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Abstract

As an emerging joint learning model, federated deep learning is a promising way to combine model parameters of differ-
ent users for training and inference without collecting users’ original data. However, a practical and efficient solution has
not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the
privacy-preserving federated learning model, especially in partially homomorphic cryptosystems. In this paper, we propose a
practical and efficient privacy-preserving federated learning framework (PEPFL). First, we present a lifted distributed ElGamal
cryptosystem that can be applied to federated learning and solve the multi-key problem in federated learning. Secondly, we
develop a practical partially single instruction multiple data (PSIMD) parallelism scheme that can encode a plaintext matrix into
single plaintext to conduct the encryption, improving effectiveness and reducing communication cost in partially homomorphic
cryptosystems. In addition, a novel privacy-preserving federated learning framework is designed by using momentum gradient
descent (MGD) with a convolutional neural network (CNN) and the designed cryptosystem. Finally, we evaluate the security
and performance of PEPFL. The experiment results demonstrate that the scheme is practicable, effective, and secure with low
communication and computational costs.
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1. Introduction

As one of the most promising technologies, federat-
ed deep learning has played a significant role in joint
learning model and has been widely studied and lever-
aged in various fields such as image classification [1],
medical prediction [2], computer vision [3], and auto-
matic systems [4, 5], which are becoming increasingly
popular in applications such as self-driving cars, radi-
ology image processing and cybersecurity threat de-
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tection6. In deep learning, for traditional centralized
learning, it requires collecting a large amount of user
data to train the model. However, user data may con-
tain sensitive private information, which may lead to
user information disclosure. Therefore, federated deep
learning has aroused widespread concern in industry
and academia, and has been proposed to alleviate pri-
vacy issues [6, 7].

Although federated learning preserves privacy to
a certain extent, researchers [6, 8] have shown that
an aggregation server or attackers can still restore
some sensitive information by the shared gradients or
weights. To prevent sensitive information from be-
ing leaked, some investigators proposed new privacy-
preserving federated learning frameworks based on d-
ifferent cases or encryption schemes [9, 10]. Howev-
er, these schemes do not consider practicability ow-
ing to users frequently interact with the server online
except [11]. Meanwhile, based on fully homomor-
phic encryption (FHE), privacy-preserving deep learn-
ing schemes utilize various single instruction multi-
ple data (SIMD) methods to perform parallel com-
puting, such as vector-based [12] and lattice-based
[13] methods. However, FHE data have high infla-
tion rate and high ciphertext homomorphism compu-
tational cost, which cannot efficiently support feder-
ated multi-party calculation. Therefore, partially ho-
momorphic encryption schemes have been studied in
many schemes [8, 9, 11], but parallel matrix compu-
tation has not been leveraged in these schemes similar
to FHE schemes [12, 13, 14], leading to low effec-
tiveness and high communication costs owing to the
encryption of single or vector plaintext. In addition,
few schemes have considered the multi-key question
in federated learning with efficient multi-key or dis-
tributed encryption schemes.

Based on the aforementioned issues, to address the
interactivity, parallel computing, and multi-key ques-
tions, in this paper, we propose a practical and effi-
cient privacy-preserving federated learning framework
(PEPFL), the first privacy-preserving scheme support-
ing the parallel partially single instruction multiple da-
ta (PSIMD) method in partially homomorphic cryp-
tosystems to improve the efficiency. The framework
leverages the users’ noninteraction method [11] so
that the system model becomes practicable and the
proposed lifted distributed ElGamal cryptosystem can
solve the multi-key problem in federated learning. In
summary, the contributions of PEPFL can be summa-
rized as follows:

• Privacy-preserving framework. We propose
a noninteractive and efficient privacy-preserving
collaborative training and prediction framework
with momentum gradient descent (MGD) in the

6https://searchenterpriseai.techtarget.com/feature/Deep-
learning-and-neural-networks-gain-commercial-footing

federated learning model. By introducing train-
ers to interact with the aggregation server, the
framework can realize user offline training and
prediction without online interaction in the fed-
erated learning process. The framework protects
the privacy of all users and trainers and acceler-
ates convergence with MGD.

• Cryptography scheme. We design a novel lifted
distributed ElGamal cryptosystem that can real-
ize distributed encryption and decryption while
maintaining homomorphism. The cryptosystem
avoids collusion issues and solves the multi-user
multi-key problem of different public and private
key pairs.

• PSIMD parallel technology. We present an ef-
ficient PSIMD method that can encode a plain-
text matrix into a single plaintext for encryption
and decode the prediction result plaintext into a
plaintext matrix. The method realizes efficient
encryption and reduces the communication costs
compared with the prior work in partially homo-
morphic cryptographies.

• Security analysis and implementation. We an-
alyze the security of the solution and evaluate
the performance of the prototype system. The
analysis and experiment results demonstrate that
PEPFL is secure and provides effective commu-
nication for all users and trainers.

Organization. The remainder of this paper is or-
ganized as follows: First, we discuss the related work
in more detail in Section II. Then we introduce some
preliminaries in Section III. Section IV establishes the
system and threat models. Section V describes the de-
tails of the PEPFL. Section VI analyzes the security of
the constructed framework. The performance analy-
sis and experimental results are shown in Section VII.
Finally, we draw the conclusions in Section VIII.

