
An Enhanced Long-termBlockchain Scheme
Against Compromise of Underlying Cryptography

LongMeng, Liqun Chen

ABSTRACT
Blockchain is a decentralized ledger applying the peer-to-peer (P2P)

network, cryptography and consensus mechanism over distributed

network. Especially, the underlying cryptographic algorithms pro-

tect the blockchain integrity and data authenticity. However, it is

well-known that every single algorithm is associated with a limited

lifespan due to the increasing computational power of attackers.

The compromise of algorithms directly leads to the compromise of

blockchain validity. There are two existing long-term blockchain

schemes dealing with this problem, but we observe that in these

schemes: 1) the calculation of block hash values is not compatible

with existing blockchains; 2) the hash transition procedure is only

specified fromthefirst algorithmto thesecondone, therearemultiple

possibilities to implement the scheme for a longer time, someof them

may lead to the failure of the scheme; 3) the security of their schemes

are not formally analyzed and proved. In this paper, we propose an

enhanced long-term blockchain scheme as a solution to issue 1 and 2,

and we formally prove that our scheme is secure without the limita-

tionof cryptographic algorithms. Besides,we implement our scheme,

the results show that our hash transition procedure can be completed

between 20 minutes (best case) and several hours (worst case) for

a current Bitcoin and Ethereum blockchain, which is very efficient.

KEYWORDS
Blockchain, Cryptographic protocols, Hash functions, Digital signa-

tures, Long-term security

1 INTRODUCTION
In the recent years, the blockchain technology has been widely

adopted in various application fields, especially the emerging cryp-

tocurrencies such as “Bitcoin" [15], “Ethereum" [6, 21], “Litecoin" [4],

“Ripple" [3] etc. Blockchain is a decentralized ledger that stores infor-

mation as a chain of blocks, the main technology under blockchain

include the P2P network, cryptography and consensus mechanism

over distributed network, the security of blockchain relates to the

security of each component. Especially, cryptography plays an im-

portant role in blockchain security. In specific, blockchainmakes use

of signature schemes toprotect theauthenticityand integrityofblock

data, and of hash functions to prevent the tampering of blocks and

guarantee theorder of blocks. Therefore, the security of blockchain is

associatedwith the security of underlying cryptographic algorithms.

However, it is well-known that any single algorithm has a lim-

ited lifespan due to the limited operational life cycle or increasing

computational power of attackers. For instance, the upcoming quan-

tum computers are considered to break most of the broadly-used

signature algorithms [19] and to increase the speed of attacking hash

functions [11]. For a blockchain needs to be maintained for decades

or even permanently, the blockchain securitywill be threatened after

the cryptographic algorithms are no longer secure.

In this paper, we discuss how to make a blockchain holding long-

term security. For the purpose of this work, if a blockchain is secure

in a long period of time that is not bounded with the lifetimes of its

underlying cryptographic algorithms, we say that the blockchain

is long-term secure. If a blockchain is long-term secure, we refer to

it as a long-term blockchain (LTB). The idea to build such a solution
is to transfer the weak algorithms to secure ones before they are

actually compromised, but it is not trivial due to the complexity of

a blockchain system and the sensitivity of the renewal time.

The impact of brokencryptographicprimitives inBitcoinhasbeen

analyzed by Giechaskiel et al. [9]. They claimed that the compro-

mise of hash functions and signature schemes leads to the problems

of stealing coins, double spending, repudiated payments, chang-

ing existing payments etc. These results can be extended to other

blockchains that huge security problemswill occur if the underlying

cryptographic algorithms are broken.

In 2017, Sato et al. proposed the first LTB scheme to renew the

underlying algorithms in public blockchains [18]. The main idea is

to compute new hash values of previous blocks using stronger hash

functions and archive the new hash values in future blocks, and each

user’s asset should be transferred to a new signature pair before

the old signature scheme is broken. After that, an improved LTB

scheme [7] proposed by Chen et al. to avoid the hard fork caused by

the hash transition procedure in [18].

We observe three issues in the existing LTB schemes [7, 18]: 1)

the computation of block hash values is not compatible with existing

blockchains, 2) the schemes only describe the transition procedure

from the first hash function to the second one, but how to extend this

procedure to the further transition process is not claimed clearly and

several possible cases could happen, some of them may cause the

failure of the LTB scheme, and 3) the security analysis is not given

for both schemes, whether the schemes are secure or not becomes

a question. That is the reason why issue 2 exists.

In this paper, we proposed an enhanced LTB scheme that ad-

dresses the technical issues 1 and 2 in the existing schemes [7, 18],

and we provide a formal security model to analyze our proposed

scheme.We proved that our scheme is secure in long-term periods

that are not bounded with the lifetimes of underlying cryptographic

algorithms. Finally, we implement our proposed scheme and eval-

uate the performance. We surprisingly find that for current Bitcoin

blockchain, a hash transition can be finished only within 20 - 70

minutes; for current Ethereum blockchain, a hash transition can be

completed in 38 - 158 minutes. These results show that our scheme

is very efficient and practical.

2 PRELIMINARIES
2.1 Hash functions
A secure hash function [1] maps a string of bits of variable (but usu-

ally upper bounded) length to a fixed-length string of bits, satisfying

the following three properties:

1

Conference’17, July 2017, Washington, DC, USA LongMeng, Liqun Chen

• Preimage Resistance: it is computationally infeasible to find,

for a given output, an input which maps to this output.

• Second Preimage Resistance: it is computationally infeasible

to find a second input which maps to the same output.

• Collision Resistance: it is computationally infeasible to find

any two distinct inputs which map to the same output.

2.2 Digital signature schemes
A signature scheme [10] is a tuple of probabilistic polynomial-time

algorithms (Gen, Sign, Vrfy) satisfying the following:

(1) (𝑠𝑘, 𝑝𝑘) ←Gen(): The key generation algorithm generates

a secret private key 𝑠𝑘 and a public verification key 𝑝𝑘 .

(2) 𝑠←Sign(𝑠𝑘,𝑚): The signing algorithm takes as input a pri-

vate key 𝑠𝑘 and a message𝑚. It outputs a signature 𝑠 .

(3) 𝑏←Vrfy(𝑝𝑘,𝑚, 𝑠): The verification algorithm takes as input

a public key 𝑝𝑘 , a message𝑚, and a signature 𝑠 . It outputs a

bit 𝑏=1 if 𝑠 is valid, it outputs 𝑏=0 if 𝑠 is invalid.

Let S = (Gen, Sign, Vrfy) be a signature scheme, and consider the

following signature experiment Sig−forge𝑐𝑚𝑎
𝑆, 𝐴
(𝑛) for an adversary

𝐴 and parameter 𝑛:

(1) Gen(1𝑛) is run to obtain keys (𝑝𝑘, 𝑠𝑘).
(2) Adversary 𝐴 is given 𝑝𝑘 and oracle access to 𝑆𝑖𝑔𝑛(·). This

oracle returns a signature 𝜎←Sign(𝑠𝑘,𝑚) for any message

𝑚 of the𝐴’s choice. The adversary then outputs (𝑚, 𝜎).
(3) Let𝑄 denote the set of messages whose signatures were re-

quested by𝐴 during its execution. The output of the exper-

iment is 1 if𝑚∉𝑄 and Vrfy(𝑝𝑘,𝑚, 𝜎)=1.

Definition 2.1. (Unforgeability.) A signature scheme 𝑆 is existen-

tially unforgeable under an adaptive chosen-message attack if for

all probabilistic polynomial-time adversariesA, there exists a neg-

ligible function 𝑛𝑒𝑔𝑙 such that Pr[Sig−forge𝑐𝑚𝑎
𝑆, 𝐴
(𝑛)=1] ≤𝑛𝑒𝑔𝑙 (𝑛).

2.3 Merkle trees
Merkle tree is an efficient and secure structure for verification of

large amount of data [14], Fig. 1 shows an example Merkle tree for

4 data items𝐷1, 𝐷2, 𝐷3, 𝐷4. First, the lowest leaf nodesℎ1, ℎ2, ℎ3, ℎ4
are the hash values of𝐷1, 𝐷2, 𝐷3, 𝐷4 computed through hash func-

tion𝐻0 respectively. Second, the parent node ℎ5 is the hash result

of the concatenationℎ1 andℎ2 through𝐻0, so as toℎ6 fromℎ3 and

ℎ4. Finally, the concatenation ofℎ5 andℎ6 is hashed through𝐻0 to

obtain the root hash valueℎ𝑟 .

In order to verify a data item is a part of the root hash value, the

used hash function, the neighbor nodes, and the concatenation vec-

tors are required as a hash path to recompute the root hash value.

For instance, to verify that the data item𝐷2 is a part of the root hash

valueℎ𝑟 , we need to reconstruct the Merkle tree with hash function

𝐻0 and a hash path 𝑐2= ((left, ℎ1),(right, ℎ6)).

2.4 Blockchains
Blockchains are distributed digital ledgers of cryptographically

signed transactions that are grouped into blocks. Each block is linked

to the previous one by cryptographic hash functions after validation

and undergoing a consensus decision [22]. In specific, blockchains

are comprised of blocks, each block is comprised of a block header

and block data. As Fig. 2 shows, a block header contains the block

h1 h2 h3 h4

D1 D2 D3 D4

h5 h6

hr

H0

Figure 1: Computation of aMerkle tree root hash value

number, a nonce, the hash value of the previous block header, a

time-stamp, and a Merkle tree root hash value of all block data. The

block data contains a list of transactions alongwith digital signatures

within the block.

Blockchains can be categorized based on their permission mod-

els [12]: a permissionless blockchain is open to anyone publishing

blocks without needing permission from any authority (e.g., Bitcoin,

Ethereum), a permissioned blockchain is private and limit to a num-

ber of trusted entities that got permission to join the network in

order to validate transactions (e.g., Hyperledger [2]).

In a permissionless blockchain, the proof-of-work (PoW) con-

sensus model is usually used to reach agreements of accepting new

blocks. In PoWmodel, miners publishes the next block by being the

first to solve a computationally intensive puzzle. Commonly, the

puzzle is to compute the hash value of a block header, and find one

be less than a target value by changing the nonce field in the header.

Changes to a blockchain protocol and data structures are called forks.

If the change to a blockchain is not backward compatible, it is called

a hardfork; otherwise, it is called a soft fork [22].

Blockchain technology utilizes cryptographic hash functions and

signature schemes. As the block 𝐵𝑖 in Fig. 1, each transaction is

signed by the user who initiates the transaction, then all the trans-

action and signature pairs (Tx𝑖1, Sig𝑖1), ..., (Tx𝑖 𝑗 , Sig𝑖 𝑗) in the block
are aggregated together by using a Merkle tree, with only the root

hash value𝑚𝑘𝑟𝑜𝑜𝑡𝑖 stored in the block header for simplified verifica-

tion [15]. The block header is then hashed into a hash valueℎ𝑖 that

is stored in the block header of the next block 𝐵𝑖+1. The signatures
enables the network nodes to verify the integrity and authenticity

of transactions, the chaining of hash values between blocks protects

the integrity of all block data.

3 REVIEWTHE EXISTING LTB SCHEMES
In this section,wereviewthedetailsof the twoexistingLTBschemes[7,

18] and discuss their issues.

3.1 The Sato et al. scheme [18]
In 2017, Sato et al. proposed the first LTB scheme that describes the

transition procedure froma compromised hash function or signature

scheme to a secure one [18]. The transition procedure can be divided

into a basic version and a supplement version:

2

An Enhanced Long-term Blockchain Scheme
Against Compromise of Underlying Cryptography Conference’17, July 2017, Washington, DC, USA

…… ……

Txi1, Sigi1

mkrootihbi-1

Txi2, Sigi2 Txij, Sigij

Block Bi

Block header

Time ti

NonceBlock No.

……

mkrooti+1 hbi+1hbi

Block Bi+1

Block header

Time ti+1

NonceBlock No.

hbi

Tx(i+1)1, Sig(i+1)1 Tx(i+1)2, Sig(i+1)2 Tx(i+1)j, Sig(i+1)j
……

Figure 2: The general structure of a blockchain

Basic procedure: let𝑀 denote the number of existing blocks in

the blockchain using hash function𝐻1,𝑏𝑖 (𝑖 ∈ {1, 𝑀}) denote the 𝑖-th
block. Let [𝑡𝑥𝑖 𝑗 , 𝑠𝑖𝑔𝑖 𝑗] denote the 𝑗-th transaction and signature pair
in block 𝑏𝑖 (𝑗 ∈ {1, 𝑁 }, 𝑡𝑥𝑖𝑁 denote the last transaction in 𝑏𝑖), ℎ𝑏𝑖
represent the hash value of block 𝑏𝑖 ,𝑚𝑘𝑟𝑜𝑜𝑡𝑖 represent the Merkle

tree root hash value for all transaction and signature pairs in block

𝑏𝑖 . Then the generation of block 𝑏𝑖 can be described as:

(1) Compute Merkle tree root value𝑚𝑘𝑟𝑜𝑜𝑡𝑖 for [𝑡𝑥𝑖1, 𝑠𝑖𝑔𝑖1], ...,
[𝑡𝑥𝑖𝑁 , 𝑠𝑖𝑔𝑖𝑁] in 𝑏𝑖 using𝐻1.

