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Abstract. At ICALP 2018, Boyle et al. introduced the notion of the
bottleneck complexity of a secure multi-party computation (MPC) pro-
tocol. This measures the maximum communication complexity of any
one party in the protocol, aiming to improve load-balancing among the
parties.
In this work, we study the bottleneck complexity of MPC in the prepro-
cessing model, where parties are given correlated randomness ahead of
time. We present two constructions of bottleneck-efficient MPC protocols,
whose bottleneck complexity is independent of the number of parties:
1. A protocol for computing abelian programs, based only on one-way

functions.
2. A protocol for selection functions, based on any linearly homomor-

phic encryption scheme.
Compared with previous bottleneck-efficient constructions, our protocols
can be based on a wider range of assumptions, and avoid the use of fully
homomorphic encryption.

1 Introduction

Secure Multiparty Computation (MPC) [Yao86,GMW87,BGW88,CCD88] al-
lows a set of mutually distrusting parties to jointly perform a computation on
their private inputs in a way no information about their inputs is revealed, except
the output of the computation.

There are various fundamental metrics with respect to which the efficiency
of an MPC protocol can be measured such as round complexity, communication
complexity and computation complexity. Among these, communication complex-
ity, which measures the total number of bits communicated by honest parties
in the protocol, is often cited as one of the most important ones in practi-
cal applications. In this work we study a particular flavour of communication
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complexity for MPC, namely bottleneck complexity (BC). While there has been
extensive research aimed at optimizing the communication complexity of MPC
protocols, most of these works do not take into account the fact that parties may
have asymmetric roles in the protocol, and communication may be unevenly dis-
tributed. The work of [BJPY18] addressed this concern by introducing bottleneck
complexity as a new efficiency metric.

Informally, bottleneck complexity is the maximum communication required
by any party within the protocol computation. To illustrate the difference be-
tween communication complexity and bottleneck complexity, consider two pro-
tocols – say, in the first protocol each party sends a bit to a central party while
in the second one, the parties communicate in a chain-like fashion with party
Pi sending one bit to Pi+1 (for i ∈ [1, n− 1], where n is the number of parties).
Both these protocols have total communication complexity Θ(n) but differ signif-
icantly in their bottleneck complexities. The first protocol has Θ(n) bottleneck
complexity, while the second has O(1) bottleneck complexity. If the receiving
bandwidth of the central party in the first protocol becomes the bottleneck, the
second protocol with low bottleneck complexity would be preferred in most prac-
tical scenarios. With this motivation, the work of [BJPY18] initiated the study
of bottleneck complexity.

In the setting of bottleneck complexity, the focus is on protocols between
large number of parties, and the goal is designing protocols with bottleneck
complexity independent of the number of parties. Such protocols as thus referred
as being BC-efficient. On the lower bounds side, the work of [BJPY18] shows
that, for general functions, achieving even sublinear (in the number of parties
n) communication complexity is not always possible – even when no security is
required! On the positive side, they present a generic compiler based on fully-
homomorphic encryption (FHE) that transforms an insecure MPC protocol into
a secure MPC protocol while preserving the bottleneck complexity.

It is well known that homomorphic encryption (in one or other of its many
flavours) is a powerful tool for compiling protocols with low communication com-
plexity (see for instance [NN01,IP07,DFH12,AJL+12,LNO13]). However, FHE is
still relatively inefficient, and we only know how to construct it using the learning
with errors (LWE) assumption [BV11] or the heavy machinery of indistinguisha-
bility obfuscation [CLTV15]. It is therefore very natural to ask the question:

For which functions can we achieve low bottleneck complexity
without using FHE?

1.1 Our Contribution

In this work, we investigate the feasibility of BC-efficient MPC without using
heavy tools such as FHE. Instead, we focus on protocols which make use of cor-
related randomness and “traditional” assumptions such as one-way functions and
(for one of our constructions) linearly homomorphic encryption (which can be in-
stantiated with “90s” style assumptions based on discrete logarithms, factoring,
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etc.). All of our protocols are secure against a semi-honest (passive) adversary
who may corrupt an arbitrary number of parties.

In this setting, we provide BC-efficient protocols for the following classes of
functions:

Abelian Programs. Abelian programs are defined as functions on the sum of
the parties’ inputs over an abelian group. More formally, an abelian program h
takes n elements from an abelian group G as input and outputs h(x1, . . . , xn) =
f(
∑n
i=1 xi) for some function f : G → {0, 1}. This is an expressive class of

functions that can be used to securely perform e.g., voting or linear classifiers
(see [EOYN21] for more details about applications of abelian programs).

As a warm-up, we design BC-efficient protocols for simple boolean functions
such as AND and XOR, which can be viewed as special cases of abelian programs.
These protocols incur bottleneck complexity of O(λ) and O(1) respectively. We
generalize the approach of these protocols and propose a BC-efficient protocol for
abelian programs that has bottleneck complexity O(λ2) (which is independent
of n), where λ denotes the security parameter. Our construction is based on
garbled circuits, and therefore can be built from one-way functions.

Selection Functions. A selection function is a function of the form f(x1 =
q, x2, . . . , xn) = xq, where P1’s input is a selection index q ∈ {2, . . . , n} and
the inputs of the other parties are in ZM (set of integers modulo M).

We design a BC-efficient protocol for selection functions that has bottleneck
complexity poly(λ) (independent of n), where λ denotes the security parameter.
Our construction uses additively homomorphic encryption and garbled circuits
as the main tools, which can be instantiated under standard number-theoretic
assumptions like decisional Diffie-Hellman, quadratic residuosity, N -th residuos-
ity or learning with errors.

On the communication pattern of BC-efficient protocols. We defer the detailed
high-level overviews of the protocols to the respective technical section and high-
light an important and common aspect of our BC-efficient constructions below.
As a starting point towards designing BC-efficient protocols, we begin by analyz-
ing what types of interaction patterns in MPC support the bottleneck complexity
as being independent of the number of parties. The most common interaction
pattern in MPC protocols is a complete network (where every pair of parties com-
municate with each other). Some other popular restricted interaction patterns
include ‘star’ (where all parties interact with a central party) [BGI+14,HIJ+16]
and ‘chain’ (where parties interact over a simple directed path traversing all
nodes) [HIJ+16,IMO18]. It is easy to see that the ‘chain’ interaction pattern is
promising to design BC-efficient protocols. This is because it involves each party
communicating with only a constant number of parties. However, we need two
additional properties that a BC-efficient protocol over a chain must satisfy: First,
the number of communication traversals or passes over the chain must also be
independent of n. Second, the size of the message communicated by each party
to its neighbour must also be independent of n. All our protocols thereby entail
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a constant number of passes over a chain-like structure, where each message
communicated is independent of n. We refer to the technical sections for further
details.

Open Problems. As mentioned above, the study of bottleneck complexity in MPC
is inherently tied to the bottleneck complexity of protocols without security, since
not every function can be BC-efficient [BJPY18]. It remains an open question to
more thoroughly characterize which functions allow BC-efficient protocols in the
clear. With privacy, an interesting challenge is to obtain (even in the correlated
randomness model) a compiler that transforms a (possibly insecure) protocol
into a secure one with the same bottleneck complexity, while using non-FHE
assumptions as considered in this work.

1.2 Related Work

The most relevant work to ours is the work of [BJPY18] which introduced the
notion of bottleneck complexity. As mentioned previously, [BJPY18] presents a
generic compiler based on fully-homomorphic encryption (FHE) that transforms
an insecure MPC protocol into a secure MPC protocol while preserving the bot-
tleneck complexity. For the two-party setting, such a compiler was proposed by
the work of [NN01] (this compiler preserved communication complexity; however
the notions of bottleneck and communication complexity align in the two-party
case). The work of [FKLS20] in the massive parallel computation model focuses
on minimizing the storage / communication of servers (which is similar to our
goal of minimizing bottleneck complexity). However, similar to [BJPY18], their
compiler from an insecure to secure protocol in the parallel computation model
is based on FHE (which we wish to avoid).