2. Related Work

In this section, we review the existing works on
privacy-preserving deep learning from several aspect-
s. Existing schemes are mostly studied according to
three technologies: differential privacy, secure multi-
party computation (SMC), and homomorphic encryp-
tion (HE). For instance, Zhao et al. [15] proposed a
privacy-preserving collaborative deep learning mod-
el with unreliable participants that exploits a function
mechanism to protect the local data privacy of par-
ticipants with differential privacy. Phong et al. [8]
presented a privacy-preserving deep learning model
that uses additively homomorphic encryption to re-
alize asynchronous federated learning. However, it
is impractical to leverage the same private key with-
out considering the multi-key question. Xu et al.
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[16] proposed a privacy-preserving federated learn-
ing approach (HybridAlpha) based on SMC protocol
of function encryption and differential privacy. Truex
et al. [17] developed a privacy-preserving federat-
ed learning hybrid approach with differential privacy,
SMC, and threshold HE. Through relevant literature
research, we conduct a detailed analysis of the follow-
ing aspects:

Focusing on SIMD, Liu et al. [13] proposed an
oblivious neural network (MiniONN) combining ad-
ditive HE with SIMD, secret sharing, and oblivi-
ous transfer to support privacy-preserving prediction.
However, it has a high computation cost for clients.
Subsequently, Juvekar et al. [14] presented a secure
neural network inference (GAZELLE) to realize low-
er latency than [13] and designed a lattice-based SIMD
homomorphic encryption scheme with optimized en-
cryption switching protocols. However, this model is
unfit for nonlattice cryptosystems. Xie et al. [12] pro-
posed a secure deep neural network inference scheme
(BAYHENN) combining Bayesian deep learning and
HE. BAYHENN adopts a vectorizable homomorphic
encryption scheme (SIMD) with the encoding func-
tion and BFV FHE, but it does not consider the securi-
ty of the communication process owing to the activa-
tion function returned to the user in plaintext. These
schemes containing SIMD technologies, which can-
not be utilized in existing privacy-preserving federat-
ed learning schemes with partially HE, are leveraged
in FHE or the cryptosystems based on the lattice. In
addition, FHE cannot be used in large-scale federat-
ed learning or neural networks due to its ciphertext
characteristics and multiple interactions under multi-
ple keys.

Focusing on multi-key privacy-preserving schemes,
Liu et al. [18] presented a distributed two-trapdoor
public-key cryptosystem to reduce the associated key
management costs. However, a mistake in the pa-
rameter setting was indicated by Li et al. [19], and
the strong private key employed by the cloud service
provider (CSP) reduces security. Li et al. [20] pro-
posed a multi-key privacy-preserving deep learning
framework in cloud computing that employs multi-key
fully homomorphic encryption (MK-FHE) and a dou-
ble decryption mechanism. However, MK-FHE has
more interactions and low efficiency. Ma et al. [21]
developed a multi-key privacy-preserving deep learn-
ing model (PDLM) with a distributed two-trapdoor
public-key cryptosystem (DT-PKC). However, it has
low efficiency and low classification accuracy. Chen
et al. [22] proposed multi-key variants of FHE with
packet ciphertexts applied to oblivious neural network
inference. These schemes utilize DT-PKC or FHE
which have some limitations as noted above; more-
over, the multi-key question is not considered in fed-
erated learning.

Focusing on stochastic gradient descent (SGD),
Zhang et al. [23] proposed an elastic averaging s-

tochastic gradient Descent (EASGD) algorithm with
both synchronous and asynchronous models. Howev-
er, the algorithm requires all users to own the entire
dataset and participate in the entire model training,
without considering the privacy issue or communica-
tion costs. To improve the convergence rate, momen-
tum term with momentum gradient descent (MGD)
was introduced [24, 25]. Liu et al. [26] proposed mo-
mentum federated learning (MFL) to accelerate con-
vergence using MGD. However, this method does not
consider the privacy issue. Some schemes [11, 27]
considered privacy in the model training process, but
they only leverage SGD without considering momen-
tum. To solve the above problems, we design a multi-
key and noninteractive privacy-preserving federated
learning scheme with PSIMD and MGD.

3. Preliminaries

3.1. Secure Multiparty Computation (SMC)

Secure multiparty computation (SMC) is a set of
cryptographic protocols proposed to realize secure
computing that solves the problem of jointly calcu-
lating a function between some untrustworthy partic-
ipants. The technique was first introduced in Yao’s
millionaires’ problem in 1982 [28].

Specifically, P participants maintain the privacy in-
formation x1, x2, . . . , xP and compute and share the in-
formation of a given function Y = F(x1, x2, . . . , xP)
jointly while preserving the privacy of the private key
ski. The protocol can securely ensure that honest par-
ticipants obtain the correct results, even if the partici-
pants (fewer than or equal to n − 1 participants) con-
spire with each other.

3.2. (Lifted) ElGamal Cryptosystem

The lifted ElGamal or ElGamal cryptosystem [29]
encrypts and decrypts the message m and can satisfy
the additive and multiplicative homomorphic proper-
ties respectively.

1) Key generation: Given the large primes p and
p′ satisfying p = 2p′ + 1. Choose a generator h ∈ Z∗p
such that g = h2, and pick a private key x randomly
from Z∗p′ = {1, 2, . . . , p′ − 1}. Then it computes the
public key y as follows:

y = gx. (1)

2) Encryption: To encrypt a message m, it first
chooses a number r randomly from Z∗p′ . Then a ci-
phertext C = E(m) = (A, B) can be calculated as

A = gr, B = gm · yr(B = m · yr). (2)

3) Decryption: On input a ciphertext (A, B), the
message gm(m) can be obtained:

gm =
B
Ax (m =

B
Ax ). (3)
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In formula (2)(3), the formula outside the brackets is
the lifted ElGamal cryptosystem, and the formula in-
side the brackets is the ElGamal cryptosystem. In ad-
dition, because the message m is small in size, m can
be extracted from gm by replace Pollard’s Rho method
[30] with the lookup table method.

Homomorphic property: Given the ciphertexts
E(m1) and E(m2) of two messages m1 and m2 with
the random numbers r1 and r2, respectively. When
E(m1) = (gr1 , gm1 yr1 ) and E(m2) = (gr2 , gm2 yr2 ), the
followed nature is satisfied:

1) Additive homomorphism. The ciphertext E(m1 +

m2) can be calculated as follows:

E(m1 + m2) = (gr1+r2 , gm1+m2 yr1+r2 ). (4)

2) Multiplication nature:

E(m1)m2 = (gr1m2 , gm1m2 yr1m2 ). (5)

When E(m1) = (gr1 ,m1yr1 ) and E(m2) =

(gr2 ,m2yr2 ), the multiplicative homomorphism is fol-
lowed:

E(m1 · m2) = (gr1+r2 ,m1m2yr1+r2 ) (6)

3.3. Lifted Distributed ElGamal Cryptosystem
(LDEC)

In early research, the distributed ElGamal cryp-
tosystem leveraged in [31, 32] can only be utilized on
P servers without collusion. According to the ElGa-
mal [29] and distributed ElGamal cryptosystems [31],
we propose a lifted distributed ElGamal cryptosys-
tem with P (P , 1) users substituting P server. The
schemes can be described as follows:

Key Generation: Given a multiplication cyclic
group G of prime order p with a generator g, each
user Ui chooses a private key xi randomly from Z∗p,
and calculates and sends the public key yi = gxi to the
server. Then the server computes the associated public
key y =

∏P
i=1 yi =g

∑P
i=1 xi .