(2) Compute the hash value of the previous block 𝑏𝑖−1 using𝐻1:

ℎ𝑏𝑖−1=𝐻1 (𝑏𝑖−1).
(3) Construct𝑏𝑖 = (ℎ𝑏𝑖−1,𝑚𝑘𝑟𝑜𝑜𝑡𝑖 , [𝑡𝑥𝑖1, 𝑠𝑖𝑔𝑖1], ..., [𝑡𝑥𝑖𝑁 , 𝑠𝑖𝑔𝑖𝑁]).

Now assume𝐻1 is threatened but still secure, there is a stronger

hash function 𝐻2. The transition scheme starts from 𝑖 =𝑀 +1, the
previous𝑀 blocks are divided into 𝑟 sets of blocks, each set contains

𝑠 blocks, i.e., 𝑀 = 𝑟 × 𝑠 . Let 𝑏 ′
𝑘
(𝑘 ≥ 1) be the index of new block

generated by𝐻2, let 𝑡𝑥
′
𝑘 𝑗
(𝑗 ∈ {1, 𝑁 }) be the transaction in block 𝑏 ′

𝑘

and 𝑠𝑖𝑔′
𝑘 𝑗

be the signature for 𝑡𝑥 ′
𝑘 𝑗
. Then 𝑏 ′

𝑘
is generated as:

(1) Calculate anewhashvalue of a groupof previous blocks using

𝐻2: 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑘 =𝐻2 (𝑏 (𝑘−1)𝑠+1, 𝑏 (𝑘−1)𝑠+2, ..., 𝑏 (𝑘−1)𝑠+𝑠 ,
ℎ𝑏 (𝑘−1)𝑠+𝑠).

(2) ComputeMerkle tree root value𝑚𝑘𝑟𝑜𝑜𝑡 ′
𝑘
for [𝑡𝑥 ′

𝑘1
, 𝑠𝑖𝑔′

𝑘1
], ...,

[𝑡𝑥 ′
𝑘𝑁

, 𝑠𝑖𝑔′
𝑘𝑁
] using𝐻2.

(3) Compute the hash value of the last block 𝑏 ′
𝑘−1 using 𝐻2:

ℎ𝑏 ′
𝑘−1=𝐻2 (𝑏 ′𝑘−1). When 𝑘 =1,ℎ𝑏 ′

𝑘−1=𝐻2 (𝑏𝑀).
(4) Construct block 𝑏 ′

𝑘
= (𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑘 , ℎ𝑏

′
𝑘−1,𝑚𝑘𝑟𝑜𝑜𝑡 ′

𝑘
,

[𝑡𝑥 ′
𝑘1
, 𝑠𝑖𝑔′

𝑘1
], ..., [𝑡𝑥 ′

𝑘𝑁
, 𝑠𝑖𝑔′

𝑘𝑁
]).

Compare a transition block𝑏 ′
𝑘
with a original block𝑏𝑖 , in block𝑏

′
𝑘
,

the newMerkle tree root value and block hash value are determined

using𝐻2, and there is a new field 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑘 in its block header,

which is a new hash value of a group of original blocks using 𝐻2.

After the generation of block 𝑏𝑟 , the transition from block 𝑏1 to 𝑏𝑀
is completed.

The verification procedures of 𝑏 ′
𝑘
: 1) calculate the Merkle tree

root value from [𝑡𝑥 ′
𝑘1
, 𝑠𝑖𝑔′

𝑘1
], ..., [𝑡𝑥 ′

𝑘𝑁
, 𝑠𝑖𝑔′

𝑘𝑁
], check if it equals

to𝑚𝑘𝑟𝑜𝑜𝑡 ′
𝑘
; 2) calculate 𝐻2 (𝑏 ′𝑘−1) from 𝑏 ′

𝑘−1, check if it equals to

ℎ𝑏 ′
𝑘−1; 3) calculate 𝐻2 (𝑏 ′𝑘), check if it equals to ℎ𝑏 ′

𝑘
in 𝑏 ′

𝑘+1; 4) re-
trieve 𝑏 (𝑘−1)𝑠+1, 𝑏 (𝑘−1)𝑠+2, ..., 𝑏 (𝑘−1)𝑠+𝑠 , ℎ𝑏 (𝑘−1)𝑠+𝑠 to calculate

𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑘 , check if 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑘 is equal to the one in 𝑏 ′
𝑘
; 5)

check if hash value of 𝑏 (𝑘−1)𝑠+𝑝 (𝑝 ∈ {1, 𝑠}) with 𝐻1 is same as

ℎ𝑏 (𝑘−1)𝑠+𝑝 in block 𝑏 (𝑘−1)𝑠+𝑝+1.

The signature transition happens when the signature scheme is

threatened but not practically broken. In specific, each user applies

a stronger signature scheme, generates a new key pair, then transfer

assets or status to the new key pair.

Supplement procedure: Sato et al. claimed that in their hash

transition scheme, the overhead of the additional field 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ

decreases the number of transactions in new blocks. To deal with

this issue, they proposed a supplement procedure: the new field of

𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ is adding to a second chain called a supply chain,which

is maintained by the same or a part of miners or the original chain,

while block structure of original chain remains the same as before.

The proof-of-work competition is applied to one of these two chains,

and both chains store the same transactions after completion of all

𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ. Transactions verification is only conducted in original

chain for most of time, the support chain is used for the verification

process when a dispute occurs.

3.2 The Chen et al. scheme [7]
In 2018, Chen et al. argued that the hash transition in scheme [18] is a

hardfork in proof-of-work blockchains [7], which addresses both the

basic procedure and the supplement procedure. They stressed that

the hardfork may cause disagreement and split in the blockchain

community, and they proposed an improved scheme to solve this

issue as follows:

Transition procedure: assume there are𝑀 original blocks gen-

erated using𝐻1 with the same process as Section 3.1. The scheme

starts from 𝑏𝑀+1, and the previous𝑀 blocks are divided into 𝑟 sets

with 𝑠 blocks in each set. Let 𝑡𝑎𝑟𝑔𝑒𝑡𝑘 ,𝑛𝑜𝑛𝑐𝑒𝑘 , and 𝑡𝑠𝑝𝑘 separately rep-

resent the mining target for𝑏𝑘 using hash function𝐻1, the field that

can be filled with random value to meet 𝑡𝑎𝑟𝑔𝑒𝑡𝑘 , and the time-stamp

stored in 𝑏𝑘 . Let 𝑡𝑎𝑟𝑔𝑒𝑡
′
𝑘
,𝑛𝑜𝑛𝑐𝑒 ′

𝑘
, and 𝑡𝑠𝑝 ′

𝑘
denote the corresponding

parameters for proof of work with𝐻2. The generation process of a

new block 𝑏 ′
𝑀+𝑘 (𝑘 ≥ 1) is listed as follows:

(1) Construct an inner block 𝑏𝑀+𝑘 using𝐻1: 𝑏𝑘 = (ℎ𝑏𝑀+𝑘−1,
𝑚𝑘𝑟𝑜𝑜𝑡𝑀+𝑘 , [𝑡𝑥 (𝑀+𝑘)1, ..., 𝑡𝑥 (𝑀+𝑘)𝑁], 𝑡𝑎𝑟𝑔𝑒𝑡𝑀+𝑘 , 𝑛𝑜𝑛𝑐𝑒𝑀+𝑘 ,
𝑡𝑠𝑝𝑀+𝑘).

(2) Solve the proof-of-work puzzle using 𝐻1 so that satisfies

𝑡𝑎𝑟𝑔𝑒𝑡𝑀+𝑘 :𝐻1 (𝑏𝑀+𝑘) ≤ 𝑡𝑎𝑟𝑔𝑒𝑡𝑀+𝑘 .
(3) Compute 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑘 =𝐻2 (𝑏 (𝑘−1)𝑠+1, 𝑏 (𝑘−1)𝑠+2, ...,

𝑏 (𝑘−1)𝑠+𝑠).
(4) Compute the hash value of the last block using𝐻2:ℎ𝑏

′
𝑀+𝑘−1=

𝐻2 (𝑏𝑀+𝑘−1), whereℎ𝑏 ′𝑀+𝑘−1=𝐻2 (𝑏𝑀) for 𝑘 =1.
3

Conference’17, July 2017, Washington, DC, USA LongMeng, Liqun Chen

(5) ComputeMerkle tree root value𝑚𝑘𝑟𝑜𝑜𝑡 ′
𝑀+𝑘 for [𝑡𝑥 (𝑀+𝑘)1, ...,

𝑡𝑥 (𝑀+𝑘)𝑁] using𝐻2.

(6) Constructouterblock𝑜𝑏𝑘 = (ℎ𝑏 ′𝑀+𝑘−1,𝑚𝑘𝑟𝑜𝑜𝑡 ′
𝑀+𝑘 , 𝑡𝑎𝑟𝑔𝑒𝑡

′
𝑀+𝑘 ,

𝑛𝑜𝑛𝑐𝑒 ′
𝑀+𝑘 , 𝑡𝑠𝑝

′
𝑀+𝑘).

(7) Construct block 𝑏 ′
𝑀+𝑘 = (𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑘 , 𝑏𝑀+𝑘 , 𝑜𝑏𝑀+𝑘).

(8) Solve the proof-of-work puzzle using 𝐻2 so that satisfies

𝑡𝑎𝑟𝑔𝑒𝑡 ′
𝑘
:𝐻2 (𝑏 ′𝑀+𝑘) ≤ 𝑡𝑎𝑟𝑔𝑒𝑡

′
𝑀+𝑘 .

The verification procedures of block 𝑏 ′
𝑀+𝑘 include to: 1) calcu-

late 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑘 from original 𝑀 blocks, and check whether it

is equal to the one stored in 𝑏 ′
𝑀+𝑘 ; 2) calculate the Merkle tree

root value from [𝑡𝑥 (𝑀+𝑘)1, ..., 𝑡𝑥 (𝑀+𝑘)𝑁], and check whether it

is equal to𝑚𝑘𝑟𝑜𝑜𝑡 ′
𝑀+𝑘 ; 3) calculate𝐻1 (𝑏𝑀+𝑘) and check if it meets

the 𝑡𝑎𝑟𝑔𝑒𝑡𝑀+𝑘 ; 4) calculate𝐻2 (𝑏 ′𝑀+𝑘) and check if it meets the target

𝑡𝑎𝑟𝑔𝑒𝑡 ′
𝑀+𝑘 ; 5) check if𝐻2 (𝑏 ′𝑀+𝑘−1) is equal toℎ𝑏

′
𝑀+𝑘−1 in𝑏

′
𝑀+𝑘 ; and

6) check if𝐻2 (𝑏 ′𝑀+𝑘) is equal toℎ𝑏
′
𝑀+𝑘 in 𝑏 ′

𝑀+𝑘+1.
The improved scheme constructs two layers of proof-of-work

separately using𝐻1 and𝐻2, so that the scheme overcomes the hard-

fork problem as it is backward compatible with old miners who

still use𝐻1. Besides, the scheme provides stronger security than the

one-layer proof-of-work against malicious split attack.

3.3 Discussions
After the overview of the two existing LTB schemes, we have fol-

lowing observations:

Issue 1: the computation of block hash value is not compatible

with the existing blockchains in the world. In both schemes, every

block hash value is calculated as the hash value of the whole block,

e.g.,ℎ𝑏𝑖 =𝐻1 (𝑏𝑖),𝑏𝑖 = (ℎ𝑏𝑖−1,𝑚𝑘𝑟𝑜𝑜𝑡𝑖 , [𝑡𝑥𝑖1, 𝑠𝑖𝑔𝑖1], ..., [𝑡𝑥𝑖𝑁 , 𝑠𝑖𝑔𝑖𝑁]).
They defined ℎ𝑏𝑖 as the “proof of existence" of block 𝑏𝑖 , and it is this

hash value stored in the next block 𝑏𝑖+1. This is not the case of a
general blockchain structure. As Section 2.4 shows, a block hash

value is the hash value of only the block header rather than include

the block data. In this case, their schemes may not be easily adopted

for many blockchains at the implementation stage.

Issue 2: both schemes only specify the hash transition proce-

dure from 𝐻1 to 𝐻2. It is not clearly displayed how to extend this

procedure for further transition process, there are multiple possible

methods to implement the LTB scheme, some of them may cause

the failure of a long-term blockchain. For instance, after the transi-

tion from 𝐻1 to 𝐻2, the validity of 𝑏1, ..., 𝑏𝑀 has been maintained

by all 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ fields stored in 𝑏𝑀+1, ..., 𝑏𝑟 . Then for a specific

transaction 𝑡𝑥 stored in block 𝑏𝑖 (𝑖 ∈ {1,𝑀}), the computation of

𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ can be regarded as𝐻2 (𝑡𝑥, 𝐻1 (𝑡𝑥)).
Nowwe assume𝐻2 is threatened, the blockchain needs to trans-

fer all blocks to a stronger hash function𝐻3, the validity of blocks

under 𝐻2 can be renewed as the same steps from 𝐻1 to 𝐻2, but

the procedure to extend the validity of blocks 𝑏1, ..., 𝑏𝑀 under

𝐻1 could be two possible cases: 1) recompute the 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ of

𝑏1, ..., 𝑏𝑀 using𝐻3 and store them in future blocks, but at the time

of calculation, 𝐻1 might has been compromised, then block data

in 𝑏1, ..., 𝑏𝑀 could have been tampered and cannot be trusted any-

more; 2) compute the 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ of blocks 𝑏𝑀+1, ..., 𝑏𝑟 since the
𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ fields in these blocksmaintain the validity of𝑏1, ..., 𝑏𝑀 ,

i.e., 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ2 = 𝐻3 (𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ1). However, this transition
method for transaction 𝑡𝑥 can be regarded as 𝐻3 (𝐻2 (𝑡𝑥, 𝐻1 (𝑡𝑥)).

