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Abstract—Federated learning (FL), as an emerging distributed
learning framework, can combine training from different users
without collecting users’ original data, protecting privacy to a
certain extent. However, there are no efficient privacy protection
technologies applicable to IoT. One challenge in IoT is to reduce
the client-server communication cost and solve communication
failure questions. Another challenge is how to utilize high-
quality data to guarantee training performance. To solve these
challenges, we present a privacy-preserving and optimal fraction
FL framework based on elliptic curve cryptosystem (ECC) and
k-nearest neighbor (KNN) method in an ad-hoc network. Firstly,
we propose an improved multiple key EC-ElGamal cryptosystem
(MEEC), which can reduce computation overhead and improve
the encryption efficiency owing to the lightweight EC-ElGamal
cryptosystem with shorter keys and ciphertext. Secondly, we
propose the first ad-hoc FL framework with an ad-hoc quit
and join algorithm, solving the communication failure questions,
guaranteeing the optimal power computation. Thirdly, we raise a
Euclidean fraction scheme based on an improved KNN method,
which can quickly obtain the optimal training data from the
heterogeneity data, avoiding low-quality data or malicious data
to join the training. Finally, security analysis and performance
evaluation have been performed. Compared with the existing
solutions, our scheme is secure, practicable, efficient with low
communication and computational costs in IoT.

Index Terms—Federated learning, k-nearest neighbor, ad-hoc
network, EC-ElGamal, Euclidean fraction.

I. INTRODUCTION

As one of the most promising technologies, federated learn-
ing (FL) enables multiple participants to conduct joint model
training without sharing local data on the premise of protecting
data privacy and is expected to exert great potential in the
Internet of Things (IoT). To improve the intellectualization of
IoT, edge computing and FL can be applied collaboratively.
However, edge computing has limited computing power and
communication overhead, and FL requires massive data and
repeated interaction to train model, which causes the bottle-
neck for FL applications in edge computing of IoT.

Although FL protects privacy to a certain extent, there
are no efficient privacy protection technologies applicable
to IoT. As the mainstream privacy-preserving technologies,
homomorphic encryption (HE) provides the operations in
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the ciphertext without interactions and loss of accuracy. In
the current studies, homomorphic encryption schemes in FL
mainly includes Paillier [1], ElGamal [2], improved BGV [3]
and other homomorphic encryption algorithms [4], but these
cryptosystems are not suitable for IoT devices due to their
limited power resources and processing units. To avoid low
efficiency and adapt the application of IoT devices, elliptic
curve cryptosystem (ECC) has been improved and leveraged in
our scheme because of its higher level security with shorter key
size and better performance to realize the lightweight encryp-
tion, reduce resource consumption, and improve efficiency.

Owing to the features of the FL framework, FL exists high
communication costs and communication failure questions. In
federated learning networks, there are usually a large number
of edge devices (such as intelligent robots, intelligent meters)
communicating with parameter servers. If all edge devices
participate in the entire training process, it will cause huge
and expensive network communication overhead, and not all
clients play a significant role in every round of training.
In addition, network bandwidth limitations and the number
of working nodes can exacerbate communication failures in
federated learning, causing client device drops or exits. Among
them, elliptic curves can offer an advantage to bandwidth and
ad-hoc can solve the communication failures respectively.

Another bottleneck is how to utilize high-quality data. In
an early study, FL treats all clients with fair data with-
out considering the training accuracy [5], [6]. However, in
real scenarios, some devices are offline or drop out, have
low-quality data, unbalanced data, or non-independent and
identically distributed (non-IID) data, which can cause the
incorrect training result or generate a useless training model.
To solve the question, Zhao et al. [7] proposed the first privacy-
preserving deep learning framework considering the unreliable
participants, which utilizes an exponential mechanism of d-
ifferential privacy to learn an accurate model. However, the
adversary can still recover the sensitive data and each user’s
data quality information is accessible to the server. Xu et
al. [1] presented a privacy-preserving federated deep learning
framework (PPFDL) to reduce the impact of irregular users
and protect the privacy of all user-related information, and
each user’s data quality information. However, the scheme
increases an additional server and a trusted third party, which
leads to accessional resources and insecurity. In addition,
Paillier additional homomorphism has high computational and
communication costs [8].

In view of the above bottlenecks, in this paper, we present
a privacy-preserving federated learning framework based on
ECC and k-nearest neighbor (KNN) method in the ad-hoc
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network (PFLEKA) while maintaining a high-quality data
utility. Our main contributions are summarized as follows.

o We present an optimal fraction FL. framework with im-
proved multiple key EC-ElGamal cryptosystem (MEEC)
and ad-hoc network method suitable to IoT devices. The
framework protects the privacy of all participants, reduces
computational and communication costs with lightweight
EC-ElGamal, and improves encryption efficiency.

o We propose ad-hoc quit and join algorithms that allow
participants to quit or join the training process in the
ad-hoc network, the first ad-hoc FL framework. The
algorithm solves the communication failure question and
guarantees the optimal power and parameter computation.

e We design a Euclidean fraction scheme based on an
improved KNN method, which classifies the high-quality
data to calculate the federated average. The scheme can
quickly find the optimal threshold data to train the model
and protect devices’ data quality information.

o We conduct the security analysis and evaluate the per-
formance of the FL scheme for convolutional neural
network (CNN). The results demonstrate that our scheme
is secure, practicable, efficient with low communication
and computation costs.

Organization. The remaining part of this paper is organized
as follows. In Section II, we discuss the related work in
more detail. In Section III, some preliminaries have been
presented. Section IV establishes the system and threat models.
In Section V, we describe our PFLEKA in detail. In Section
VI, we analyze the security of our scheme. The performance
evaluation and experimental results are shown in Section VII.
Finally, we draw the conclusions in Section VIII.

II. RELATED WORK

In this section, we investigate the existing works on privacy-
preserving FL from the following aspects. Privacy-preserving
technologies in federated learning mainly include differential
privacy [9], [10], [11], [12], [13], secure multiparty computa-
tion (SMCO)[11], [14], homomorphic encryption (HE) [3], [15].
In the following, we first survey the three privacy technologies
in FL.

