
Modelling IBE-based Key Exchange Protocol
using Tamarin Prover

Srijanee Mookherji, Vanga Odelu and Rajendra Prasath

Indian Institute of Information Technology Sricity, Chittoor, Andhra Pradesh.
{srijanee.mookherji,odelu.vanga,rajendra.prasath}@iiits.in

Abstract. Tamarin Prover is a formal security analysis tool that is used to analyse security
properties of various authentication and key exchange protocols. It provides built-ins like Diffie-
Hellman, Hashing, XOR, Symmetric and Asymmetric encryption as well as Bilinear pairings.
The shortfall in Tamarin Prover is that it does not support elliptic curve point addition operation.
In this paper, we present a simple IBE (Identity-Based Encryption) based key exchange protocol
and tamarin model. For modelling, we define a function to replace the point addition operation
by the concept of pre-computation. We demonstrate that the security model functions for
theoretical expectation and is able to resist Man-In-The-Middle (MITM) Attack. This model can
be used to analyse the formal security of authentication and key exchange protocols designed
based-on the IBE technique.

Keywords: Tamarin Prover, Key Exchange Protocol, Identity Based Encryption (IBE), Man-
In-The-Middle (MITM) attack, Elliptic Curve Point Addition Operation

1 Introduction

In the current era of remote interactions among systems, secured communication is of utmost
importance. While designing any such communication protocol, one must ensure that a connection
is established with authentic users only. There are multiple authentication protocols based on
key exchange techniques proposed till date. One such technique is by using the concept of
Diffie-Hellman key exchange protocol [DH76]. The authentication protocols use this technique
to establish a secret session key among two parties [LLC+08, Pu10]. In case of multi-server
environment, the major drawback of such protocols is that the client needs to store the public key
of multiple servers. To overcome this issue IBE-based key exchange protocols were introduced.
Here the identity of the clients and servers are used as public keys [TL15, ODWC18]. In this paper,
we present a generalised key exchange protocol using the concepts of IBE and Diffie Hellman key
exchange protocols. We then model it using Tamarin Prover to analyse it’s security properties.

Tamarin Prover [MSCB13] is a powerful formal security analysis tool. One can design protocol
and specify adversary model to check the security properties of the protocol. Tamarin Prover
provides a wide range of built-in features like Diffie-Hellman, hashing, symmetric-encryption,
asymmetric-encryption, signing, bilinear-pairing, xor, multiset and revealing-signing. The main
Tamarin Prover repository1 consists of multiple example protocols and attack models. The tool
developers have pointed out that Tamarin Prover currently does not support elliptic curve point
addition operations [SSCB14]. They provide an example model for ’Identity based authenticated
key agreement protocols from pairings’ designed by Chen and Kudla [CK03] which is based on
Diffie-Hellman key exchange protocol.

The rest of the paper is organized as follows: We first present built-in model simple Diffie
Hellman Key Exchange Protocol [MSCB13] and demonstrate that it is vulnerable to MITM attack

1https://github.com/tamarin-prover/tamarin-prover

mailto:{srijanee.mookherji, odelu.vanga, rajendra.prasath}@iiits.in

2 Modelling IBE-based Key Exchange Protocol using Tamarin Prover

in Section 2. Next in Section 3, we see an overview of the Chen and Kudla Key Agreement protocol
[CK03] and study the modelling strategy used in Tamarin Prover to perform Point Addition. The
developers discuss the strategy of ordered concatenation of the pairing terms. As it is an Identity
based Key Exchange protocol the discussed variant proves to be successful, but this method cannot
be used in all protocols using Point Addition. To look into the same, we design a generalised
IBE based key exchange protocol which is elaborated in Section 4. To model the protocol we
required point addition operation support. As Tamarin Prover does not support the same as well
as equalities like (c)[(a)P + (b)]P = [(ca)P + (cb)P] [SSCB14], we normalise our model by
defining a function hf/1 which returns a single output against multiple input, working similar
to that of a hash function. Along with this some pre-computations need to be done in order to
model our protocol. The same is described in Section 4.3.1. We show in Section 4.4 that our
model functions fine and that the designed key exchange protocol resists MITM attack. We then
concluded the paper in Section 5.