Related to the setting of MPC with huge number of parties that we con-
sider in this work, the study of scalable MPC was initiated by [DI06] and
further explored in works of [DIK+08]. However, these works focus on opti-
mizing communication complexity relative to the circuit size. Similarly, sev-
eral works on optimizing communication complexity of MPC protocols such as
[Cou19,DNPR16,IKM+13] in the information-theoretic setting with correlated
randomness and [QWW18,ABJ+19] in the computational setting also focus on
regulating the dependence on circuit size. The protocols in these works incur
Ω(n) bottleneck complexity (which is inherent as shown by [BJPY18], since
these protocols are for arbitrary functions).

Another related line of work is MPC protocols that involve a one-pass ‘chain’
interaction pattern, which includes works such as [HIJ+16]. Further, the proto-
cols of [HLP11,GMRW13] that consider consider secure computation in a one-
pass client server model can also be adapted to a one-pass chain-based interaction
(as pointed out in [HIJ+16]). However, since these works restrict the interaction
to a ‘single’ pass, their constructions achieve residual security (as opposed to
standard security). The same holds for efficient non-interactive multiparty com-
putation (NIMPC) constructions in [HIKR18,EOYN21,BGI+14].
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Lastly, there are other notions that are related to bottleneck complexity
such as communication locality (defined for a party as number of total other
parties that the party communicates with) [BGT13] and message complexity
(that captures the total number of messages sent in the protocol but does not
focus on the size of the message) [IMO18]. However, the proposed protocols
optimizing these metrics are for arbitrary functions and incurs Ω(n) bottleneck
complexity.

2 Preliminaries

2.1 Notation

We denote the cryptographic security parameter as λ. We consider a set of
n = n(λ) parties {P1, . . . , Pn}, where n is polynomially-bounded. The parties
are connected by pair-wise secure and authentic channels, and each party is
modelled as a probabilistic polynomial time Turing (PPT) machine. We assume
that there exists a PPT adversary A, who can passively corrupt upto n − 1
parties. The set of elements {1, . . . , k} is denoted as [k].

2.2 Security Model

We prove the security of our protocols based on the standard real/ideal world
paradigm. A reader who is familiar with this may skip to Section 2.3. Essentially,
the security of a protocol is analyzed by comparing what an adversary can do in
the real execution of the protocol to what it can do in an ideal execution, that
is considered secure by definition (in the presence of an incorruptible trusted
party). In an ideal execution, each party sends its input to the trusted party
over a perfectly secure channel, the trusted party computes the function based
on these inputs and sends to each party its respective output. Informally, a
protocol is secure if whatever an adversary can do in the real protocol (where
no trusted party exists) can be done in the above described ideal computation.
In this work, the adversary is assumed to be passive (alternately, referred to as
being semi-honest) – the corrupt parties must follow the protocol specifications.
However, the adversary attempts to learn private information by observing the
view of the passively corrupt parties. We refer to [Can00] for further details
regarding the security model.

In more detail, let Π be a protocol and F be a functionality. Let I denote
the set of parties that are corrupt (of size at most n − 1). The “ideal” world
execution involves parties {P1, . . . , Pn}, an ideal adversary S who controls the
parties in I. The “real” world execution involves the PPT parties {P1, . . . , Pn},
and a real world adversary A who corrupts the parties in I passively. The view
of a party in the real world is defined to be its random tape, together with all
messages received during the execution of the protocol. In the ideal world, the
simulator S is given as input nothing but the corrupt parties’ inputs sent to the
trusted party and the outputs they receive from the trusted party. If S is able
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to ‘simulate’ the real-world view with just this information, intuitively, security
must hold. This is formalized below.

We define the following distributions of random variables.

REALΠ(1λ, I;x1, . . . , xn) : suppose Π is run with security parameter λ where
each party Pi runs the protocol honestly using private input xi. Let Vi denote
the view of party Pi at the end of the protocol execution and let yi denote
the output of Pi. Output

(
{Vi}i∈I , (y1, . . . , yn)

)
.

IDEALF,S(1λ, I;x1, . . . , xn) : Let (y1, . . . , yn)← F(x1, . . . , xn). Output
(
S(I,

{xi, yi}i∈I), (y1, . . . , yn)
)

A protocol is secure against passive adversaries if the corrupted parties in
the real world have views that are indistinguishable from their views in the ideal
world.

Definition 1. A protocol Π securely realizes F if there exists a PPT ideal
world adversary S, such that for every subset of corrupt parties I and all inputs
x1, . . . , xn, the following two distributions are computationally indistinguishable:

REALΠ(1λ, I;x1, . . . , xn) c
≈ IDEALF,S(1λ, I;x1, . . . , xn)

2.3 Definitions

Informally, the bottleneck complexity of a protocol is the maximum communica-
tion complexity required by any party in the protocol execution. More formally,
we have:

Definition 2 (Bottleneck complexity of a Protocol [BJPY18]). Let CCi(Π)
denote the expected number of bits sent or received by Pi in an execution of Π,
with worst-case inputs. The bottleneck complexity of an n-party protocol Π is
defined as BC(Π) = maxi∈[n]CCi(Π)

We note that while we keep the BC-complexity definition of [BJPY18] for con-
sistency, all our protocols satisfy a stronger notion of worse-case (as opposed to
expected) BC-complexity.

Definition 3 (Bottleneck complexity of a Function [BJPY18]). The bot-
tleneck complexity of an n-input function f is the minimum value of BC(Π) when
quantified over all n-party distributed protocols Π which securely evaluate f .

We say that a protocol Π is BC-efficient, if the bottleneck complexity of Π is
independent of n. Formally, we require that there exists a polynomial p(λ) such
that for all n(λ) ∈ poly(λ), it holds that BC(Π) < p(λ).

Definition 4 (Abelian Programs). Let G be an abelian group, S1, . . . , Sn be
subsets of G, and HGS1,...,Sn

be the set of functions h : S1 × · · · × Sn → {0, 1}
of the form h(x1, . . . , xn) = f(Σn

i=1xi), for some f : G → {0, 1}. We call such
functions h abelian programs.

6



Note that the simple boolean functions of AND and XOR are abelian programs,
considering the abelian group G as Zn+1 (integers modulo n+1) and the subsets
Si (i ∈ [n]) as the set {0, 1}. AND(x1, . . . , xn) can be expressed as f(

∑n
i=1 xi)

where the addition is done modulo (n + 1) and f(x) outputs 1 only when x =
n and 0 otherwise. On the other hand, XOR(x1, . . . , xn) can be expressed as
f(
∑n
i=1 xi) where f(x) outputs x mod 2.

2.4 Primitives

Garbling Scheme. A garbling scheme, introduced by Yao [Yao82] and formal-
ized by Bellare et al. [BHR12], enables a party to “encrypt” or “garble” a circuit
in such a way that it can be evaluated on inputs — given tokens or “labels”
corresponding to those inputs — without revealing what the inputs are.

Definition 5 (Garbling Scheme). A projective garbling scheme is a tuple of
efficient algorithms GC = (garble, eval) defined as follows.

garble(1λ, C)→ (GC,K): The garbling algorithm garble takes as input the
security parameter λ and a boolean circuit C : {0, 1}` → {0, 1}m, and outputs
a garbled circuit GC and ` pairs of garbled labels K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` ).

For simplicity we assume that for every i ∈ [`] and b ∈ {0, 1} it holds that
Kb
` ∈ {0, 1}λ.

eval(GC,K1, . . . ,K`)→ y: The evaluation algorithm eval takes as input the
garbled circuit GC and ` garbled labels K1, . . . ,K`, and outputs a value y ∈
{0, 1}m.

We require the following properties of a projective garbling scheme:

Correctness. We say GC satisfies correctness if for any boolean circuit C : {0, 1}` →
{0, 1}m and x = (x1, . . . , x`) it holds that

Pr[eval(GC,K[x]) 6= C(x)] = negl(λ),

where (GC,K) ← garble(1λ, C) with K = (K0
1 ,K

1
1 , . . . ,K

0
` ,K

1
` ), and K[x] =

(Kx1
1 , . . . ,Kx`

` ).
Next, we formally define the security notions we require for a garbling scheme.