After𝐻2 is compromised, the (𝑡𝑥, 𝐻1 (𝑡𝑥)) pair is vulnerable to col-
lision attacks that it can be modified to another pair (𝑡𝑥 ′, 𝐻1 (𝑡𝑥 ′))
with the same hash values to𝐻2 (𝑡𝑥, 𝐻1 (𝑡𝑥)), whichmeans𝑏1, ..., 𝑏𝑀
are no longer valid after the broken of𝐻2.

Issue 3: the formal security analysis of both schemes are not pre-

sented. Since blockchain is a complex system that utilizes hash func-

tions and signature schemes in many places, the transition scheme

for each algorithm should be secure. Any single place of broken

will lead to the compromise of blockchain validity. The existence

of Issue 2 is an example, if such a transition scheme is not analyzed

under a formal security model, the LTB schememay be vulnerable

to security failures or attacks.

In following sections, we will propose an enhanced LTB scheme

with following improvements compared to the existing schemes: 1)

our scheme is compatible with the existing blockchain structure;

2) our scheme describes how to implement the hash transition and

signature procedure from a long-term view; 3) we propose a formal

security model for a LTB scheme and analyze the security of our

proposed scheme under the model.

4 THE PROPOSED LTB SCHEME
In our proposed LTB scheme, there are three entities: a set of users,

a blockchain system, and a verifier. The scheme is comprised of a

hash transition procedure and a signature transition procedure. The

hash transition procedure is performed by the blockchain system,

which target is to extend the validity of blocks when the security

of underlying block hash functions or Merkle tree hash functions

are threatened. The signature transition procedure is performed by

each user, which purpose is to extend the validity of users’ signa-

tures on their transactions or assets when the signature schemes are

about to be compromised. Thus, the proposed scheme has a tuple

of algorithms for each procedure introduced in Section 4.1 and 4.2

separately. The notation is shown in Table 1.

Our scheme is not limited to a specific type of blockchain, hence

it is not constructed as [7] to solve the hardfork issue. However,

if our scheme is implemented on a proof-of-work blockchain, we

recommend the approach of [7] to create a two-layer proof-of-work

so that the scheme is backward compatible with the old algorithm.

4.1 Hash transition procedure
The hash transition procedure is consist of three algorithms (BGen,

BRen, HVer), which separately stands for block generation, block

renewal and hash verification. The algorithmBGen and BRen are im-

plemented for generating blocks as the timeline shown in Fig. 3. Let

Mbe the total number of hash transitions, the timeline is divided into

a total of 2M+1 phases (M could be continuously on the timeline):

• Phase 0 (𝑡 ∈ [𝑡0, 𝑡 ′
0
]): let𝐻0 be a secure hash function, blocks

𝑏1, ..., 𝑏𝐹0 are generated by algorithm BGen using𝐻0.

• Phase 1’ (𝑡 ∈ [𝑡 ′
0
, 𝑡1]): 𝐻0 becomes weak but still secure, let

𝐻1 be a stronger hash function. The previous 𝐹0 blocks are di-

vided into𝑟1 sets,with𝑠1 blocks ineachset. i.e.,𝑃1=𝐹0=𝑟1×𝑠1.
Blocks𝑏𝑃1+1, ...,𝑏𝑃1+𝑟1 aregeneratedbyalgorithmBRenusing

𝐻1.

• Phase 1 (𝑡 ∈ [𝑡1, 𝑡 ′
1
]): 𝐻0 could already be compromised, 𝐻1

is still secure. Blocks 𝑏𝑃1+𝑟1+1, ..., 𝑏𝑃1+𝑟1+𝐹1 are generated by
algorithm BGen using𝐻1.

4

An Enhanced Long-term Blockchain Scheme
Against Compromise of Underlying Cryptography Conference’17, July 2017, Washington, DC, USA

Hash transition notation

𝑀 ∈N total number of hash transition 𝑚 ∈ [0, 𝑀] index number of hash transition

Phase𝑚 the phase when BGen takes place Phase𝑚′ the phase when BRen takes place

𝑡𝑚 time point when BGen starts 𝑡 ′𝑚 time point when BRen starts

𝑏𝑙𝑐 the blockchain used in the LTB scheme 𝐻𝑚 the𝑚-th hash function used in the blockchain

𝑏𝑘 the 𝑘-th block in 𝑏𝑙𝑐 𝑏ℎ𝑘 , 𝑏𝑑𝑘 the block header and block data of 𝑏𝑘
(𝐻𝑚, 𝑡)→VD 𝐻𝑚 is secure at time 𝑡 ℎ𝑏𝑘 hash value of 𝑏ℎ𝑘
𝑗 ∈ {1, 𝐽 } index number of transaction in a block 𝑡𝑥𝑘 𝑗 the 𝑗-th transaction in 𝑏𝑘
𝑠𝑖𝑔𝑘 𝑗 signature of 𝑡𝑥𝑘 𝑗 𝑚𝑘𝑟𝑜𝑜𝑡𝑘 Merkle tree root value of block data in 𝑏𝑘
𝑟𝑚 the set number of𝑚-th hash transition 𝑠𝑚 number of blocks in set 𝑟𝑚

𝑃𝑚 number of blocks before𝑚-th hash transition VD verification data used in HVer and SVer algorithms

𝐹𝑚 number of blocks generated by BGen algorithm using𝐻𝑚 𝑡𝑣 the verification time

𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑚𝑘 the archive hash value stored in 𝑏𝑘 calculated using𝐻𝑚 𝑡𝑠𝑘 time-stamp in 𝑏𝑘
Signature transition notation

𝑁 ∈N total number of signature transition 𝑛 ∈ [0, 𝑁] index number of signature transition

Phase 𝑛 the phase when SGen takes place Phase 𝑛′ the phase when SRen takes place

𝑡𝑛 time point when SGen starts 𝑡 ′𝑛 time point when SRen starts

𝑆𝑛 the 𝑛-th signature scheme used by the user 𝑝𝑘𝑛 the public key associated with 𝑆𝑛

𝑡𝑥𝑛→𝑛 transactions between two addresses generated by 𝑆𝑛 𝑠𝑛 the signature of 𝑡𝑥𝑛→𝑛

𝑡𝑥 (𝑛−1)→𝑛 transactions from address generated by 𝑆𝑛−1 to the one by 𝑆𝑛 𝑠 ′𝑛 the signature of 𝑡𝑥 (𝑛−1)→𝑛

𝑆𝑇𝑋𝑛 signed transaction of 𝑡𝑥𝑛→𝑛 𝑆𝑇𝑋 ′𝑛 signed transaction of 𝑡𝑥 (𝑛−1)→𝑛

(𝑆𝑛, 𝑡)→VD 𝑆𝑛 is secure at time 𝑡

Table 1: Notation

Timet'0 t1 t'1 t2 …… t'M-1 tM

H0 is secure H1 is secure H2 is secure HM-1 is secure HM is secure

… … … …

Phase 0 (BGen)

r1 blocks
Using H1

F1 blocks
using H1

r2 blocks
using H2

……

F2 blocks
using H2

FM-1 blocks
using HM-1

rM blocks
using HM

…

FM blocks
using HM

t0

Blocks

t'M

Phase 1' (BRen) Phase 1 (BGen) Phase 2' (BRen) Phase 2 (BGen) Phase M-1 (BGen) Phase M' (BRen) Phase M (BGen)

F0 blocks
Using H0

Figure 3: The timeline of hash transition scheme

• ...

• Phase M’ (𝑡 ∈ [𝑡 ′
𝑀−1, 𝑡𝑀]): 𝐻0, ..., 𝐻𝑀−2 could already be

compromised,𝐻𝑀−1 is threatened but still secure, let𝐻𝑀 be

a stronger hash function. There are total 𝑃𝑀 previous blocks,

i.e., 𝑃𝑀 =𝑃𝑀−1+𝑟𝑀−1+𝐹𝑀−1. The 𝑃𝑀 blocks are divided into

𝑟𝑀 sets, with 𝑠𝑀 blocks in each set. i.e., 𝑃𝑀 =𝑟𝑀×𝑠𝑀 . Blocks

𝑏𝑃𝑀+1, ...,𝑏𝑃𝑀+𝑟𝑀 are generated by algorithmBRenusing𝐻𝑀 .

• Phase M (𝑡 ∈ [𝑡𝑀 , 𝑡 ′
𝑀
]):𝐻0, ..., 𝐻𝑀−1 could be compromised,

𝐻𝑀 is still secure. Blocks 𝑏𝑃𝑀+𝑟𝑀+1, ..., 𝑏𝑃𝑀+𝑟𝑀+𝐹𝑀 are gen-

erated by algorithm BGen using𝐻𝑀 .

BGen: 𝑏𝑘 ← BGen(𝐻𝑚 ; 𝑏𝑑𝑘 , 𝑏ℎ𝑘−1). The block generation algo-

rithm BGen takes place at Phase𝑚, i.e., 𝑡 ∈ [𝑡𝑚, 𝑡 ′𝑚] (𝑚 ∈ [0, 𝑀]). For
𝑘 ∈ [𝑃𝑚 +𝑟𝑚 +1, 𝑃𝑚 +𝑟𝑚 +𝐹𝑚] (𝑃0 and 𝑟0 do not exist), BGen takes

input the block data 𝑏𝑑𝑘 = ([𝑡𝑥𝑘1, 𝑠𝑖𝑔𝑘1], ..., [𝑡𝑥𝑘 𝐽 , 𝑠𝑖𝑔𝑘 𝐽]), the block
header of block 𝑏𝑘−1, outputs a block 𝑏𝑘 using𝐻𝑚 . The generation

process of 𝑏𝑘 is listed as below.

(1) 𝑠𝑖𝑔𝑘1, ..., 𝑠𝑖𝑔𝑘 𝐽 are the signatures of transactions 𝑡𝑥𝑘1, ..., 𝑡𝑥𝑘 𝐽
generated by one or a set of secure signature schemes, herewe

collectively denote themas𝑆 . i.e., 𝑠𝑖𝑔𝑘1←𝑆 (𝑡𝑥𝑘1), ..., 𝑠𝑖𝑔𝑘 𝐽 ←
𝑆 (𝑡𝑥𝑘 𝐽).

(2) Compute Merkle tree root value of block data 𝑏𝑑𝑘 using𝐻𝑚 :

𝑚𝑘𝑟𝑜𝑜𝑡𝑘←𝑀𝑇 (𝐻𝑚 ; 𝑏𝑑𝑘).
(3) Compute the hash value of the block header of 𝑏𝑘−1 using

𝐻𝑚 :ℎ𝑏𝑘−1=𝐻𝑚 (𝑏ℎ𝑘−1).
(4) Construct the block header of𝑏𝑘 :𝑏ℎ𝑘 = (ℎ𝑏𝑘−1,𝑚𝑘𝑟𝑜𝑜𝑡𝑘 , 𝑡𝑠𝑘).
(5) Construct block 𝑏𝑘 = (𝑏ℎ𝑘 , 𝑏𝑑𝑘).

BRen: 𝑏𝑘←BRen(𝐻𝑚 ; 𝑏𝑑𝑘 , 𝑏ℎ𝑘−1, 𝑏 (𝑘−𝑃𝑚−1)𝑠𝑚+1, ..., 𝑏 (𝑘−𝑃𝑚)𝑠𝑚).
The block renewal algorithm BRen takes place at Phase 𝑚′, i.e.,
𝑡 ∈ [𝑡 ′

𝑚−1, 𝑡𝑚] (𝑚 ∈ [1,𝑀]). For𝑘 ∈ [𝑃𝑚+1, 𝑃𝑚+𝑟𝑚], BRen takes input
the blockdata𝑏𝑑𝑘 = ([𝑡𝑥𝑘1, 𝑠𝑖𝑔𝑘1], ..., [𝑡𝑥𝑘 𝐽 , 𝑠𝑖𝑔𝑘 𝐽]), the blockheader
of 𝑏𝑘−1, and a set of previous blocks 𝑏 (𝑘−𝑃𝑚−1)𝑠𝑚+1, ..., 𝑏 (𝑘−𝑃𝑚)𝑠𝑚 ,

outputs an block 𝑏𝑘 using𝐻𝑚 . 𝑏𝑘 is generated as follows.

