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Abstract. Code-based cryptography plays an important role in post-
quantum cryptography. While many crypto-primitives such as public-key
encryption, digital signature have been proposed from codes, there is no
non-interactive code-based key exchange protocol. We solve the opening
problem of constructing a non-interactive key exchange protocol from
coding theory in this work. To prove the security of this protocol, we
propose a new hard problem called sub-LE problem, which is a sub-
problem of code equivalence problem. We prove its hardness by reducing
the well-known code linearly equivalence problem to the sub-LE problem.
This new hard problem provides many good properties such as the par-
tial commutativity. This excites us most because it allows not only the
construction of key exchange protocol, but also many other primitives
such as a new public-key encryption scheme.

Keywords: Post-quantum, Code-based, Key exchange, Public-key en-
cryption

1 Introduction

Key exchange protocols are mechanisms by which two parties that communicate
over an adversarially controlled network can generate a common secret key. This
kind of protocols are essential for enabling the use of shared-key cryptography
to protect transmitted data over insecure networks. Since the most well-known
Diffe-Hellman protocol’s proposing in 1976 [14], there are lots of researches focus
on it. However, with the fast development of quantum computing, the cryptosys-
tems whose security are based on traditional mathematical problems are facing
attacks from quantum algorithms.

Nowadays, post-quantum cryptosystems, i.e. cryptosystems that can resist
attacks from quantum computing are the most popular research direction. Al-
though many wonderful post-quantum encryption systems, digital signature sys-
tems, and other cryptographic applications such as secret handshake protocols
and function encryption systems have been proposed, there are only a few works
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on key exchange protocols. The most famous post-quantum key exchange pro-
tocol is the supersingular isogenies-based SIDH [12]. In 2012, Ding et.al [15]
proposed a lattice-based key exchange protocol with the help of robust extrac-
tors. Lattice-based authenticated key agreement protocols are also widely re-
searched [32,33]. But these lattice-based protocols need interaction resources or
can be viewed as a key encapsulation mechanism.

Coding theory is an important tool to construct post-quantum cryptosys-
tems. The most widely used hard problems in coding theory to build cryptosys-
tem are syndrome decoding problem, code equivalence problem, and some other
problems under rank metric. Unlike public-key encryption systems [21,23], dig-
ital signature systems [10, 11], identification systems [29, 30] which have been
well-studied from codes, how to construct key exchange protocol from coding
theory has been an open problem for decades of years. In 2017, several key ex-
change protocols from coding theorem are proposed, including CAKE [3] and
Ouroboros [13]. They both use MDPC codes and are derived from the McEliece
encryption algorithm. And no exception, they are interactive protocols. As a
consequence, how to build non-interactive post-quantum key exchange proto-
cols from different hard problems other than supersingular isogenies remains a
challenging problem.

We are full of interest and curiosity about how to solve this problem. When
it comes to the construction of a code-based cryptosystem, A natural idea is to
consider the syndrome decoding problem, which is the most widely used hard
problem in code-based cryptosystems. However, we failed because the syndrome
decoding problem is a trapdoor problem and is difficult to be applied without
the trapdoor, which is exactly the case in a key exchange protocol. Then we
turn our attention to the hard problems based on the code space, and code
equivalence problem is one of them. Actually, the code equivalence problem
has played a significant role in code-based cryptosystems. For example, in the
McEliece public-key encryption system [21], the secret key includes a k × k
invertible matrix S, a Goppa code with generator matrix G and a permutation
matrix P, while the public key is SGP. The onewayness from the public key
to the secret key is indeed a code permutation equivalence problem. Recently,
digital signature schemes from code equivalence problem are proposed as well. In
2020, Biasse et. al built a signature called LESS [8] and this scheme was further
improved in 2021 by Barenghi et. al which is named as LES-FM [2]. LESS is
achieved by applying Fiat-Shamir transformation on a code equivalence based
identification scheme.

The hardness of code (permutation) equivalence problem was first studied
in [24]. After that, lots of works did deeper research on the hardness of code
equivalence and its application in cryptography [2,8,27]. There exist many works
[6, 19, 26] targeting solving the code equivalence problem, but none of them are
efficient enough (i.e. in polynomial time). As a result, the cryptosystems whose
security relies on the code equivalence problem are viewed as post-quantum
cryptosystems.
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Unfortunately, the traditional code equivalence problem is still unsuitable
to construct key exchange protocol directly. The reason is that the operations
between matrices are not commutatively, which is a disadvantageous property for
building non-interactive key exchange protocols. Although commutativity is not
strictly necessary since the communicating participants may share some common
value as is the case for isogenies-based protocol [12], it is not easy to find such
properties in coding theory. Biasse et. al made a trail in constructing such key
exchange protocols from coding [7]. In their construction, Alice and Bob send
Ga = SaGQa and Gb = SbGQb to each other respectively, where G is a public
matrix. Then Alice calculates G′a = GbQa and Bob calculates G′b = GaQb.
The session key is defined as the weight enumerator function (WEF) of G′a ∩G
or G′b ∩ G. Unfortunately, their work has been withdrawn. As far as we are
considered, their session key can be recovered from the public transcripts, i.e.
WEF(G′a∩G) = WEF(G′b∩G) = WEF(Ga∩Gb). In order to construct a Diffie-
Hellman like protocol, we find a sub-problem of code equivalence problem, which
plays an important role in our construction.