2 Diffie Hellman Key Exchange Protocol
In this section, we present the review of the Diffie-Hellman protocol and it’s modeling in Tamarin
Prover.

2.1 Simple Diffie Hellman Key Exchange Protocol
Diffie Hellman key exchange protocol [DH76] is used to establish a shared secret over a public
channel. The protocol is vulnerable to MITM attack. An adversary is able to pretend as one of the
parties and establish a shared secret key with the other party [JG02]. Table 1 shows the summary
of the Diffie-Hellman key exchange protocol.

Table 1: Diffie Hellman Key Exchange Protocol

Alice Bob
Chooses secret a Chooses secret b

Computes Y = ga Computes X = gb

Y =ga

−−−−→
X=gb

←−−−−
Compute A = Xa Compute B = Y b

Alice and Bob Establish shared secret key A = B = gab

2.2 Modelling using Tamarin Prover
The Tamarin security model of the Diffie Hellman Key Exchange Protocol is as follows.

theory diffieplain
begin

builtins: diffie-hellman

/* protocol */
rule Init_client:

[Fr(~a)]
-->
[Keys(~a, ’g’^~a),Out(’g’^~a)]

Srijanee Mookherji, Vanga Odelu and Rajendra Prasath 3

rule Init_server:
[Fr(~b)]
-->
[Keys(~b, ’g’^~b),Out(’g’^~b)]

rule Init_Finish_server:
let key_other = ’g’^a
in
[Keys(b, ’g’^b), In(’g’^a)]
--[Session_created(key_other^b)]->
[Session(key_other^b)]

rule Finish_client:
let key_other = ’g’^b
in
[Keys(a, ’g’^a), In(’g’^b)]
--[Session_created(key_other^a)]->
[Session(key_other^a)]

/* Key Reveals */
rule key_reveal:

[Keys(~secretk, ’g’^~secretk)]
--[Key_reveal(~secretk)]->
[Out(~secretk)]

rule Session_reveal:
[Session(skey)]
--[Reveal_sessionKey(skey)]->
[Out(skey)]

The lemma used in the model 2.2 is a simple Man-In-The-Middle attack. The code is stated
below. The description of the lemma is provided in Lemma 1.

// lemma
lemma MITM:

"(All #i1 skey .
(

Session_created(skey) @ i1
&
not ((Ex A #ia .

Key_reveal(A) @ ia)
| (Ex B #ib . Reveal_sessionKey
(B) @ ib)
)

)
==> not (Ex #i2. K(skey) @ i2)

)"

Lemma 1. For all the cases where the Secret Session keys are created and, neither the secret keys
of both the parties nor is the shared secret key is revealed, the Adversary should not be able to
compute the Secret Session Key.

4 Modelling IBE-based Key Exchange Protocol using Tamarin Prover

2.3 Model Visualisation

The visualization display of the Tamarin Prover shows that MITM attack is possible in a Simple
Diffie Hellman Key Exchange protocol. The Figure 1 demonstrates "trace found" and the lemma
has turned red while the lemma was solved. It signifies that the tool was able to find a case where
the Adversary can compute the Secret Session Key. The Figure 2 shows a graphical representation
of the same. The red line indicates the value that the Adversary is able to compute and perform the
MITM attack.

Figure 1: Tamarin Prover Model Visualisation - Lemma

Figure 2: Tamarin Prover Model Visualisation - Graph

Srijanee Mookherji, Vanga Odelu and Rajendra Prasath 5

3 Study of Tamarin Prover Modelling of Chen and Kudla
Protocol

The Chen and Kudla protocol[CK03] is summarised in the Table 2 and 3. In the KGC Setup phase
(Table 2), the KGC chooses private key,s and computes public key Ps = sP . Then 2 users Alice,
A and Bob, B is considered. KGC computes Compute QA = h(IDA), SA = sQA and sends SA

to Alice and SB to Bob. In the Key Exchange Phase (Table 3) A and B compute TA = aP and
TB = bP where a and b are chosen secrets. A sends TA to B and B sends TB to A. Finally, Alice
and Bob computes KAB = ê(SA, TB)ê(aQB , Ps) and KBA = ê(SB , TA)ê(bQA, Ps) which
results in the computation of K = KAB = KBA = ê(bQA + aQB , Ps).