When garbled circuits are used in such a way that decoding information is used
separately, obliviousness requires that a garbled circuit together with a set of
labels reveals nothing about the input the labels correspond to, and privacy
requires that the additional knowledge of the decoding information reveals only
the appropriate output. In our work, we do not consider decoding information
separately (but rather, consider it to be included in the garbled circuit), so we
do not need obliviousness.
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Privacy. Informally, privacy requires that a garbled circuit together with a set
of labels reveal nothing about the input the labels correspond to (beyond the
appropriate output and the side-information). For our constructions, we assume
the side-information to be the topology of the circuit, denoted as θ(C).

More formally, we say that GC satisfies privacy if there exists a simulator
simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

Adversary A Challenger C

C : {0, 1}` → {0, 1}m

−−−−−−−−−−−−−−−−−−−−−−−−−−B
x = (x1, . . . , x`) ∈ {0, 1}`

−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}
if b = 0:

(GC, (K0
1 , K

1
1 , . . . , K

0
` , K

1
` ))← garble(1λ, C)

Ki = K
xi
i

for i ∈ [`]
if b = 1:

(GC, K1, . . . , K`)← simGC(1λ, θ(C), C(x))
GC,K1, . . . ,K`

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

Lastly, we remark that one of our constructions requires the use of a slightly
modified garble algorithm that takes as additional input, the labels of the gar-
bled circuit. The modified syntax is as follows: garble(1λ, C,K = (K0

1 ,K
1
1 , . . . ,K

0
` ,

K1
` ))→ GC. Accordingly, the simulator of the garbling scheme simGC also takes

as input one set of labels i.e. the syntax changes to simGC(1λ, θ(C), C(x), {K1, . . . ,
K`})→ GC. Note that most garbled circuits constructions, including Yao’s orig-
inal construction, can be used in this way.

Additively Homomorphic Encryption. We consider linearly homomorphic
encryption over (ZM ,+), the ring of integers modulo M .

Definition 6 (Additively Homomorphic Encryption.). Let (ZM ,+) be the
ring of integers modulo M . An additively homomorphic encryption scheme over
ZM is a tuple AHE = (Keygen, Enc, Dec, Add, ScalMul) defined as:

Key Generation. The algorithm Keygen is a randomized algorithm that
takes as input the security parameter and outputs a public key pk and a
secret key pair sk : (pk, sk)← Keygen(1λ).
Encryption. The randomized algorithm Enc takes as input the public key
pk and the message m ∈ ZM and outputs a ciphertext c : c ← Enc(pk,m; r)
(where r denotes the randomness used for encryption).
Decryption. The algorithm Dec takes as input the secret key sk and the
ciphertext c and outputs a plaintext m ∈ ZM (or ⊥ if the ciphertext is invalid)
: m← Dec(sk, c).
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Homomorphic Addition. The algorithm Add takes as input the public key
pk and two ciphertexts c1 and c2 and outputs a ciphertext c∗: c∗ ← Add(pk, c1, c2).
Scalar Multiplication. The algorithm ScalMul takes as input the public
key pk, a ciphertext c and an integer α ∈ ZM , and outputs a ciphertext
c′ : c′ ← ScalMul(pk, c, α).

We require the following properties of an AHE:

Correctness. An AHE is correct if for any m ∈ ZM ,

Pr
[
Dec(sk, c) 6= m : (pk, sk)← Keygen(1λ);

c← Enc(pk,m)

]
≤ negl(λ)

(where the randomness is taken over the random coins of the algorithms)
Additive Homomorphism. An AHE satisfies additive homomorphism if for
any m1,m2 ∈ ZM , the following holds:

Pr

Dec(sk, Add(pk, c1, c2)) 6= m1 +m2 mod M :
(pk, sk)← Keygen(1λ);
c1 ← Enc(pk,m1);
c2 ← Enc(pk,m2)

 ≤ negl(λ)

Pr
[
Dec(sk, ScalMul(pk, c,m2)) 6= m1 ·m2 mod M : (pk, sk)← Keygen(1λ);

c← Enc(pk,m1)

]
≤ negl(λ)

(where the randomness is taken over the random coins of the algorithms)

CPA Security. An AHE satisfies CPA security if for all PPT adversaries
A, for (msg0,msg1)← A(1λ), if |msg0| = |msg1|,

Pr
[
A(pk, c) = b : (pk, sk)← Keygen(1λ); b← {0, 1};

c← Enc(pk,msgb)

]
≤ 1

2 + negl(λ)

(where the randomness is taken over the internal coin tosses of A, Keygen
and Enc).
Circuit Privacy. An AHE satisfies circuit privacy if there exists a simulator
S such that for any m1,m2 ∈ ZM the distributions

{sk,S(pk,m1 +m2 mod M)} and {sk, Add(pk, Enc(pk,m1), Enc(pk,m2))}

{sk,S(pk,m1 ·m2 mod M)} and {sk, ScalMul(pk, Enc(pk,m1),m2)}

where (pk, sk)← Keygen(1λ) are computationally indistinguishable.

Note that our definition of circuit privacy implies that Add and ScalMul re-
randomize the output ciphertext.

Additively-homomorphic encryption satisfying our requirements can be real-
ized from a variety of assumptions, including QR, DDH, Paillier, learning with
errors etc. In the case of DDH, we actually obtain AHE for small integer plain-
texts, rather than ZM . However, this is enough for our application, since our
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construction never relies on wraparound modulo M , and we can always guar-
antee that messages are small by decomposing inputs into blocks and packing
into several ciphertexts. Finally, note that standard LWE-based AHE construc-
tions [Reg05] do not support an unbounded number of homomorphic operations;
however, in our application this is limited to O(n), so parameters can be chosen
accordingly.

3 BC-efficient MPC for Abelian Programs

In this section, we present a BC-efficient MPC protocol for abelian programs.
As a warm-up, we begin with describing BC-efficient protocols for basic boolean
functions.

3.1 Protocol for AND

At a high-level, the BC-efficient protocol for AND proceeds as follows. The setup
maps the potential 1-input of each party to a random group element and dis-
tributes it to the respective party. In the online phase, the parties use either
the element received as part of the setup or a random element (depending on
whether their input is 1 or 0 respectively) to compute the sum incrementally
over a chain. The basic idea is that if all parties’ inputs are 1, the sum of these
group elements would be a special element, say Y , which can also be given as
part of the setup and thereby used to determine the output.

Unfortunately, the above protocol idea is susceptible to the residual function
attack 1– suppose the interaction over the chain occurs from P1 to Pn and
imagine the adversary corrupts a subset of parties towards the end of the chain,
say Pk to Pn (where k could be any index between 2 to n). In such a case, it is
easy to see that the adversary can always learn whether the logical AND of the
honest parties’ inputs is 1 or not, irrespective of the corrupt parties’ inputs. This
violates security because as per the ideal functionality, the adversary must not
learn this information if any of the corrupt parties’ input is 0.

To counter this residual attack, the online phase of our protocol performs an
additional backwards pass over the chain i.e. from Pn to P1. Suppose Y ′ denotes
the sum computed at the end of the forward pass. The backward pass involves
n applications of a PRF in a nested manner starting from Y ′, once by each party
using its own PRF key (given as a part of the setup). Intuitively, this prevents
the residual attack by the adversary for the following reason – when an honest
party computes the PRF using its secret PRF key, the value Y ′ gets “fixed”. It
is no longer possible for the adversary to locally compute the output based on
the scenario when Y ′′ 6= Y ′ was computed at the end of the forward pass of the
chain (as he does not know the secret PRF key of the honest party).

1 However, this approach suffices for residual security, as shown in the NIMPC protocol
of [HIKR18].
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Lastly, our protocol does another forward pass over the chain to distribute
the output. The formal description of the BC-efficient protocol for AND appears
in Figure 3.1.