Encryption: To obtain a plaintext vector m ∈ G and
the associated public key y, P users share a random
number r jointly from Z∗p with SMC [33]. Then each
user Ui outputs a ciphertext C = E(m) = (A, B), where
A = gr, B = gm · yr.

Decryption: On inputs a ciphertext (A, B), each us-
er Ui generates a random number ri, and calculates
and sends Ari to the server, which avoids the collusion
question caused by just sending Axi for servers in [32],
because of gm = B/(Ax1 · Ax2 · · · AxP ) = B

/
A

∑P
i=1 xi ,

namely P servers collude, causing users information
leakage. The server computes xi =

∑P
j=1, j,i x j with

SMC [33], then it calculates and sends Ari · A
∑P

j=1, j,i x j

to each user Ui. The message gm on each user Ui can
be obtained by:

gm =
B

Axi−ri Ari A
∑P

j=1, j,i x j
. (7)

Utilizing the lookup table method, the plaintext m can
be output. Moreover, the scheme still satisfies the
homomorphic property similar to the lifted ElGamal
cryptosystem.

3.4. Federated deep learning
Federated learning provides an approach that can

jointly train the model without sending user data to
an aggregation server, which can realize the purpose
of federated training and prediction. The method uses
a federated averaging algorithm that was proposed by
McMahan et al. [7] from Google.

In federated learning, to realize the optimization
weight W∗ = arg min L(W), the model needs to be
trained to acquire the minimize L(W). Specifically,
the trainer Tk has a training dataset Dk = {(χk, yk)}Mk=1,
where χk and yk are the input data and the true label
respectively and M represents the number of trainers.
Aiming to obtain the optimization global cost function
[7, 34] as follows:

min L(W) ,
M∑

i=1

Ni

N
Li(W), (8)

where W is the model parameter, Ni is the sample size
of the ith trainer, N is the total sample size satisfy-
ing N =

∑M
i=1 Ni, and Li(W) is the local cost func-

tion of the ith trainer. In our scheme, we leverage the
following cross-entropy cost function to train a multi-
classification problem as follows:

loss(xi) = − log
(

exi∑
j ex j

)
= −xi + log

(∑
j
ex j

)
. (9)

In principle, the optimization question can be
solved by SGD [8, 21], but its convergence is slow.
MGD introduces the momentum term, which can ac-
celerate the convergence rate compared to SGD [35].
Therefore, our scheme introduces the MGD to accel-
erate the convergence.

1) Local Update: The local update rule can be writ-
ten as:

Vt+1 = µ ∗ Vt + ∇L(Wt+1);
Wt+1 = Wt − ηVt+1,

(10)

where Vt+1 is the (t + 1)th momentum term with the
same dimension Wt+1, t is the iteration index, µ is the
momentum factor, ∇ represents the gradient, η is the
learning rate, and Wt is the weight of the tth iteration.
Thus, each trainer updates the local weights W by us-
ing the above rule and returns the updated weights to
the server for aggregation.

2) Global Aggregation: After obtaining all the mo-
mentum values V and weights W from the trainers, the
aggregation server calculates the aggregation average
of momentums and weights as follows.

Vt+1 =

M∑
i=1

Ni

N
· V i

t+1;

Wt+1 =

M∑
i=1

Ni

N
·W i

t+1,

(11)
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where Vt+1 is the average of all momentums and Wt+1
is the average of all weights from M trainers.

4. System and Threat Model

In this section, we give an overview of PEPFL and
describe the system and threat models considered in
the framework. The architecture of PEPFL is illustrat-
ed in Fig. 1.

Aggregation server

Trainer

Upload ciphertext 

data

Trainer

Download prediction 

result 

8 Model

Fig. 1: PEPFL Framework

4.1. System Model

In our system model, there are three entities: users,
trainers, and the aggregation server. This is different
from traditional two entities ( users and the aggrega-
tion server) and supports users offline. The training
model on the trainer leverages convolutional neural
network (CNN) to realize training and prediction. Ul-
timately, the federated training framework can obtain
the optimization training parameter and prediction re-
sult. All communication lines are guaranteed in the
SSL/TLS channel.

User: In the PEPFL system, a user is an entity that
possesses a set of data and can provide them with en-
coded ciphertext for training and prediction in the fed-
erated learning task. First, every user generates the
public and private key pairs, and then sends the public
key to the server for the associated public key. With
the associated public key, the user encodes and en-
crypts its data, and then sends the ciphertext data to
a trainer. In addition, the user can decrypt and decode
the data to obtain the prediction results.

Trainer: As a machine learning entity, the train-
er has a deep learning model to train the model pa-
rameters and can collect the encrypted data from the
users in the local area network (LAN). Specifically,
the trainer can train the model collaboratively with
the server by using the federated learning method.
Through multiple iterations, the trainer can acquire a
well-trained model that can be leveraged for predic-
tion with the users’ demand.

Server: As a coordinator and an aggregator, the
server can publish the associated public key and calcu-
late the federated average with the aggregated weights

from the trainers. In addition, the server needs multi-
ple iterations and cooperation to obtain the optimiza-
tion model parameters. In our scheme, even if the
server colludes with the other entities, it cannot obtain
any data information from users and trainers.

4.2. Threat Model
In our PEPFL, we consider that the aggregation

server and trainers are honest-but-curious entities. As-
sume that a compromised internal entity from the serv-
er or trainer is an adversary, namely, it will honestly
follow the protocols but also try to acquire the priva-
cy information from the federated learning system. In
addition, the private key and public key of the users
are generated by themselves, which avoids leakage of
the private key.