Table 2: Chen Kudla Protocol- KGC Setup and User Registration Phase

Alice KGC Bob

KGC Setup

Chooses private key, s
Generates public key Ps = sP

User Registration

Compute QA = h(IDA), SA = sQA
T A→Alice:<SA>←−−−−−−−−−−−

Compute QB = h(IDB), SB = sQB
T A→Bob:<SB>−−−−−−−−−−−→

Table 3: Chen Kudla Protocol- Key Exchange Phase

Alice Bob
Choose secret a Choose secret b

Computes TA = aP Computes TB = bP

T oBob:<TA>−−−−−−−−−→
T oAlice:<TB>←−−−−−−−−−−

Compute
KAB = ê(SA, TB)ê(aQB , Ps)

Compute
KBA = ê(SB , TA)ê(bQA, Ps)

Shared Secret K = KAB = KBA = ê(bQA + aQB , Ps)

In the model example Chen_Kudla.spthy present in the repository2, the multiplication of
the bilinear terms are replaced by the concatenation function [SSCB14]. The model functions
appropriately. The code snippet is as follows:

rule Init_2:
let skA = pmult(~s1, hp($A))

2https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/ake/bilinear

6 Modelling IBE-based Key Exchange Protocol using Tamarin Prover

mpk = pmult(~s2,’P’)
X = pmult(~ex,’P’)
sessKey = kdf(em(hp($B), mpk)^~ex,
em(skA, Y), pmult(~ex,Y), $A, $B, X, Y)

rule Resp_1:
let skB = pmult(~msk, hp($B))

mpk = pmult(~msk, ’P’)
Y = pmult(~ey,’P’)
sessKey = kdf(em(skB, X),
em(hp($A), mpk)^~ey,
pmult(~ey,X), $A, $B, X, Y)

4 IBE based Key Exchange Protocol

As discussed in Section 2, Diffie Hellman Key Exchange Protocol suffers from MITM attack. To
secure the protocol we design an IBE based key exchange protocol using the concept of Diffie
Hellman Key Exchange Protocol.

4.1 Mathematical Preliminaries

4.1.1 Bilinear Pairings

Bilinear Pairings can be defined as follows. Assume G1 is an additive cyclic group of prime order
q, G2 is a multiplicative cyclic group of prime order q. P be the generator of G1. The bilinear
pairing equation ê : G1 ×G1 → G2 satisfies the following properties [TL15].

• Bilinearity: ê(xP, yQ) = ê(P, Q)xy , for all P, Q ∈ G1 and for allx, y ∈ Z∗
q

• Computability: For all P, Q ∈ G1, ê(P, Q) can be computed efficiently.

• Non-degeneracy: There exist P, Q ∈ G1 with ê(P, Q) ̸= 1, where 1 is the multiplicative
identity of G2.

Definition 1. Collusion Attack Algorithm With k-Traitors (k-CAA Problem)
Given P ∈ G1, sP ∈ G1, x1, x2, ..., xk ∈ Z∗

q and (1
s+x1

)P, (1
s+x2

)P, ..., (1
s+xk

)P for an integer
k, s ∈ Z∗

q , P ∈ G1, it is hard to compute (s + x)−1P , where x /∈ x1, x2, ..., xk.

4.2 Key Exchange Protocol

Table 4 and Table 5 describes the protocol that we have designed. Key Generation Center (KGC)
setup phase begins with the KGC choosing a master private key, K and generating it’s own public
key Q = KP .

In the registration phase, we assume that a single Server,S and a single Client,C registers with the
KGC. The KGC provides < IDC , KC > to C and < IDS , KS > to S. Here, KC = 1

h(IDC)+K P

and KS = 1
h(IDS)+K P .

In the Key Exchange Phase Client,C chooses secret x and computes A = x(h(IDS)P + Q). Simi-
larly, Server,S chooses secret y and computes B = x(h(IDC)P +Q). Client then sends A to Server
and Server sends B to Client. On receiving the same Client further computes SK = ê(B, KC)x

and Server computes SK = ê(A, KS)y .

