEAR ALGEBRAIC MODELLING OF SSE

A. Algebraic Link Between Databases

Given a database DB defined before, we can derive an
index matrix MD ∈ {0, 1}m×n, where the (i, j)-th entry
MD[i, j] = 1 if the document rdj contains the keyword wi.
We define the i-th row of MD, MD[i], as the index vector
of wi. Feeding the DB to an SSE scheme for setup, we can
obtain an encrypted index matrix ME ∈ {0, 1}m×n, the entries
of which indicate the occurrence of pseudo-random document
identifiers in query responses. Accordingly, we have the notion
of encrypted index vector ME[i] for qi, which records the
query occurrences in encrypted documents. All rows/columns
of MD and ME are associated with corresponding labels,
i.e., keywords/queries or identifiers. Combining with Figure 1,
following we give an example of above formalization.
Example. Let

MD =

0 1 0 0 1
1 0 1 0 1
1 0 1 0 0
0 1 1 1 1

 ,ME =

0 1 0 1 0
1 1 1 0 1
0 0 1 0 1
0 1 1 1 0

be the index matrices for DB and EDB, where DB
is built on the keywords (w1, w2, w3, w4) and identi-
fiers (rd1, rd2, rd3, rd4, rd5), EDB is built on the query
tokens (q1, q2, q3, q4) and encrypted identifiers (id1, id2,
id3, id4, id5). In this example, the underlying mappings
of the keyword-token and identifier-encrypted identifier
are (w1, q3), (w2, q4), (w3, q1), (w4, q2) and (rd1, id4),
(rd2, id5),(rd3, id2),(rd4, id1), (rd5, id3). This mapping can
be represented as the transition matrices

Tσ =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,Tπ =

0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

It is obvious that the equation ME = Tσ ∗MD ∗ Tπ holds.

Because there is a one-to-one correspondence between
keywords and queries, and between documents and encrypted
documents, the two index matrices can be transformed to each
other by permuting their columns and rows. Formally, there
exist two elementary transition matrices Tπ and Tσ that per-
form column and row switching operations, respectively. The
two index matrices can be linked by the linear transformation:

ME = TσMDTπ. (1)

Note that, it is easy to verify TσT>σ = I (T>σ is the transpose
of Tσ and I is the identity matrix), and T>σ = T−1σ (the inverse
of Tσ). The same properties also hold for Tπ .

According to the leakage profiles of SSE, each query will
leak one row of ME to the adversary, and he will eventually
obtain the entire ME when all distinct keywords have been
queried. This leads to a natural interpretation of the linear
transformation defined above. That is, once a knowledgeable
adversary manages to recover the transition matrices, he can
break the security guarantee of SSE outright by learning which
keyword each query maps to. Let us consider an adversary
knowing the plaintext index matrix MD (i.e., one with the full
knowledge of the plaintext database [17]). With both index
matrices in hand, we show how to compute the transition
matrices as follows.

We first derive two co-occurrence matrices as Cw = MDM>D
and Cq = MEM>E . Substituting the terms and following the
properties of elementary transition matrices, we get

Cq = (TσMDTπ)(TσMDTπ)> = TσCwT−1σ . (2)

The last equation tells us that Cw and Cq are similar and
hence they have identical eigenvalues. Let V be the diagonal
matrix composed of the eigenvalues [63], [64] in ascending
order. Since the co-occurrence matrices are symmetric and
diagonalizable, we can apply eigendecomposition to them and
obtain Cw = ΛwVΛ−1w and Cq = ΛqVΛ−1q , where Λw,Λq are
respective eigenvector matrices. Substituting the terms in the
above equation, we have

Cq = TσCwT−1σ = TσΛwVΛ−1w T−1σ = (TσΛw)V(TσΛw)−1.

Comparing the equation with the eigendecomposition of Cq ,
we have TσΛw = sgn · Λq and a valid solution Tσ = sgn ·
ΛqΛ

−1
w . Here sgn is a sign matrix, where the diagonal element

of sgn is ’1’ or ’-1’ and others are 0. That is, the eigenvectors
of the corresponding query and keyword are exactly the same
except their sign. An analytical solution to Tπ can be similarly
derived. The adversary thus is able to obtain the exact mapping
between keywords (resp. real document identifiers) and queries
(resp. pseudo-random document identifiers). Although above
approach provides us a feasible way to recover the query, its
computation cost can be up to O(n3).
Remark. Despite its theoretical interest, an attack based on the
above analysis is of limited practicality for two reasons. The
obvious one is that the assumption of having full knowledge of
the plaintext index matrix may be strong in practice. The other
subtle reason lies in the uniqueness of the solution. If there is
one and only one solution, then the adversary can recover all
queries with certainty. This happens when all eigenvalues are
distinct. Otherwise, he will not be able to determine if any of
the queries matches the correct keyword. For example, when
multiple rows in the plaintext index matrix are identical, there
will be multiple possible values of Tσ , then the adversary
cannot distinguish the true mappings of the keyword-query
pair. This drives us to consider how to make use of the
algebraic connection from a more practical perspective.

B. Invariant Characteristics

Our key observation is that a diversity of row-wise (and
column-wise) characteristics of MD and ME will be preserved
under the linear transformation in Equation (1). The same

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 6

holds for Cw and Cq under the transformation in Equation (2).
One simple example is the number of 1’s in a row in the index
matrices, and it is interpreted as the query result length [17],
[65]. One example is the set of values of a row in the co-
occurrence matrices, and the basic forms of which are also
used in previous attacks [7], [17].

Such invariant characteristics can be used to link the rows
(and columns) between the pairing matrices and as a result,
between queries and keywords. From a high level point of
view, we can unambiguously link a query to a keyword if
they have the same value of certain invariant characteristic and
that value is unique among all keywords/queries. Intuitively,
we look for characteristics that capture not only the limited
information about a keyword, e.g., query volume, but also
other rich information, e.g., its correlation with other keywords
in the index like co-occurrence patterns. As will be shown
later, we find more refined leakage computed from the index
matrix and volume. Combining multiple characteristics derived
from different matrices can usually produce more efficient
attacks, especially in the case of partial adversarial knowledge.

V. REFINED LEAKAGE AND NEW LAA
A. Refined Leakage Profiles

In essence, our refined leakage profiles generally describe
a set of invariant characteristics of a database before and
after linear transformation of a standard SSE with no padding.
Recall that the volume of the plaintext and encrypted document
stays the same, and the plaintext and encrypted index matrices
are proven to be congruent. Therefore, the invariant character-
istics during the transformation are the key to understand the
information that exactly being leaked by the access pattern
and volume pattern.

1) Leakage Profiles Connected to the Query: The formal
notion of leakage profiles about the query is given as follows:

Query result pattern reports the search results for the
submitted queries. Let ME[i, j] = 1 denote the event that the
result set of query qi contains the encrypted document idj .
For q1, . . . , qm, the query result pattern is defined as

Kqrp(EDB, q1, . . . , qm) = Mq = ME ∈ {0, 1}m×n

Query response volume pattern reports the size of the
result for the submitted query. Let vi =

∑
ME[i,j]=1 #Dj

denote the result volume of qi. For q1, . . . , qm, the query
volume pattern is defined as

Kqvp(ME, q1, · · · , qm) = Vq = [v1, . . . , vm] ∈ Rm

Query co-occurrence pattern reports the number of doc-
uments returned by two queries (may be the same one). Let
C[i, j] = 〈ME[i, :]),ME[j, :]〉 denote the number of encrypted
documents returned by qi and qj . For q1, . . . , qm, the query
co-occurrence pattern is defined as

Kqcp(EDB, q1, · · · , qm) = Cq = ME ·M>E ∈ Zm×m

Query norm pattern reports the norm of the rows in the
query co-occurrence matrix. Let Ni

q =
√
〈Cq[i, :],Cq[i, :]〉

denote the i-th row norm of the co-occurrence matrix C. For
queries q1, . . . , qm, the query norm pattern is defined as

Kqnp(Cq, q1, · · · , qm) = Nq = {N1
q, . . . ,N

m
q } ∈ Rm

2) Leakage Profiles Connected to the Document: Likewise,
similar leakage profiles can be defined from the document
perspective.