Contributions. Unlike mostly code-based cryptosystems whose security are
built on the well-known syndrome decoding problem, our protocol takes the (sub-
problem of the) code equivalence problem as the basic hard problem. The code
equivalence problem asks to decide whether the given two code are equivalent
or not. Generally speaking, the code equivalence problem is believed to be a
candidate to build post-quantum cryptosystems.

We aimed at constructing a non-interactive key exchange protocol, which is
usually based on some commutative operations. However, most operations in
coding theory do not support commutative laws. Thus, we propose a new hard
problem in coding theory called the sub-LE problem. This is a sub-problem of the
Linear code Equivalence (LE) problem, and we proved that the sub-LE problem
can be reduced to the LE problem. Informally, given two codes with generator
matrix G and G′, the LE problem asks whether there exists an invertible matrix
S and a monomial matrix Q such that G′ = SGQ. If we put a restriction on the
monomial matrix Q such that its action only affects the odd or even columns,
then it will be called a sub-LE problem. Namely, in a sub-LE problem, the
monomial matrix Q = DP where D is a diagonal matrix with elements on
odd or even position all equal to 1, and P is a permutation matrix which only
permutes the odd or even (on the contrary to the positions of 1 in matrix D)
columns. If P only affects the odd (even) columns, we denote the corresponding
monomial matrix as Qodd (Qeven).

Intuitively, Qodd and Qeven effect on exactly disjoint columns of G, thus
the action of them can be commutative, i.e. QoddQeven = QevenQodd. With
this property, a Diffie-Hellmen type key exchange protocol from coding theory
can be established easily. The main idea is that the two participants Alice and
Bob choose a monomial matrix with different parity respectively, thus the com-
mutative property holds between these two monomial matrices (covered by the
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sub-LE problem). This key exchange protocol directly inspiring an El Gamal
like public encryption scheme.

Our contributions can be summarizes as follows:

– We construct the first code-based non-interactive key exchange protocol
KECE. We proved that KECE is SK-security in the Authenticated Model
(AM).

– To complete the security proof of KECE, we defined a new problem in coding
theory called sub-LE problem. We proved that the computational version of
the sub-LE problem (CLE problem) is as hard as that of the LE problem
by reducing the LE problem to the sub-LE problem. As the sub-LE problem
provides some useful properties, this new problem can be applied in many
areas in building cryptosystems.

– We present a new code-based public-key encryption scheme and proved that
it is IND-CPA secure. This new scheme has a smaller key size and does
not need any decoding algorithm in the decryption step, which indicates a
better performance. The proof of the security also builds on the hardness of
the sub-LE problem.

Organization. The remainder of this paper is organized as follows: In Section
2, we recall some preliminaries on coding theory together with the definitions and
security properties for key exchange protocol and public-key encryption scheme.
In Section 3, our key exchange protocol is presented. To prove its security, we
define the sub-LE problem at the beginning of the security proof. The hardness
of the sub-LE problem is analysed as last. In Section 4, we show a public key
encryption scheme. Based on the sub-DLE assumption, we proved it is IND-CPA
secure. Lastly, Section 5 concludes the paper and discusses the future works.

2 Preliminaries

In this section, we present the notions of coding theory that are prerequisite for
the following chapters as well as basic knowledge about code-based cryptography.

2.1 Notation and Conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n stands for the set
of n-bit strings, and {0, 1}∗ for the set of all bit strings. For a, b ∈ N, [a; b] denotes
the set of integers {i ∈ N, a ≤ i ≤ b}. Let Fq be the finite field of q elements, and
then Fnq denotes the set of vectors with length n over Fq, Fm×nq denotes the set of
m× n matrices over Fq. The Hamming weight of a vector v is written as wt(v).
The group of all k×k invertible matrices over Fq is denoted as GLk(q). We write
Σn for the group of n-order permutations. For any σ ∈ Σn, it is associated with
an n×n matrix Pσ with Pi,j = 1 if σ(i) = j and Pi,j = 0 otherwise. This matrix
P is called a permutation matrix, and all the permutation matrices of order n
consists set P. Let Monon(q) stands for the set of n×n monomial matrices with
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elements in Fq, i.e. all matrices of form Q = DP where D = diag(d1, . . . , dn)
is a diagonal matrix with Di,i = di and Di,j = 0 if i 6= j, P is a permutation
matrix. We use the symbol ∼ to denote the equivalence between two matrices,
i.e. A ∼ B ⇐⇒ ∃S ∈ GLk(q) s.t. A = SB. If S is a set, then x ←$ S is the
assignment to x of an element chosen uniformly at random from S. If A is an
algorithm, then y ← A(x) denotes the assignment to y of the input x. We say
an algorithm is PPT, if it runs in probabilistic polynomial-time.