1) An adversary compromised by the server can try
to retrieve sensitive information from the ciphertex-
t weights and calculate the private key from the public
key of the users. The adversary can collude with a
trainer or users.

2) An adversary compromised by a trainer can ac-
quire all encrypted data and parameters from the ag-
gregation server or users. In addition, the adversary
can collude with the server or users.

3) An adversary compromised by a user tries to ob-
tain sensitive information from encrypted training and
prediction data. Moreover, multiple users can collude
with each other, or users can collude with the trainers
or the aggregation server.

5. Our proposed scheme

In this section, we give a detailed description of
PEPFL. First, users provide the encoded ciphertext da-
ta to the trainer in the LAN. After collecting sufficient
ciphertext data, the trainer trains the model with the
initial weights from the server. In our scheme, the ci-
phertext training process is not the focus of our re-
search. Then the trainer uploads the updated cipher-
text momentums and weights to the aggregation serv-
er. After the aggregation server finishes the aggregated
average, the trainer downloads the aggregated result-
s and iterates them to train the local updating mod-
el. When obtaining a well-trained model, the user can
predict the data he needs. In the following details, we
introduce the PSIMD building block, Equation Test
Block (ETB), and homomorphic selection algorithm.
Then, we describe the construction of PEPFL in detail.

5.1. PSIMD Building Block

In many types of prior work, fully homomorphic en-
cryption (FHE) schemes with SIMD have been lever-
aged [12, 14, 36], but they incur high communica-
tion and computational costs due to the peculiarity of
FHE. In partially homomorphic cryptosystems, exist-
ing schemes do not utilize SIMD. To improve the ef-
fectiveness of partially homomorphic encryption, we
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propose a PSIMD scheme to accelerate the model
training and improve communication efficiency.

Owing to the high communication costs of image
ciphertext in single data or vector data encryption
method, to reduce the costs and accelerate the commu-
nication efficiency, we present a packed matrix homo-
morphic encryption scheme, namely, PSIMD, which
involves encoding and decoding functions that are ca-
pable of packing the matrix into an extensional ele-
ment in the real number R with the floating-point stor-
age method. The concreted process is followed:

For a matrix A, first, we turn a number Ai j{1 6 i 6
m, 1 6 j 6 n} of the matrix into the floating-point
number which represents the integer part I and base
exponent e, i.e., (I, e) with the same e by recalibra-
tion. The negative number becomes a positive number
greater than the max number which is set as half of
n [37]. Due to the data {Ai j} of a matrix A stores se-
quentially in a device and a float number occupies four
bytes space, to pack the matrix A into a plaintext num-
ber Q = A11 ‖ A12 ‖ . . . ‖ Amn for encrypting, it needs
expending the m ∗ n matrix into m ∗ n ∗ 4 bytes linear
space as a package by right shift processing. Then it
can encrypt the package as a whole to transfer to the
server as shown in Fig. 2. The encoding algorithm
is denoted as Encode(A), which is as follows in Algo-
rithm 1.
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Fig. 2: PSIMD workflow

Algorithm 1: PSIMD Encoding Algorithm
Input: A
Output: Epk(Q)

1 Trainer:
2 Perform the operation float(A) satisfying (I, e) form;
3 Store the data Ai j of the matrix A sequentially;
4 Pack the sequential data as a plaintext package Q by

right shift processing of the matrix A;
5 Encrypt the extended plaintext number Q for Epk(Q).

After obtaining the ciphertext prediction result
Epk(Q), the user decrypts the ciphertext Epk(Q) to ob-
tain Q. Then, the result package Q is divided into

m × n numbers by every four bytes for a group and
is restored into a matrix A′. The decoding algorithm is
shown as follows in Algorithm 2.

Algorithm 2: PSIMD Decoding Algorithm

Input: Epk(Q)
Output: A′

1 Trainer:
2 Decrypt Epk(Q) for Q;
3 Divide Q into m × n numbers by four bytes a group;
4 Restore the matrix A′ by left shift processing.

Compared with the existing single plaintext encryp-
tion or vector encryption, this method greatly im-
proves the encryption speed, reduces the ciphertext
length and improves the communication efficiency.

5.2. Equation Test Block (ETB)

To test whether the two plaintexts W and W∗ of the
ciphertext aggregation average Epk(W) and final glob-
al ciphertext model weights Epk(W∗) are equal, we de-
sign the following building block.

Given two ciphertexts Epk(W) = (gr1 , gWyr1 ) and
Epk(W∗) = (gr2 , gW∗yr2 ), to test if W and W∗ are equal,
we compare Epk(W) and Epk(W∗) as follows:

(
A1

A2
,

B1

B2
) = (gr1−r2 , gW−W∗yr1−r2 ). (12)

After decrypting the above formula, if gW−W∗ = 1,
namely, W − W∗ = 0, the two plaintexts W and W∗

are equal plaintexts. Otherwise, the two plaintexts are
not equal.

In the decryption process, the associated private key
sk =

∑P
i=1 xi =

∑P
i=1 ski, which can be obtained from

SMC [38], is needed.

5.3. Homomorphic algorithm selection(HAS)

Since the lifted ElGamal or ElGamal cryptosystem
supports additive or multiplicative homomorphism re-
spectively, it is necessary to select an appropriate cryp-
tosystem for homomorphism calculations in the ci-
phertext training process of the trainers. Therefore,
we design the HAS algorithm that satisfies both addi-
tive homomorphism and multiplicative homomorphis-
m by homomorphic selection algorithm in Algorith-
m 3, which is applied in the CNN ciphertext training
process of the trainers. In the PEPFL, we adopt the
proposed LDEC.

5.4. Construction of PEPFL

In this subsection, we describe the workflow of the
scheme in Fig. 3. According to the workflow, the steps
of our scheme include the following phases: the ini-
tialization phase, the encoding and encryption phase,
the model training phase, and the prediction phase.
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Fig. 3: PEPFL workflow

Initialization phase: Firstly, user Ui generates pub-
lic and private key pairs (pki, ski). Then user Ui up-
loads the public key pki to the aggregation server. The
server collects the public key pki from P users, and
then calculates and publishes the associated public key
pk =

∏P
i=1 pki = g

∑P
i=1 xi .