Document occurrence pattern reports the keyword asso-
ciated with a document. Let Me[i, j] = 1 indicate that the
document idi is returned by qj . For documents with identifiers
id1, . . . , idn, the document occurrence pattern is defined as

Kdop(EDB, id1, . . . , idn) = Me = M>E ∈ {0, 1}n×m

Document volume pattern reports the size of a document.
For the observed documents with identifiers id1, . . . , idn, the
document volume pattern is defined as

Kdvp(EDB, id1, . . . , idn) = Ve = {#D1, . . . ,#Dn} ∈ Rn

Document co-occurrence pattern reports the number of
queries associated with two documents. Let Ce[i, j] be the
number of documents appearing in both idi and idj . For
id1,. . . ,idn, the document co-occurrence pattern is defined as

Kdcp(EDB, id1, · · · , idn) = Ce = M>E ×ME ∈ Zn×n

Document co-occurrence norm pattern reports the norm
of rows in the document co-occurrence matrix. Let Ni

e =
‖Ce[i, :]‖ denote the i-th row norm of Ce. For id1, . . . , idn,
the document co-occurrence norm pattern is defined as

Kdnp(C, id1, · · · , idn) = Ne = {N1
e, . . . ,N

n
e } ∈ Rn

Remark. Our leakage profiles capture more precise informa-
tion extracted from the query compared to the existing coarse
ones. They identify the distinctiveness of each query, which is
the key to an efficient LAA. Because the query and keyword
co-occurrence matrices are congruent, the leakages extracted
from them are exactly the same except the position changes.

B. LAA with Refined Leakage

According to the leakage profiles defined above, following
we present an LAA against SSE. From a high level point of
view, the adversary aims to link the derived leakage to each
query and keyword, respectively. Here we consider a practical
scenario where only a subset of documents is disclosed to
the adversary. Under this setting, the effectiveness of prior
attacks [7], [8] always downgrades because of a gap between
the prior knowledge and the observed one, specifically in
query result pattern and query co-occurrence pattern. He has to
randomly guess among the possible candidates. In our LAA,
we find that partial documents knowledge is of limited impacts
on the co-relationship between known documents. Therefore,
we can utilize them to select out the encrypted identifiers
corresponded to the disclosed document index first, and then
use the leakage derived from these mapped plaintext and
encrypted documents to recover the query.

Like prior work [9], we assume that the adversary A
waits until search results for all queries in the database are
revealed. This is reasonable as A can continuously monitor the
transcripts in the protocol of SSE. Under this setting, A knows
partial index matrix MD ∈ {0, 1}m×s (missing some columns
in the index matrix) and encrypted index matrix Mm×n

E . If
s = n, the attack is performed under the setting of full prior

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 7

Let MD ∈ {0, 1}m×s be the index matrix of known documents {rd}si=1 on keyword space W = {wi}mi=1 and ME ∈
{0, 1}m×n be the index derived from the query Q = {qi}mi=1 and encrypted documents {id}ni=1. Let Vd = {v1d, . . . , vsd}
and Ve = {v1e , . . . , vne } be the volume of the plaintext and encrypted documents. The goal is to output the mapping from
keyword w to query q.
Identifier Recovery :

1: Initialize a map I for (idi, rdj) having unique volume
2: Compute Cd ← Kdcp(M>D, rd1, . . . , rdn)
3: Compute Ce ← Kdcp(M>E , id1, . . . , idn)
4: while size of I is increasing do
5: for each unknown identifier idi ∈ {id}ni=1/I do
6: Set candidate set Si = {rdj : Ce[i, i] = Cd[j, j]}
7: for rdj ∈ Si do
8: for known identifiers (idi∗, rdj∗) ∈ I do
9: if Ce[i, i

∗] 6= Cd[j, j
∗] or {vie 6= vjd} then

10: Remove rdj from Si
11: end if
12: end for
13: end for
14: Add (idi, rdj) to I if |Si| = 1
15: end for
16: end while
17: for each unknown identifier idi /∈ I do
18: Set Ti = {idj : Si = Sj}
19: Add (Ti,Si) to J if |Ti| = |Si|
20: end for
21: return recovered identifier pairs I and possible pairs J .

Query Recovery :

1: Run (I,J)← Identity Recovery(MD,ME)
2: Build index matrices M+

E and M+
D using I and J

3: Compute C+
w ← Kqcp(M+

D, w1, . . . , wn)
4: Compute C+

q ← Kqcp(M+
E , q1, . . . , qn)

5: Compute N+
w ← Kqnp(C+

w , w1, . . . , wm)
6: Compute N+

q ← Kqnp(C+
q , q1, . . . , qm)

7: Initialize a map U for (qi, wj) having unique query norm
8: while size of U is increasing do
9: for each query qi /∈ U and (ids, rdt) ∈ I do

10: Si = {wj : Nq[i] = Nw[j]∧M+
E [i, s] = M+

D[j, t]}
11: for wj ∈ Si do
12: for (qi∗ , wj∗) ∈ U do
13: if C+

q (i, i∗) 6= C+
w [j, j∗] then

14: Remove wj from Si
15: end if
16: end for
17: end for
18: Add (qi, wj) to U if |Si| = 1
19: end for
20: end while
21: return U

Fig. 2. Leakage Abuse Attack with Refined Leakage

knowledge. Here we assume that MD and ME have the same
row dimension, because the keyword space and the query
space are known. If a certain keyword does not appear in
the known documents, we fill such a row with ’0’. Also, the
volume Vd = {v1d, . . . , vsd} and Ve = {v1e , . . . , vne } of plaintext
and encrypted documents are known to A.
Attack Construction. As described in Fig. 2, our at-
tack consists of two algorithms, Identifier Recovery and
Query Recovery, where Identifier Recovery attempts to
recover the co-relation between the plaintext and encrypted
documents/identifiers and Query Recovery attempts to re-
cover the query. The details are given as follows.

In Identifier Recovery, for an identifier idi, A first ini-
tializes a known identifier map I with plaintext and encrypted
documents (idi, rdj) having a unique volume, and builds the
candidate set as Si = {rdj : vie = vjd} according to their
volume information. After that, A computes the document co-
occurrence matrices (C∗d,C

∗
e) with M>D and M>E and uses them

as the reference to tick out the unmatched items in the candi-
date set for other identifiers. Specifically, for a known mapping
idi∗ and rdj∗ , A removes j from Si if C∗e[i, i

∗] 6= C∗d[j, j
∗].

When there is only one element remaining in Si, idi and rdj
are matched identifiers. A adds (idi, rdj) into I. When all
the unique mappings are determined, for idi /∈ I, A sets
Ti = {idj : Si = Sj} and checks if |Ti| = |Si|. If yes,
he outputs such documents into a map J . Doing this can
find an additional plaintext document set and an encrypted
document set that exactly match, even though the correlations

of individual elements in the two sets are unknown. Note that,
if s = n, we can directly obtain J , which is the set of rest
identifiers in the databases.