Figure 3.1: ΠAND

Private input. Each party Pi has input bit xi ∈ {0, 1}.
Output. y = x1 ∧ x2 ∧ · · · ∧ xn.
Tools. Psuedorandom Function (PRF) F : K × {0, 1}λ → {0, 1}λ, where
K refers to the key space
Correlated Randomness Setup. The setup involves the following:
1. For each i ∈ [n], a uniformly random element r1

i ← G and a PRF key
si ∈ K is sampled.

2. Let Y ← Σn
i=1r1

i and Z ← F
(

s1,F
(
s2,F(s3, . . .F(sn−2,F(sn−1,

F(sn, Y ))) . . . )
))

.

3. Output (Z, r1
i , si) to each Pi (i ∈ [n]).

The Protocol. The following steps are run in the online phase of the
protocol –
Phase 1 (Round 1 to Round n). Each Pi chooses r0

i at random at the
beginning of Phase 1. During round i, Pi does the following:
– If i = 1, set Yi = rxii .
– If i 6= 1, let Yi−1 denote the message received from Pi−1 during the

previous round. Compute Yi ← rxii + Yi−1.
– If i < n, send Yi to Pi+1. Else set Y ′ = Yn.

Phase 2 (Round n+ 1 to Round 2n). Each Pi does the following in
sequence, starting from i = n to 1:
– If i = n, compute Zn = F(sn, Y ′).
– If i 6= n, receive Zi+1 from Pi+1 in the previous round. Compute
Zi ← F(si, Zi+1).

– If i 6= 1, send Zi to Pi−1. Else set Z ′ = Z1.

Output Computation. P1 sets output y = 1 if Z ′ == Z holds; else
sets y = 0.

Phase 3 (Output Transfer). For i starting from 1 to n, each Pi does
the following in sequence -

- If i 6= 1, let y denote the output received from Pi−1 in previous round.
- If i 6= n, send y to Pi+1.
- Output y.
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Correctness. For correctness, note that when xi = 1 for each i ∈ [n], Y ′ =∑n
i=1 r1

i = Y . Therefore, Z ′ == Z holds and the output y evaluates to 1 in such
a case (which is the correct output). Next we consider the case when the input
of at least one party is 0 : Y ′ 6= Y would hold (except with negligible proba-
bility) and consequently Z ′ 6= Z holds (except with negligible probability). The
parties output 0 (which is the correct output) in such a case with overwhelming
probability.

Security. To argue security, consider the case when the adversary corrupts n−1
parties passively and Pi denotes the only honest party. Further, assume that at
least one of the corrupt parties’ input is 0 (which is the non-trivial case where
adversary should learn nothing about xi; else the input of Pi can be derived
from the output itself). Firstly, the adversary learns nothing about xi from Yi,
as both r0

i and r1
i are random elements in G. Next, we claim that the adver-

sary learns no information about Z ′′i = F
(
si,F(si+1,F(si+2, . . . ,F(sn, Y ′′) . . . ))

)
computed on Y ′′ 6= Y ′. This follows from security of the PRF – In more detail,
such an adversary could use the query Z ′′i+1 = F(si+1,F(si+2, . . . ,F(sn, Y ′′) . . . ))
to distinguish between the PRF F (where the key sampled is si) and a truly ran-
dom function; thereby breaking the security of the PRF. The above claim ensures
that for any Y ′′ 6= Y ′, the adversary cannot deduce whether Z ′′ ← F

(
s1,F(s2,

. . .F(sn−2,F(sn−1,F(sn, Y ′′)) . . . )
)

computed at the end of Phase 2 with respect
to Y ′′ would be identical to Z or not. We can thus conclude that the adversary
learns nothing beyond the output 0 and the privacy of Pi’s input is maintained.
This completes the informal security argument.

BC-Analysis. We analyze the communication incurred by a party, say Pi, in an
execution of ΠAND. First, we observe that throughout ΠAND, each party communi-
cates with at most two other parties (i.e. Pi−1 and Pi+1). Further, the messages
communicated (such as Yi, Zi, y) are of at most λ bits. It is therefore easy to see
that the bottleneck complexity of ΠAND is O(λ).

Extension to the dual case of OR function. The above protocol extends naturally
to the dual case of the OR function. For computation of the OR of all parties’
input bits, the setup distributes random elements mapped to potential 0-inputs
(instead of 1-inputs as in ΠAND) and computes Y, Z accordingly. The parties use
the information received from the setup in case their input is 0 and sample a
random group element otherwise. The rest of the protocol remains the same. It
is easy to check that this yields a BC-efficient protocol for OR.

3.2 Protocol for XOR

We present the BC-efficient protocol ΠXOR for XOR in Figure 3.2.
At a high-level, during ΠXOR, a correlated sharing of 0 is distributed as part

of the setup. The parties mask their inputs using their respective share (received
as part of the setup). In the online phase, the parties compute the XOR of their
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masked inputs in an incremental manner over a chain. It is easy to see that the
XOR of the masked inputs evaluates to the XOR of the parties’ inputs.

Note that, unlike the case of AND, ΠXOR does not need another pass over
the chain before output distribution. This is because, in the case of the XOR
function, standard security is the same as residual security. Lastly, we point that
the correlated sharing of 0 and addition of masked inputs is also used in the
NIMPC protocol for addition in [HIKR18]. While their protocol involves parties
sending masked inputs to a central party, we carry out the computation in an
incremental manner over a chain to preserve the BC-efficiency.

Figure 3.2: ΠXOR

Private input. Each party Pi has input bit xi ∈ {0, 1}.
Output. y = x1 ⊕ x2 ⊕ · · · ⊕ xn.
Correlated Randomness Setup. The setup involves the following:
1. For each i ∈ [n], sample a uniformly random bit mi ← {0, 1} such

that ⊕ni=1mi = 0.
2. Output mi to each Pi (i ∈ [n]).

The Protocol. The following steps are run in the online phase of the
protocol:
Phase 1 (Round 1 to Round n). At the beginning of Phase 1, each
Pi computes Mi = xi ⊕mi. During round i, Pi does the following:
– If i = 1, set Xi = Mi.
– If i 6= 1, let Xi−1 denote the message received from Pi−1 during the

previous round. Compute Xi ← Xi−1 ⊕Mi.
– If i < n, send Xi to Pi+1.

Output Computation. Pn computes output y as y = Xn.

Phase 2 (Output Transfer). For i starting from n to 1, each Pi does
the following in sequence -

- If i 6= n, let y denote the output received from Pi+1 in previous round.
- If i 6= 1, send y to Pi−1.
- Output y.

Correctness. For correctness, note that Xn = ⊕ni=1Mi = ⊕ni=1(xi⊕mi) =
(
⊕ni=1

xi
)
⊕
(
⊕ni=1 mi

)
=
(
⊕ni=1 xi

)
⊕ 0 = ⊕ni=1xi.

Security. For security, consider the case where there are at least two honest
parties, say Pi and Pj (the case of single honest party is trivial as the party’s
input can be deduced from the output of XOR). During the protocol, the adversary
learns Mi = xi⊕mi and Mj = xj⊕mj . Further since ⊕nk=1mi = 0, the adversary
can deduce mi⊕mj . However, this leaks nothing beyond xi⊕xj which is allowed
as per ideal realization of XOR. This completes the informal security argument.
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BC-analysis. We analyze the communication incurred by a party, say Pi, in an
execution of ΠXOR. First, we observe that throughout ΠXOR each party communi-
cates with at most two other parties (i.e. Pi−1 and Pi+1). Further, the messages
communicated (such as Xi, y) are a single bit. It is therefore easy to see that the
bottleneck complexity of ΠXOR is O(1).