Encoding and encryption phase: After obtaining
the associated public key pk, user Ui encodes his da-
ta Di for Encode(Di) with the PSIMD encoding al-
gorithm and encrypts the encoding data Encode(Di)
for Epk(Encode(Di)) with lifted distributed ElGa-
mal encryption. Then user Ui sends the ciphertext
Epk(Encode(Di)) to trainer Ti.

Specifically, first, the user Ui preprocesses and seg-
ments the figure data Di for the matrix data Ak{k ∈
{1, 2, . . . , s}}, where s is the number of matrices, name-
ly, the figure of an a × b matrix, the user divides the
matrix into multiple small matrices Ak = {A(k)

mn
}{1 6

m 6 a, 1 6 n 6 b}. Second, user Ui encodes every
Ak for linear Qk with A(k)

mn
which has a four byte float-

ing number. Then, user Ui encrypts the linear Qk as a
whole for Epk(Qk) with the associated public key pk.
Owing to [11] or other partially homomorphic cryp-

tosystem only encrypting a single element {Amn} or a
vector of a matrix in sequence, while our scheme en-
crypts equivalent to a matrix, the efficiency of our P-
SIMD package method is superior to that of [11]. In
addition, user Ui encrypts the label yi for Epk(yi).

After obtaining {Epk(Q1)||Epk(y1), Epk(Q2)||Epk(y2),
. . . , Epk(Qs)||Epk(ys)}, user Ui uploads these cipher-
text data to a trainer Ti in local domain via TLS/SSL
secure channel.

Model training phase: After obtaining ciphertext
data, trainer Ti performs the ciphertext training on the
CNN model, which can acquire the ciphertext weight
Epk(W) and the ciphertext momentum Epk(V) from the
CNN ciphertext training process, and the ciphertex-
t training process referred to other papers [39, 40]. In
terms of the MGD algorithm, we can update the ci-
phertext momentums and weights by using a secure
federated average algorithm.

More specifically, first, according to the local up-
date rule, we can calculate the ciphertext momentums
and weights for every trainer with the homomorphic
method as follows:
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Epk(V i
t+1)

=Epk(µ · V i
t + ∇L(W i

t+1))

=Epk(V i
t )
µ · Epk(∇L(W i

t+1)). (13)

From the above formula, we can gain the ciphertext
weight on every trainer:

Epk(W i
t+1)

=Epk(W i
t − ηV i

t+1)

=Epk(W i
t ) · Epk(V i

t+1)−η. (14)

After obtaining all Epk(V i
t+1), Epk(W i

t+1) from M
trainers, the aggregation server computes the ci-
phertext federated aggregation average Epk(Vt+1),
Epk(Wt+1) as follows.

Epk(Vt+1) =

M∑
i=1

Ni

N
Epk(V i

t+1); (15)

Epk(Wt+1) =

M∑
i=1

Ni

N
Epk(W i

t+1). (16)

By continuous iterations of local update and global ag-
gregation, the server can obtain the optimal ciphertext
weight, and the privacy-preserving federated learning
protocol (PFL) is shown in Algorithm 4, where f is the
maximum number of rounds. Compared to the tradi-
tional federated averaging algorithm [7], our PFL im-
proves the convergence rate of FL.

The optimal ciphertext weight is estimated by com-
paring Epk(Wt+1) and Epk(W∗) to realize ciphertext
convergence, which judges if Wt+1 and W∗ are equal
according to ETB or if the number of rounds reaches
the maximum iterations value. The ciphertext aggre-
gation algorithm is shown in Algorithm 5.

Prediction phase: After the trainers obtain the
well-trained model, the users can realize the prediction
on the trainers. First, the user Ui uploads the encrypt-
ed data Epk(Qi) to a trainer, where Qi is encoded da-
ta. The trainer predicts the ciphertext data Epk(Qi) to
attain the ciphertext prediction result Epk(<i). Then,
the user Ui downloads the ciphertext result Epk(<i)
and decrypts it for<i with the lifted distributed ElGa-
mal decryption algorithm. Finally, the user Ui restores
<i for the corresponding matrix by using the PSIMD
decoding algorithm.
5.5. Decryption-prevention protocol

In the distributed ElGamal cryptosystem [31, 32],
each user Ui sends Axi to the honest-but-curious serv-
er. When the server or an adversary obtains all Axi

from every user, it can perform the calculation G =

Ax1 · Ax2 · . . . · AxP = gr·
∑P

i=1 xi with the ciphertex-
t C = (gr, gm · yr), the server or the adversary can
compute gm = gm · yr/G, and then it can obtain the
plaintext m. To prevent decryption or attack from oc-
curring, we propose a decryption-prevention protocol,
as shown in Algorithm 6. The algorithm avoids the
collusion question of multiple users.

Algorithm 3: Homomorphic Selection Algorithm
Input: m1,m2

Output: E(m1 + m2), E(m1m2)
1 Judging training formula:
2 if m1 + m2 is needed in training process
3 then lifted ElGamal cryptosystem;
4 given the ciphertext E(m1), E(m2),
5 calculate E(m1 + m2);
6 end if
7 if m1 · m2 is needed in training process
8 then ElGamal cryptosystem;
9 given the ciphertext E(m1), E(m2),

10 calculate E(m1m2).
11 end if

Algorithm 5: Ciphertext Aggregation Algorithm
(CAA)

Input: a global ciphertext model parameter
Epk(Wt+1), the final global ciphertext
model parameter Epk(W∗), the maximum
round f

Output: The final global ciphertext model
parameter Epk(W∗)

1 Server:
2 if the round t , f
3 then continue training the PFL.
4 else obtain the ciphertext average parameter

Epk(Wt+1) and retreat from the training.
5 end if
6

7 Trainer:
8 After obtaining the ciphertext average

weight Epk(Wt+1), in terms of ETB, judging:
9 if Wt+1 , W∗

10 then continue training the model on the
CNN;

11 else obtain the optimal ciphertext weight
Epk(Wt+1).