In Query Recovery, we utilize the above recovered iden-
tifier maps I and J to recover encrypted queries. Let M+

E

and M+
D be the index matrices built on the documents in

I and J . It is clear that the index matrix built over the
document set consisting of I and J have the same dimension.
Similar to Identifier Recovery, A first initializes a map
U with (qi, wj) having the unique query norm and determines
the candidate set for uncovered queries according to the
leakages (i.e., query norm pattern, volume pattern and co-
occurrence pattern) extracted from the index matrices M+

E ,
M+

D. Afterwards, A gradually removes unmatched candidates
from the candidate set by checking the leakage. Once there is
only one candidate remained, it indicates that it is the content
of the query. A repeats this operation until the recovery set U
stops increasing.

Notably, in our attack construction, we leverage the individ-
ual document volume to link encrypted and plaintext identifiers
and then uses their linkages to help recover the query. While
for the volumetric attack in [9], it directly recovers the query
by matching the query and keyword with the same unique
response volume (i.e., the total size of returned documents). To
highlight the importance of the recover encrypted identifiers,
following we illustrate how to use identifiers to narrow down
the candidates of queries, thus advancing attack performances.
Example: Our first example is to explain how to use identifier

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 8

to further narrow down the candidate set. For example: let
q1, q2 be two queries which have the same candidate set
{w1, w2}, let id1 be the result of query q1 and id2 be the query
of q2, assume that w1 only occurs in the document rd1 and w2

only occurs in the document rd2. Now, if the adversary knows
id1 and id2 are the encrypted copies of rd1 = {w1, w1, w1}
and w2 = {w2, w2} (because the document volumes are dif-
ferent), respectively, then he can determine that the underlying
keywords of q1, q2 are w1, w2, respectively.

The second example provides a straightforward way to use
identifiers can recover the query. Assume that the adversary
knows rd1, rd2, rd3 are corresponding plaintext identifiers for
encrypted documents id1, id2, id3. By observing the query
results, if he finds that {rd1}, {rd2}, {rd3}, {rd1, rd2},
{rd1, rd3}, . . . , {rd1, rd2, rd3} are all unique in the result
space, then he can recover these 8 queries. Ideally, one can
use log2 n documents to recover n queries if all query have
different query results. Similar results can also be found in the
work of file-injection attack [52].

C. Advantages Compared to Prior LAAs

As seen in Figure 2, our attack leverages several refined
leakages from access pattern which have not been mentioned
in prior arts, e.g., document co-occurrence pattern, document
volume pattern, etc. Following we specify the advantage of
our attack when compared to prior work.

Our proposed LAA is more robust compared to prior arts.
First, in the setting of partially known knowledge, prior
works [9] redefine the candidate set by introducing an error
term derived from the missing index information. For example,
suppose A knows 70% of the original dataset and observes
a query with response volume 10, then he will select the
keyword with response volume around 7 (i.e., [5, 9]) as the
candidates, which clearly leads to accuracy loss in query re-
covery. Different from these works, we exploit the new leakage
profiles to find a set of encrypted documents that exactly match
a target set of plaintext documents and then launch the attack
over such documents to recover queries. During the whole
procedure, our attack performs equality matching between
leakage and prior knowledge without information loss.

Second, our LAA is still effective against those countermea-
sures that direclty apply volume-padding [17] or response-
hiding encrypted multi-map [9] to the context of document
search, without proper defence on individual documents. Here
we take a typical padding countermeasure in [17] as an
example, which adds randomly generated bogus documents
into the database to obfuscate the query occurrence pattern
and query result length. However, as mentioned before, our
attack can match the plaintext and encrypted documents, and
thus can exclude those bogus documents. Another important
reason contributing to the effectiveness of our attack is that
it exploits the volume leakage of the individual document,
which is not protected in most countermeasures. More details
are evidenced in our evaluations later.

VI. OUR PROPOSED COUNTERMEASURE

A. Design Intuition

Our analysis and attack show that for a standard SSE
scheme that returns exact results or without proper counter-
measures on both index and document levels, an adversary
with prior knowledge of the database may always break its
confidentiality by LAAs. A general and effective countermea-
sure needs to achieve: 1) it is imposed on the database before
encryption; and 2) it must obfuscate the unique invariant
characteristics intrinsically preserved by linear transformations
to break the links between the prior knowledge and the
leakage.

In light of the above observation, we find that the problem of
defending LAAs can be essentially reduced to protect keyword
against query result publishing. The similar problem has been
well studied in the area of LDP [20], which ensures a server
is unable to learn much about individual data when answering
queries over a dataset aggregated from multiple users. This
is achieved by requiring each user to perturb her data before
submission to server. In our case, each row of the index matrix
is analogous to a user’s data. To this end, we give a new
security notion by introducing an adjustable balance parameter
ε between privacy and efficiency.

With the notion, the next task is how to implement it.
By properly perturbing the index matrix, we may achieve
a level of privacy guarantee similar to LDP. However, note
that, directly applying an LDP-perturbation algorithm may
lead to accuracy loss. That is, some elements in the index
matrix may be flipped from ’1’ to ’0’ due to perturbation.
Fortunately, the link between the plaintext and encrypted
identifiers is usually hidden after encryption, which helps us
achieve the desired security without lossy queries. Specif-
ically, our countermeasure only utilizes existing documents
and identifiers to perform perturbations, without introducing
extra bogus documents to the database. This is different from
many prior arts that suggest injection of bogus documents
with extra storage overhead [8], [12]. Meanwhile, to hide the
document volume, we still perform padding on documents for
a comprehensive countermeasure.

B. Our Construction

Now we give the formal security notion and show how to
design a countermeasure that can achieve the above goals.
As mentioned, the proposed countermeasure is a separate
algorithm to be applied on the database before the encryption
of SSE. We term this algorithm as Encode. As the rest of
functions are standard in SSE and will not be modified.

To capture this adversary’s capability, we introduce a com-
plementary security notion for SSE, called ε-indistinguishable
leakage, which is proposed for ensuring pattern-hiding. Here
we use the term pattern-hiding in order to differentiate it with
the prior volume-hiding and multi-map based response-hiding
notions. In formally, pattern-hiding focuses on protect leakages
(e.g., index and document level leakage) that can be exploited
to launch LAAs on SSE schemes that supports document
search. Afterwards, we will conduct theoretical analysis to

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 9

prove that our countermeasures is ε-indistinguishable secure
against a passive adversary with database prior knowledge.

Following the same way in Section V, we use a general
term Kf to denote the leakage associated with leakage profile
f (includes but no limited our definition in Section V-A), and
the definition ε-indistinguishability is formalized as follows:

Definition 2 (ε-Indistinguishable Secure). Let Π be an SSE
scheme over database DB and keyword space W , let EDB
be the encrypted database and Q be the query space, we say
that an SSE scheme is ε-indistinguishable secure if for any
wi, wj ∈ W, q ∈ Q,

e−ε ≤ Pr[Kf (DB, wi) ' Kf (EDB, q)]

Pr[Kf (DB, wj) ' Kf (EDB, q)]
≤ eε

holds, where Kf (DB, w) ' Kf (EBD, q) means the derived
characteristics of w and q from function Kf are equal.

Definition 2 guarantees that for any two observed queries
and the related responses, the leakage extracted from the
observation is sufficiently indistinguishable. In other words,
inferring the content of the original DB from the observed
leakage profiles becomes difficult. The above definition bor-
rows the principle of LDP, which is adapted to the context of
SSE. We term it ε-indistinguishable secure since it provides the
constraint atop of SSE that the leakage are indistinguishable
and can no longer be available in query inference.