(1) For 𝑚 ∈ [2, 𝑀], divide 𝑏1, ..., 𝑏𝑃𝑚−1 into 𝑟𝑚−1 sets, with

each set of 𝑠𝑚−1 blocks. Then compute the hash values of

each set of blocks using𝐻𝑚−1 and compare each hash value

with 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ (𝑚−1)0, ..., 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ (𝑚−1)𝑟𝑚−1 stored
5

Conference’17, July 2017, Washington, DC, USA LongMeng, Liqun Chen

in 𝑏𝑃𝑚−1+1, ..., 𝑏𝑃𝑚−1+𝑟𝑚−1 respectively (the calculation of

𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ field is introduced in step 5). If all matches or for

𝑚=1, perform following steps:

(2) 𝑠𝑖𝑔𝑘1, ..., 𝑠𝑖𝑔𝑘 𝐽 are the signatures of transactions 𝑡𝑥𝑘1, ..., 𝑡𝑥𝑘 𝐽
generated by one or a set of secure signature schemes 𝑆 . Note

that 𝑆 could be the same or not same with the ones used in

BGen algorithm. i.e., 𝑠𝑖𝑔𝑘1←𝑆 (𝑡𝑥𝑘1), ..., 𝑠𝑖𝑔𝑘 𝐽 ←𝑆 (𝑡𝑥𝑘 𝐽).
(3) Compute Merkle tree root value of block data using 𝐻𝑚 :

𝑚𝑘𝑟𝑜𝑜𝑡𝑘←𝑀𝑇 (𝐻𝑚 ; 𝑏𝑑𝑘).
(4) Compute the hash value of the block header of 𝑏𝑘−1 using

𝐻𝑚 :ℎ𝑏𝑘−1=𝐻𝑚 (𝑏ℎ𝑘−1).
(5) Divide the previous blocks𝑏1, ...,𝑏𝑃𝑚 into𝑟𝑚 sets, each set has

𝑠𝑚 blocks, then compute a new hash value of a group of previ-

ous blocks using𝐻𝑚 : 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑚𝑘 =𝐻𝑚 (𝑏 (𝑘−𝑃𝑚−1)𝑠𝑚+1,
..., 𝑏 (𝑘−𝑃𝑚)𝑠𝑚).

(6) Construct the block header of 𝑏𝑘 : 𝑏ℎ𝑘 = (𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑚𝑘 ,

ℎ𝑏𝑘−1,𝑚𝑘𝑟𝑜𝑜𝑡𝑘 , 𝑡𝑠𝑘).
(7) Construct block 𝑏𝑘 = (𝑏ℎ𝑘 , 𝑏𝑑𝑘).

HVer: 0/1← HVer(𝑏𝑘 , 𝑏𝑙𝑐, 𝑡𝑣, VD). At verification time 𝑡𝑣 > 𝑡 ′
𝑀
,

the hash verification algorithm HVer takes input a block 𝑏𝑘 , the

copy of the whole blockchain 𝑏𝑙𝑐 , the verification time 𝑡𝑣 and the

verification data VD, outputs a bit 1 if 𝑏𝑘 is a valid block on 𝑏𝑙𝑐 , oth-

erwise outputs a bit 0. Assume the underlying hash function of 𝑏𝑘
is𝐻𝑀−𝑥 (𝑥 ∈ {0, 𝑀}), the verification of 𝑏𝑘 can be divided into two

cases: 𝑥 =0 and 𝑥 ∈ [1, 𝑀].
Case1 (𝑥 =0): thealgorithmHVercheckswhether𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑀𝑘

is included in 𝑏𝑘 . If not, it checks whether the following conditions

are satisfied:

(1) 𝐻𝑀 is secure at 𝑡𝑣 , and the signature scheme 𝑆 used for gener-

ating 𝑠𝑖𝑔𝑘1, ..., 𝑠𝑖𝑔𝑘 𝐽 is validwhen𝑏𝑘 is generated: (𝐻𝑀 , 𝑡𝑣)→
VD, (𝑆, 𝑡𝑠𝑘)→VD.

(2) Signatures 𝑠𝑖𝑔𝑘1, ...,𝑠𝑖𝑔𝑘 𝐽 are correct: Vrfy(𝑝𝑘, 𝑠𝑖𝑔𝑘1, 𝑡𝑥𝑘1)=
1, ..., Vrfy(𝑝𝑘, 𝑠𝑖𝑔𝑘 𝐽 , 𝑡𝑥𝑘 𝐽)=1.

(3) The Merkle tree root hash value is correctly calculated:

𝑚𝑘𝑟𝑜𝑜𝑡𝑘←𝑀𝑇 {𝐻𝑀 ; 𝑏𝑑𝑘 }.
(4) The hash value of the previous block is correctly calculated:

ℎ𝑏𝑘−1=𝐻𝑀 (𝑏ℎ𝑘−1).
(5) The hash value of the current block is correct:ℎ𝑏𝑘 =𝐻𝑀 (𝑏ℎ𝑘).

If 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑀𝑘 is included in 𝑏𝑘 , two additional conditions are

needed to be satisfied:

(1) 𝑏𝑘 is generated when𝐻𝑀−1 and𝐻𝑀 are secure:

([𝐻𝑀−1, 𝐻𝑀], 𝑡𝑠𝑘)→VD.

(2) 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑀𝑘 field is correctly calculated: 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑀𝑘

=𝐻𝑀 (𝑏 (𝑘−𝑃𝑀−1)𝑠𝑀+1, ..., 𝑏 (𝑘−𝑃𝑀)𝑠𝑀).
Case2 (𝑥 ∈ [1,𝑀]): thealgorithmHVerchecks𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ (𝑀−𝑥)𝑘

is included in 𝑏𝑘 or not. If not, then it checks whether the following

conditions are satisfied:

(1) Every𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ in𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑀−𝑥+1, ..., 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑀
that takes input of 𝑏𝑘 is correctly calculated.

(2) At least one hash function is secure at phase𝑀−𝑥, 𝑀−𝑥 +
1, ..., 𝑀 : for𝑚 ∈ [𝑀−𝑥, 𝑀], (𝐻𝑚, [𝑡𝑚, 𝑡 ′𝑚])→VD.

(3) At least two hash functions are secure at phase (𝑀 − 𝑥 +
1)′, (𝑀 − 𝑥 + 2)′, ..., (𝑀 − 1)′: for𝑚 ∈ [𝑀 − 𝑥 + 1, 𝑀 − 1],
(𝐻𝑚, 𝐻𝑚+1, [𝑡 ′𝑚, 𝑡𝑚+1])→VD.

(4) Step 1 - 5 as Case 1 above.

If yes, there are two additional conditions are needed to be satisfied:

(1) 𝑏𝑘 is generated when𝐻𝑀−𝑥−1 and𝐻𝑀−𝑥 are secure:

([𝐻𝑀−𝑥−1, 𝐻𝑀−𝑥], 𝑡𝑠𝑘)→VD.

(2) 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ (𝑀−𝑥)𝑘 field is correct: 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ (𝑀−𝑥)𝑘 =

𝐻𝑀−𝑥 (𝑏 (𝑘−𝑃𝑀−𝑥−1)𝑠𝑀−𝑥+1, ..., 𝑏 (𝑘−𝑃𝑀−𝑥)𝑠𝑀−𝑥).
For both cases, the algorithmHVer outputs 1 if all above verification

details are satisfied, which means the block 𝑏𝑘 is a valid block on

blockchain 𝑏𝑙𝑐 at time 𝑡𝑣 . Otherwise, the algorithm outputs 0.

4.2 Signature transition procedure
The signature transition scheme is comprised of three algorithms

(SGen, SRen, SVer), which separately represents signature genera-

tion, signature renewal and signature verification. The algorithm

SGen and SRen are performed as the timeline shown in Fig. 4. Let N

be the total number of hash transitions, the timeline is divided into

a total of 2N+1 phases (N could be continuously on the timeline):

• Phase0 (𝑡 ∈ [𝑡0, 𝑡 ′
0
]): let𝑆0 beasecuresignaturescheme.Signed

transaction𝑆𝑇𝑋0 is generated by the algorithmSGenusing𝑆0.

• Phase 1’ (𝑡 ∈ [𝑡 ′
0
, 𝑡1]): 𝑆0 is threatened but still secure, let 𝑆1

be a stronger signature scheme. Signed transaction 𝑆𝑇𝑋 ′
1
is

generated by the algorithm SRen using 𝑆0.

• Phase 1 (𝑡 ∈ [𝑡1, 𝑡 ′
1
]): 𝑆0 could be already compromised, 𝑆1

is still secure. Signed transaction 𝑆𝑇𝑋1 is generated by the

algorithm SGen using 𝑆1.

• ...

• Phase N’ (𝑡 ∈ [𝑡 ′
𝑁−1, 𝑡𝑁]): 𝑆0, ..., 𝑆𝑁−2 could be compromised,

𝑆𝑁−1 is threatened but still secure, let 𝑆𝑁 be a stronger hash

function. Signed transaction 𝑆𝑇𝑋 ′
𝑁
is generated by the SRen

algorithm using 𝑆𝑁−1.
• Phase N (𝑡 ∈ [𝑡𝑁 , 𝑡 ′𝑁]): 𝑆0, ..., 𝑆𝑁−1 could be compromised,

𝑆𝑁 is secure. Signed transaction 𝑆𝑇𝑋𝑁 is generated by SGen

algorithm using 𝑆𝑁 .

SGen: 𝑆𝑇𝑋𝑛← SGen(𝑆𝑛 ; 𝑡𝑥𝑛→𝑛). The signature generation algo-

rithm SGen is implemented at Phase 𝑛, i.e., 𝑡 ∈ [𝑡𝑛, 𝑡 ′𝑛] (𝑛 ∈ [0, 𝑁]),
which takes input a transaction 𝑡𝑥𝑛→𝑛 , outputs a signed transaction

𝑆𝑇𝑋𝑛 using signature scheme 𝑆𝑛 . The generation process of 𝑆𝑇𝑋𝑛
is listed as follows:

(1) A user generates the signature of 𝑡𝑥𝑛→𝑛 using 𝑆𝑛 :

𝑠𝑛←𝑆𝑛 (𝑡𝑥𝑛→𝑛).
(2) The user forms the signed transaction 𝑆𝑇𝑋𝑛 = (𝑠𝑛, 𝑡𝑥𝑛→𝑛).
(3) 𝑆𝑇𝑋𝑛 is submitted to a blockchain that uses a secure hash

function𝐻 : 𝑆𝑇𝑋𝑛→𝑏𝑙𝑐 .

SRen: 𝑆𝑇𝑋 ′𝑛←SRen(𝑆𝑛−1; 𝑡𝑥𝑛−1→𝑛). The signature renewal algo-
rithm SRen takes place at Phase 𝑛′, i.e., 𝑡 ∈ [𝑡 ′

𝑛−1, 𝑡𝑛] (𝑛 ∈ [1, 𝑁]),
which takes input a transaction 𝑡𝑥𝑛−1→𝑛 , outputs a signed transac-

tion 𝑆𝑇𝑋 ′𝑛 using 𝑆𝑛 . This algorithmmeans that the user updates the

signature scheme from 𝑆𝑛−1 to 𝑆𝑛 , such as transfer his coins from

the address derived from 𝑆𝑛−1 to a new address derived from 𝑆𝑛 . The

generation of 𝑆𝑇𝑋 ′𝑛 is listed as follows:

(1) Ausergenerates thesignatureof𝑡𝑥𝑛−1→𝑛 :𝑠
′
𝑛←𝑆𝑛 (𝑡𝑥𝑛−1→𝑛).

(2) The user forms the signed transaction 𝑆𝑇𝑋 ′𝑛 = (𝑠 ′𝑛, 𝑡𝑥𝑛−1→𝑛).
(3) 𝑆𝑇𝑋 ′𝑛 is submitted to the blockchain that uses a secure hash

function𝐻 : 𝑆𝑇𝑋 ′𝑛→𝑏𝑙𝑐 .

SVer: 0/1←SVer(𝑆𝑇𝑋𝑁 , 𝑏𝑙𝑐, 𝑡𝑣, VD). At time 𝑡𝑣 > 𝑡
′
𝑁
, the signature

verification algorithm SVer takes input a signed transaction 𝑆𝑇𝑋𝑁 ,

6

An Enhanced Long-term Blockchain Scheme
Against Compromise of Underlying Cryptography Conference’17, July 2017, Washington, DC, USA

Timet'0 t'1 …… t'N-1

S0 is secure
S1 is secure

S2 is secure SN-1 is secure SN is secure

Phase 0 (SGen)
tx00 using S0

Phase 1' (SRen)
tx01 using S0

t0

User

t1 t2 tN t'NtN-1

Phase 1 (SGen)
tx11 using S1

Phase 2' (SRen)
tx12 using S1

Phase N-1 (SGen)
txN-1N-1 using SN-1

Phase N’ (SRen)
txN-1N using SN-1

Phase N’ (SGen)
txNN using SN

Figure 4: The timeline of signature transition scheme

the copy of the whole blockchain 𝑏𝑙𝑐 , the verification time 𝑡𝑣 and

the verification data VD, outputs a bit 1 if 𝑆𝑇𝑋𝑛 is valid, otherwise

outputs a bit 0. The verification procedures are to check whether the

following conditions are satisfied:

(1) The blocks contain 𝑆𝑇𝑋0, 𝑆𝑇𝑋
′
1
, 𝑆𝑇𝑋1, ..., 𝑆𝑇𝑋

′
𝑁
, 𝑆𝑇𝑋𝑁 are

valid by using the HVer algorithm.