3.3 Protocol for Abelian Programs

Recall that an abelian program h can be expressed as h(x1, . . . , xn) = f(Σn
i=1xi),

for some f : G → {0, 1}, where G denotes an abelian group (Definition 4). To-
wards securely computing such a function in a BC-efficient manner, we begin with
the following observation about the protocol design in Section 3.1 and Section 3.2
– At the end of the first forward pass, the parties obtain useful information re-
lated to the sum of their inputs. Roughly speaking, this is subsequently used to
derive the output by applying some ‘special’ function. In the case of AND, this
‘special’ function essentially corresponds to checking if the sum is identical to a
fixed value that is given to the parties in advance; in the case of XOR, the ‘special’
function turns out to be just the identity function (as the sum computed at the
end of the first pass directly yields the output).

Extending this approach to an abelian program h(x1, . . . , xn) = f(Σn
i=1xi) =

f(Y ), we first note that the useful information related to the sum of parties’
inputs (that is computed at the end of the first forward pass) must be such that
it does not allow the adversary to learn the sum of the parties’ inputs i.e. Y . This
is because the output of h may not necessarily reveal Y . For this reason, the first
forward pass in our protocol computes a ‘masked’ sum of inputs, say Z = Y +R,
where R corresponds to a random mask that is unknown to the parties. Now,
the output of h can be derived from this masked sum by computing the ‘special’
function f(Z −R).

To realize the above computation in a BC-efficient manner, we use garbled cir-
cuits. The setup phase involves garbling the circuit corresponding to the ‘special’
function. In more detail, this circuit takes as input Z, has the mask R hard-coded
and computes f(Z−R). Further, to enable the parties to obtain labels for input
wires corresponding to Z, the setup additively shares all the labels of the garbled
circuit among the parties. Additive sharing of the input labels offers a two-fold
advantage – Firstly, it ensures that during the execution of the protocol, the
adversary learns at most one label per input wire. This counters residual attacks
by the adversary and maintains privacy of honest parties’ inputs. Specifically,
privacy of garbling guarantees that the adversary is unable to learn the mask R
(and therefore Y ). Secondly, additive secret sharing supports reconstruction in
an incremental fashion. This allows the parties to carry out the reconstruction
of the appropriate label corresponding to Z while maintaining the BC-efficiency.

Based on the above high-level ideas, our BC-efficient construction Πabl has
the following structure. It begins with a forward pass to compute the masked sum
Z. Next, it does a backward pass where the parties use their respective additive
shares (received as part of the setup) and reconstruct the labels corresponding
to Z. Using these labels, the garbled circuit (received as a part of the setup)
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computing f(Z − R) can be evaluated, which results in the output of h. The
formal description of Πabl appears in Figure 3.3.

Figure 3.3: Πabl

Private input. Each party Pi has input xi ∈ G, where G denotes an
abelian group.
Output. y = h(x1, . . . , xn) = f(Σn

i=1xi).
Tools. Garbling scheme (garble, eval)
Correlated Randomness Setup. The setup involves the following:
1. For each i ∈ [n], sample ri ∈ G. Let Σn

i=1ri = R
2. Let CR(Z) denote a circuit that has R ∈ {0, 1}λ a hard-coded,

takes as input Z ∈ {0, 1}λ and outputs f(Z − R). Compute
(GC, {K(0)

α ,K
(1)
α }α∈[λ])← garble(C, 1λ) b.

3. For each α ∈ [λ], b ∈ {0, 1} – let (K(b)
α,1, . . . ,K

(b)
α,n) denote the additive

sharing of K(b)
α i.e. Σn

i=1K
(b)
α,i = K

(b)
α .

4. Output (GC, ri, {K(0)
α,i ,K

(1)
α,i}α∈[λ]) to Pi for each i ∈ [n].

The Protocol. The following steps are run in the online phase of the
protocol:
Phase 1 (Round 1 to Round n). Each Pi sets Mi := xi + ri. During
round i, Pi does the following:
– If i = 1, let Yi = Mi.
– If i 6= 1, let Yi−1 denote the message received from Pi−1 during the

previous round. Compute Yi ← Yi−1 +Mi.
– If i < n, send Yi to Pi+1. Else, set Z = Yn.

Phase 2 (Round n+ 1 to Round 2n). Each Pi does the following in
sequence, starting from i = n to 1:
– If i = n, let (z1, z2, . . . , zλ) denote the bits corresponding to Z. For

each α ∈ [λ], set K ′α,n = K
(zα)
α,n .

– If i 6= n, parse the message received from Pi+1 in the previous round
as
(
Z = (z1, z2, . . . , zλ), {K ′α,i+1}α∈[λ]).

– For each α ∈ [λ], compute K ′α,i ← K ′α,i+1 +K
(zα)
α,i .

– If i 6= 1, send
(
Z, {K ′α,i}α∈[λ]

)
to Pi−1. Else, set ~K = {K ′α,1}α∈[λ].

Output Computation. P1 runs y ← eval(GC, ~K).

Phase 3 (Output Transfer). This phase is identical to Phase 3 of Fig-
ure 3.1.
a We assume a canonical mapping from elements in G to strings in {0, 1}λ.
b Here, we assume for simplicity that the garbling scheme has the property that

the garbled circuit reveals no information about the hard-coded value R. This
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property holds for Yao’s garbled circuits [Yao86]. However, this requirement
can easily be removed by defining the circuit C to take an additional input
R (instead of hard-coding R), for which the labels are given directly to the
parties as part of the setup.

Correctness. For correctness, note that Z computed by Pn at the end of Phase
1 is Z = Σn

i=1Mi = Σn
i=1(xi + ri) = Σn

i=1xi + Σn
i=1ri = Σn

i=1xi + R. Thus,
the output computed via the evaluation of the garbled circuit as f(Z − R) =
f(Σn

i=1xi) = h(x1, . . . , xn) is indeed the correct output.

BC-Analysis. We analyze the communication incurred by a party, say Pi, in an
execution of Πabl. First, we observe that throughout Πabl each party communi-
cates with at most two other parties (i.e. Pi−1 and Pi+1). Further, the messages
communicated (such as Yi, Z, {K ′α,i}α∈[λ], y) are of size at most λ2. It is therefore
easy to see that the bottleneck complexity of Πabl is O(λ2).

We state the formal theorem below.

Theorem 1. Protocol Πabl securely computes the abelian program h against an
adversary corrupting upto n− 1 parties passively.

Proof. Let I and H = P \ I denote the set of indices corresponding to cor-
rupt and honest parties respectively. Let jmin and jmax denote the least and
maximum index corresponding to an honest party, where the indices are in the
range {1, . . . , n}. To prove security, we define below a simulator S that simu-
lates the real-world view of the parties. Recall that S is given (I, {xi}i∈I , y) (see
Section 2.2 for details about the security model).

Setup Simulation. Run (GC, ~K = {K1, . . . ,Kλ}) ← simGC(1λ, θ(C), y), where
simGC denotes the simulator of the garbling scheme and θ(C) denotes the topol-
ogy of the circuit computing f(Z − R) (note that the topology is independent
of the hard-coded value R). For each i ∈ I, sample

(
ri, {K(0)

α,i ,K
(1)
α,i}α∈[λ]) at

random. The view of corrupted Pi constructed by S at this stage comprises of(
GC, ri, {K(0)

α,i ,K
(1)
α,i}α∈[λ]

)
.

Phase 1 Simulation. Choose Yj at random on behalf of each honest Pj (j ∈ H).
For i ∈ I and j ∈ H, add Yj to a corrupt party Pi’s view if i = j + 1.

Phase 2 Simulation. Recall that for each i ∈ I, S knows xi and defined ri (during
the simulation of the setup) and therefore can compute Mi.

- Compute Z as Z = Yjmax +
∑n
k=j+1 Mk. Parse Z = (z1, z2, . . . , zλ).

- For each α ∈ [λ] and j ∈ H : If j 6= jmin, sample K ′α,j at random. Else
(i.e. for j = jmin), set K ′α,jmin

such that K ′α,jmin
+
∑jmin−1
i=1 K

(zα)
α,i = Kα. Note

that K(zα)
α,i for i ∈ [jmin− 1] corresponds to additive shares of corrupt parties

which were already defined by S during the setup.
- For i ∈ I and j ∈ H, add (Z,K ′α,j) to a corrupt party Pi’s view if i = j−1.
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Phase 3 Simulation. For i ∈ I and j ∈ H, add y to a corrupt party Pi’s view if
i = j + 1.