1) Customized Perturbation on Search Index: To realize
a countermeasure with non-lossy, the operation flipping “1”
to “0’ should be fully denied in the binary perturbation
over index matrix MD. Note that the published data is the
encrypted index, and the specific relationship between the
plaintext identifier and its encrypted copy is unknown without
further exploration. In other words, besides perturbation, a
permutation (although the same) has been run over each index
vector, and it is the key to design a non-lossy countermeasure.
Additionally, since the result of query recovery task against
textual data is either black or white, a specific index vector
can only be recovered if the adversary exactly knows the i-th
bit in the index vector comes from perturbation or permutation.
Our empirical result shows that recovering such permutation is
not trivial when noises are inserted to obfuscate the plaintext
index.

From the above observation, we propose a perturbation
by only adding “1” in the index matrix MD. Note that
the adversary cannot perform equality matching between the
access pattern and prior knowledge, because of the inherent
identifier permutation in SSE. Hence, the adversary should
mine the knowledge for attack from the co-occurrence matrix,
as analyzed in our attacks. It tells us that our perturbations
algorithm should obfuscate this co-occurrence information as
much as possible. Accordingly, we give a construction of the
Encode algorithm. Before that, we review Definition 3 which
will be used later.

Definition 3. Let x1, x2 be two vectors in the set X ⊂ {0, 1}n,
the distance of x1 and x2 is defined as dist(x1, x2) = |x1 ⊕
x2|, where ⊕ denotes the XOR operation on binary vectors.
Accordingly, the distance between the element and the set is

Input: x ∈ X ,X ⊂ {0, 1}n
Output: y ∈ {0, 1}n

1: d← max{dist(x,X)} // distance parameter
2: `← maxx∈X |x| // | · | denotes the hamming weight
3: len← |x| // hamming weight of vector x
4: (x(1), . . . , x(n))← x
5: ρ← (`− len)/(n− len) // perturbation probability
6: for 1 ≤ i ≤ n do
7: set y(i) ← 1 with probability ρ if x(i) 6= 1
8: end for
9: if dist(y,X) ≤ d or |y| ≥ ` then

10: y ← (y(1), . . . , y(n))
11: else
12: repeat line 4 to line 9
13: end if
14: Return y

Fig. 3. Our Binary Perturbation Algorithm

defined as dist(x,X) = maxx′∈X dist|x⊕x′|. A set X is said
to be d-controllable if for any x1, x2 ∈ X , dist(x1, x2) ≤ d
holds. We denote such a set as Xd.

Next, we describe our perturbation algorithm for database
encoding. As depicted in Fig. 3, it takes an n-bit vector x
and a set X as inputs and outputs an obfuscated vector y.
Specifically, d = max{dist(x,X)} is firstly set as the vector
distance controllable parameter, and ` = maxx∈X |x| is set as
the expected hamming weight of the obfuscated vector. Then
for the i-th bit in x, y(i) = 1 is executed with probability
ρ if x(i) 6= 1 and a vector y = (y(1), . . . , y(n)) is obtained,
where ρ = (` − |x|)/(n− |x|) and |x| denotes the hamming
weight of x. Here we have x < n, otherwise, there could be a
document containing all keywords in the keyword space. After
that, whether dist(y,X) ≤ d or |y| ≥ ` holds is checked. If
yes, y is returned as the obfuscated vector for x. Otherwise, the
above operations are repeated until a qualified y is obtained.

As seen, when applying the perturbation algorithm to SSE,
each returned vector y is required to meet the condition
dist(y,X) ≤ d. By adopting this constraint, therein distance
between the outputs will be closer, which helps to perturb
the similarity of index vectors (aka co-occurrence information
between different queries). Therefore, the risk of learning the
query content from analyzing the co-occurrence information
can be degraded. After that, we rebuild the encoded database
DB′ according to the obfuscated index vectors and encrypt it.
Note that, during this procedure (only perturbing the index, not
adding keywords to the documents), the individual document
volume will not be changed.

2) Document Volume Padding: SSE also leaks the volume
information of individual documents. To protect such infor-
mation, a straightforward approach is to pad them into the
same volume. However, the cost of such a padding strategy
is prohibitive. Inspired by Bost et al.’s cluster-based padding
approach [12], following we give a similar document padding
approach to balance efficiency and security. Specifically, the
client first groups the documents into several clusters such that
each cluster contains at least a certain number of documents.
According to the number of each cluster, the client inserts
keywords in the documents and makes the documents in
each cluster have the same volume. The padding strength

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 10

relies on a selected padding parameter, which determines the
number of clusters in the group. For example, for a given
document set DB = {D1, · · · , Dn}, the client first divides all
documents into t clusters C1, · · · , Ct. Then for each cluster,
it first computes vi = maxDj∈Ci #Dj as the final padding
size. Then for each document Dj ∈ Ci, it randomly selects
vi − #Dj keywords in the set Dj and appends them after
the file. After that, all documents in the same cluster keep the
same volume size, and the adversary cannot exploit the volume
information to identify each document. Note that, selecting
keywords from the document itself is to maintain the original
index information.
Advantages Compared to Prior Countermeasures. Tiered
random padding [8] was proposed by Cash et al. as an intuitive
defense against LAAs. Specifically, this method inserts a set
of bogus documents into the database such that the number
of documents returned by each query is padded to the nearest
multiple of an integer n. However, hiding query result length
by random padding may not be effective because such a
method cannot effectively hide the co-occurrence leakage
between documents. As shown later, our attack can identify the
relationship between the encrypted and plaintext documents
and remove the bogus documents from the database.

To further hide the co-occurrence leakage of the documents,
Blackstone et al. [9] introduced a response hiding multi-map
encryption scheme to directly store the documents rather than
document identifiers. They requires that the same document
associated with different keywords is encrypted into different
copies. In particular, the number of copies is equal to the
number of keywords in the document. As a result, the co-
occurrence count of every two queries will always be “0”, and
the adversary cannot directly exploit the co-occurrence pattern
to recover the query. Likewise, this countermeasure does not
work in our attack, because the volume of some documents
may be unique. Based on this leakage, some of the encrypted
documents can be identified and be further used in the attack.

Compare to the above work, our defense perturbs over
the searchable index in the existing document space, which
essentially obfuscates the query access pattern. Moreover, our
defense does not introduce much storage overhead to the
database, as no bogus document is added. Meanwhile, the
potential privacy risk from document volume is also taken into
account, thus document padding strategy is also provided.

C. Security and Overhead Analysis

The following theorem is given to show that our proposed
countermeasures can achieve above ε-indistinguishable secu-
rity in an average case, where the permutation among index
vector is assumed to be independent. For ease of presentation,
we term our countermeasure as pattern-hiding SSE (PH-SSE)
in this rest of this paper.

Theorem 1. Let Π be our PH-SSE scheme over database
DB and keyword space W , and d be the maximum hamming
distance of index vectors in database DB. For each wi ∈ W ,
assume that the hamming weight of its index vector locates
in the range [~, `], where ~, ` � n, and n is the number of

documents. Then Π is an ε-indistinguishable pattern-hiding
scheme, where ε = d ln (`/~).