Srijanee Mookherji, Vanga Odelu and Rajendra Prasath 7

Table 4: Client and Server Registration with KGC

Client KGC Server
KGC Setup Phase
Chooses Secret Key, K
Computes Public Key, Q =
KP

Client Registration Phase

KGC→Client:<IDC ,KC >←−−−−−−−−−−−−−−−−−−−
KC = 1

h(IDC)+K P

Server Registration Phase

KGC→Server:<IDS ,KS>−−−−−−−−−−−−−−−−−→
KS = 1

h(IDS)+K P

Table 5: Client-Server Key Exchange Protocol

Client Server

Choose secret x
A = x(h(IDS)P + Q)

<A>−−−→
Choose secret y

B = y(h(IDC)P + Q)
←−−−

Compute : SK = ê(B, KC)x

Compute : SK = ê(A, KS)y

4.3 Modelling using Tamarin Prover
4.3.1 Normalization and Precomputation

As per the discussion in Section 1 point addition operation is not supported in Tamarin Prover. The
Chen and Kudla protocol [CK03] is an Identity based key exchange protocol with point addition
being a part of the bilinear terms thus, concatenation was a solution. In the designed IBE based key
exchange protocol the point addition needs to be normalised and precomputed. Hence, we define a
function hf/1 that provides a single output against multiple inputs. We normalise our protocol in
the following way :

• KC = 1
h(IDC)+K P is normalised as hf(IDC , K). The further computation is continued as

KC = pmult(inv(hf(IDC , K)),′ P ′). Here inv denotes inverse and pmult denotes point
multiplication.

• KS = 1
h(IDS)+K P is normalised as hf(IDS , K). The further computation is continued as

KC = pmult(inv(hf(IDS , K)),′ P ′). Here inv denotes inverse and pmult denotes point

8 Modelling IBE-based Key Exchange Protocol using Tamarin Prover

multiplication.

In order to use the above normalisation, in the key exchange phase A = x(h(IDS)P + Q) and
B = y(h(IDC)P + Q) cannot be directly computed. We precompute the values KC and KS as
mentioned above, at KGC and send them to the Client and Server.

4.3.2 Tamarin Prover Code

We model our IBE based Key Exchange protocol in Tamarin Prover.

theory test
begin
builtins: diffie-hellman,
bilinear-pairing, hashing

functions: hf/1

rule Kgc:

let
Q = pmult(~Key,’P’)

in
[Fr(~Key)]
--[KGCSetup(),OnlyOnce()]->
[!Ltk($KGC,~Key),!Pkk($KGC,Q)]

rule CReg:

let
TempKc = hf(h($C),Key)
Kc = pmult(inv(TempKc),’P’)
in
[!Ltk($KGC,Key)]
--[OnlyOnce()]->
[!PKc($C,TempKc),!Ltk($C,Kc)]

rule SReg:
let
TempKs = hf(h($S),Key)
Ks = pmult(inv(TempKs),’P’)
in
[!Ltk($KGC,Key)]
--[OnlyOnce()]->
[!PKs($S,TempKs),!Ltk($S,Ks)]

rule Client:

let
xp = pmult(TempKs,’P’)
A = pmult(~x,xp)
in
[!PKs($S,TempKs),Fr(~x)]

Srijanee Mookherji, Vanga Odelu and Rajendra Prasath 9

--[]->
[Out(<$S,A>),Client(~x),Clientid(A)]

rule Server:

let
yp = pmult(TempKc,’P’)
B = pmult(~y,yp)
in
[!PKc($C,TempKc),Fr(~y)]
--[]->
[Out(<$C,B>),Server(~y),Serverid(B)]

rule ClientSession:

let
sk = em(B,Kc)
sky = sk^~y
in
[Server(~y),!Ltk($C,Kc),In(<$C,B>),
Client(~x),Clientid(A)]
--[Session_created_C(sky),
Accept(~y, $C, $S, sky)
, Sid(~y, <’Client’,$C,$S,A,B>)
, Match(~y, <’Server’,$S,$C,A,B>)]->
[Session(sky)]

rule ServerSession:

let
sk = em(A,Ks)
skx = sk^~x
in
[Client(~x),!Ltk($S,Ks),In(<$S,A>),
Server(~y),Serverid(B)]
--[Session_created_S(skx),
Accept(~x, $S, $C, skx)
, Sid(~x, <’Server’,$S,$C,A,B>)
, Match(~y, <’Client’,$C,$S,A,B>)]->
[Session(skx)]

restriction OnlyOnce:
"All #i #j. OnlyOnce()@#i
& OnlyOnce()@#j ==> #i = #j"