Differential privacy, as a mainstream data perturbation
mechanism for privacy-preserving FL, masks the original data
by adding noise. As the early FL framework, Shokri et al. [5]
presented a distributed deep learning scheme that participants
train the dataset at home and only upload the gradients to
the parameter server with differential privacy. Nevertheless,
the scheme still can leak the privacy [6] owing to the low
privacy-preserving level. Phan er al. [16] proposed a privacy-
preserving mechanism that can dynamically add noise based
on the contribution of features without depending on the
number of training steps. Gong et al. [17] proposed a privacy-
enhanced multi-party deep learning framework by dynamically
allocating privacy budgets at different stages of training. Abadi
et al. [18] developed a framework of differential privacy by
adding Laplacian noise to gradients. However, Xiang et al.
[19] pointed out that adding noise to the gradient ensures
privacy, it greatly reduces the accuracy of the model. In

summary, differential privacy only provides approximately the
results, reducing the data accuracy and still can leak some
information in specific scenarios.

SMC performs interactive calculations to obtain convention
function in the case of no trusted third party and without
knowing other users’ information. Bansal et al. [20] presented
a two-party protocol using secret sharing and secure scalars.
Nevertheless, the scheme lays off when the number of par-
ticipants reaches a certain amount. Xu et al. [14] proposed
an efficient approach (HybridAlpha) to protect FL privacy
based on SMC protocol of function encryption. Truex et al.
[11] developed a hybrid approach to protect FL privacy with
differential privacy, SMC, and threshold HE. Bonawitz et al.
[21] proposed a secure data aggregation for machine learning
utilizing secret sharing, however, the communication overhead
is too high. According to SMC'’s features, SMC is also not
suitable for tens of thousands of clients in FL. owning to more
interactions and large amounts of computations.

HE allows arithmetic operations to be performed under
ciphertext without loss of accuracy and interactions. Phong
et al. [6] proposed a privacy-preserving deep learning scheme
based on additively HE (Paillier and Learn- ing with Errors
(LWE) cryptosystems). However, using the same private key
for each participant can lead to malicious participants easily
accessing other participants’ private data. To overcome this
shortcoming, Zhang et al. [22] designed a multi-key privacy-
preserving deep learning scheme based on proxy re-encryption
with ElGamal cryptosystem. Although DeepPAR protects the
privacy of each participant with the different private keys,
the scheme is not resistant to collusion attacks once the
proxy server colludes with the participants to obtain the
private key. Ma et al. [2] designed a privacy-preserving multi-
party deep learning using ElGamal HE, which can protect
the participants’ private information. However, if the server
and the participant conspire to obtain the homomorphic key,
user data is no longer secure, in addition, the participants
participate in joint decryption, causing the user overhead
too high. Hao er al. [3] proposed privacy-enhanced feder-
ated learning (PEFL) to achieve efficiency with improved
Brakerski-Gentry-Vaikuntanathan (BGV) HE scheme [23].
However, fully HE increases computational complexity and
ciphertext length [24]. Li et al. [4] proposed a non-interactive
privacy-preserving multi-party machine learning (NPMML)
with Paillier and Rivest-Shamir-Adleman (RSA) [25] cryp-
tosystems. Chen et al. [8] presented a privacy-preserving
image multi-classification deep learning model based on Pail-
lier cryptosystem. Subsequently, Chen et al. [26] presented a
privacy-preserving deep learning model with homomorphic re-
encryption based on the Bresson-Catalano-Pointcheval (BCP)
[27] cryptosystem. However, their communication costs still
are high.

In addition, we investigate the communication-efficient and
heterogeneity problems in FL. Focusing on communication-
efficient in FL, Chen et al. [28] proposed an asynchronous
learning strategy on the clients and a temporally weighted
aggregation of the local models on the server to reduce
the client-server communication. Mills e al. [29] proposed
communication-efficient FedAvg (CE-FedAvg) that can adapt
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FedAvg with a distributed Adam optimization, and greatly
reduce the number of convergence rounds. However, these
schemes do not consider privacy concerns. Focusing on
heterogeneity problems in FL, Zhao et al. [7] and Xu et
al. [1] proposed privacy-preserving federated deep learning
frameworks with unreliable participants in succession. How-
ever, there are some problems mentioned above. Fairness
mechanisms have been proposed to solve the heterogeneity
problems. Cotter et al. [30] introduced the proxy-Lagrangian
formulation to improve fairness metrics under a rate constraint.
However, setting fairness constraints can result in many users
sacrificing performance to achieve fairness goals. Mohri et
al. [31] presented an agnostic federated learning framework
with data-dependent Rademacher complexity guarantees to
yield a notion of fairness. However, additional knowledge to
determine clients’ similarities may be impractical for some
IoT applications and also can cause private leakage. Pang
et al. [32] put forward a self-organized federated learning
framework for IoT with a reinforcement learning (RL) based
intelligent central server, which generates a collaboration plan
with a high-performance increment for clients. However, this
method increases the communication cost in the collaboration
plan process. In addition, when the server obtains the local
parameter from all users, it triggers the aggregation process,
which may cause a long waiting time. To solve the key
questions of the prior works, we propose a privacy-preserving
federated learning framework to improve efficiency and find
the optimal score data to train the model.

III. PRELIMINARIES
A. Secure Multiparty Computation (SMC)

SMC means that in the absence of a trusted third par-
ty, multiple parties collaboratively calculate an agreed func-
tion satisfying: f(z1,z9,...,2n) = (y1,Y2,...,YyN), Where
T1,%2,...,xn are the input, yi,ys,...,yn are the corre-
sponding output, and f is conventional calculation function.
SMC ensures that each party only obtains its own calculation
results, and it is impossible to infer any other party from the
interactive data in the calculation process.

In addition, addition secret sharing has been proposed by
[33], [34]. In this scheme, a sharing algorithm and a recon-
struction algorithm are consisted over Zos2. A secret value s
is split to ¢ shares F1, Fs, ..., Ey € Zos2 satisfying

Ei+ E>+ ...+ Ey = s mod 2%, (D
where t—1 elements 4, Fs, ..., F;_ are uniformly distribut-
ed. This requires ¢ participants jointly calculating their shares,

and less than or equal to ¢ — 1 participants will not get their
share.

B. Elliptic Curve
An elliptic curve E over a prime field IF, with the prime p
(p > 3) is the point set of the curve following the Weierstrass
equation [35]:
E :y?*mod p = 2 4 az + b mod p, 2)
where z,y,a,b € F, and 4a® + 2762 # O(modp), with a
point of infinity.