12 end if
13 Predict the data from users according to the

optimal ciphertext model.

Algorithm 6: Decryption-prevention Protocol
Input: Axi

Output: gm

1 Server or Adversary:
2 User Ui sends Axi ;
3 if the number of users P > 1
4 then it cannot decrypt utilizing lifted

ElGamal cryptosystem.
5 else it only can decrypt D(C) exploiting

LDEC.
6 end if
7 Output gm.
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Algorithm 4: Privacy-preserving Federated Learning Protocol (PFL)
Input: ciphertext model parameters Epk(Wi), Epk(Vi)
Output: the final global ciphertext model weight Epk(W∗)

1 Server:
2 Initialize the final global model weight W∗, the initial weight Wi(0), the initial momentum Vi(0);
3 Broadcast the initial parameters Wi(0), Vi(0) to every trainer;
4 for each round t=1, 2, . . . , f do
5 for i=1, 2, . . . , M in parallel do
6 Each trainer i performs local update according to the following trainer’s algorithm in PFL:
7 Update Epk(V i

t+1)← Epk(i,Vt); Epk(W i
t+1)← Epk(i,Wt);

8 Send Epk(V i
t+1), Epk(W i

t+1) to Server.
9 end for

10 Calculate federated aggregation average: Epk(Vt+1) =
M∑

i=1

Ni
N Epk(V i

t+1); Epk(Wt+1) =
M∑

i=1

Ni
N Epk(W i

t+1);

11 Send Epk(Vt+1), Epk(Wt+1) to Trainer.
12 end for
13

14 Trainer Ti:
15 Trainer update (i, Epk(Wt+1)):
16 Obtain the newest ciphertext model parameters (i, Epk(Vt)), (i, Epk(Wt));
17 for the number of iterations i=1, 2, . . . , S do
18 Divide the dataset Di into the batch size K randomly;
19 for the batch number j=1, 2, . . . , Di

K do
20 Calculate the ciphertext gradient Epk(∇L(W i

t+1));
21 Update the ciphertext momentum Epk(V i

t+1) = Epk(Vt)µ · Epk(∇L(W i
t+1));

22 Update the ciphertext weight Epk(W i
t+1) = Epk(Wt) · Epk(Vt+1

i)−η;
23 end for
24 end for
25 Obtain local ciphertext model parameters Epk(V i

t+1), Epk(W i
t+1);

26 if Epk(Wt+1) is not an aggregation value judged by CAA in Algorithm 5;
27 then send Epk(Vt+1), Epk(Wt+1) to Server;
28 else
29 Quit the update and the training is over.
30 end if
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6. Security analysis

The security of PEPFL is guaranteed by the ElGa-
mal cryptosystem and lifted distributed ElGamal cryp-
tosystem without random oracles under the decisional
Diffie Hellman (DDH) [41] assumption. The ElGamal
cryptosystem [29] and threshold cryptosystems [42]
are semantically secure provided that the DDH prob-
lem is hard.

In this section, we first prove the semantic security
and the other security of LDEC. Then, we expound on
the security of the input, model, and inference result
privacy.

Theorem 1 (Semantic Security). If the ElGamal
cryptosystem is semantically secure, then the LDEC is
semantically secure.

Proof. Knowing y = g
∑P

i=1 xi and A = gr, an adver-
sary cannot acquire yr = gr

∑P
i=1 xi ; that is, the adversary

cannot determine gc = gr
∑P

i=1 xi and cannot compute gm

from B = gmyr by multiplying the inversion y−r. Then,
it cannot obtain m from gm. Due to the DDH and dis-
crete logarithm hard problem, in terms of the semantic
security of ElGamal, the LDEC is semantically secure.

Theorem 2 (Against Collusion and Adversary
Security). If the encryption schemes ElGamal and
LDEC are semantically secure, then the security can
be guaranteed under collusion or hacking attacks.

Proof. In the distributed ElGamal cryptosystem
[32], each server outputs Ai = Axi , and the plaintext
can be obtained by gm = B

/∏P
i=1 Axi . When a serv-

er colludes with an external adversary or an adversary
eavesdrops the ciphertext data B and all Ai, the adver-
sary can obtain the plaintext m from these ciphertext.
To avoid collusion or hacking attacks, our proposed
LDEC improves Axi for Ari , and each user replacing
each server in our scenario computes Axi−ri with the
private key xi to conduct decryption. When a user col-
ludes with an external adversary, it can leak only the
user ciphertext information, which is semantically se-
cure and cannot obtain any sensitive data. Moreover,
fewer than P − 1 users colluding cannot decrypt the
ciphertext data, and thus, security can still be guaran-
teed. When an adversary eavesdrops on these cipher-
text informations B, Ari , Ari A

∑P
j=1, j,i x j , he cannot gain

the value gm and then cannot acquire the plaintext m.
Theorem 3 (Input Privacy). If the LDEC scheme is

semantically secure, then the input privacy of PEPFL
can be guaranteed.

Proof. After encoding and en-
crypting the plaintext data to obtain
{Epk(Q1)||Epk(y1), Epk(Q2)||Epk(y2), . . . , Epk(Qs)||
Epk(ys)}, the user Ui sends these ciphertexts to a
trainer. Because LDEC is semantically secure, the
input security for trainers is guaranteed: (1) Fewer
than P− 1 users colluding cannot obtain trusted users’
information owing to there being no private key to
decrypt. (2) An adversary or a participant cannot
obtain any information from the ciphertext except for

the users themselves. Therefore, the input privacy can
be guaranteed.

Theorem 4 (Model Privacy). If the LDEC scheme
is semantically secure, then the model privacy of
PEPFL can be guaranteed.

Proof. In the PFL protocol, all data are trained un-
der the ciphertext, which protects confidentiality in
terms of the semantic security of LDEC. We prove the
security of the local update and global aggregation ac-
cording to an ideal world and a real-world game [43].

Lemma 1. Local update (@Trainer) is secure a-
gainst a semi-honest adversary Atrainer in the PFL
protocol.