/* Key Reveals */
rule ltk_reveal:

[!Ltk($KGC, ~Key)]
--[LtkRev($KGC)]->
[Out(~Key)]

10 Modelling IBE-based Key Exchange Protocol using Tamarin Prover

rule Session_reveal:
[Session(skey)]
--[SesskRev(skey)]->
[Out(skey)]

We use the same lemma, Lemma 1 which was used to model MITM attack on a simple Diffie
Hellman protocol in Section 2.

4.4 Model Visualisation

We can see in Fig. 3. that after solving the lemma colour has turned green. It means no traces were
found of any Adversary able to compute the Secret Session Key. Thus, we can safely say that the
designed IBE based key exchange protocol resists MITM attack.

Figure 3: Tamarin Prover Model Visualisation for IBE based Key Exchange Protocol

5 Conclusion and Future Work

In this paper we first modelled a simple Diffie Hellman key exchange protocol and using Tamarin
Prover we see that it is susceptible to MITM attack. Next we design a simple generalised IBE based
key exchange protocol using the concept of Diffie Hellman Key Exchange protocol. We model the
same using Tamarin Prover and use hf/1 function for modelling a point addition operation used in
the protocol. We finally prove that the model works fine and is secured against MITM attack. Thus,
IBE based key exchange and authentication protocols can be designed using the modelling strategy
discussed in this paper.

In the future, we plan to use the same modelling concept to design an IBE based key exchange
and authentication protocol.

Srijanee Mookherji, Vanga Odelu and Rajendra Prasath 11

References
[CK03] Liqun Chen and Caroline Kudla. Identity based authenticated key agreement proto-

cols from pairings. In 16th IEEE Computer Security Foundations Workshop, 2003.
Proceedings., pages 219–233. IEEE, 2003.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transac-
tions on Information Theory, 22(6):644–654, 1976.

[JG02] Anna M Johnston and Peter S Gemmell. Authenticated key exchange provably secure
against the man-in-the-middle attack. Journal of cryptology, 15(2):139–148, 2002.

[LLC+08] Rongxing Lu, Xiaodong Lin, Zhenfu Cao, Liuquan Qin, and Xiaohui Liang. A simple
deniable authentication protocol based on the diffie–hellman algorithm. International
Journal of Computer Mathematics, 85(9):1315–1323, 2008.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin prover
for the symbolic analysis of security protocols. In International Conference on
Computer Aided Verification, pages 696–701. Springer, 2013.

[ODWC18] Vanga Odelu, Ashok Kumar Das, Mohammad Wazid, and Mauro Conti. Provably
secure authenticated key agreement scheme for smart grid. IEEE Transactions on
Smart Grid, 9(3):1900–1910, 2018.

[Pu10] Qiong Pu. An improved two-factor authentication protocol. In 2010 Second Inter-
national Conference on Multimedia and Information Technology, volume 2, pages
223–226, 2010.

[SSCB14] Benedikt Schmidt, Ralf Sasse, Cas Cremers, and David Basin. Automated verification
of group key agreement protocols. In 2014 IEEE Symposium on Security and Privacy,
pages 179–194. IEEE, 2014.

[TL15] Jia-Lun Tsai and Nai-Wei Lo. Secure anonymous key distribution scheme for smart
grid. IEEE transactions on smart grid, 7(2):906–914, 2015.

	Introduction
	Diffie Hellman Key Exchange Protocol
	Simple Diffie Hellman Key Exchange Protocol
	Modelling using Tamarin Prover
	Model Visualisation

	Study of Tamarin Prover Modelling of Chen and Kudla Protocol
	IBE based Key Exchange Protocol
	Mathematical Preliminaries
	Key Exchange Protocol
	Modelling using Tamarin Prover
	Model Visualisation

	Conclusion and Future Work