C. EC-ElGamal

EC-ElGamal [36], [37] is an additive homomorphic encryp-
tion scheme based on ElGamal elliptic curve, which requires a
shorter key and can greatly reduce computation overhead and
improve the encryption efficiency. Let E(F,) be an elliptic
curve over the finite field I,,. The detailed description of the
scheme is as follows:

o KeyGen: Given a base point @ € E(F,), choose a
random integer d as the private key, and compute the
public key point P = dQ.

o Encryption: First, embed the plaintext m in point M
by message encoding. Then, choose the random integer
r and compute the ciphertext point:

Ay =M +rP, Ay = rQ. 3)

o Decryption: After receiving the ciphertext (A1, As), de-
cryption algorithm is computed with the private key d:

M = Ay — dAs. “4)

Then, M is converted to the plaintext m according to the
encoding rules.

¢ Additive homomorphism: The plaintext point M; is on
the same elliptic curve E(F,) with base point @) and
the random integer r;, its ciphertext point C; = (M; +
r; P, r;Q). The additive homomorphism is followed:

Ci+Co= M+ My~ (r1 +r2)P, (11 +1r2)Q). (5)

D. Multiple key EC-ElGamal

At present, in many scenarios, users under different keys
collaborate to obtain the best learning effect. To achieve multi-
key lightweight federated learning, we propose a multi-key
ECC threshold homomorphic encryption scheme. The scheme
is as follows:

o Encryption: N participants have different private keys
{k1, ks, ..., kn} respectively and they negotiate the same
random number r utilizing SMC. In addition, they sepa-
rately send the different ciphertext to the server.

Cy = (M +rk1Q,rQ)
Cy = (M + 1k2Q, Q) 6)
Cn = (MN + TkNQaTQ)

o Secure Ciphertext Average: The server chooses the
optimal ¢ (2 < t < N) ciphertext from N participants
and calculates the average of ¢ homomorphic ciphertext:

i=1,jEN
1 t t
S I SIS S ¥e) I
i=1,jEN i=1,j€EN

)

Then, the server sends the average ciphertext C' to ¢

participants. Simultaneously, ¢ participants negotiate and
t

compute K; = > (k;); with SMC.

i=1,ij
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Parameter

Smart Grid

Fig. 1.

System Architecture

o Decryption: After receiving C, the participant decrypts it
with K; and the private key (k;); to obtain the plaintext
average M,q4:

(37 )i+ Y (k)@= (Ko (k) )@
=1 i=1 (8)

Mg =

S

IV. SYSTEM MODEL AND THREAT MODEL

FL can be used for cloud computing as well as edge com-
puting, such as the edge devices or edge intelligent network
(robot, vehicular ad hoc networks (VANETS), smart grid, etc.)
can be utilized FL to train and prediction data collaboratively.
In this section, we give an overview of PFLEKA with ad hoc
network and KNN scoring mechanism as shown in Fig. 1.

A. System model

In our system model, the boundary of edge computing has
a variety of edge device domains, such as robot domain,
VANETSs domain, smart grid domain. In every domain, every
edge device has machine learning algorithms as required,
such as convolutional neural network (CNN), artificial neural
network (ANN), KNN, support vector machine (SVM), k-
means clustering. Devices encrypt the training parameters
and upload or download the ciphertext parameters to update
training data. Parameter server in the cloud or edge computing
can aggregate the parameter from edge domains. In the edge
network, ad hoc or other wireless network has been leveraged
between edge devices and between parameters server and edge
devices. We utilize the lightweight cryptosystem ECC, whose
public key can be shared with all participants and the private
key can be kept himself.

1) Parameter server: The parameter server, as an aggregator,
can aggregate the training parameter from edge devices and
calculate the federated average with the training parameter.
On the server, a variety of training models can exist and
multiple iterations and cooperation need to be carried out with

edge devices. In addition, the server is semi-honest and cannot
collude with edge devices.

2) Edge devices: an edge device is an entity that can train
local data storing in the device or collecting from other devices
or sensors with the needs of machine learning algorithms.
First, the edge device generates the public and private key
pairs. Then, it encrypts the local training weights with the
private key and uploads the ciphertext weight to the parameter
server. Edge devices own the private key utilized for data
encryption and decryption based on ECC, and they cannot
collude with the parameter server.

B. Threat model

In our PFLEKA, the parameter server is an honest-but-
curious entity that can honestly follow the protocols but try
to acquire the privacy information from the system model.
In addition, the device generates and keeps the privacy key
himself, so it prevents the leakage of the private key.

1) An internal adversary compromised by the parameter
server attempts to obtain sensitive information from the train-
ing model or aggregation weights. But these information are
ciphertext and the adversary cannot acquire any information.

2) An internal adversary compromised by an edge device
attempts to obtain sensitive information from the other edge
devices. However, the device can only receive ciphertext data
and cannot obtain private information.

3) An external adversary attempts to eavesdrop on messages
from internal participants or lines. Although the adversary can
obtain the messages ciphertext, it cannot decrypt the messages
without the private key.

V. OUR PROPOSED SCHEME

In this section, we give a detailed description of PFLEKA.
First, a device (robot, intelligent vehicle, intelligent meter, etc.)
of edge domains (robots, VANETs, Smart Grid, etc.) collects
and preprocesses data from sensors or other IoT devices. Then,
the device trains these data utilizing the required machine
learning algorithm. After finishing the model training at home,
the device encrypts model parameters using the EC-ElGamal
cryptosystem, and then sends the ciphertext model parameters
to the parameter server. The parameter server aggregates all
ciphertext parameters (weights) from n devices with the same
domain, then it calculates the average of ¢ optimal ciphertext
parameters with the federated average in FL. After obtaining
the ciphertext average weights W4, the server issues these
weights W, to threshold range of edge devices in the same
domain. The server and edge devices train the model parameter
circularly until a well-trained model is generated. Finally,
the server can provide the prediction service for other users
or devices, and the users or devices can predict the data it
needs. In the following, we present a prime number search
algorithm, an ad-hoc quit and join algorithm, a Euclidean
fraction algorithm, and the detailed solution description.

A. Secure comparison protocol (SCP)

The secure comparison protocol (SCP) compares the plain-
text size (M4, Mp) of two ciphertexts C4,Cp in server,
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where Cy = Ma+rka@ and Cp = Mp+rkpQ. To compare
the size, two participants of two ciphtertexts participate in the
comparison process. The process is followed step, and the
flowchart is in Fig. 2:

Step 1: Participants A and B compute 7Qk4 and rQkp
separately. Participant A generates the random number r 4 and
calculates and sends rQk4 + 74 to participant B.