Proof. Let x denote the index vector of plaintext database DB
and y denote the index vector of encoded database DB′. Let z
be the encrypted index vector derived from query result over
encrypted database. In this work we have that perturbation
algorithm takes x as input and returns encode index vector y as
a output. And SSE takes y as input and outputs the encrypted
index vector z. Therefore, we have

Pr[z|x] = Σy∈{0,1}nPr[z|y]Pr[y|x] (3)

where Pr[y|x] denotes the probability of outputting y condi-
tioned on x and Pr[z|y] denotes the probability of outputting
z conditioned on y. Let x(i), y(i), z(i) be the i-th bit of x, y, z,
respectively. According to Eq (3), we can get

Pr[z(i)|x(i)] = Σy(i)∈{0,1}Pr[z(i)|y(i)]Pr[y(i)|x(i)] (4)

Now, we define Pr[y(i)|x] as the probability of the i-th output
of y is y(i) conditioned on input x. Since y(i) only relies on
the i-th bit of input x and is independent with other bits. Thus
we have Pr[y(i)|x] = Pr[y(i)|x(i)] and thereby Pr[z(i)|x] =
Pr[z(i)|x(i)]. Clearly,

Pr[Z = z|X = x] =

n∏
i=1

Pr[z(i)|x] =

n∏
i=1

Pr[z(i)|x(i)]. (5)

Because encryption of identifiers in SSE can be regarded as a
permutation, we assume that the unchanged permutation prob-
ability for bit in index vector is 1/n without loss generality.
Combining with the algorithm in Fig. 3, we have that

Pr(z(i)|x(i)) =

|x|
n , if z(i) = 1 and x(i) = 1

n−|x|
n , if z(i) = 0 and x(i) = 1
|x|
n , if z(i) = 1 and x(i) = 0

n−|x|
n , if z(i) = 0 and x(i) = 0

(6)

Applying above result to Eq (5), it is clear that

Pr[z|x1]

Pr[z|x2]
=

Pr[z(1)|x(1)1] · · ·Pr[z(n)|x(i)n]

Pr[z(1)|x(1)2] · · ·Pr[z(n)|x(n)2]

≤ max

{
`

~
,

(n− ~)

(n− `)
,
~
`
,

(n− `)
(n− ~)

}d
≤ (`/~)

d

As seen, we obtain ε = d ln (`/~). Based on Proposition 2.2 of
post processing in [20], when we view leakage as the output
of leakage profiles derived from query result of Fig. 3, this
leakage also satisfies ε-indistinguishability. Thus, our PH-SSE
scheme is a d ln (`/~)-indistinguishable PH-SSE scheme. This
completes the proof.

At a high level, the access pattern observed by an ad-
versary is produced through a two-step process including a
perturbation on the original keyword-document index and an
SSE encryption scheme. The security of the PH-SSE scheme
relies on both the perturbation algorithm presented above and
the adopted SSE scheme, where the perturbation modifies
the occurrence of the keyword in the document and the SSE
permutes the keywords and identifiers (aka, row and column
in index matrix). Under the assumption that the identifier

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 11

permutations here are nearly randomly, then the combination
of these two approaches makes it possible and easy to achieve
that the returned identifier list of a certain query may be from
any truly one of the keywords in the databases.

VII. EXPERIMENT EVALUATION

Our goals are to evaluate the performance and advantages of
the proposed attack and countermeasure. Through the experi-
ments, we will demonstrate that: (1) our LAA is more powerful
than prior attacks and can even work well against existing
countermeasures; (2) the proposed countermeasure provides
comprehensive and effective protection of SSE against LAAs
and incurs less storage cost than prior countermeasures.

A. Experiment Setup

To demonstrate the effectiveness of our attack based on
refined leakage, we first report the statistics of the unique
leakage values computed from the defined leakage profiles.
After that, we compare our attack with two prior arts-count
attack [8] (the most known one) and SubGraph [9] (the
most recent one) in terms of attack efficiency and effective-
ness. To demonstrate the efficiency and effectiveness of our
countermeasure, we compare the security strength, i.e., query
recovery ratio against different LAAs, and storage overhead
(including index and documents) between the existing padding
countermeasure and our countermeasure. We perform evalu-
ations of our proposed attack and countermeasure over two
real-world datasets, i.e., Enron email dataset [66] and IMDB
movie comments dataset [67]. The Enron dataset consists of
emails on different topics and IMDB dataset displays the
movie comments. We clarify this to show that this inherent
nature determines that query in IMDB is more likely to have
similar co-occurrence counts. We implement the experiments
via Python and conduct them on a laptop with an Intel Core
i7, 3.2GHz processor and 16GB memory running MacOS.
Statistics of Leakages. In our attacks, an adversary with prior
knowledge of a database can obtain the mapping of search
tokens and keywords from the unique leakage characteristics.
To demonstrate the exploitability of the refined leakage, we
measure the sensitivity (frequency) of various leakages in
two datasets, which include query result length, document
volume, co-occurrence count, row norm, and eigenvector. High
sensitivity means the leakage profile can generate more unique
characteristics. For both datasets, we randomly choose 20,000
keywords from 50,000 documents.

The two plots on the left in Fig. 4 show the ratio of
the unique leakage values at two databases. As we can see,
33% documents in the Enron dataset and 29% documents in
the IMDB dataset have unique volumes, which validates the
existence of unique document volumes in real-world datasets.
Another observation is that document volume, row norm, and
eigenvectors have more unique values compared to the result
length and co-occurrence count. In the Enron email database,
the unique value with the highest ratio is eigenvector which is
nearly close to 100%. The ratio of the unique query norm is
99.9%. The ratio of the unique result length and co-occurrence
count is relatively low, i.e., 22% and 29%, respectively. The

two plots on the right in Fig. 4 show the maximum frequency
of different types of leakage values. If there is no unique value
in certain leakage, the adversary can only randomly guess
the keyword from a candidate set. These two plots tell us
document volume, query norm, and eigenvectors lead to lower
probability for the adversary to correctly guess the keywords
than result length and co-occurrence count.

B. Evaluation on LAAs
We evaluate our attack on different types of datasets pro-

cessed from two databases to demonstrate it effectiveness
(w.r.t. query recovery rate) and robustness (w.r.t. datasets with
various features). Moreover, we compare our attack with prior
arts to confirm its superior performance.
Attack Setup. We first summarize the methodologies and
settings of the attacks we evaluated in this work. Meanwhile,
we specify the difference of our attack and other LAAs
implementation.

(1) Count attack [8], [17] exploits the unique response
length and query co-occurrence pattern to map the query to the
keyword. Specifically, it first maps the keyword and query that
have the same yet unique response length, and then utilizes
these known keyword/query pairs to determine the unknown
pairs by checking their co-occurrence counts;

(2) SubGraph attack [9] views the database as a graph.
The vertexes represent documents or keywords, and the edge
can be created if the keyword appears in that document.
For the given graphs of plaintext and encrypted databases,
SubGraph attack leverages the observed knowledge (degree,
namely response length) to match the query and corresponding
keyword. Beyond count attack, they assume that the adversary
also learns the leakage related to document size, which can
help the adversary to identify the encrypted identifiers.