(2) Signatures generated by SGen algorithm are correct: for 𝑛 ∈
[0, 𝑁], Vrfy(𝑝𝑘𝑛, 𝑠𝑛, 𝑡𝑥𝑛→𝑛)=1.

(3) Signatures generated by SRen algorithm are correct: for 𝑛 ∈
[1, 𝑁], Vrfy(𝑝𝑘𝑛−1, 𝑠 ′𝑛, 𝑡𝑥𝑛−1→𝑛)=1.

(4) 𝑆0 is valid at 𝑡0, 𝑆𝑁 is valid at 𝑡𝑣 : (𝑆0, 𝑡0)→VD, (𝑆𝑁 , 𝑡𝑣)→VD.

(5) At least one signature scheme is valid at phase𝑛: for𝑛 ∈ [0, 𝑁],
(𝑆𝑛, [𝑡𝑛,𝑡 ′𝑛])→VD.

(6) At least two signature schemes are valid at phase 𝑛′: for
𝑛 ∈ [1, 𝑁], (𝑆𝑛−1, 𝑆𝑛, [𝑡 ′𝑛−1, 𝑡𝑛])→VD.

4.3 Discussions
Nowwe discuss following aspects of the scheme:

Relations between two procedures. The hash transition proce-
dure is taken by the blockchain system, and the signature transition

procedure is completedbyusers. Theyarenot contradictedwith each

other and can be implemented simultaneously. Notice that the hash

transition procedure only extends the validity of block hash function

andMerkle tree hash function. If the signature scheme applies a hash

function, the validity of this hash function is treated together with

the signature algorithm. In other words, the signature transition

procedure should be conducted either the signature algorithm or the

signature hash function is threatened.

Permissionmodel. The blockchain in our scheme could either

be a permissionless or a permissioned blockchain. In a permissioned

blockchain, the transition scheme can be implemented by the author-

itywhocontrol theblockchainaccess. Inapermissionlessblockchain,

the transition scheme can be performed by miners who participate

in generating new blocks, and we assume that there is a agreement

on when to start the transition scheme from a weak algorithm to a

stronger one.

Verification data. The verification data VD should contain nec-

essary data used for the HVer and SVer algorithms. Apart from the

ones can be directly collected from the blockchain 𝑏𝑙𝑐 , such as the

identifiers of hash functions and signature schemes, the public key

certificates for verifying signatures, relevant block information etc,

VDmust also contain the information indicating the start time and

breakage time of hash functions and signature schemes. This infor-

mation can be collected from reliable sources.

For instance, after discovering theoretical attacks or flaws of a

cryptographic algorithm, the ISO/IEC or NIST standards will recom-

mend that the usage of this algorithm should be ended by a specific

date [16, 17]. Then at the time of verifying the validity of algorithms,

the block time-stamps and the VD time should be synchronizedwith

a same criteria, e.g., the global time.

Time-stamp. The time-stamps contained in blocks is assumed ac-

curate and reliable to verify the start time and breakage time of hash

functions and signature schemes. This assumption could be achieved

by existing researches [20] and [13]. The authors proposed similar

ideas to create accurate time-stamps in Bitcoin blockchain by lever-

aging an external time-stamping authority. Their methods could be

adopted if our scheme is implemented on Bitcoin blockchain.

Group number. For the hash transition procedure, both existing
LTB schemes [7, 18] claim to divide previous blocks into 𝑟 groups

with𝑠 blocks in eachgroup, but neither of themdiscuss how to set the

values of 𝑟 and 𝑠 . Our scheme follows this group division idea, and

we believe it depends on the blockchain size and the average block

interval. In Section 7, we implement the hash transition procedure

and evaluate the performance for Bitcoin and Ethereum as examples,

then discuss how to choose the 𝑟 and 𝑠 values.

Overhead. Regard to the overhead issue and the supply chain
solution proposed in [18], we calculate the overhead of SHA3-256,

SHA3-384 and SHA3-512 hash functions as renewal candidates, and

discuss the impacts toBitcoin andEthereumblockchains as examples

in Section 7.

5 SECURITYMODELANDDEFINITIONS
In this section,we propose a securitymodel for a LTB scheme. Firstly,

we make following assumptions in a LTB scheme:

(1) When the current hash function or signature algorithm used

in the blockchain becomes weak but not actually compro-

mised, there is a strongerhash functionor signaturealgorithm

secure in the next time period.

(2) The verification data VD is trusted.

A secure LTB scheme should satisfy three properties: correctness,

long-term integrity, and long-term unforgeability. The definitions

of these properties are provided as follows.

5.1 Correctness
Correctnessmeans that if all entities legitimately perform their func-

tions, a LTB scheme is able to maintain the blockchain validity in

long-term periods that are not bounded with the lifetimes of under-

lying cryptographic algorithms. Assume all blocks in the blockchain

are generated in terms of the phases described in Section 4.1:

• Phase 0, 𝑘 ∈ [1, 𝐹0]: 𝑏𝑘←BGen(𝐻0; 𝑏𝑑𝑘 , 𝑏ℎ𝑘−1)
7

Conference’17, July 2017, Washington, DC, USA LongMeng, Liqun Chen

• Phase 1’, 𝑘 ∈ [𝑃1+1, 𝑃1+𝑟1]:
𝑏𝑘←BRen(𝐻1; 𝑏𝑑𝑘 , 𝑏ℎ𝑘−1, 𝑏 (𝑘−𝑃1−1)𝑠1+1, ..., 𝑏 (𝑘−𝑃1)𝑠1)
• Phase 1, 𝑘 ∈ [𝑃1+𝑟1+1, 𝑃1+𝑟1+𝐹1]:
𝑏𝑘←BGen(𝐻1; 𝑏𝑑𝑘 , 𝑏ℎ𝑘−1)
•

• Phase M’, 𝑘 ∈ [𝑃𝑀 +1, 𝑃𝑀 +𝑟𝑀]:
𝑏𝑘←BRen(𝐻𝑀 ; 𝑏𝑑𝑘 , 𝑏ℎ𝑘−1, 𝑏 (𝑘−𝑃𝑀−1)𝑠𝑀+1, ..., 𝑏 (𝑘−𝑃𝑀)𝑠𝑀)
• Phase M, 𝑘 ∈ [𝑃𝑀 +𝑟𝑀 +1, 𝑃𝑀 +𝑟𝑀 +𝐹𝑀]:
𝑏𝑘←BGen(𝐻𝑀 ; 𝑏𝑑𝑘 , 𝑏ℎ𝑘−1)

At a point in time 𝑡𝑣 > 𝑡 ′
𝑀
, assume the latest hash function 𝐻𝑀

and the latest signature scheme 𝑆 are secure. The algorithm HVer

takes input a block 𝑏𝑘 , the blockchain 𝑏𝑙𝑐 , the verification data VD

and verification time 𝑡𝑣 .

Then for a user, assume all blocks in the blockchain are legiti-

mately generated by BGen andBRen as the above process, the signed

transactions 𝑆𝑇𝑋0, 𝑆𝑇𝑋
′
1
, 𝑆𝑇𝑋1, ..., 𝑆𝑇𝑋

′
𝑁
, 𝑆𝑇𝑋𝑁 are generated in

terms of the phases described in Section 4.2:

• Phase 0: 𝑆𝑇𝑋0←SGen(𝑆0; 𝑡𝑥0→0), 𝑆𝑇𝑋0→𝑏𝑙𝑐

• Phase 1’: 𝑆𝑇𝑋 ′
1
←SRen(𝑆0; 𝑡𝑥0→1), 𝑆𝑇𝑋 ′

1
→𝑏𝑙𝑐

• Phase 1: 𝑆𝑇𝑋1←SGen(𝑆1; 𝑡𝑥1→1), 𝑆𝑇𝑋1→𝑏𝑙𝑐

•

• Phase N’: 𝑆𝑇𝑋 ′
𝑁
←SRen(𝑆𝑁−1; 𝑡𝑥𝑁−1→𝑁), 𝑆𝑇𝑋 ′𝑁→𝑏𝑙𝑐

• Phase N: 𝑆𝑇𝑋𝑁←SGen(𝑆𝑁 ; 𝑡𝑥𝑁→𝑁), 𝑆𝑇𝑋𝑁→𝑏𝑙𝑐

At a point in time 𝑡 ′𝑣 > 𝑡 ′
𝑁
, assume the latest signature scheme

𝑆𝑁 is secure. The algorithm SVer takes as input a block 𝑆𝑇𝑋𝑁 , the

blockchain 𝑏𝑙𝑐 , the verification data VD and verification time 𝑡 ′𝑣 .

Definition 5.1. (Correctness.) Let LTB = ([BGen, BRen, HVer],

[SGen, SRen, SVer]) be a LTB scheme. For the scheme to be cor-

rect, it must satisfy that if every block and signed transaction in the

blockchain are generated following the above process, the verifica-

tion resultsHVer(𝑏𝑘 , 𝑏𝑙𝑐,VD, 𝑡𝑣)=1 and SVer(𝑆𝑇𝑋𝑁 , 𝑏𝑙𝑐,VD, 𝑡
′
𝑣)=1

hold.

5.2 Long-term integrity
The concept of long-term integrity is associated with the concept of

compromising a LTB scheme. By intuition, we say that an attacker

is able to compromise a LTB scheme, if it is able to claim non-existed

data or to tamper data in any of blocks on the blockchain without

being detected. Thereby, we say that a LTB scheme has long-term

integrity if any polynomial time adversary is unable to compromise

the LTB scheme in long-term periods that are not bounded with the

lifetimes of underlying cryptographic algorithms.

To formalize this, the long-term integrity model is defined as a

game running between a long-lived adversaryA and a simulator

B. The computational power ofA is as specified in Section 4.1: in

each phase,A is able to break some cryptographic primitives and re-

stricted against some others within the phase.B has computational

resources comparable toA. The hash transition procedure is per-

formed by the blockchain system.A is able to access a clock oracle

𝐶𝑙𝑘 (·), and a blockchain oracle 𝐵𝑙𝑐 (·), which are defined as follows:
(1) 𝐶𝑙𝑘 (·): 𝑃𝑐𝑢𝑟 ←𝐶𝑙𝑘 (𝑡𝑐𝑢𝑟).A inputs the current time 𝑡𝑐𝑢𝑟 to

the clock oracle, the oracle returns the corresponding com-

putational power 𝑃𝑐𝑢𝑟 in terms of which phase 𝑡𝑐𝑢𝑟 lies in.

(2) 𝐵𝑙𝑐 (·): 𝑏𝑥 ← 𝐵𝑙𝑐 (𝑡𝑥, 𝑠𝑖𝑔), 𝑅← 𝑅 ∥ 𝑏𝑥 . A could input trans-

action and signature pairs (𝑡𝑥, 𝑠𝑖𝑔). The blockchain oracle

verifies the validity of the pairs. If any of them is not valid, the

oracle returns a ⊥. If all of them are valid, the oracle forms

blocks of the blockchain 𝑏𝑙𝑐 with these pairs, and records

every block 𝑏𝑥 (𝑥 ≥ 1) in a list 𝑅.
The long-term integrity experiment is shown as Algorithm 1:

Algorithm 1: Long-term integrity experiment Exp
LTI

LTB
(A)

1 Input: M, 𝑏𝑙𝑐 , VD

2 Output: a bit 1 or 0

3 set PHASE = [phase 0, phase 1’, phase 1, ..., phaseM’, phaseM]

4 set 𝑅= []
5 for𝑚=0;𝑚≤ 2𝑀 ;𝑚++ do
6 In PHASE[m]:

7 𝑏 ′
𝑘
←A𝐶𝑙𝑘 (·), 𝐵𝑙𝑐 (·)

8 if HVer(𝑏 ′
𝑘
, 𝑏𝑙𝑐, VD, 𝑡𝑣)=1 and 𝑏 ′𝑘 ∉𝑅 then

9 Return 1, breaks;

10 else
11 Return 0;

12 Return 0;

We use Pr[ExpLTI
LTB
(A) = 1] to denote the probability ofA win-

ning the game. By the time 𝑡𝑣 , we denote the probability that B
breaks at least one hash function and at least one signature scheme

within its validity period separately asB𝐶𝑜𝑚H andB𝐶𝑜𝑚S .

Definition 5.2. (Long-term Integrity.) Let LTB = ([BGen, BRen,

HVer], [SGen, SRen, SVer]) be a LTB scheme, let A and B be an

adversary and a simulator respectively as specified above. Then a

LTB scheme holds the long-term integrity property if there exists a

constant 𝑐 forB at any 𝑡𝑣 , Pr[ExpLTI
LTB
(A)=1] ≤𝑐 · (B𝐶𝑜𝑚H +B𝐶𝑜𝑚S).