Step 2: Participant B computes and obtains Cr = rQ(kp—
ka) —ra, and then sends to the parameter server.

Step 3: The server computes and sends CC = C4 — Cp +
Cr to participant A.

Step 4: Participant A adds the random number r4 to CC
to obtain M4 — Mp. Judging M4 — Mp size, Participant A
sends the size result to the server.

2
A 5
Pl A —

Participant B

5
*fﬂ“
ot 1 3

Participant A

1. Compute rQk,
2. Generate random number 7,
3. Compute 1Ok, +r,

4. Compute C, =rQ(k, —k,)—r,
Cp=1Q(ky —k,)—1,—

6. Compute CC+r,
7. Judge M,—M;>0/<0

JiMAfM,pO/SO;b

Fig. 2. Secure comparison protocol

B. Secure multiplication protocol (SMP)

Given two ciphertexts Epy, (m1) = (A1, Agi) = (m1 +
rk;Q,7Q) and By, (m2) = (A1, Ay') = (me + rk;Q, rQ),
calculate Epi, (mim2) by the secure multiplication protocol
(SMP). The detailed process is followed:

Step 1: The participant ¢ encrypts m; to obtain the cipher-
text Epi, (m1) with the public key pk; = P; = k;(), and then
computes and sends D = (m; — 1)rP; and F = rP; to the
server;

Step 2: The server encrypts mo to obtain the ciphertext
E,k, (m2) with the public key pk; = k;Q.

Step 3: The server calculates F,, (m1ms) as follows:

Epk, (mima2)
=(A1; A1 — F? — D — maF, Ay)
=(mims + rk;Q, Q). 9

C. Prime number search algorithm (PNSA)

ECC key size is the main parameter to optimize perfor-
mance and reduce power consumption, which can achieve
lightweight encryption and low communication delay. In IoT,
due to the limited battery life of the sensors or devices, sensors
or devices need low power consumption to operate, and the

optimal prime p can reduce the low power consumption to
a great extent. Therefore, choosing the appropriate prime p
with the acceptable security level is crucial [21]. To find the
optimal prime p, we propose the following prime number
search algorithm.

Let local epoch power be P, f be the number of local
epoch, the communication power be P.. A round of the total
power P, in FL is the summation of local processing power
and the communication power as follows:

P, =fP. +P. (10)
The total power P, satisfies the following formula.
Ptotal = mPt < Pthreshold; (11)

where m is the optimal training round when the weights are
not updated again, or is the threshold value of the round, and
Pypreshora 18 the threshold value of the power. When reaching
the threshold value Py, eshoid, the device will be shut down
owing to the battery running out. The algorithm is followed in
Algorithm 1. In the algorithm, O(p) is the order of the prime
p satisfying O(p) = Opnin, where Oy is the order of the
minimum security level.

Algorithm 1: Prime number search algorithm

Input: p < 1,Pa1;g <~ O0,0(p) 0
Output: prime p

t
Compute Pypg = %(Z Protai(4));

if P,og > Pu (f)reldeﬁned power budget)

then choose the next prime p;
compute the average power Poyg;

else compute O(p) with Schoof algorithm [38];
if O(p) < Omin
then choose the next prime p;
else obtain the value of prime number p.
end if

end if

D. Euclidean fraction algorithm (EFA)

To obtain the optimal federated training model by calculat-
ing the federated average of ¢ optimal weights, we present a
Euclidean fraction algorithm with an improved KNN method,
namely the KNN scoring mechanism. The steps are as follows:

Step 1. The server receives E,, (W;) =
(Epki (wi1), Epk, (wiz), . .. s Epk, (wij)v s Bk, (win))
from participant ¢ with the number of weights n and
encrypts (wi’,wo’,...,w,’) to obtain the ciphertext
Epr,(Wi') = (Epk, (w1'), Bpg, (w2'), ..., Epg, (wy")), where
(wi1, Wi, - - ., Wy ) is the training dataset, (w1, ws', ..., wy")
is the test dataset, i € {1, N},j € {1,n}.

Step 2: The server computes the distance between the
training dataset and the test dataset using Euclidean distance,
which can be written as

d(W%Wj/)

:\/(wﬂ — wl’)2 + (wig — w’2)2 + oot (win — wn’)Q.

12)
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Since we obtain the ciphertext training dataset and test
dataset, we first calculate Ey, ((w;; — w;’)?) with the additive
homomorphism and SMP protocol as follows:

Epr, (wi — w;')?)
= Pki((wij)Z) - Epki(Qwijwj,) + Epk’z:((wj/)Q)'

Then we calculate the square of the distance with the
additive homomorphism, namely:

Epi, (d*(Wiz, W,"))
=Ep, (wir — w1')?) + Epi, ((wiz — wa')?)
+ ot Epg, ((win — wn/)2)~

13)

(14)

Step 3: The server sorts the square of the distances
Epi, (A2(Wh;, W,"), ..., Epk, (d(Wy;,W,")) under cipher-
text with the SCP from the biggest value to the s-
mallest value, and then takes the biggest k points writ-
ten as (Epk,, (d1), Epk,o(d2), ..., Epk,, (dr)) correspond-
ing to (Epkm (Wa,)s Epk,, (Wdz)v s By (de))’ where
al,a2, ..., ak is the subscript of the public key after sort-
ing and dy,ds,...,d; is the distance of £ optimal fraction
algorithm from d?(W;;, W;").

Step 4: Finding the % original ciphertexts E,, (W;) of k
optimal distances from N participants, the server computes
the federated average E(W,,,) using the k optimal weights
with multiple key.

E(Waug)
1

:%(Epkal (Wdl) + Epkaz (Wd2) +ot Epkak (de)) (15)

E. Construction of PFLEKA

In this subsection, we give a detailed description of PFLE-
KA in Fig. 3. According to the PFLEKA workflow, the scheme
includes the following phases: the initialization and encryption
phase, the ad-hoc network establishment phase, the federated
training phase, the decryption and prediction phase.

Initialization and encryption phase: Participant 7 (robot,
vehicle, smart meter etc.) collects and preprocesses the data
to obtain dataset (D;,Ds,...,D,) from various of sensors,
where u is the number of the dataset. Then, the participant @
trains these dataset (D1, Ds, ..., D,,) and obtains the weights.
Before uploading these weights, the edge device operates the
following operation. First, take the edge device as participant
i, participant ¢ generates the private key k; using the key
generation and computes and sends the public key point
pk; = P; = k;Q to the parameter server. Then, N participants
negotiate and obtain the same random number r utilizing
SMC.