Proof. A challenge trainer can securely communi-
cate with a semi-honest adversaryAtrainer. When con-
structing a simulator S , the simulator S replacing the
trainer is built to interact with the adversary Atrainer.
In the real world, the view ofAtrainer is:

VReal = {[V t]pk, [W t]pk, [∇L(Wt+1)]pk, [V i
t+1]pk, [W i

t+1]pk}.

In the ideal world, the view ofAtrainer is:

VIdeal = {[r11]pk, [r1]pk, [r12]pk, [r21]pk, [r11]pk},

where the random numbers r11, r1, r12, r21, r11 εR.
Owning to the semantic security of LDEC, the

adversary Atrainer cannot distinguish the ideal world
from the real world:

{IDEALPFL
Atrainer ,S (VIdeal)}

c
≈{REALPFL

Atrainer ,trainer(VReal)}.

Lemma 2. Global aggregation (@Server) is secure
against a semi-honest adversary AS erver in the PFL
protocol.

Proof. In global aggregation process for the serv-
er, a semi-honest adversary AS erver interacts with the
server, its view in the real world is:

VReal
′ = {[Vt]pk, [Wt]pk, [V i

t+1]pk, [W i
t+1]pk, [Vt+1]pk, [Wt+1]pk}.

In the ideal world, a simulator S replacing the serv-
er generates the same number of random ciphertexts.
The view ofAS erver is:

V ′
Ideal

= {[ra]pk, [rb]pk, [ra1]pk, [rb1]pk, [ra1]pk, [rb1]pk}.

The adversary cannot distinguish the ideal world from
the real world:

{IDEALPFL
AS erver ,S (V ′

Ideal
)}

c
≈{REALPFL

AS erver ,S erver(V
′

Real
)}.

Theorem 5 (Inference Result Privacy). If the
LDEC scheme is semantically secure, then the infer-
ence result privacy of PEPFL can be guaranteed.

Proof. In the prediction phase, user Ui sends the
prediction ciphertext Epk(Qi) to a trainer, and the
trainer trains and obtains the ciphertext prediction re-
sult Epk(<i) by exploiting the well-trained model. All
the data on the trainer are ciphertext, and thus, the ci-
phertext result is returned to the user Ui. Due to the
semantic security of LDEC, confidentiality and infer-
ence result privacy can be guaranteed.
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7. Performance Evaluations

In this section, we analyze and compare the perfor-
mance of PEPFL. First, we discuss the communication
and computational costs of PEPFL. Additionally, we
evaluate the efficiency and accuracy of our scheme.

7.1. Complexity analysis

Communication cost. In the initialization phase,
every user sends O(log p) communication costs to the
server. After computing the associated public key
pk, the server takes O(log p) costs for every user.
In the encoding and encryption phase, user Ui sends
O(2s log p) communication costs to trainer Ti. In the
local update phase, the trainer Ti generates O(2u log p)
communication costs for the server, where u is the
number of the weight encoding packets from the P-
SIMD method. After the global aggregation average,
the server imposes O(2u log p) costs on every trainer.
When the trainer obtains the well-trained model, user-
s can predict the result they require. In the prediction
phase, a user uploads O(2s log p) costs to a trainer who
conducts the well-trained model. After predicting the
ciphertext result, the trainer sends O(log p) cost to the
predicted user.

Computational cost. To simplify the nota-
tion, we denote point multiplication/division as
Mul/Div, encoding/decoding as Ecod/Dcod, encryp-
tion/decryption as Enc/Dec, an exponent as Exp, and
a gradient as Gra. In the initialization phase, the
server takes a computational cost of (P − 1)Mul to
compute the associated public key. In the encoding
and encryption phase, it costs s(Ecod + 2Enc) for us-
er Ui to compute the ciphertext data. After training
and obtaining the ciphertext weight E(W) in the lo-
cal update process, every trainer Ti calculates the ci-
phertext momentum at a cost of l(µExp + Gra + 2Enc)
in each round, where l is the number of weights
and momentums. When the server receives all the
weights and momentums from the trainers, it costs
Ml(Div + Mul + Enc) to compute the ciphertext fed-
erated aggregation average. In the prediction phase,
user Ui takes s(Ecod + 2Enc) cost to compute the ci-
phertext data Epk(Qi) for the prediction. After ob-
taining the ciphertext predicted result, the user costs
s(Dcod + Dec) to obtain the plaintext prediction re-
sult.

7.2. Functionality

In this subsection, we compare the functional
advantages of the proposed method with those of
the state-of-the-art privacy-preserving federated deep
learning, as shown in Table I. In Table I, PPDL [8] pro-
posed privacy-preserving deep learning models based
on Paillier and LWE homomorphic encryptions re-
spectively. However, the scheme does not consider the
multi-key and MGD questions. PPFDL [9] and Veri-
fyNet [10] achieved advantages with irregular users or

verifiability, respectively. However, they do not con-
sider MGD and SIMD. SecProbe [15] also considered
irregular users in the federated training process. How-
ever, it does not guarantee the privacy of the aggregat-
ed result or support multi-key, MGD, and SIMD. Hy-
bridalpha [16] and HAPPFL [17] protect the privacy
of parameters and results, but they are not concerned
with MGD and SIMD. MFL [26] improved the MGD
but does not consider other functionalities, as shown
in Table I. Our PEPFL scheme considers all the func-
tionalities, as demonstrated in Table I with the LDEC.

7.3. Experimental analysis
To illustrate the performance and accuracy, PEPFL

is simulated using a computer with an Intel(R)
Core(TM) i7-7700HQ CPU @2.80GHz(8CPUs), 8G-
B RAM, and the 64-bit Windows operating system
with Anaconda 3, PyCharm 2020.3.2 Professional
Edition, Python 3.8.5, and PyTorch 1.7.0. MNIST
dataset, which is composed of a training dataset with
50000 handwritten digit images and validation and test
datasets each with 10000 images, is used. The cryp-
tosystem employs the LDEC with PSIMD, which is
compared with the other cryptosystems, such as LWE
[8], Paillier [44], BCP [45].