Below, we argue that the views of corrupt parties in the real and ideal world
are indistinguishable via a series of intermediate hybrids.

-Hyb0: Same as the real-world execution.

-Hyb1: Same as Hyb0, except that Yj for j ∈ H is sampled at random.

This is in contrast to the previous hybrid where Yj is computed as Yj =
Yj−1 +xj + rj . Since rj is uniformly distributed in G, this is indistinguishable
from the previous hybrid.

-Hyb2: Same as Hyb1, except for the way in which K ′α,j for j ∈ H, α ∈ [λ] is
computed – For j 6= jmin, K ′α,j is chosen uniformly at random, whereas for
j = jmin, it is set such that K ′α,jmin

+
∑jmin−1
i=1 K

(zα)
α,i = K

(zα)
α .

This is in contrast to the previous hybrid where K ′α,j is computed as K ′α,j ←
K ′α,j+1 +K

(zα)
α,j . Since K(zα)

α,j is distributed uniformly at random (conditioned
on Σn

k=1K
(zα)
α,k = K

(zα)
α ), this is indistinguishable from the previous hybrid.

-Hyb3: Same as Hyb2, except that (GC, ~K) is computed as (GC, ~K)← simGC(1λ,
θ(C), y), where θ(C) denotes the topology of the circuit computing f(Z−R).

This is in contrast to Hyb2 where (GC, ~K) is computed as (GC, {K(zα)
α }α∈[λ]),

where (GC, {K(0)
α ,K

(1)
α }α∈[λ])← garble(C, 1λ). It follows from privacy of the

garbling scheme (see Definition 5) that Hyb3 is indistinguishable from Hyb2.

Since Hyb3 corresponds to the ideal execution and every pair of consecutive
hybrids are indistinguishable, this completes the proof that the views of corrupt
parties in the real and ideal world are indistinguishable.

4 BC-efficient Protocol for Selection Functions

In this section, we present a BC-efficient protocol Πsel for the selection function
f(x1 = q, x2, . . . , xn) = xq, where P1’s input is a selection index q ∈ {2, . . . , n}
and the inputs of the other parties are in ZM , the plaintext space of an additively
homomorphic encryption scheme.

As a starting point, note that the output of the selection function can be
viewed as

∑n
i=2(bi · xi), where bi ∈ {0, 1} denotes an indicator bit showing

whether i = q holds or not (i.e. bi = 1 if i = q and 0 otherwise). This seems
promising as such a computation can be carried out in a chain – each party
Pi computes (bi · xi), and these values can be aggregated while preserving BC-
efficiency as seen in Section 3. Unfortunately, this direct approach requires Pi
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to know bi, which must not be allowed (as it is not revealed by output of f).
However, if Pi somehow had access to an encryption of bi instead, then the above
computation over the chain could be carried out under the hood of additive
homomorphic encryption; maintaining that bi remains private from Pi.

Next, we note that since bi depends on the input of party P1, it is not possible
to distribute encryptions of bi directly to Pi during the input-independent setup.
Therefore, to account for each possible value of x1 = q (where q ∈ [n]), the setup
distributes to each Pi (i ≥ 2) a look-up table containing n ciphertexts: among
these ciphertexts, the one corresponding to q = i would be an encryption of
bi = 1, while the others would correspond to encryptions of bi = 0. The idea is
to ‘point’ Pi to the appropriate ciphertext in the look-up table without revealing
bi. For this, a random cyclic-shift can be used, say using an offset r (unknown to
Pi). This offset r is given to P1 to enable her to compute the ‘pointer’ q′ = q+r.
Lastly, the encryption is assumed to be randomized, otherwise Pi could learn bi
by simply inspecting her look-up table (since all but one ciphertexts correspond
to encryptions of 0).

Based on the above ideas, we can obtain a BC-efficient construction for se-
curely computing the selection function, with O(n) storage costs, as follows (in
our final construction, we reduce the storage overhead). During the setup, each
Pi (i ≥ 2) receives a look-up table containing a ‘shifted’ sequence of n ciphertexts
(as explained above). Each of the look-up tables uses the same offset r for the
shift and P1 is given this offset r. The online phase begins with P1 computing the
appropriate pointer q′ = x1 + r = q + r, which is communicated over a forward
pass of the chain to all. During this pass, each party Pi uses the ciphertext at
index q′ of her look-up table (which would correspond to an encryption of bi)
to homomorphically compute an encryption of (bi · xi). These encryptions are
aggregated over the chain, resulting in the encryption of

∑n
i=2(bi ·xi) = xq at the

end of the forward pass. The final step is to compute the output by decrypting
this AHE output ciphertext. Possible ways to do this decryption in a BC- efficient
manner include either (a) incremental decryption (carried out over a chain) of
this ciphertext or (b) use garbled circuits. We opt for approach (b) to avoid the
additional requirement that the AHE used must support incremental decryption.

In the approach using garbled circuits for decryption, we consider a garbled
circuit that takes as input the AHE ciphertext, has the secret key of AHE hard-
coded and outputs the decryption. Similar to the protocol Πabl (Figure 3.3),
the input labels of the garbled circuit are additively shared among the parties.
This enables them to reconstruct (over a backward pass of the chain) the appro-
priate label corresponding to the output ciphertext and obtain the output via
evaluation of the garbled circuit.

While the above construction is indeed BC-efficient in the online phase, ob-
serve that the setup involves parties receiving look-up tables of size n. We avoid
this in our final construction that achieves storage and computation complexity
also independent of n. The main idea is to ‘compress’ the look-up table in a way
that still allows party Pi to obtain the ciphertext corresponding to bi (without
revealing bi).
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Interestingly, this can be done using garbled circuits, thereby avoiding new
primitives or assumptions over the above described construction. As part of
the setup, each Pi is given a garbled circuit, say GCi which garbles a circuit C
described as follows: The circuit C has i, the public key of the AHE and the
randomness used for encryption hard-coded; it takes as input the index j and
outputs the encryption of bi (where bi = 1 if q = i holds and 0 otherwise).
Further, P1 is given the labels for input wires. The final construction differs
from the previous construction in the following aspects: (a) the ‘pointer’ sent
by P1 is the appropriate label corresponding to q (instead of the index q′ in the
look-up table approach). (b) Each Pi obtains the encryption of bi by evaluating
GCi using the label corresponding to q that it receives in the forward pass (instead
of obtaining the appropriate encryption directly from the look-up table).

To make the above approach work while preserving BC-efficiency, it is impor-
tant that the ‘pointer’ label given by P1 can be used by all parties to evaluate
their respective garbled circuits (analogous to P1 giving the same pointer index
to all in the lookup-table approach). This is because we cannot afford to make
P1 give n different pointers, one for each garbled circuit as that would inflate the
BC complexity. To enable the use of the same input label across the n garbled
circuits, we use a slightly modified garbling algorithm that takes as input the
labels corresponding to the input wires. The garbling algorithm of Yao [Yao86]
easily supports this.

Lastly, we point out that it may seem problematic to give P1 all the input
labels of the garbled circuits (computing the encryptions) as this would compro-
mise the privacy of garbling. However, we need to rely of privacy of garbling only
when P1 is honest. This is because an adversary corrupting P1 and Pi (i ≥ 2)
already knows bi. When P1 is honest, a potentially corrupt Pi (i ≥ 2) will have
access to only one set of input labels of GCi and privacy of garbling ensures that
Pi cannot learn bi. Thus, security is maintained.

The formal description of the protocol appears in Figure 4.1.