After obtaining the initial weight Wy, participant 7 trains
the dataset (D1, Ds,...,D,) with machine learning algo-
rithm such as CNN. When obtaining the training weight
W; = (wi1, wsa, . . ., Wiy, ), participant 7 encrypts the weight-
s W,; with the private key k; and the random number r
utilizing multiple key EC-ElGamal cryptosystem to obtain
Epki (Wl) = (Epki (’wﬂ), Epk’,, (w,;g), ey Epk7 (wm)). Finally,
all participants obtain the ciphertext weights E,, (W;) and
send them to the aggregation server.

Ad-hoc network establishment phase: In our scheme, to
make routing protocol more bandwidth efficient, we leverage
Dynamic Source Routing (DSR) [39] with the ECC in IoT
to establish the ad-hoc network. DSR [40] is an ad-hoc on-
demand routing protocol that establishes the routed protocol
containing the address of the packet traversing nodes by
flooding RouteRequest packets in a source node and sending
a RouteReply packet to the source node from the destination
node. DSR avoids transmitting the same RouteRequest repeat-
edly by a source node or an intermediate node, and the final
path includes the address of each device.

In the ad-hoc network establishment phase, we propose ad-
hoc quit and join algorithms suitable for the establishment
process. When the ¢th node joins and quits from the ad-hoc
network, the network updates the route with DSR protocol.
If the ¢th node quits, the parameter server receives the quit
signal of the ith node, removes its related weights E(W;). If
the quit node exists in threshold ¢ nodes (¢ € t,t > 3), then the
server computes ¢t — 1 ciphertext weight average F(W,,,4) and
the average power F,,, with the proposed multiple key EC-
ElGamal cryptosystem in formula (16). Otherwise, the server
still computes the original ¢ ciphertext.

1
E(Wavg) == (E(W1) + -+ BE(Wj) + -+ BE(W))(j # ©)
1 t t t
S 2 Wik 2 mP ) Q)
Jj=1,5#i Jj=1,j#i Jj=1,j#i
1 t
== > BWy) (16)
Jj=1,j#i

If the i, node joins, the parameter server receives the ci-
phertext weights E(W; ) of the i, node, compares the smallest
ciphertext weight F(W;) sorted by SCP with E(W;_). When
judging W, > W, with the SCP, the server replaces E(W;)
with E(W;,) and computes the average ciphertext E (W)
with the proposed multiple key EC-ElGamal cryptosystem and
the power average P,,,. The average ciphertext E (W) is

followed:

B(Wasg) =7 (BOW) + B(Wa) + -+ E(W, 1) + B(W,.))
= B0+ BOV.) an

When judging W;, < W, with the SCP, the server keeps the
original training process with the optimal ¢ ciphertext weight.

Federated training phase: The parameter server obtains N
participants’s E,x, (W), judges the optimal ¢ ciphertext with
EFA, and then computes the federated average with multiple
key EC-ElGamal encryption. The detailed federated learning
algorithm is followed:

Finally, through the global update and local update circular-
ly, the server and the participants obtain the well-trained model
when reaching the round threshold or the optimal weight
without an update again.

Decryption and predication phase: After obtaining
the well-trained model E,; (W, ), the participant decrypts

avg
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Fig. 3. PFLEKA Workflow

Algorithm 2: Ad-hoc quit algorithm

Algorithm 3: Ad-hoc join algorithm

Input: ith node
Output: P,y and E(Weyg)
Participant:
if the ith node quits;
then update the route with DSR;
end if
Server:
Receive the quit signal of ¢th nodes from ad-hoc network;
Delete E(W;);
if the quit device 7 € ¢t;
then Compute ¢ — 1(¢ > 3) ciphertext weights average:

t
EWavg) = 75( > E(Wj;)) with multiple key
j=1,j#1
EC-ElGamal homomorphlsm

Compute ¢t — 1 power average:
t
Pavg = til( Z Pt<g1ﬁ)al)
J=1,j7#1
else Compute t ciphertext weights average:
E(Waug) = 3( Z E(W;)) with multiple key EC-ElGamal
homomorphlsm

t

Compute ¢ power average: Pavg = 1 (> Pfg t)al)
j=1

end if

Input: ¢.th node
Output: P,y and E(W)
Participant:
if the i.th node joins;
then update the route with DSR;
Upload the i.th ciphertext weight E(W;,) to the
parameter Server.
Server:
Compare the small ciphertext weight E(W;) with the new
ciphertext weight E(W;,);
if W;, > W, with the SCP;
then replace E(W;) with E(Wl*)

Compute E(W) = (Z E(W;) + E(Wy,))
with multiple key EC- ElGamal homomorphism;
Compute Pyyg = ?(Z Pt(gt)al).
J=

else keep the original training process.
end if

Epr(W,,,) to obtain Wy, . Then these participants can pre-

avg

dict the result according to the well-trained model and their
dataset. The other prediction users can predict the result in the

parameter server with the well-trained model.

VI. SECURITY ANALYSIS

In this section, we perform the security definition, semantic
security, and security analysis.

Definition 1: Elliptic curve discrete logarithm problem
(ECDLP): Given two points P, € E(F,) and d € Zj,
calculating P = dQ@ is easy. But if we know P and Q,



JOURNAL OF KTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 4: the optimal fraction FL framework (OFFLF)

GlobalUpdate:
Initialize the initial weight Wo;
Broadcast the initial weight Wy to every participant;
for each round do

LocalUpdate(WV;);
end for
Get Epi; (W;), Epi; (W;") according to EFA algorithm;
for every parameter do

Compute the distance Epy, ((wi; —
end for

Bk, (d?(wij,w;")) = _ZlEpki((wij —w;")?);
=

Sort Epy, (d*(W;;, W;')) with SCP;
Take the biggest ¢ points {Epk,; (Wa,)}i=(1,2,....t);
Calculate E(Wavg) with multiple key EC-ElGamal;
Send E(Waug) to the ¢ parameters.

w;’)?) with SMP;

LocalUpdate(V;):
Get E(Wgvg) from the server;
Decrypt to obtain the weight W4
for each epoch do
Compute the gradient G;
Wi < W;_1 — nG (n is the learning rate);
Encrypt to obtain Epx, (W;);
Send E,, (W) to the server.
end for

solving d is hard according to the discrete logarithm problem
for elliptic curves, in that there is no known polynomial time
algorithm that can run on classical computers.