7.3.1. Accuracy
In this subsection, we tested the accuracy of PEPFL.

Due to the complexity of ciphertext CNN, the CNN
training process on the trainers is carried out in plain-
text, which does not affect the accuracy. Therefore,
the accuracy is tested without considering the privacy-
preserving mechanism, and the experiment results are
shown in Fig. 4.

Fig. 4 compares the classification accuracy accord-
ing to the number of rounds and epochs. Fig. 4(a) plot-
s the training accuracy of three kinds of different users
{2, 3, 4} as the number of rounds changes. The figure
shows that the accuracy is slightly variable when the
number of rounds is more than 40. The results show
that the accuracy has less influence as the number of
rounds and users increases. Fig. 4(b) draws the ac-
curacy under different batches as the number of local
epochs increases. When the number of the local e-
pochs is less than 70, it can be seen that the batch is
smaller, and the accuracy is higher. When the num-
ber of local epochs is greater than 70, the accuracy is
nearly 100%. The results demonstrate that the high-
er epochs, the better accuracy. When the number of
epochs reaches a certain amount, the accuracy is al-
ways 100%.

Figs. 4(c) and 4(d) simulate against the number of
epochs and rounds as the momentums change. Fig.
4(c) compares the accuracy of three different momen-
tums {0.5, 0.7, 0.9} as the number of epochs increases.
Obviously, as the number of local epochs increases,
the accuracy improves constantly. When the number
of local epochs approaches 80, the accuracy reaches
100%. However, when the momentum is greater than
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Table 1: Functionality comparison

Scheme Cryptographic techniques Servers’
number

Parameter
privacy

Aggregation
result privacy

Multi-key MGD PSIMD/SIMD

PPDL [8] Paillier, LWE 1 ! ! # # !

PPFDL [9] Paillier 2 ! ! ! # #

VerifyNet [10] Homomorphic hash,
Pseudorandom function, Secret

sharing

2 ! ! ! # #

SecProbe [15] Differential privacy, Function
mechanism

1 ! # # # #

Hybridalpha [16] MPC, Differential privacy 2 ! ! ! # #

HAPPFL [17] Threshold Paillier, MPC,
Differential privacy

1 ! ! ! # #

MFL [26] ∼ 1 # # # ! #

PEPFL Lifted distributed ElGamal 1 ! ! ! ! !

1, the accuracy is below 10%, which is not plotted
in Fig. 4(c). As shown in Fig. 4(d), as the number
of rounds increases, the accuracy remains almost con-
stant. The results show that as the number of rounds
increases, the accuracy remains almost unchanged.

7.3.2. Performance
In this subsection, we analyze the communication

costs in different phases, where u is the number of
weight encoding packets. In Fig. 5(a), we set p=2048
and u=1000, and the figure shows that the communi-
cation costs of the encryption and prediction phases
constantly increase as the number of matrices increas-
es, while the other phases remain almost unchanged.
The results show that the number of matrices influ-
ences the encryption and prediction phases, but does
not affect the other phases. In Fig. 5(b), we set s to
1000. As the number of the weight encoding packets
u increases, the figure shows that the communication
costs of the local update and aggregation phases con-
tinually increase, and the other phases are influenced
only slightly.

In Fig. 6, because the computational costs of the ini-
tialization and aggregation phases approach zero and
the local update phase contains the gradients, which
causes the computational costs to be unable to be com-
pared. Therefore, we only compare the computation-
al costs in the encoding and encryption phase and the
prediction phase. As shown in Fig. 6, as the number of
matrices grows, the decryption time in the prediction
phase increases distinctly. The results show that the
decryption time is impacted clearly and the encryption
time is rarely affected.

Then, we experimented with the encryption and de-
cryption running times of the different cryptosystems
(LWE, Paillier, BCP, and our cryptosystem) to com-
pare their performance. The test data are square matri-
ces with (5*5, 10*10, 15*15, 20*20, and 25*25) fea-
tures and (1, 2, 3, 4, and 5) images in the encryption
and decryption processes.

As shown in Fig. 7, as the number of matrix rows
(columns) versus features or the number of images in-
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Fig. 6: Computational cost

creases, the running time of encryption constantly in-
creases. Figs. 7(a) and 7(b) show that the encryption
time of Paillier is the largest, and that of our method
is the smallest. The results indicate that our scheme
has shorter encryption running time than the other
schemes. Fig. 8 illustrates the decryption running time
as the number of matrix rows (columns) versus an in-
creasing number of features or images. From Figs.
8(a) and 8(b), it is apparent that Paillier has the longest
decryption time and that our method has the shortest
decryption time. The results show that our scheme has
a better decryption time than the other schemes.

Finally, we tested the decryption method in the El-
Gamal decryption with Pollard’s Rho and the lookup
table method. As shown in Fig. 9, as the number
of matrix rows (columns) increases, the running time
of decryption constantly increases with Pollard’s Rho
and the lookup table method, but that of Pollard’s
Rho method increases distinctly. The results show
that the lookup table method is superior to Pollard’s
Rho method. Therefore, we selected the lookup table
method to decrypt our scheme.

8. Conclusion

Federated learning is a fashionable collaborative
learning method that can collaboratively update the
weights or gradients to obtain the global model, and
has been researched in different privacy-preserving
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Fig. 7: Encryption time with the number of features and images
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Fig. 9: The comparison of decryption time

ways owing to its privacy information leakage by
weights. However, noninteractive and high-efficiency
schemes in partially homomorphic cryptosystems
have not been proposed. Therefore, we propose
a practical and efficient privacy-preserving federat-
ed learning framework (PEPFL), which improves the
LDEC scheme and presents a PSIMD parallel comput-
ing method, solving the distributed multi-key question
for federated learning and improving the efficiency. In
addition, users do not participate in the training by
introducing trainers, which realizes users’ noninterac-
tion. The scheme can widely be applied in the scenar-
ios of non-interaction, multi-key, or partially homo-
morphic cryptosystems. To the best of our knowledge,
this is the first work on a partially homomorphic en-
cryption scheme that supports parallel computing with
PSIMD, which can also be applied in other homomor-
phic cryptosystems. In future work, we will focus on
preventing participants’ from cheating and providing
incentive mechanisms in federated learning.
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