(3) Our attack uses the proposed leakages derived from orig-
inal index and performs equality test to output the correspond-
ing query and keyword pairs. More specifically, it first uses
the newly defined leakage from the document (e.g., document
co-occurrence pattern and individual volume patten) to recover
the relationship of plaintext and encrypted identifiers and then
leverages these identifiers to further check the correctness
of the candidates by observing the candidates’ occurrence.
Notably, recovering encrypted identifiers and narrowing down
the query candidates by observing the keyword occurrence also
play an important role in advancing the attack performance.
Compared to the Subgraph attack, using newly defined docu-
ment level leakage to recover the identifier is one of the core
contributions in our work.
Evaluation of LAA on Fully Known Dataset. We first
run our attack over two datasets, where the keyword space
consists of the randomly selected keywords in the database.
Figure 5(a) and 5(b) report the query recovery rate for the
dataset composed with various sizes of keyword spaces. From
the figures, we learn that the average recovery rate of our
attack on Enron dataset and IMDB dataset are about from
80% and 98%, respectively. The recovery rate of the attack
has a slight drop-off as keyword space increases, because
the portion of queries with lower frequencies and weak co-
relationship enlarges, particularly for those appear only once in

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 12

0.4

0.6

0.8

1

Enron DB: Uniqueness ratio

0.2

0.4

0.6

0.8

1

IMDB DB: Uniqueness ratio

0

100

200

300

400

500
Enron DB: Maximum frequency

0

100

200

300

400

500

600

IMDB DB: Maximum frequency

Length Document volume Co-occurrence count Query norm Eigvectors

Fig. 4. Statistics of refined leakages (invariant characteristics) derived from the leakage profiles

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of selected queries (×102)

Q
ue

ry
re

co
ve

ry
ra

te

Count attack
SubGraph attack
Our attack

(a) Attack v.s random queries in Enron

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of selected queries(×102)

Q
ue

ry
re

co
ve

ry
ra

te

Count attack
SubGraph attack
Our attack

(b) Attack v.s random queries in IMDB

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sorted keyword interval (×103)

Q
ue

ry
re

co
ve

ry
ra

te

Count attack
SubGraph attack
Our attack

(c) Attack v.s selected queries in Enron

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sorted keyword interval (×103)

Q
ue

ry
re

co
ve

ry
ra

te

Count attack
SubGraph attack
Our attack

(d) Attack v.s selected queries in IMDB

Fig. 5. The query recovery rate for known prior knowledge via prior attacks and our attack

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Partial knowledge in (%)

Q
ue

ry
re

co
ve

ry
ra

te

Count attack
SubGraph attack
Our attack

(a) Attack v.s random queries in Enron

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Partial knowledge in (%)

Q
ue

ry
re

co
ve

ry
ra

te

Count attack
SubGraph attack
Our attack

(b) Attack v.s random queries in IMDB

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of selected queries (×102)

Q
ue

ry
re

co
ve

ry
ra

te

RandPadding
OPQ
ChenDP

(c) Our attack v.s defense on Enron

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of selected queries (×102)
Q

ue
ry

re
co

ve
ry

ra
te

RandPadding
OPQ
ChenDP

(d) Our attack v.s defenses on IMDB

Fig. 6. The query recovery rate of different attacks over partially known datasets and the recovery rate of our attack over different SSE countermeasures. Here
RandPadding denotes the scheme proposed by Cash et al. [17], OPQ denotes the SSE scheme proposed by Blackstone et al. [9] which deploys response-hiding
multi-map encryption scheme to store documents, and ChenDP denotes the differential private access pattern scheme proposed by Chen et al. [60]

the database. In this case, the adversary may hardly distinguish
the candidates of the query by poor leakage. Based on prior
empirical results that the count attack cannot work with low-
occurrence queries [9], we suspect that the occurrences of the
keywords in database may affect the attack performance.

To validate our observation and further study the above
impact on the robustness and effectiveness of the attacks,
we conduct specialized experiments under more systematic
settings. Specifically, we sort all keywords in the database
according to their number of occurrences (frequencies) in
descending order, and then select the keywords in different
intervals from the keyword space, i.e., top 1000, top 1000
- top 2000, etc. After that, we run our attack and record
the results in Fig. 5(c) and 5(d), respectively. The attack
results clearly show that the recovery rate reduces smoothly
as the query occurrences decline. In the IMDB dataset, the
recovery rates of our attack stay high, achieving 98%, even
the keyword occurrence ranks after 10,000. Through analyzing
these unrecovered queries, we find that for each of these
uncovered queries, there is at least one query that has the
same access pattern with it, so it cannot be recovered at all.

In the above or next below experiments, we find that
SubGraph attack and count attack often have the similar query
recover rate. Because SubGraph attack relies heavily on the
distribution of documents. Namely, it only suits for the dataset
that has sufficient number of documents with distinctive sizes,
but our test dataset don’t fit this, in particular IMDB.
Evaluation of LAA on Partially Known Dataset. Our attack
performs well even in the face of the scenario that only a
partial dataset is disclosed to the adversaries. As seen in
Fig. 6(a) and 6(b), the recovery rate line falls smoothly when
the known-data rate decreases. Our attack still achieves 70.4%
recovery rate when 50% datasets loses in IMDB dataset.
Even in the Enron dataset with less-occurrence keywords,
the recovery rate reaches up to 41.5%. Such positive attack
results benefit from the adoption of the identifier recovery
procedure, it first finds the exact matching plaintext and
encrypted datasets from the existing ones and then launch the
attack in the same way as the fully known datasets setting.
Another observation in our work is that as the adversary
can recover the encrypted identifiers with a high probability,
current mitigations by adding random bogus indexes may be

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 13

20 40 60 80 100
0

0.5

1

1.5

2

Number of clusters

Q
ue

ry
re

co
ve

ry
ra

te
(1
0−

2
)

Count attack
Subgraph attack
Our attack

(a) Attacks on our hardening Enron

20 40 60 80 100
0

0.5

1

1.5

Number of clusters

Q
ue

ry
re

co
ve

ry
ra

te
(1
0−

2
)

Count attack
Subgraph attack
Our attack

(b) Attacks on our hardening IMDB

20 40 60 80 100

101

102

Number of clusters

St
or

ag
e

ov
er

he
ad

RandPadding
OPQ
Our scheme

(c) Storage overhead of Enron

20 40 60 80 100
0

10

20

30

40

50

Number of clusters

St
or

ag
e

ov
er

he
ad

RandPadding
OPQ
Our scheme

(d) Storage overhead of IMDB

Fig. 7. The evaluation of the performance on our our countermeasure from effectiveness and efficiency

invalid (shown next in evaluations on countermeasures).
Comparison with Prior Attacks. We here compare our attack
with count attack and SubGraph attack. We start by comparing
their recovery rates of fully knowledge known attacks. From
Fig 5(a), our attack can recover 18% − 30% more queries
than count attack and SubGraph attack in Enron dataset,and
this difference enlarges to 60% when we select IMDB as the
target database (as seen in Fig 5(b)). The first reason is that
our attack learns finer leakage from the database, which can
better distinguish different candidates. The other reason is the
using of identifier recovery function, which compensates the
information loss in co-occurrence counts.

Moreover, the combination of the two strategies contributes
to the robust execution of our attack against prior counter-
measures. Such improvement is more visible in Fig. 6(c) and
Fig. 6(d). Here we choose Cash et al’s random padding [17],
Chen et al.’s differentially-private access pattern [60] and
Blackstone et al’s OPQ scheme [9] as the targeted counter-
measures. From the figure, we can see that all these three
countermeasures work little against our attack, the recovery
rate is still up to 53% and more. These results demonstrate
that when capturing much finer leakage, padding only focuses
on hiding some certain type of leakage like result length or
access pattern is far from enough. This guides us to design
comprehensive countermeasures.

Regarding the partially known dataset scenario, the benefits
of employing identifier recovery also stretch. As seen in
Fig 6(b), when 50% datasets loses in IMDB dataset, our attack
preserves a high recovery rate at 70.4%, while the rate has
dropped to 0 in other attacks. Here the reason SubGraph attack
performs better than count attack in the Enron dataset is that it
exploits the leakage of document volume/size, which can help
recover identifiers and queries, and mitigates the downturn
of recovery rate. For attacks on dataset without unique result
length, the advancement of our attack is also obvious.