Definition 2: Elliptic Curve Decisional Diffie-Hellman
Problem (ECDDH): Given @ and aQ, bQ € E(F)), it is hard
to distinguish between the two distributions (aQ,bQ, abQ)
and (a@, bQ, cQ), where a,b,c € Zj.

A. Semantic Security

We demonstrate that the proposed cryptosystems are seman-
tically secure under the DDH assumption.
Theorem 1. EC-ElGamal is indistinguishability from
chosen-plaintext attack (IND-CPA) under DDH assumption.
Proof: In the EC-ElGamal, we denote the first part of cipher-
text c; = M + a(@). A simulator S' can be constructed against
the ECDDH problem from an adversary A. We design the
following game between the simulator S and adversary A. In
the game, the advantage of the A is £ = Pr[b’ = b] — 1 and
the advantage of the S is that &’ is not less than e. Considering
the following algorithm as a challenger, the challenger flips a
coin u € {0,1}. If p1 = 0, the distribution is (aQ, bQ, abQ);
If 4 = 1, the distribution is (aQ, bQ, cQ). The algorithm is
followed:
1) Given P = dQ@ and set pk = {E(F,), P,Q}, the S
contacts the 4 to obtain two message mg and m; in
7.

2) Tﬁe S encrypts my for (aQ), mp + ab()) by flipping the
coin b € {0,1} and sends the ciphertext to the A.

3) The A guesses the value of b as b’, and then sends to
the S.

4) The S output i/ = 0if b = b’ to manifest (aQ, bQ, abQ)

when ¢ = 0 and the A wins the game with the advantage

e. Otherwise, the S output p/ = 1.

Therefore, when i = 0 and b = b/, the A can obtain cQ) =
ab@, namely, the A has:

1
Priu=0lb=b]= 7 +c.

The S satisfies:
1
Prlp’ = plp = 0] = 5 +e.

When p = 1, the A cannot acquire any information about
mp, namely, the A has:

1
Prju=1/b £ b'] = 3

The S satisfies:

1

=5
Ultimately, the advantage of the .S is as follows:

Prlp’ = plp = 1]

1 1
e =5 (Prl/ = plu = 0] + Prl = plu =1]) - 5
e
. 18
- <e (18)

The result conflicts with our assumption, therefore, EC-
ElGamal is secure under the DDH assumption. The reason
is as follows:

In the key generation of the EC-ElGamal cryptosystem, the
public key P can be calculated in ECDLP, so the process
is secure. In the encryption, the first part of the ciphertext
satisfies ECDDH and the second part is guaranteed by ECDLP.
In the decryption, the security is ensured by ECDDH.

Theorem 2. If EC-ElGamal is semantically secure, then
multiple key EC-ElGamal is semantically secure.

Proof: In multiple key EC-ElGamal, according to theorem
1, the encryption process is semantic security in formula (5)
under ECDLP and ECDDH owing to the advantage of the A
cannot reach ¢. In secure ciphertext average, the ciphertext in
formula (6) from participants maintains the semantic security
due to participants’ semantic security, and K; negotiated with
SMC is secure owing to SMC’s definition to protect private
information from different users. After receiving the ciphertext
C, the decryption still guarantees security under ECDDH.

B. Security Analysis

Theorem 3. SCP security can be guaranteed if EC-ElGamal
is semantically secure.

Proof: In SCP protocol, all data are based on EC-ElGamal
encryption, discrete logarithm, and adding the random mask-
ing. Among them, EC-ElGamal encryption protects the con-
fidentiality owing to its semantically secure, the discrete
logarithm is hard, and the random masking has add the
blinding factor 4 and avoids the participants obtaining any
information. subsequently, we analyze the security of the SCP
protocol in the ideal world and real-world game.

In the SCP, the adversary A interacts with participants
running protocol 7 in the environment Z. The view of A in
the real world is:

Vreat = {1Qka, rQkp, rQka+14,7Q(kp —ka) —74,CC}.
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In the ideal world, a simulator S replacing participants is
built to interact with the adversary A, and produces the same
number of random numbers. The view of the S in the ideal
world is:

Videar = {[7’11], [7"12]7 [7‘11 + 7"13]7 [7’12 — T — 7’13], [7"14]}-

Owing to the semantic security of EC-ElGamal, we say
that the protocol 7 can realize an ideal functionality F' if the
adversary A and the S exist:

{IDEAL7 S (Vigea)} = {REALZSY; (Vieu )

Theorem 4. SMP security can be guaranteed if EC-ElGamal
is semantically secure.

Proof: In SMP protocol, all data are based on EC-ElGamal
encryption and discrete logarithm. In the SMP, the adversary
A interacts with participants running protocol 7 in the envi-
ronment Z. The view of A in the real world is:

Vieal = {m1 +rk;Q,ma + rk;Q,rQ, D, F, Epi, (mima)}.

Due to the semantic security of EC-ElGamal, the S gener-
ates the same number of random ciphertexts. The view of A
satisfies the following formula:

Videa' = {[r21], [r22], [r23], [r2a], [r25], [r26]}-

The adversary A cannot distinguish the ideal world from
the real world in ideal functionality F':

{IDEALZZ (Vigea)} =~ {REALSME (Viear}-

Theorem 5. EFA security can be guaranteed if EC-ElGamal
is semantically secure.

Proof: In EFA, all process data are based on EC-ElGamal.
In step 1, the encrypted test dataset is known by the
server, so the plaintext and ciphertext are not affecting
their security. In step 2, calculating Epy, ((w;; — w;’)?) and
Epk, (d*(W;;, W;)) are based on the additive homomorphism
of EC-ElGamal and SMP protocol, and SMP security is also
based on EC-ElGamal, which has been proofed in theorem
4. Therefore, the process is semantic security. In step 3,
the server sorting the process of the square of the distance
under ciphertext utilizes the SCP protocol, which has been
proofed the security in theorem 3. Hence, the security of step
3 is guaranteed. The federated average E(W,,,) is calculated
under multiple key EC-ElGamal, whose security is guaranteed
in theorem 2. Therefore, step 4 is semantic security.

Theorem 6. The proposed optimal fraction FL. framework
is secured against reconstruction attacks.