5.3 Long-term unforgeability
The concept of Long-term unforgeability relates to the concept of

forging a signature. By intuition, if an attacker is given a public key

𝑝𝑘 generated by a signer𝑆 , we say an adversary outputs a forgery if it

outputs a message𝑚 along with a valid signature 𝑠 on𝑚, and𝑚 was

not previously signed by 𝑆 . We say that a LTB scheme is long-term

unforgeable, if any polynomial time adversary is unable to forge sig-

natures on the blockchain in long-term periods that are not bounded

with the lifetimes of underlying cryptographic algorithms.

Similar to the long-term integrity model, the long-term unforge-

ability model is defined as a game between a long-lived adversary

A and a simulatorB.A could communicate with the clock oracle

as specified in Section 5.2, and a signing oracle 𝑆𝑖𝑔𝑛(·) defined as
below. The computational power ofA andB follow Section 4.2, and

the long-term unforgeability model is listed as Algorithm 2.

• 𝑆𝑖𝑔𝑛(·): 𝑠←𝑆𝑖𝑔𝑛(𝑠𝑘, 𝑡𝑥),𝑄←𝑄 ∥ 𝑡𝑥 .A inputs a transaction

𝑡𝑥 to the signing oracle, the signing oracle returns a signature

𝑠 of 𝑡𝑥 . Then every input 𝑡𝑥 is stored in a list𝑄 .

We use Pr[ExpLTU
LTB
(A)=1] to denote the probability thatA wins

the game,B𝐶𝑜𝑚H andB𝐶𝑜𝑚S have the samemeaning as in Section 5.2.

Definition 5.3. (Long-term Unforgeability.) Let LTB = ([BGen,

BRen, HVer], [SGen, SRen, SVer]) be a LTB scheme, letA andB be

8

An Enhanced Long-term Blockchain Scheme
Against Compromise of Underlying Cryptography Conference’17, July 2017, Washington, DC, USA

Algorithm 2: Long-term unforgeability experiment

Exp
LTU

LTB
(A)

1 Input: N, 𝑏𝑙𝑐 , VD

2 Output: a bit 1 or 0

3 set PHASE = [phase 0, phase 1’, phase 1, ..., phase N’, phase N]

4 set𝑄 = []
5 for 𝑛=0; 𝑛≤ 2𝑁 ; 𝑛++ do
6 In PHASE[n]:

7 if 𝑛 ∈2𝑘 (𝑘 ∈N) then
8 (𝑝𝑘, 𝑠𝑘)←𝐺𝑒𝑛(),A←𝑝𝑘

/* signature generation phases */

9 else
10 (𝑝𝑘1, 𝑠𝑘1)←𝐺𝑒𝑛(), (𝑝𝑘2, 𝑠𝑘2)←𝐺𝑒𝑛(),
11 A←𝑝𝑘1, 𝑝𝑘2

/* signature renewal phases */

12 𝑆𝑇𝑋 = (𝑡𝑥, 𝑠)←A𝐶𝑙𝑘 (·), 𝑆𝑖𝑔𝑛 (·)

13 if SVer(𝑆𝑇𝑋, 𝑏𝑙𝑐, VD, 𝑡𝑣)=1 and 𝑡𝑥 ∉𝑄 then
14 Return 1, breaks;

15 else
16 Return 0;

17 Return 0;

an adversary and a simulator respectively as specified above. Then a

LTB scheme holds long-termunforgeability property if there exists a

constant 𝑐 forB at any 𝑡𝑣 , Pr[ExpLTU
LTB
(A)=1] ≤𝑐 · (B𝐶𝑜𝑚H +B𝐶𝑜𝑚S).

6 SECURITYANALYSIS
In this section, we prove that the proposed LTB scheme holds each

security property in terms of the security model in Section 5.

6.1 Proof of correctness
Theorem 6.1. The proposed LTB scheme holds correctness property.

Proof. In our proposed scheme LTB = ([BGen, BRen, HVer],

[SGen, SRen, SVer]), we assume that every block in the blockchain is

generated through algorithm BGen and BRen, and all signed trans-

actions of users are generated by the algorithm SGen and SRen as

the process described in Section 5.1. At time 𝑡𝑣 > 𝑡
′
𝑀
, the input values

of algorithmHVer are 𝑏𝑘 , VD, 𝑏𝑙𝑐 and 𝑡𝑣 . At time 𝑡 ′𝑣 > 𝑡
′
𝑁
, the input

values of algorithm SVer are 𝑆𝑇𝑋, VD, 𝑏𝑙𝑐 and 𝑡 ′𝑣 . We now analyze

the output of HVer and SVer in terms of the verification procedures

specified in Section 4.1 and 4.2 respectively:

Hash transition. For case 1 (𝑥 = 0), the hash function used in

𝑏𝑘 is𝐻𝑀−𝑥 =𝐻𝑀 . If 𝑏𝑘 does not contain 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑀𝑘 field, it is

generated through BGen algorithm legitimately. Therefore, the sig-

natures 𝑠𝑖𝑔𝑘1, ..., 𝑠𝑖𝑔𝑘 𝐽 are correct, and signature scheme 𝑆 is secure

at the block generation time 𝑡𝑘 . Then the Merkle tree root value is

determined from𝑏𝑑𝑘 = [𝑡𝑥𝑘1, 𝑠𝑖𝑔𝑘1], ..., [𝑡𝑥𝑘 𝐽 , 𝑠𝑖𝑔𝑘 𝐽], the block hash
values ℎ𝑏𝑘−1 and ℎ𝑏𝑘 are calculated from 𝑏𝑘−1 and 𝑏𝑘 correctly. If

𝑏𝑘 includes 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑀 field, it is generated by BRen algorithm

by following the hash transition timeline. Thus, 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ𝑀𝑘 is

correctly calculated when𝐻𝑀−1 and𝐻𝑀 are secure.

For case 2 (𝑥 ∈ [1, 𝑀]), the hash function used in𝑏𝑘 is𝐻𝑀−𝑥 . Since
all blocks are generated by BGen and BRen algorithms legitimately

by following the timeline, 𝐻𝑀−𝑥 , ..., 𝐻𝑀 are secure when used in

BGen algorithm, and each pair of hash function (𝐻𝑀−𝑥 , 𝐻𝑀−𝑥+1),
..., (𝐻𝑀−1, 𝐻𝑀) is securewhenused inBRen algorithm. If𝑏𝑘 does not

have 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ (𝑀−𝑥)𝑘 field, it is generated by BGen algorithm.

Thus, the validity of signatures, signature schemes, Merkle tree root

hash value, and block hash values are all guaranteed as case 1. If 𝑏𝑘
has𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ (𝑀−𝑥)𝑘 field, then it is generated byBRenalgorithm.

The calculation result and time of 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ (𝑀−𝑥)𝑘 are correct

as case 1. With the assumption that𝐻𝑀 is secure at time 𝑡𝑣 , we have

HVer(𝑏𝑘 , 𝑏𝑙𝑐, 𝑡𝑣, VD)=1.
Signature transition. First,with theassumption that all blocks in

the blockchain are correctly produced byBGen andBRen algorithms,

the blocks containing 𝑆𝑇𝑋0, 𝑆𝑇𝑋
′
1
, 𝑆𝑇𝑋1, ..., 𝑆𝑇𝑋

′
𝑁
, 𝑆𝑇𝑋𝑁 are valid.

Second, since every signed transaction is created by SGen and SRen

algorithms legitimately, the signatures 𝑠0, ..., 𝑠𝑁 and 𝑠 ′
1
, ..., 𝑠 ′

𝑁
are

correct. Third, since each time algorithms SGen and SRen take place

by following the signature transition timeline, signature schemes

𝑆0, ..., 𝑆𝑁 are secure when used in SGen algorithm, and each pair of

signature schemes (𝑆0, 𝑆1), ..., (𝑆𝑁−1, 𝑆𝑁) are secure when used in
SRen algorithm.With the assumption that 𝑆𝑁 is secure at 𝑡 ′𝑣 , we get
SVer(𝑆𝑇𝑋, 𝑏𝑙𝑐, 𝑡 ′𝑣, VD)=1.

Based on the above analysis on the verification results of HVer

and SVer algorithms, the proposed LTB schemeholds the correctness

property, the theorem 6.1 follows. □

6.2 Proof of long-term integrity
Theorem 6.2. In the proposed LTB scheme, if each time the current

hash function or signature scheme used in the blockchain becomes
weak but not actually compromised, a stronger one is used in the next
time period, and the verification data VD is trusted, the proposed LTB
scheme holds the long-term integrity property.

Proof. If the adversaryA wins the game, it must output a block

𝑏 ′
𝑘
, which is not an original block on blockchain𝑏𝑙𝑐 , but somehow to

manage lettingHVer(𝑏 ′
𝑘
, 𝑏𝑙𝑐, VD, 𝑡𝑣)=1. Nowwe analyse the prob-

ability ofA winning the game separately from the Phase 0, Phase

1’, Phase 1, ..., Phase M’, and Phase M that are defined in Section 5.2.

At Phase 0,A could query the oracle𝐶𝑙𝑘 (·) to set computational

power 𝑃0 at time 𝑡 ∈ [𝑡0, 𝑡 ′
0
], which is bounded to break a secure sig-

nature scheme 𝑆 and a hash function𝐻0 with negligible probability.

𝐻0 is the only hash function used in the blockchain for Merkle tree

and block hash value computation. IfA produces signatures or hash

values by using broken signature schemes or hash functions, and in-

puts them into the blockchain by oracle 𝐵𝑙𝑐 (·), the oracle will check
the algorithm identifiers and verify them as invalid transactions,

then returns a⊥. Hence, ifA wins the game, one of the following

three cases must happen:

(1) A finds 𝑠𝑖𝑔←𝑆 (𝑡𝑥1)=𝑆 (𝑡𝑥2).
(2) A finds 𝑟𝑜𝑜𝑡←𝑀𝑇 (𝐻0; [𝑡𝑥1, 𝑠𝑖𝑔1])=𝑀𝑇 (𝐻0; [𝑡𝑥2, 𝑠𝑖𝑔2]).
(3) A finds𝐻0 (𝑏𝑘)=𝐻0 (𝑏 ′𝑘).
Then B can obtain the pair (𝑡𝑥1, 𝑡𝑥2), ([𝑡𝑥1, 𝑠𝑖𝑔1], [𝑡𝑥2, 𝑠𝑖𝑔2]),

(𝑏𝑘 , 𝑏 ′𝑘) to break the security of 𝑆 or collision resistance of𝐻0 within

their validity periods. This result is contradict to the assumption that

𝑆 and𝐻0 are secure at Phase 0. IfA does not win the game, it must

9

Conference’17, July 2017, Washington, DC, USA LongMeng, Liqun Chen

legitimately input a valid (𝑡𝑥, 𝑠𝑖𝑔) pair into the blockchain, then let
us carry on with our reasoning.

At Phase 1’,A could set computational power𝑃1 at time 𝑡 ∈ [𝑡 ′
0
, 𝑡1]

by oracle𝐶𝑙𝑘 (·). Signature scheme 𝑆 and hash functions𝐻0, 𝐻1 are

secure against 𝑃1. The blockchain generates new blocks by using

𝐻1, existing blocks could be generated using𝐻0 or𝐻1. IfA wins the

game, one of the following three cases must happen:

(1) A finds 𝑠𝑖𝑔←𝑆 (𝑡𝑥1)=𝑆 (𝑡𝑥2).
(2) A finds 𝑟𝑜𝑜𝑡←𝑀𝑇 (𝐻0; [𝑡𝑥1, 𝑠𝑖𝑔1])=𝑀𝑇 (𝐻0; [𝑡𝑥2, 𝑠𝑖𝑔2]), or

𝑟𝑜𝑜𝑡←𝑀𝑇 (𝐻1; [𝑡𝑥1, 𝑠𝑖𝑔1])=𝑀𝑇 (𝐻1; [𝑡𝑥2, 𝑠𝑖𝑔2]).
(3) A finds𝐻0 (𝑏𝑘)=𝐻0 (𝑏 ′𝑘), or𝐻1 (𝑏𝑘)=𝐻1 (𝑏 ′𝑘).
Then B can obtain the pair (𝑡𝑥1, 𝑡𝑥2), ([𝑡𝑥1, 𝑠𝑖𝑔1], [𝑡𝑥2, 𝑠𝑖𝑔2]),

(𝑏𝑘 ,𝑏 ′𝑘) to break the security of 𝑆 , or collision resistance of 𝐻0, or

collision resistance of𝐻1 within their validity periods. This is con-

tradict to the assumption that 𝑆, 𝐻0, 𝐻1 are secure at Phase 1’. IfA
does not win the game, it must input a valid (𝑡𝑥, 𝑠𝑖𝑔) pair into the
blockchain, we can carry on with our reasoning.