C. Evaluation on Countermeasure

In this section, we evaluate the performance of the counter-
measures on effectiveness and efficiency through a sequence
of experiments.
Countermeasure Setup. In this experiment, we make com-
parisons among Cash et al. [17], Blackstone et al. [9] and our
countermeasure, which are designed for SSE that is adopted
in document storage system. In Cash et al.’s scheme, they
consider a scheme (denoted as RandPadding) in which the

number of entries in each index row is padded up to the nearest
multiple of an integer n. In Blackstone et al.’s scheme (termed
OPQ), they encrypt the same documents into different copies
for different keyword-identifier pairs, so as to hiding the access
pattern. And for our countermeasures, we directly applying
Bost et al.’s clustering technique in [12] to effectively reduce
the storage and query communication cost [21], we regard it
as the baseline for comparison to demonstrate the security and
efficiency of our design. In addition, the hamming distance d
of two rows is set to be half of the maximum hamming weight
` of rows in the cluster.

All evaluations are conducted on the Enron and IMDB
dataset, and padding is implemented by adding random
identifiers into the database to protect the result lengths of
queries. Before we analyze our results, we review Bost et
al’s padding approaches. In this padding, all keywords are
sorted by frequencies, and grouped together into clusters. Then
the size of each query result in a cluster is padded to the
maximum size of query result in this cluster. Regarding the
parameter setting, we set the number of clusters from 10 to
100. Our countermeasure follows the same setting of Bost et
al’s padding, where keywords are grouped first and then the
encoding algorithm is run on each group. In particular, the
hamming weight of our binary perturbation algorithm (i.e.,
the expected result length after bit flipping) in Fig. 3 will be
set as the maximum size of query result in this cluster.
Evaluation on Countermeasures. Now we follow the above
framework to evaluate the performance of our countermeasure.
We first measure the query recovery rate to quantify the se-
curity strength from the practical layer. We equip the selected
databases with different countermeasures and then run our
attack algorithm. The attack results are illustrated in Fig. 7(a)
and Fig. 7(b), they demonstrate that our design defeats the
proposed attack well. For example, when number of keyword
space is 10,000, the recovery ratio of different attacks against
our countermeasure on Enron dataset falls below than 1%,
respectively. The recovery rate of our attack is also higher than
other two selected attacks, which confirms the contribution of
refined leakage to our attack performance again.

Regarding efficiency, we evaluate the storage overhead
brought by our countermeasures. Figure 7(c) and 7(d) depict
the storage overhead of our countermeasures. As shown in the
figure, when the size of keyword space is 1.0 × 104 and the
number of cluster is 10, our countermeasure in Enron dataset
introduces 7.02× storage overhead. Besides, when the number
of clusters is increased, the total storage overhead decreases

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 14

accordingly. For example, the storage overhead of our design
is reduced to 3.68× when the number of size increases to 100.
Comparison with Prior Countermeasures. Here we show
performance comparison between our countermeasure and
prior works. Without considering the weak effectiveness of
prior countermeasures, from Fig. 7(c) and Fig. 7(d), we can
find that our padding countermeasure appears to be more
efficiency than priors. Specifically, in Enron email dataset,
the Blackstone et al’s OPQ scheme introduces almost 247.3×
storage overhead to achieve the security notion, this is because
keywords in Enron dataset always have a large number of
co-occurrence counts. Cash et al.’s countermeasure requires
25× storage overhead which realizes on the distribution of
document volume. Compared to work, our countermeasure is
cost-effective in effectiveness and efficiency.

VIII. CONCLUSION

In this paper, we conduct systematic investigations on
leakage exploitation of SSE from the algebraic perspective,
and provide corresponding mitigation. Specifically, we model
SSE as linear transformation and point out that the invariant
characteristics during the transformation are the key contribut-
ing to privacy risk of SSE. Based on these findings, we
design an attack that generalizes existing attacks and improve
robustness and efficiency of them. Accordingly, we propose
a new security notion to refine the prior ones and develop a
two-phase countermeasure to protect the access pattern and
volume information of the database, so as to mitigate existing
LAAs. Our evaluation results show that our countermeasure
further reduces the query recovery ratio compared to prior
arts. In addition, our work also leaves a two open questions.
The first is whether our attack and defense methodologies
can be extended to the dynamic constructions, which support
addition and deletion operations. The second question is to
investigate the countermeasures for constructions with more
advanced queries. We believe that our investigations will estab-
lish theoretical foundations towards exploring the fundamental
security limit of searchable encryption and designing effective
hardening techniques to push forward the scientific frontier of
this research area.

ACKNOWLEDGMENT

This work was supported in part by the Natural Science
Foundation of Jiangsu Province under Grant BK20210330, by
the National Natural Science Foundation of China under Grant
62072240, by the National Key Research and Development
Program of China under Grant 2020YFB1804604, by the
Research Grants Council of Hong Kong under Grant CityU
11217819, Grant CityU 11217620, and Grant R6021-20F, by
the ARC Discovery Projects under Grant DP200103308, and
by Laboratory for AI-Powered Financial Technologies.

REFERENCES

[1] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in Proc. of ACM CCS, 2006.

[2] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query processing,”
in Proc. of SOSP, 2011.

[3] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in Proc. of CRYPTO, 2013.

[4] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proc. VLDB Endow., 2013.

[5] S. Kamara and T. Moataz, “SQL on structurally-encrypted databases,”
in Proc. of ASIACRYPT, 2018.

[6] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in Proc. of NDSS, 2014.

[7] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in Proc.
of NDSS, 2012.

[8] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. of ACM CCS, 2015.

[9] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting leakage abuse
attacks,” in Proc. of NDSS, 2020.

[10] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proc. of ACM CCS, 2015.

[11] D. Pouliot and C. V. Wright, “The shadow nemesis: Inference attacks
on efficiently deployable, efficiently searchable encryption,” in Proc. of
ACM CCS, 2016.

[12] R. Bost and P.-A. Fouque, “Thwarting leakage abuse attacks against
searchable encryption – a formal approach and applications to database
padding,” Cryptology ePrint Archive, 2017.

[13] S. Kamara and T. Moataz, “Computationally volume-hiding structured
encryption,” in Proc. of EUROCRYPT, 2019.

[14] S. Patel, G. Persiano, K. Yeo, and M. Yung, “Mitigating leakage in
secure cloud-hosted data structures: Volume-hiding for multi-maps via
hashing,” in Proc. of ACM CCS, 2019.

[15] S. Kamara, T. Moataz, and O. Ohrimenko, “Structured encryption and
leakage suppression,” in Proc. of CRYPTO, 2018.

[16] Z. Gui, K. G. Paterson, S. Patranabis, and B. Warinschi, “Swissse:
System-wide security for searchable symmetric encryption,” IACR Cryp-
tol. ePrint Arch., 2020.

[17] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” IACR Cryptology ePrint Archive, vol.
2016, p. 718, 2016.

[18] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren, “Generating
synthetic decentralized social graphs with local differential privacy,” in
Proc. of the 2017 ACM CCS, 2017.

[19] M. Mohammady, L. Wang, Y. Hong, H. Louafi, M. Pourzandi, and
M. Debbabi, “Preserving both privacy and utility in network trace
anonymization,” in Proc. of ACM CCS, 2018.