Proof: Assume that a malicious adversary such as the server
or an external attacker who simulates the server function might
obtain the training parameters from different edge devices.
In plaintext, when data structure or figure has been known,
the weights or gradients can leak the privacy information
from edge devices or users [6]. In our scheme, the weights
are ciphertext under EC-ElGamal and the server can only
black box access. According to the semantic security of
EC-ElGamal, the optimal fraction FL framework withstands
reconstruction attack.

Theorem 7. The proposed scheme resists collusion attacks
under certain conditions.

Proof: In our scheme, the edge device and server do not
collude. Once colluded, the server can obtain the device’s
private key and calculate the sum of K; and k; to decrypt the
average weight, which may leak the privacy. Therefore, we
assume that the edge device and server can not collude. For
the collusion question during the edge devices, it guarantees
privacy even though the majority of participants (edge devices)
under the condition {2 < ¢ < t} are corrupted in multiple key
EC-ElGamal. Therefore, the proposed scheme can withstand
collusion attacks under certain conditions.

VII. PERFORMANCE EVALUATIONS

In this section, we evaluate and experiment with the perfor-
mance and accuracy of PFLEKA. First, we discuss the com-
munication and computational costs. Secondly, we analyze and
test the performance of the elliptic curve and cryptosystem.
Finally, we assess the accuracy of our improved FL scheme
with the KNN method.

A. Complexity analysis

In the subsection, to simplify the representation of the
communication and computational costs, we denote an encryp-
tion/decryption as Enc/Dec, a point multiplication/division as
Mul/Div.

Communication cost. In the initialization and encryption
phase, N participants send nNEnc + NMul communication
costs. In the ad-hoc network establishment phase, the ad-
hoc quit algorithm removes a node, it only sends a quit
signal and generates 1 communication cost. The ad-hoc join
algorithm joins one or more nodes, and a new node generates
Enc + 4Mul costs to communicate with the parameter server.
In the federated training phase, the parameter server costs
Enc + 5Mul to a participant. In the decryption and prediction
phase, there are no cost during the server and participant. The
communication cost of our scheme is summarized in Table I.

TABLE I
COMMUNICATION COST

Phase Communication cost
Initialization and encryption n/NEnc + NMul
Ad-hoc network (quit) 1

Ad-hoc network (join) Enc + 4Mul
Federated training Enc + 5Mul

Decryption and prediction —

Computational cost. In the initialization and encryption
phase, participant costs Mul + Enc to compute the public key
and encryption. In the ad-hoc network establishment phase,
the ad-hoc network quit algorithm takes O costs. In the ad-
hoc network join algorithm, participant costs nEnc to compute
the ciphertext weights, and the parameter server takes 4Mul
costs to compare the SCP. In the federated training phase,
participant costs 7Mul to assist computing EFA algorithm with
SMP and SCP, and the server takes nEnc + 16nMul + Div to
compute the optimal fraction FL algorithm. In the decryption
and prediction phase, participant takes Dec cost to decrypt
the ciphertext result. The computational cost of our scheme is
followed in Table II.
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TABLE II
COMPUTATIONAL COST

Phase Participant ~ Server

Initialization and encryption ~Mul + Enc  —

Ad-hoc network (quit) — 0

Ad-hoc network (join) nEnc 4Mul

Federated training TMul nEnc + 16nMul + Div
Decryption and prediction Dec —

B. Performance analysis

In cryptosystems, RSA and ElGamal algorithms are not
suitable for environments with limited bandwidth (e.g. IoT de-
vices, sensors, robots with limited functions) because of their
high computational costs in computing exponential operations.
ECC needs only additions and multiplications to calculate the
encryption operations, can achieve the security requirement
with the short key size, decreases computation cost greatly, and
improves the encryption efficiency. Since ECC as a universal
cryptosystem in [oT devices is applied in our scheme. The key
lengths of common cryptosystems are compared in Table III.

TABLE III
KEY LENGTH COMPARISON

Level Paillier RSA ECC ElGamal
80 1024 1024 160 1024
112 2048 2048 224 2048
128 3072 3072 256 3072
192 7680 7680 384 7680
256 15360 15360 512 15360

To verify and simulate the performance and accuracy,
PFLEKA is tested using an Intel(R) Core(TM) i7-7700HQ
CPU @2.80GHz(8CPUs), 8GB RAM, and the 64-bit Windows
operating system with Anaconda 3, PyCharm 2020.3.2 Profes-
sional Edition, Python 3.8.5, and PyTorch 1.7.0. We adopt the
mnist dataset and ECC cryptosystem with Curve25519. More
users are realized by the split dataset method.

To compare the efficiency, we first test the running time of
encryption and decryption and the point multiplication based
on EC-ElGamal. The running time is followed in Table IV.

TABLE IV
THE RUNNING TIME OF EC-ELGAMAL

Encryption
214.43 ms

Decryption
106.71 ms

Point multiplication
0.17ms

According to the running time of EC-ElGamal, we compare
the communication and computational costs in Fig. 4. Fig.
4(a) compares the running time of the communication cost
with the number of weights n variation {10, 20, ..., 100},
where the number of participants is 10. As shown in Fig.
4(a), the time in the ad-hoc network (join) and federated
training phases are almost the same. In the initialization and
encryption phase, the running time of communication cost
increases obviously as the number of weights grows. Fig.
4(b) compares the running time of communication cost with
the number of participants increasing. As shown in Fig. 4(b),
as the number of participants {10, 20, ..., 100} grows, in

the initialization and encryption phase, the running time of
communication cost increases constantly, and the time retain
unchanged in the ad-hoc network (join) and federated training
phases. The results show that communication costs are affected
in the initialization and encryption phase mainly. Fig. 4(c)
and Fig. 4(d) compare the running time of computational
costs with the number of weights n increasing. In Fig. 4(c),
the computational running time of participants in the ad-hoc
network (join) phase augments as the number of weights {10,
20, ..., 100} increases. The computational cost in other phases
is not affected by the number of weights. In Fig. 4(d), the
computational running time of the server in the federated
training phase increases ceaselessly as the number of weights
{10, 20, ..., 100} grows, and the running time in other phases
is almost 0 or 0. The results show that the computational cost
of participants is affected in the ad-hoc network (join) phase
and the computational cost of the server is affected in the
federated training phase.