At Phase 1,A could set computational power𝑃1 at time 𝑡 ∈ [𝑡1, 𝑡 ′
1
]

by oracle 𝐶𝑙𝑘 (·). Signature scheme 𝑆 and hash functions 𝐻1 are

secure against 𝑃1, 𝐻0 can be compromised by 𝑃1. The blockchain

generates new blocks by using𝐻1, and existing blocks could be gen-

erated using𝐻0 or𝐻1. Similar to phase 0, ifA wins the game,B can

obtain the pair (𝑡𝑥1, 𝑡𝑥2), ([𝑡𝑥1, 𝑠𝑖𝑔1], [𝑡𝑥2, 𝑠𝑖𝑔2]), (𝑏𝑘 ,𝑏 ′𝑘) to break
the security of 𝑆 or collision resistance of 𝐻1 within their validity

periods. This is contradict to the assumption that𝑆 and𝐻1 are secure

at Phase 1. IfA inputs a valid (𝑡𝑥, 𝑠𝑖𝑔) pair into the blockchain, the
reasoning continues.

Carrying on our argument as before until Phase M’,A could set

computational power 𝑃𝑀 at time 𝑡 ∈ [𝑡 ′
𝑀−1, 𝑡𝑀] by oracle 𝐶𝑙𝑘 (·).

Signature scheme𝑆 and hash functions𝐻𝑀−1, 𝐻𝑀 are secure against

𝑃𝑀 . 𝐻0, ..., 𝐻𝑀−2 could be compromised by 𝑃𝑀 . Similar to phase

1’, ifA wins the game, B can break the security of 𝑆 , or collision

resistance of𝐻𝑀−1, or collision resistance of𝐻𝑀 within their valid-

ity periods. This is contradict to the assumption that 𝑆, 𝐻𝑀−1, 𝐻𝑀

are secure at Phase M’. If A inputs a valid (𝑡𝑥, 𝑠𝑖𝑔) pair into the

blockchain, the reasoning continues.

At Phase M,A set computational power 𝑃𝑀 at time 𝑡 ∈ [𝑡𝑀 ,𝑡 ′
𝑀
]

by oracle 𝐶𝑙𝑘 (·). Signature scheme 𝑆 and hash functions 𝐻𝑀 are

secure against 𝑃𝑀 ,𝐻0, ..., 𝐻𝑀−1 could be compromised by 𝑃𝑀 . Same

as previous phases, ifA wins the game,B can break the security of

𝑆 or collision resistance of𝐻𝑀 within their validity periods. This is

contradict to the assumption that 𝑆 and𝐻𝑀 are secure at Phase M.

In summary, based on the above reasoning, the winning probabil-

ity ofA is reduced to the same level of the probability thatB breaks

at least one signature scheme or hash function within its validity

period. Assume until time 𝑡𝑣 , the probability of the former term is

denoted as B𝐶𝑜𝑚S , the probability of the latter term is denoted as

B𝐶𝑜𝑚H . There exists a constant 𝑐 such that:

Pr[ExpLTI
LTB
(A)=1] ≤ 𝑐 · (B𝐶𝑜𝑚H +B𝐶𝑜𝑚S).

Thus, we have proved Theorem 6.2. □

6.3 Proof of long-term unforgeability
Theorem 6.3. In the proposed LTB scheme, if each time the current

hash function or signature scheme used in the blockchain becomes
weak but not actually compromised, a stronger one is used in the next

time period, and the verification data VD is trusted, the proposed LTB
scheme holds the long-term unforgeability property.

Proof. If the adversaryAwins the game, it must output a signed

transaction𝑆𝑇𝑋 = (𝑡𝑥, 𝑠), inwhich 𝑡𝑥 is not queried from the signing

oracle, but somehow tomanage letting SVer(𝑆𝑇𝑋, 𝑏𝑙𝑐,VD, 𝑡𝑣)=1. In
terms of themodel defined in Section. 5.3, we analyze the probability

ofA winning the game from Phase 0, Phase 1’, Phase 1, ..., Phase N’,

and Phase N.

At Phase 0,A could query the oracle𝐶𝑙𝑘 (·) to set computational

power 𝑃0 at time 𝑡 ∈ [𝑡0, 𝑡 ′
0
], in which a signature scheme 𝑆0 is secure

against𝑃0. IfA produces signaturesbyusingcompromised signature

schemes and submits these signatures to 𝑏𝑙𝑐 , the verification proce-

dure (𝑆0, [𝑡0, 𝑡 ′
0
])→VD is not hold. IfAmodifies the signed transac-

tion 𝑆𝑇𝑋0 without breaking the Merkle tree or block hash functions

within their validity periods, the output of algorithm HVer will be 0.

For both of above cases, the output of SVer algorithmwill be 0. Thus,

ifA wins the game, one of following three cases must happen:

(1) A finds𝐻 (𝑆𝑇𝑋)=𝐻 (𝑆𝑇𝑋 ′).
(2) A finds 𝑟𝑜𝑜𝑡←𝑀𝑇 (𝐻 ; 𝑆𝑇𝑋)=𝑀𝑇 (𝐻 ; 𝑆𝑇𝑋 ′).
(3) A finds a pair (𝑡𝑥, 𝑠) that satisfiesVrfy(𝑝𝑘0, 𝑠, 𝑡𝑥)=1∧𝑡𝑥 ∉𝑄 .

That means, simulatorB can obtain the (𝑆𝑇𝑋, 𝑆𝑇𝑋 ′) or (𝑡𝑥, 𝑠) pair
to compromise the collision resistance of𝐻 or unforgeability of 𝑆0
within their validityperiods.This is contradict to theassumption that

𝐻 and𝑆0 are secure at Phase 0. IfA does notwin the game, it must le-

gitimately input a valid (𝑠0, 𝑡𝑥0→0) pair into the blockchain, inwhich
𝑠0←𝑆𝑖𝑔𝑛(𝑠𝑘0, 𝑡𝑥0→0). Then we can carry on with our reasoning.

At Phase 1’,A could set computational power𝑃1 at time 𝑡 ∈ [𝑡 ′
0
, 𝑡1]

byoracle𝐶𝑙𝑘 (·), signature schemes𝑆0, 𝑆1 are secure against𝑃1. Same

as Phase 0,A is not able to win the game by submitting invalid sig-

natures, or modify signed transactions without breaking the Merkle

or block hash functions. IfA wins the game, one of the following

three cases must happen:

(1) A finds𝐻 (𝑆𝑇𝑋)=𝐻 (𝑆𝑇𝑋 ′).
(2) A finds 𝑟𝑜𝑜𝑡←𝑀𝑇 (𝐻 ; 𝑆𝑇𝑋)=𝑀𝑇 (𝐻 ; 𝑆𝑇𝑋 ′).
(3) A finds a pair (𝑡𝑥, 𝑠) that satisfiesVrfy(𝑝𝑘0, 𝑠, 𝑡𝑥)=1∧𝑡𝑥 ∉𝑄 ,

or Vrfy(𝑝𝑘1, 𝑠, 𝑡𝑥)=1∧𝑡𝑥 ∉𝑄 .
Then the simulatorB can obtain the (𝑆𝑇𝑋, 𝑆𝑇𝑋 ′) or (𝑡𝑥, 𝑠) pair to
compromise the collision resistance of𝐻 , the unforgeability of 𝑆0
or unforgeability of 𝑆1 within their validity periods, which is con-

tradict to the assumption that𝐻 , 𝑆0 and 𝑆1 are secure at Phase 1’. If

A does not win the game, it must input a valid (𝑠0, 𝑡𝑥0→0) pair or
(𝑠1, 𝑡𝑥1→1) pair into the blockchain, in which 𝑠0←𝑆𝑖𝑔𝑛(𝑠𝑘0, 𝑡𝑥0→0)
and 𝑠1←𝑆𝑖𝑔𝑛(𝑠𝑘1, 𝑡𝑥1→1). Thenwe can carry onwith our reasoning.

At Phase 1,A could set computational power𝑃1 at time 𝑡 ∈ [𝑡1, 𝑡 ′
1
]

by oracle𝐶𝑙𝑘 (·), signature scheme 𝑆1 is secure against 𝑃1, 𝑆0 could

be compromised by 𝑃1. Similar to Phase 0 and 1, A is not able to

win the game by submitting invalid signatures, or modify signed

transactions without breaking the Merkle or block hash functions.

IfA wins the game, the simulatorB can obtain the (𝑆𝑇𝑋, 𝑆𝑇𝑋 ′) or
(𝑡𝑥, 𝑠) pair to compromise the collision resistance of𝐻 or unforge-

ability of 𝑆1 within their validity periods, which is contradict to the

assumption that𝐻 and 𝑆1 are secure at Phase 1. IfA does not win

the game, then the reasoning continues.

Carrying on our argument as before until Phase N’,A sets com-

putational power 𝑃𝑁 at time 𝑡 ∈ [𝑡𝑁 , 𝑡 ′𝑁] by oracle𝐶𝑙𝑘 (·), signature
10

An Enhanced Long-term Blockchain Scheme
Against Compromise of Underlying Cryptography Conference’17, July 2017, Washington, DC, USA

schemes 𝑆𝑁−1, 𝑆𝑁 are secure against 𝑃𝑁 , 𝑆0, ..., 𝑆𝑁−2 could be com-

promised by 𝑃𝑁 . Same as previous phases, ifA wins the game, the

simulator B can compromise the collision resistance of𝐻 , the un-

forgeability of 𝑆𝑁−1, or unforgeability of 𝑆𝑁 within their validity

periods, which is contradict to the assumption that𝐻 , 𝑆𝑁−1 and 𝑆𝑁
are secure at Phase N’. IfA does not win the game, we keep on with

our reasoning.

At Phase N, A could set computational power 𝑃𝑁 at time 𝑡 ∈
[𝑡 ′
𝑁
, 𝑡𝑁+1], signature scheme 𝑆𝑁 is secure against 𝑃𝑁 , 𝑆0, ..., 𝑆𝑁−1

could be compromised by 𝑃𝑁 . Same as before, ifA wins the game,

the simulator B can compromise the collision resistance of𝐻 or the

unforgeability of 𝑆𝑁 within its validity period, which is contradict

to the assumption that𝐻 and 𝑆𝑁 are secure at Phase N.

In conclusion, based on the above reasoning, the winning prob-

ability ofA is reduced to the same level of the probability that B
breaks at least one hash function or signature scheme within its

validity period. Assume until time 𝑡𝑣 , the probability of the former

term is denoted asB𝐶𝑜𝑚H , the probability of the latter one is denoted

asB𝐶𝑜𝑚S . There exists a constant 𝑐 such that:

Pr[ExpLTU
LTB
(A)=1] ≤ 𝑐 · (B𝐶𝑜𝑚S +B𝐶𝑜𝑚H).

Thus, we have proved Theorem 6.3. □

7 IMPLEMENTATIONS
As an implementation, we have simulated the hash transition proce-

dure, evaluated the time consumption and overhead for generating

an 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ field. Based on the resulting performances, we dis-

cuss the group number and overhead issuesmentioned in Section 4.3.

We do not implement the signature transition procedure because

it is taken by the blockchain users with simple actions: they only

need generate a new account from the stronger signature scheme,

then transfer their assets from the current account to the new one.

The implementation of the whole process is same as generating and

submitting a new transaction on the blockchain.

7.1 Experiments
Our experiments use a Desktop with a AMD Ryzen 5 3600 6-Core

Processor, a 16 - GB RAM and a 64-bit operating system. Firstly, we

create a blockchain on python that applies ECDSA signature scheme

for users’ transactions and SHA-256 hash function for Merkle tree

and hashing blocks. Then we use the ’hashlib’ library in python to

measure the hashing time for SHA3-256, SHA3-384 and SHA3-512

hash functions as renewal candidates of SHA-256. The hash input

could be any part or whole of blockchain, we set different hash input

size by adjusting transaction numbers in each block, and copy a

number of same blocks to reach our target values.

The blocks in our blockchain is formed in “dictionary" type in

python, which is a big list comprised of two tuples “block header"

and “block data".However, the hash functions in hashlib only accepts

“bytes" type input values. Thatmeans a converting from “dictionary"

to “string" type, and an encoding from “string" to “bytes" type are

required before hashing. Thereby, we also measure the string con-

verting time and encoding time along with the hashing time for

corresponding data sizes.

We summarize our results into three diagrams as Fig. 5, Fig. 6

and Fig. 7, which indicate the time performance of calculating an

Figure 5: Hashing time, Encoding time and string converting
time performance for SHA3 - 256

Figure 6: Hashing time, Encoding time and string converting
time performance for SHA3 - 384

Figure 7: Hashing time, Encoding time and string converting
time performance for SHA3 - 512

𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎfield forvarious inputdata sizesusingSHA3-256, SHA3-

384, and SHA3-512 respectively. The x-axis represents the scale of

input data size (GB). The y-axis represents the time (seconds). The

five colored lines in each diagram represent the relations between

input data size and time of string converting, encoding, hashing,

encoding + hashing, and string converting + encoding + hashing.

Notice that the string converting and encoding can be implemented

before hashing, here wemeasure them together to simulate multiple

situations, so they remain the same in the three diagrams.