Figure 4.1: Πsel

Private input. P1’s input is a selection index q ∈ {2, . . . , n} and the
inputs of the other parties are xi ∈ ZM .
Output. f(x1 = q, x2, . . . , xn).
Tools. Additively homomorphic Encryption over ZM AHE =
(Keygen, Enc, Dec, Add, ScalMul) (see Definition 6)a, Garbling scheme
(garble, eval) b.
Correlated Randomness Setup. The setup involves the following:
1. Let (pk, sk)← Keygen(1λ).
2. For i ∈ {2, . . . , n}:

- Let Ci,pk,ri,Enc(q) denote a circuit that has the value i, pk and
the randomness used for encryption ri,Enc hard-coded, takes as
input an index q; outputs c = Enc(pk, 1; ri,Enc) if q = i holds and
c = Enc(pk, 0; ri,Enc) otherwise.
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- Sample a set of input labels {K̃(0)
α , K̃

(1)
α }α∈[λ]

– Compute GCi ← garble(Ci,pk,rEnc , {K̃
(0)
α , K̃

(1)
α }α∈[λ], 1λ)

3. Let Csk(ct) denote a circuit that has a secret key value sk hard-coded,
takes as input a ciphertext ct and outputs z ← Dec(sk, ct).

4. Sample a set of input labels {K(0)
α ,K

(1)
α }α∈[λ] and compute GCDec ←

garble(Csk, {K(0)
α ,K

(1)
α }α∈[λ], 1λ). For each α ∈ [λ], b ∈ {0, 1}, let

(K(b)
α,1, . . . ,K

(b)
α,n) denote the additive sharing of K(b)

α .

5. Output
(

pk, GCi, {K(0)
α,i ,K

(1)
α,i}α∈[λ]

)
to Pi (i ∈ {2, . . . , n}).

6. Output
(
pk, {K̃(0)

α , K̃
(1)
α }α∈[λ], {K

(0)
α,1,K

(1)
α,1}α∈[λ], GCDec

)
to P1.

The Protocol. The following steps are run in the online phase of the
protocol:
Phase 1 (Round 1 to Round n). During round i, Pi does the follow-
ing:
– If i = 1: let (b1, . . . , bλ) denote the bits corresponding to x1 = q.

Sample randomness r and compute ct1 = Enc(pk, 0; r).
Set K = {K̃(bα)

α }α∈[λ]. Send (K, ct1) to Pi+1.
– If i 6= 1: let (K, cti−1) denote the message received from Pi−1 during

the previous round.
- Compute c′i = eval(GCi,K).
- Compute c∗i = ScalMul(pk, c′i, xi).
- Compute cti = Add(pk, cti−1, c

∗
i ).

– If i < n, send (K, cti) to Pi+1. Else, set Z = ctn.

Phase 2 (Round n+ 1 to Round 2n). In this phase, parties use their
additive shares of the labels of GCDec to reconstruct the input label (say
~K) corresponding to Z. The steps are identical to Phase 2 of Figure 3.3 .

Output Computation. P1 runs y ← eval(GCDec, ~K).

Phase 3 (Output Transfer). This phase is identical to Phase 3 of Fig-
ure 3.1.
a Here we assume for simplicity that M ≥ 2λ so the input of the parties can be

encrypted using the AHE. As described in the preliminaries, if M < 2λ, one
can simply perform the encryption of the inputs e.g., in a bit by bit fashion.

b In this construction, we assume the modified garble algorithm which takes
as additional input, the labels of the garbled circuit. Yao’s garbling supports
this requirement easily.

Correctness. Correctness of garbling with respect to GCi for each Pi ∈ [n] and
correctness of AHE ensures that Z computed at the end of the first forward pass
corresponds to an encryption of

∑n
i=2(bi · xi) = xq (where bi = 0 for i 6= q and
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1 otherwise). It now follows from correctness of garbling with respect to GCDec
(that computes the decryption of an input AHE ciphertext) that the output y
computed is indeed the correct output xq.

BC-Analysis. We analyze the communication incurred by a party, say Pi, in an
execution of Πsel. First, we observe that throughout Πsel each party communi-
cates with at most two other parties (i.e. Pi−1 and Pi+1). Further, the messages
communicated (such as K, {K ′α,i}α∈[λ], y) are of size at most λ2, for the GC wire
label shares, plus the size of one AHE ciphertext, which is poly(λ). It is therefore
easy to see that the bottleneck complexity of Πsel is poly(λ) and independent
of n.

Extension to larger inputs. The protocol Πsel can be extended for the case where
the inputs of P2, . . . Pn are arbitary-length vectors i.e. xi ∈ ZkM , by running the
scalar multiplication on each entry of the input vector. In more detail, each Pi is
still given a single garbled circuit GCi which he uses to compute c′i. However, each
Pi would now compute a set of k ciphertexts {c∗i,α ← ScalMul(pk, c′i, xi,α)}α∈[k]
and {cti,α = Add(pk, cti−1,α, c

∗
i,α)}α∈[k] accordingly, where xi,α denotes the α’th

entry of xi. This would introduce a multiplicative factor of k (which is indepen-
dent of n) in the BC complexity of Πsel, thereby maintaining the BC-efficiency.

We state the formal theorem below.

Theorem 2. Protocol Πsel securely computes the selection function f(x1 =
j, x2, . . . , xn) = xj (where x1 ∈ {2, . . . , n} and xi ∈ ZM , i ≥ 2) against an
adversary corrupting upto n− 1 parties passively.

Proof. Let I and H = P \ I denote the set of indices corresponding to corrupt
and honest parties respectively. Let jmin and jmax denote the least and maxi-
mum index corresponding to an honest party, where the indices are in the range
{1, . . . , n}. To prove security, we define below a simulator S that simulates the
real-world view of the parties. Recall that S is given (I, {xi}i∈I , y) (we refer
to Section 2.2 for details about the security model).

Since the parties’ roles are asymmetric, we describe the simulation in two
parts based on whether P1 ∈ I or not. First, we describe the simulation for the
case when P1 ∈ I. As discussed previously, we do not rely on privacy of garbling
with respect to GCi (i ∈ I) in this case. However, privacy of garbling with respect
to GCDec is crucial.

Setup Simulation.

- Compute the values pk, GCi, {K̃(0)
α , K̃

(1)
α }α∈[λ] for each i ∈ I as per the

protocol steps in Figure 4.1.
- Sample ~K = {K1, . . . ,Kλ} and run GCDec ← simGC(1λ, θ(C), y, ~K), where

simGC denotes the simulator of the garbling scheme and θ(C) denotes the
circuit computing the decryption of an AHE input ciphertext. (Note that the
topology of the circuit is independent of the hard-coded values).

- For each i ∈ I, sample
(
{K(0)

α,i ,K
(1)
α,i}α∈[λ]) at random.
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The view of corrupted Pi (i ≥ 2) constructed by S at this stage comprises of(
pk, GCi, {K(0)

α,i ,K
(1)
α,i}α∈[λ]

)
. The view of corrupted P1 constructed by S at this

stage comprises of
(
pk, {K̃(0)

α , K̃
(1)
α }α∈[λ], {K

(0)
α,1,K

(1)
α,1}α∈[λ], GCDec

)
.

Phase 1 Simulation.

- Recall that S knows x1 = (b1, . . . , bλ) and defined {K̃(0)
α , K̃

(1)
α }α∈[λ] during

the setup simulation and can therefore compute K = {K̃(bα)
α }α∈λ.

- On behalf of each honest Pj (j ∈ H), compute ctj ← SAHE(pk,m), where
m = y if x1 = q ≤ j and m = 0 otherwise. Here, SAHE refers to the simulator
of the AHE for circuit privacy (Definition 6).

For i ∈ I and j ∈ H, add (K, ctj) to a corrupt party Pi’s view if i = j + 1.

Phase 2 Simulation. This is similar to Phase 2 simulation of Thm 1, which
we describe below for completeness. Recall that for each i ∈ I, S knows xi
and distributed GCi (during the simulation of the setup) and can therefore can
compute c∗i .