To experiment performance efficiency of our scheme, we
first need to decide which ECC to use. We experiment with
several elliptic curves includes P256, secp256k1, Curve25519,
M383, E222, E382, and the results show that Curve25519 is
a better choice. In addition, Curve25519 is recommended by
the National Institute of Standards and Technology (NIST) and
the Internet Engineering Task Force (IETF) suitable for higher-
level security requirements. Therefore, we choose Curve25519
as the elliptic curve of the ECC cryptosystem. The perfor-
mance comparison of elliptic curves is followed in Fig. 5.

Fig. 5(a) tests the key generation time of five times under
several elliptic curves, and Table V computes their averages
of key generation time. In Fig. 5(a), as the number of
images {1, 2, ..., 5} increases, the running time of P256,
Curve25519, E222 varies slightly, while the running time of
P256, secp256kl is almost the same. The values of M383
and E382 in the top x axis see the bottom of the histogram,
whose values are (102, 171). The other histograms utilize
the same method to observe. In Figs. 5(b), 5(c), as the
number of images {1, 2, ..., 5} increases, the encryption and
decryption time augments constantly. To reduce the encryption
and decryption time, we adopt the removing zero method for
weights to encrypt and decrypt. Figs. 6(a), 6(b) show that the
encryption and decryption time also increases continually with
the number of images growing, but the time of Figs. 6(a), 6(b)
are obviously lower than Figs. 5(b), 5(c).

TABLE V
KEY GENERATION OF ELLIPTIC CURVE

Curve type Key generation time
P256 45 ms

secp256k1 44 ms

Curve25519 42 ms

M383 104 ms

E222 56 ms

E382 189 ms

After confirming the elliptic curve, we compare the common
cryptosystems {LWE, Paillier, ElGamal} with our scheme.
In Table VI, we first test the key generation time of cryp-
tosystems, and the time of LWE is significantly longer than



JOURNAL OF KTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

x10°

Running time(ms)
o e
8 &

o
=

0
0 10 20 30 70 80 90 I

40 50 60
Number of weights.

Running time(ms)

x10*

~

2} [ Initialization and encryption 1000 Initialization and encryption ol e R ~
o~ Ad-hoc network (join) ~e— Ad-hoc network (join) 200 0
- Federated training —— Federated training o At s o)

16
12
160 ”
04

01020 30 40 50 60 70 80 90100

[ = Ad-hoc network (join)|
—e- Federated training

[
o

IS
~

Running time(ms)

Initalization and encryption|

"7

- Federated training
- Decryption and prediction

0
0 10 20 30

40 50 60 70
Number of participants

o
=)

Running time(ms)

o
=

e ke

-

0
80 9 100 0
Number of weights

1020 30 40 50 60 70 80 90 100

Number of weights

0 10 20 30 40 S50 60 70 8 9 100

(a) Communication cost with weight (b) Communication cost with partici- (c¢) Computational cost of participant (d) Computational cost of the server

variation

pant variation

Fig. 4. Communication and Computational costs

200

Key Generation time

150

Running time (ms)

o =
IIID,
~ YISO
]
N\
~ YIS
N
GO IH

w

VA P256
secp256k1
. Curve23519
M383
s E222
E382

Number of images

with weight variation

Encryption time 500 Decryption time
1400 { w#s P256 VA P256
secp256k1 700 secp256k1
1200w Curve25519 00| T Curve2ss1o
— 1000 M383 _ M383
z . 222 25001 wey E222
% 300 E382 % 0 E382
E 600 E 300 §
400 § P s 200 w 2 s
. N 7 N
200 AN N § 100 N % § N N
ey A A at sy A AN A AN
1 2 3 4 5 1 2 3 4 5

Number of images

with weight variation

Number of images

Fig. 5.

(a) Key Generation time

Performance analysis of elliptic curve

(b) Encryption time

Encryption time after removing zero

@
=1

1

VA P56
1601 secp256k1
140 { BN Curve25519
3 1201 M3
1 - B2
£ 100 E382
[
g 801
El
= 60
404
2 N N
204 \ LN % § U N
NP N N N N
2 3 4

5
Number of images

(a) Encryption time

Fig. 6. Performance analysis of elliptic curve

other cryptosystems. In Figs. 7(a), 7(b), 7(c), as the number of
images {1, 2, ..., 5} increases, the running times of Paillier
and ElGamal rise distinctly, and LWE’s and ours increase
slightly. Although the running time of our encryption and
decryption is longer than LWE, the total time is lower than
LWE owing to the high key generation time of LWE, as shown
in Fig. 7(c).

TABLE VI
KEY GENERATION OF CRYPTOSYSTEM

Cryptosystem Key generation time
LWE 195 s

Paillier 2982 ms

ElGamal 2636 ms

Our 42 ms

(c) Decryption time
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C. Accuracy

In the subsection, the accuracy of our scheme is tested
without considering the privacy-preserving mechanism owing
to the accuracy is not affected in plaintext or ciphertext. The
experiment result is shown in Fig. 8. In Fig. 8(a), we compare
the accuracy with epoch variation in different batches (10,
20, 30). The accuracy reaches 100% in epoch for (45, 60,
80), which corresponds to batch (10, 20, 30) respectively. The
results show that the batch is 10, the accuracy is high. Then,
we test the accuracy against k value choice based on KNN.
As shown in Fig. 8(b), when k values are {1, 2, 3} in different
number of users {4, 6, 8}, the accuracy is high. So we choose
3 as k value to test the accuracy. As shown in Figs. 8(c), 8(d),
we test the accuracy when the number of users is (4, 6, 8) and
k is 3. The results demonstrate that the accuracy increases
constantly with the round number {1, 2, ..., 10} growing.
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From Figs. 8(b), 8(c), 8(d), we can see that the appropriate
choice of k value in OFFLF directly affects the correctness.

VIII. CONCLUSION

FL as a popular collaborative learning method, its privacy
protection ways has been researched in many ways. However,
in IoT or edge computing scenarios, the FL framework does
not apply well owing to high-communication cost, low-quality
data. To build a practical FL framework for IoT, we propose
PFLEKA framework with MEEC, which introduces ad-hoc
network and KNN method to FL, proposes an ad-hoc quit and
join algorithm and Euclidean fraction method to improve a
high-quality data application based on KNN method, reducing
the communication and computational costs, solving the key
bottleneck questions for IoT in aforementioned. The scheme
is the first FL framework based on ad-hoc network and the
KNN method. In future work, we will focus on parallel
computing and incentive mechanisms in the privacy-preserving
FL framework.
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