[20] N. Li, M. Lyu, D. Su, and W. Yang, Differential Privacy: From Theory
to Practice, ser. Synthesis Lectures on Information Security, Privacy, &
Trust. Morgan & Claypool Publishers, 2016.

[21] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre, “SEAL:
attack mitigation for encrypted databases via adjustable leakage,” in
Proc. of Usenix Security, 2020.

[22] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. of IEEE S&P, 2000.

[23] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zim-
merman, “Semantically secure order-revealing encryption: Multi-input
functional encryption without obfuscation,” in Proc. of EUROCRYPT,
2015.

[24] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in Proc. of
ESORICS, 2015.

[25] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and
M. N. Garofalakis, “Practical private range search revisited,” in Proc. of
ACM SIGMOD, 2016.

[26] D. Cash, F. Liu, A. O’Neill, M. Zhandry, and C. Zhang, “Parameter-
hiding order revealing encryption,” in Proc. of ASIACRYPT, 2018.

[27] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, M. N.
Garofalakis, and C. Papamanthou, “Practical private range search in
depth,” ACM Trans. Database Syst., vol. 43, no. 1, pp. 2:1–2:52, 2018.

[28] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption
with worst-case sub-linear complexity,” in Proc. of EUROCRYPT, 2017.

[29] M. Chase and S. Kamara, “Structured encryption and controlled disclo-
sure,” in Proc. of ASIACRYPT, 2010.

[30] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart, “Deterministic
encryption: Definitional equivalences and constructions without random
oracles,” in Proc. of CRYPTO, 2008.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 15

[31] S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Out-
sourced symmetric private information retrieval,” in Proc. of ACM CCS,
2013.

[32] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Proc. of TCC, 2007.

[33] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay, R. Ste-
infeld, S. Sun, D. Liu, and C. Zuo, “Result pattern hiding searchable
encryption for conjunctive queries,” in Proc. of the ACM CCS, 2018.

[34] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. of ACM CCS, 2012.

[35] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Proc. of FC, 2013.

[36] I. Miers and P. Mohassel, “IO-DSSE: scaling dynamic searchable
encryption to millions of indexes by improving locality,” in Proc. of
NDSS, 2017.

[37] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An
efficient oblivious search index,” in Proc. of IEEE S&P, 2018.

[38] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “OBLIVIATE: A data
oblivious filesystem for intel SGX,” in Proc. of NDSS, 2018.

[39] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database
using SGX,” in Proc. of IEEE S&P, 2018.

[40] S. Oya and F. Kerschbaum, “Hiding the access pattern is not enough:
Exploiting search pattern leakage in searchable encryption,” in Proc. of
USENIX Security, 2021.

[41] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks on
secure outsourced databases,” in Proc. of ACM CCS, 2016.

[42] M. Lacharité, B. Minaud, and K. G. Paterson, “Improved reconstruction
attacks on encrypted data using range query leakage,” in Proc. IEEE
S&P, 2018.

[43] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson, “Pump up
the volume: Practical database reconstruction from volume leakage on
range queries,” in Proc. of ACM CCS, 2018.

[44] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart,
“Leakage-abuse attacks against order-revealing encryption,” in Proc. of
IEEE S&P, 2017.

[45] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson, “Learning to
reconstruct: Statistical learning theory and encrypted database attacks,”
in Proc. of IEEE S&P, 2019.

[46] Z. Gui, O. Johnson, and B. Warinschi, “Encrypted databases: New
volume attacks against range queries,” in Proc. of ACM CCS, 2019.

[47] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “The state of
the uniform: Attacks on encrypted databases beyond the uniform query
distribution,” in Proc. of S&P, 2020.

[48] F. Falzon, E. A. Markatou, Akshima, D. Cash, A. Rivkin, J. Stern, and
R. Tamassia, “Full database reconstruction in two dimensions,” in Proc.
of ACM CCS, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds., 2020.

[49] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Response-
hiding encrypted ranges: Revisiting security via parametrized leakage-
abuse attacks,” in Proc. of IEEE S&P, 2021.

[50] K. Lewi and D. J. Wu, “Order-revealing encryption: New constructions,
applications, and lower bounds,” in Proc. of ACM CCS, 2016.

[51] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Data recovery
on encrypted databases with k-nearest neighbor query leakage,” in Proc.
of S&P, 2019.

[52] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
Proc. of USENIX Security, 2015.

[53] S. Wang, R. Poddar, J. Lu, and R. A. Popa, “Practical volume-based
attacks on encrypted databases,” in Proc. of EURO S&P, 2019.

[54] T. H. Chan, K. Chung, B. M. Maggs, and E. Shi, “Foundations of
differentially oblivious algorithms,” in Proc. of SODA, 2019.

[55] E. Stefanov, M. van Dijk, E. Shi, T. H. Chan, C. W. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path ORAM: an extremely simple oblivious
RAM protocol,” Journal of ACM, vol. 65, no. 4, pp. 18:1–18:26, 2018.

[56] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in Proc. of NDSS, 2014.

[57] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder, “Privacy and
access control for outsourced personal records,” in Proc. IEEE S&P,
2015.

[58] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang, “Prac-
ticing oblivious access on cloud storage: the gap, the fallacy, and the
new way forward,” in Proc. of ACM CCS, 2015.

[59] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path ORAM: an extremely simple oblivious RAM
protocol,” in Proc. of ACM CCS, 2013.

[60] G. Chen, T. Lai, M. K. Reiter, and Y. Zhang, “Differentially private
access patterns for searchable symmetric encryption,” in Proc. of INFO-
COM, 2018.

[61] A. Agarwal, M. Herlihy, S. Kamara, and T. Moataz, “Encrypted
databases for differential privacy,” PoPETs, vol. 2019, no. 3, pp. 170–
190, 2019.

[62] C. Wang, J. Bater, K. Nayak, and A. Machanavajjhala, “Dp-sync: Hiding
update patterns in secure outsourced databases with differential privacy,”
in Proc. of SIGMOD, 2021.

[63] G. A. Korn and T. M. Korn, Mathematical handbook for scientists and
engineers: definitions, theorems, and formulas for reference and review.
Courier Corporation, 2000.

[64] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-
tion retrieval. Cambridge University Press, 2008.

[65] L. Xu, X. Yuan, C. Wang, Q. Wang, and C. Xu, “Hardening database
padding for searchable encryption,” in Proc. of IEEE INFOCOM, 2019.

[66] Enron Email Dataset, Online at: https://www.cs.cmu.edu/∼./enron, 2015.
[67] IMDB Movie Comments Dataset, Online at: https://datasets.imdbws.

com, 2020.

https://www.cs.cmu.edu/~./enron
https://datasets.imdbws.com
https://datasets.imdbws.com

	Introduction
	Our Motivation and Contributions

	Related Work
	Searchable Symmetric Encryption
	LAAs Against Searchable Encryption
	Countermeasures Against LAAs

	Preliminaries
	SSE and Notations
	LAA Assumptions and Definition

	Linear Algebraic Modelling of SSE
	Algebraic Link Between Databases
	Invariant Characteristics

	Refined Leakage and New LAA
	Refined Leakage Profiles
	Leakage Profiles Connected to the Query
	Leakage Profiles Connected to the Document

	LAA with Refined Leakage
	Advantages Compared to Prior LAAs

	Our Proposed Countermeasure
	Design Intuition
	Our Construction
	Customized Perturbation on Search Index
	Document Volume Padding

	Security and Overhead Analysis

	Experiment Evaluation
	Experiment Setup
	Evaluation on LAAs
	Evaluation on Countermeasure

	Conclusion
	References