- Compute Z by homomorphic addition of ctjmax and each c∗k for k ∈ [j+1, n].
Parse Z = (z1, z2, . . . , zλ).
- For each α ∈ [λ] and j ∈ H : If j 6= jmin, sample K ′α,j at random. Else
(i.e. for j = jmin), set K ′α,jmin

such that K ′α,jmin
+
∑jmin−1
i=1 K

(zα)
α,i = Kα. Note

that K(zα)
α,i for i ∈ [jmin− 1] corresponds to additive shares of corrupt parties

which were already defined by S during the setup.
- For i ∈ I and j ∈ H, add (Z,K ′α,j) to a corrupt party Pi’s view if i = j−1.

Phase 3 Simulation. For i ∈ I and j ∈ H, add y to a corrupt party Pi’s view if
i = j + 1.

Below, we argue that the views of corrupt parties in the real and ideal world
are indistinguishable via a series of intermediate hybrids.

-Hyb0: Same as the real-world execution.

-Hyb1: Same as the previous hybrid except that c∗j for j ∈ H and j 6= q is
computed as SAHE(pk, 0).

This is in contrast to the previous hybrid where c∗j for j ∈ H and j 6= q
is computed as ScalMul(pk, Enc(pk, 0), xj). Indistinguishability follows from
circuit privacy of the AHE.

-Hyb2: Same as the previous hybrid except that ctj for j ∈ H is computed
as SAHE(pk,m), where m = y if x1 = q ≤ j and m = 0 otherwise.
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This is in contrast to the previous hybrid where ctj for j ∈ H is computed
as Add(pk, Enc(pk, 0), Enc(pk,m)), where m = y if x1 = q ≤ j and m = 0
otherwise. Indistinguishability follows from circuit privacy of the AHE.

-Hyb3: Same as Hyb2, except for the way in which K ′α,j for j ∈ H, α ∈ [λ] is
computed – For j 6= jmin, K ′α,j is chosen uniformly at random, whereas for
j = jmin, it is set such that K ′α,jmin

+
∑jmin−1
i=1 K

(zα)
α,i = K

(zα)
α .

This is in contrast to the previous hybrid where K ′α,j is computed as K ′α,j ←
K ′α,j+1 +K

(zα)
α,j . Since K(zα)

α,j is distributed uniformly at random (conditioned
on Σn

k=1K
(zα)
α,k = K

(zα)
α ), this is indistinguishable from the previous hybrid.

-Hyb4: Same as Hyb3, except that (GCDec, ~K) is computed as GCDec ← simGC(1λ,
θ(C), y, ~K), where ~K = {K1, . . . ,Kλ} is sampled at random and θ(C) de-
notes the topology of the circuit computing the decryption of an AHE input
ciphertext.

This is in contrast to Hyb3 where GCDec is computed as GCDec ← garble(Csk, {K(0)
α ,

K
(1)
α }α∈[λ], 1λ) where {K(0)

α ,K
(1)
α }α∈[λ] is sampled at random and ~K = {K(zα)

α }α∈[λ]
It follows from privacy of the garbling scheme (see Definition 5) that Hyb4 is
indistinguishable from Hyb3.

Since Hyb4 corresponds to the ideal execution and every pair of consecutive
hybrids are indistinguishable, this completes the proof that the views of corrupt
parties in the real and ideal world are indistinguishable for the case when P1 ∈ I.

Next, we describe the simulation for the case when P1 ∈ H. The main differ-
ence is that in this case we rely on privacy of garbling with respect to GCi (i ∈ I).
On the other hand, simulation of GCDec is not relevant here as the adversary (who
does not corrupt P1) does not have access to GCDec in the real-world execution
of the protocol.

Setup Simulation.

- For each i ∈ I : Sample pk, ri,Enc and compute c′i = Enc(pk, 0; ri,Enc). Run
GCi ← simGC(1λ, θ(C), c′i, {K̃1, . . . , K̃λ}), where simGC denotes the simulator
of the garbling scheme, {K̃1, . . . , K̃λ} are chosen at random and θ(C) denotes
the topology of the circuit Ci,pk,ri,Enc described in Πsel (Figure 4.1). Note that
the topology of the circuit is independent of the hard-coded values.

- For each i ∈ I, sample
(
{K(0)

α,i ,K
(1)
α,i}α∈[λ]) at random.

The view of corrupted Pi (i ≥ 2) constructed by S at this stage comprises of(
pk, GCi, {K(0)

α,i ,K
(1)
α,i}α∈[λ]

)
.
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Phase 1 Simulation. On behalf of each honest Pj (j ∈ H), compute ctj ←
SAHE(pk, 0), where SAHE refers to the simulator of the AHE for circuit privacy
(Definition 6). . For i ∈ I and j ∈ H, add (K = {K̃1, . . . , K̃λ}, ctj) to a corrupt
party Pi’s view if i = j + 1.

Phase 2 Simulation. Recall that for each i ∈ I, S knows xi and c′i (during the
simulation of the setup) and can therefore compute c∗i .

- Compute Z by homomorphic addition of ctjmax and each c∗k for k ∈ [j+1, n].
Parse Z = (z1, z2, . . . , zλ).
- For each α ∈ λ and j ∈ H : Sample K ′α,j at random.
- For i ∈ I and j ∈ H, add (Z,K ′α,j) to a corrupt party Pi’s view if i = j−1.

Phase 3 Simulation. For i ∈ I and j ∈ H, add y to a corrupt party Pi’s view if
i = j + 1.

Below, we argue that the views of corrupt parties in the real and ideal world
are indistinguishable via a series of intermediate hybrids.

-Hyb0: Same as the real-world execution.

-Hyb1: Same as the previous hybrid, except that y is sent by P1 in Phase 3
directly, without evaluating GCDec.

This is indistinguishable from the previous hybrid as the adversary’s view is
identical.

-Hyb2: Same as the previous hybrid except that GCi for i ∈ I outputs
Enc(pk, 0; ri,Enc).

This hybrid differs from the previous one only if i = q holds. In such a case,
c′i corresponds to an encryption of 1 in the previous hybrid (as opposed to
encryption of 0 in Hyb2). This is indistinguishable from the previous hybrid
due to CPA security of AHE.

-Hyb3: Same as the previous hybrid except that honest parties Pj (j ∈ H)
compute c′j as c′j ← Enc(pk, 0; rj,Enc).

This hybrid differs from the previous one only if j = q holds. In such a case,
c′j corresponds to an encryption of 1 in the previous hybrid (as opposed to
encryption of 0 in Hyb3). This is indistinguishable from the previous hybrid
due to CPA security of AHE.

-Hyb4: Same as the previous hybrid except that c∗j for j ∈ H is computed as
SAHE(pk, 0).

This is in contrast to the previous hybrid where c∗j is computed as c∗j ←
ScalMul(pk, Enc(pk, 0), xj). Indistinguishability follows from circuit privacy
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of the AHE.

-Hyb5: Same as the previous hybrid except that ctj for j ∈ H is computed
as SAHE(pk, 0).

This is in contrast to the previous hybrid where ctj is computed as Add(pk, Enc(pk, 0),
Enc(pk, 0)). Indistinguishability follows from circuit privacy of the AHE.

-Hyb6: Same as Hyb5, except that GCi for i ∈ I is computed as GCi ←
simGC(1λ, θ(C), c′i, {K̃1, . . . , K̃λ}), where {K̃1, . . . , K̃λ} are chosen at random
and θ(C) denotes the topology of the circuit Ci,pk,ri,Enc described in Πsel (Fig-
ure 4.1).

This is in contrast to Hyb5 where GCi, {K̃1, . . . , K̃λ} are computed as GCi ←
garble(Ci,pk,ri,Enc , {K̃

(0)
α , K̃

(1)
α }α∈[λ], 1λ). Here, {K̃(0)

α , K̃
(1)
α }α∈[λ] is sampled

at random and {K̃1, . . . , K̃λ} = {K(bα)
α }α∈[λ] where q = (b1, . . . , bλ). It fol-

lows from privacy of the garbling scheme (see Definition 5) that Hyb6 is
indistinguishable from Hyb5.

Since Hyb6 corresponds to the ideal execution and every pair of consecutive
hybrids are indistinguishable, this completes the proof that the views of corrupt
parties in the real and ideal world are indistinguishable for the case when P1 ∈ H.
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