For example, the five timepoints corresponding to block size = 200

GB with SHA3-256 (the five red crossed points between the vertical

white line and coloured lines on Fig. 5) are measured as follows: we

11

Conference’17, July 2017, Washington, DC, USA LongMeng, Liqun Chen

Measured target Size - Time function

SHA3 - 256 𝑦=2.2𝑥

SHA3 - 384 𝑦=2.86𝑥

SHA3 - 512 𝑦=4.3𝑥

String Converting 𝑦=4.55

Encoding 𝑦=0.4𝑥

Table 2: Functions between input size (GB) and hashing time
(Sec) of SHA3-256, SHA3-384, SHA3-512, string converting
time (Sec), and encoding time (Sec)

create a block containing 1380 transactionswith block size of 539 KB,

then we copy the same block 389082 times to form a 200 GB input

data size, and measure the string converting time, encoding time,

and SHA3-256 hashing time for this 200 GB input data as 902.26s,

78.89s, and 839.32s respectively. Finally, we determine the encoding

+ hashing time as 78.89𝑠+839.32𝑠 =918.21𝑠 , and string + encoding

+ hashing time as 902.26𝑠+78.89𝑠+839.32𝑠 =1820.47𝑠 .
Based on our results, we observe that the hashing speeds com-

parison is: SHA3-256 > SHA3-384 > SHA3-512, the consumed time

comparison with taking input same data sizes are: string converting

> hashing > encoding. Besides, the relations between input data size

and string converting, encoding and hashing time are all close to

linear, so we determine the size-time functions as Table 2. In these

functions,𝑦 represents the time measured in seconds and 𝑥 repre-

sents the input data size measured in gigabytes. Our diagrams only

scale some block sizes from 0.488 GB to 1000 GB, but we can use

these functions to calculate the time of other input data sizes.

7.2 Group number discussion
Nowwe can evaluate how to set the group number and group size

so that achieves best performance to complete a hash transition

procedure. As two examples, we collect the relevant block statistics

of Bitcoin and Ethereum from [5] and [8] respectively, which are

presented in Table 3. The statistics include the whole blockchain

size, average block size, average transactions per block, total number

of transactions, total number of blocks, average block interval, and

max/min block interval collected by 00:00 15/10/2021.

In terms of Table 2, we can determine the time of calculating an

𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ bytaking inputawholeBitcoinorEthereumblockchain

withoutdividing intogroups.But the time isnormally longer than the

average block interval. To avoid possible hard forks, we set the group

number satisfying that the generation time of each 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ

field is lower than their average block interval, and compute the total

time of a hash transition after dividing the blockchainwith the group

numbers. We also calculate the group number for the cases of string

converting and encoding are taking place at the hash transition. The

results are displayed in Table 4 and Table 5.

For instance, the total hash transition time forBitcoin using SHA3-

384 is calculated as follows: 1) compute the hashing time, string con-

verting time and encoding time of whole Bitcoin blockchain follow-

ing the size-time functions in Table 2. i.e., Hashing time = 17.19mins,

encoding+hashing time= 19.84mins, string converting+ encoding+

hashing time = 47.19mins. 2) Compute the group number thatmakes

each 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ generation time lower than 10 mins (refer to Ta-

ble 3) for all three cases, e.g., 17.19 mins/2= 8.595 mins< 10 mins,

so set group number as 2. 4) Calculate the group size, e.g., for group

number of 2, the group size is 360.70GB/2=180.35GB, whichmeans

each group should have enough blocks to form 180.35 GB. 5) Calcu-

late the total hash transition time = group number × average block
interval. e.g., for 2 groups, the total hash transition time is around

2 × 10 mins = 20 mins.

From both Table 4 and 5, we can see that the string converting and

encoding consumed a lot of extra time that reduce the performances.

Including them, the transition for Bitcoin could complete in 5 - 7

blocks with 50 - 70 mins, for Ethereum is in 488 - 630 blocks with 122

- 157.5 mins. Without them, the transition for Bitcoin can finish in 2 -

3 blocks with 20 - 30 mins, for Ethereum is in 150 - 292 blocks within

37.5 - 73 mins. Based on the SHA-1 breakage example, it will take

years from theoretical attacks to a practical attack. Thus, even the

worst case, i.e., 157.5 mins = 2.625 hours, is very efficient and com-

pletely acceptable for a hash transition. Nevertheless, the blockchain

size will keep increasing in the future, which will make the hash-

ing time, encoding time, and string converting time much longer.

We recommend to complete the string converting and encoding in

advance so that improves the efficiency.

7.3 Overhead
The overhead of the hash transition procedure is equal to the size

of the 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ field in each block, which depends on the output

size of the new hash function. i.e., 64 KB for SHA3-256, 96 KB for

SHA3-384 and 128 KB for SHA3-512. Referred to the average block

size in Table 3, the average block size of Bitcoin and Ethereum are

536.456 KB and 79.415 KB respectively.

For Bitcoin, the biggest overhead of 128 KB takes 128/536.456=
23.9%of a block. Especially, the average block size ofBitcoin in recent

three years has raised to 1182.72 KB, that means a 128 KB overhead

only takes 128/1182.72=10.82% of a block. This overhead could be

accepted by reducing 10% - 20% transactions per block or increasing

the block size for 10% - 20%, since the block size is not a fixed value.

As the evaluation in Section 7.2, the hash transition is efficient and

will not take a long time to complete, the changing of block size is

temporary and can be recovered soon.

For Ethereum, the overhead of 64 KB takes 64/79.415=80.6% of

a block, the overhead of 96 KB and 128 KB could be larger than a

block, which may be hard to be accepted by the current Ethereum

blockchain. In this case, we recommend to adopt the supplement

procedure introduced in Section 3.1. That is, to construct a supple-

ment blockchain with bigger block size to contain the 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝐻𝑎𝑠ℎ

field, the original chain remains the same. Transactions verification

is usually conducted in original chain, the support chain is used for

the verification process when a dispute occurs. This method can be

applied to other blockchains if the overhead cannot be accepted.

8 CONCLUSIONS
In thispaper,wehaveanalyzed that theexisting long-termblockchain

schemes are not compatible with existing blockchain structures, and

could possibly be vulnerable to attacks after the first hash transition

because the security analysis is missing. Then we have proposed

an enhanced version of long-term blockchain scheme with a formal

12

An Enhanced Long-term Blockchain Scheme
Against Compromise of Underlying Cryptography Conference’17, July 2017, Washington, DC, USA

Blockchain size (GB) Average block size (KB) Average transactions per block Total number of transactions

Bitcoin 360.6953125 536.456686 986.7616343 678293951

Ethereum 1016.3307030534 79.415 98.2880381 1318964434

Total number of blocks Average block interval time Max/Min Block interval time

Bitcoin 705027 10 min 24.828 min / 2.081 min

Ethereum 13419379 15 s 30.31/4.46s

Table 3: Bitcoin and Ethereum block statistics at 00:00 October 15𝑡ℎ 2021

Hash only SHA3-256 SHA3-384 SHA3-512

No group time 13.23 min 17.19 min 25.85 min

Group number 2 2 3

Group size 180.35 GB 180.35 GB 120.24 GB

Transition time 20 min 20 min 30 min

Encode + Hash SHA3-256 SHA3-384 SHA3-512

No group time 15.86 min 19.84 min 28.5 min

Group number 2 3 4

Group size 180.35 GB 120.24 GB 90.17 GB

Transition time 20 min 30 min 40 min

Str + Encode + Hash SHA3-256 SHA3-384 SHA3-512

No group time 43.21 min 47.19 min 55.85 min

Group number 5 6 7

Group size 72.14 GB 60.12 GB 51.53 GB

Transition time 50 min 60 min 70 min

Table 4: Group number evaluation for SHA3-256, SHA3-384,
and SHA3-512 in Bitcoin

Hash only SHA3-256 SHA3-384 SHA3-512

No group time 37.27 min 48.45 min 72.84 min

Group number 150 194 292

Group size 6.78 GB 5.23 GB 3.49 GB

Transition time 37.5 min 48.5 min 73 min

Encode + Hash SHA3-256 SHA3-384 SHA3-512

No group time 44.72 min 55.9 min 80.29 min

Group number 179 224 322

Group size 5.68 GB 4.53 GB 3.16 GB

Transition time 44.75 min 56 min 80.5 min

Str + Encode + Hash SHA3-256 SHA3-384 SHA3-512

No group time 121.79 min 132.97 min 157.36 min

Group number 488 532 630

Group size 2.08 GB 1.91 GB 1.6 GB

Transition time 122 min 133 min 157.5 min

Table 5: Group number evaluation for SHA3-256, SHA3-384,
and SHA3-512 in Ethereum

security model, and we have analyzed that our scheme achieves

correctness, long-term integrity and long-term unforgeability prop-

erties under the security model. Finally, we have implemented the

hash transition procedure and tested that our scheme is very efficient

and practical.

With the advanced technology and computing architecture devel-

oping faster, the topic of long-term security becomesmore andmore

significant in theworld. Apart from the blockchain technology, other

applications that make use of cryptographic algorithms are facing

the same problem as well, because most of the algorithms are associ-

ated with a limited lifespan. No matter the algorithms are designed

for confidentiality or integrity, it is crucial to maintain the security

property in long-term periods in order to defend future attacks. In

the future, we will carry on our research for other applications that

require long-term security.

13

Conference’17, July 2017, Washington, DC, USA LongMeng, Liqun Chen

REFERENCES
[1] ISO/IEC 10118-1. 2016. Information technology – Security techniques – Hash

functions – Part 1: General. Standard.
[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos

Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed

operating system for permissioned blockchains. In Proceedings of the thirteenth
EuroSys conference. 1–15.

[3] Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck Youssef, and

Erik Zenner. 2015. Ripple: Overview and outlook. In International Conference on
Trust and Trustworthy Computing. Springer, 163–180.

[4] Jaysing Bhosale and Sushil Mavale. 2018. Volatility of select crypto-currencies: A

comparison of Bitcoin, Ethereum and Litecoin. Annu. Res. J. SCMS, Pune 6 (2018).
[5] Blockchain.com. 2011. Website. https://www.blockchain.com/. Accessed:

2021-11-11.

[6] Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized

application platform. White Paper 3, 37 (2014).
[7] Fengjun Chen, Zhiqiang Liu, Yu Long, Zhen Liu, and Ning Ding. 2018. Secure

scheme against compromised hash in proof-of-work blockchain. In International
Conference on Network and System Security. Springer, 1–15.

[8] Etherscan. 2015. Website. https://etherscan.io/. Accessed: 2021-11-11.

[9] Ilias Giechaskiel, Cas Cremers, and Kasper Bonne Rasmussen. 2016. On Bitcoin

Security in the Presence of Broken Crypto Primitives. IACR Cryptol. ePrint Arch.
2016 (2016), 167.

[10] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. 1988. A digital signature

scheme secure against adaptive chosen-message attacks. SIAM Journal on
computing 17, 2 (1988), 281–308.

[11] Lov K Grover. 1996. A fast quantummechanical algorithm for database search. In

Proceedings, 28th Annual ACM Symposium on the Theory of Computing. 212–219.

[12] Hussein Hellani, Abed Ellatif Samhat, Maroun Chamoun, Hussein El Ghor, and

Ahmed Serhrouchni. 2018. On blockchain technology: Overview of bitcoin

and future insights. In 2018 IEEE International Multidisciplinary Conference on
Engineering Technology (IMCET). IEEE, 1–8.

[13] Guangkai Ma, Chunpeng Ge, and Lu Zhou. 2020. Achieving reliable timestamp

in the bitcoin platform. Peer-to-Peer Networking and Applications 13 (2020),

2251–2259.

[14] Ralph CMerkle. 1989. A certified digital signature. In Conference on the Theory
and Application of Cryptology. Springer, 218–238.

[15] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Technical

Report.

[16] National Institute of Standards and Technology (NIST). 2013. Digital Signature
Standard (DSS). Standard.

[17] National Institute of Standards and Technology (NIST). 2017. NIST Policy on
Hash Functions. Standard. Online available: https://csrc.nist.gov/projects/hash-
functions/nist-policy-on-hash-functions.

[18] Masashi Sato and Shin’ichiro Matsuo. 2017. Long-term public blockchain: Re-

silience against compromise of underlying cryptography. In 2017 26th International
Conference on Computer Communication and Networks (ICCCN). IEEE, 1–8.

[19] Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303–332.

[20] Pawel Szalachowski. 2018. (Short Paper) Towards More Reliable Bitcoin

Timestamps. In 2018 Crypto Valley Conference on Blockchain Technology (CVCBT).
IEEE, 101–104.

[21] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper 151, 2014 (2014), 1–32.
[22] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. 2019. Blockchain

technology overview. arXiv preprint arXiv:1906.11078 (2019).

14

https://www.blockchain.com/
https://etherscan.io/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Hash functions
	2.2 Digital signature schemes
	2.3 Merkle trees
	2.4 Blockchains

	3 Review the existing LTB schemes
	3.1 The Sato et al. scheme sato2017long
	3.2 The Chen et al. scheme chen2018secure
	3.3 Discussions

	4 The proposed LTB scheme
	4.1 Hash transition procedure
	4.2 Signature transition procedure
	4.3 Discussions

	5 Security model and definitions
	5.1 Correctness
	5.2 Long-term integrity
	5.3 Long-term unforgeability

	6 Security analysis
	6.1 Proof of correctness
	6.2 Proof of long-term integrity
	6.3 Proof of long-term unforgeability

	7 Implementations
	7.1 Experiments
	7.2 Group number discussion
	7.3 Overhead

	8 Conclusions
	References