2.2 Linear Codes

We now recall some basic definitions for linear codes.

An [n, k]q linear error-correcting code C is a linear subspace of a vector space
Fnq , where Fq denotes the finite field of q elements, and k denotes the dimension
of the subspace. The generator matrix for a linear code is a k × n matrix with
rank k which defines a linear mapping from Fkq (called the message space) to Fnq .
Namely, the code C is

C = C(G) = {xG | x ∈ Fkq}.

For one code space C, there exists more than one generator matrix corresponding
to different choice of basis. That is to say, if G is a generator matrix of code C
and S ∈ GLk(q), then G′ = SG is a generator matrix of C as well. Alternatively,
the linear code can be defined by parity check matrix. If C is the kernel of a

matrix H ∈ F(n−k)×n
q , we call H a parity check matrix of C, i.e.

C = Ker(H) = {y ∈ Fnq | Hy = 0}.

Obviously, the parity check matrix is not unique as the generator matrix. In fact,
the parity check matrix H must satisfies that GHT = 0k×(n−k). Furthermore,
the parity check matrix can also be viewed as a generator matrix of another code
C⊥ = {xH | x ∈ Fn−kq } = {y ∈ Fnq | x · yT = 0,∀x ∈ C}. This code C⊥ is called
the dual code of C and it is orthogonal of C. We call a vector in C a codeword.

2.3 Code Equivalence Problem

In this subsection, we introduce the code equivalence problem. The code equiv-
alence problem asks for the equivalent relationship between two codes, and this
relationship can be expressed by matrices. We first define the equivalent rela-
tionship between codes as follows.

Definition 1 (Permutation Code Equivalence) Two linear codes C ∈ Fnq
and C′ ∈ Fnq are said to be permutationally equivalent and we denote it by C PE∼
C′, if there exists a permutation σ ∈ Pn that maps C into C′, i.e. C′ = σ(C) =
{σ(x),x ∈ C}.
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This definition can be generalized using linear isometries. Let τ = (v;σ) ∈
F∗q

n o Pn be as isometry such that

τ(x) = (v;σ)(x) = (v1xσ−1(1), . . . , vnxσ−1(n)),

then the previous definition can be extended as follows:

Definition 2 (Linear Code Equivalence) Two linear codes C ∈ Fnq and C′ ∈
Fnq are said to be linearly equivalent and we denote it by C LE∼ C′, if there exists
a linear isometry τ = (v;σ) ∈ F∗q

n o Pn that maps C onto C′, i.e. C′ = τ(C) =
{τ(x),x ∈ C}.

The definitions above can be stated in terms of generator matrices or parity
check matrices equivalently. Let C and C′ be two linear codes with generator
matrices G and G′, then we have

C PE∼ C′ ⇐⇒ ∃(S,P) ∈ GLk(q)× Pn s.t. G′ = SGP,

C LE∼ C′ ⇐⇒ ∃(S,Q) ∈ GLk(q)×Monon(q) s.t. G′ = SGQ.

The decisional versions of these problems are defined as follows.

Problem 1 (Decisional Permutation Code Equivalence (DPE) Problem)
Given two codes C and C′ with generator matrices G,G′ ∈ Fk×nq respectively,
determine whether the two codes are permutationally equivalent. Namely, does
there exist S ∈ GLk(q) and a permutation matrix P such that G′ = SGP.

Problem 2 (Decisional Linear Code Equivalence (DLE) Problem) Given
two codes C and C′ with generator matrices G,G′ ∈ Fk×nq respectively, deter-
mine whether the two codes are linearly equivalent. Namely, does there exist
S ∈ GLk(q) and a monomial matrix Q ∈ Monon(q) such that G′ = SGQ.

The two problems above are similar except that different notions of code
equivalence are considered. The DPE problem over binary field was introduced
in [24]. Then [17] generalized this problem onto any field Fq and discussed its
hardness. Since DPE is a sub-problem of DLE problem, it is clear that the DLE
problem is not easier than the DPE problem.

2.4 Model and Security Properties

In this subsection, the model and security definitions for key exchange protocol
and public-key encryption scheme are reviewed.

Key Exchange. A key exchange protocol enables the participants to com-
municate in an open channel, and finally share a secret session key. Usually, a
non-interactive key exchange protocol has a paradigm as showed in Fig.1.
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Fig. 1. Non-Interactive Key Exchange Protocol.

Canetti et. al. give formally description on the key exchange protocol in [9].
An unauthenticated model (UM) allows the adversary to have full control of
the communication channel, i.e. the adversary not only can listen to all the
transmitted information, but also can operate the messages, like change some
bits or inject information. In an authenticated model (AM), the adversary is
restricted to only deliver the messages truly generated by the parties without
any change or addition to them. Sometimes we also call this passive attackers.
Note that the first point of the following definition is actually the requirement
of ”correctness”, which is a fundamental demand for a key exchange protocol.

Definition 3 (SK secure in the AM) An adversary A is a polynomial-time
algorithm. Given a value Kb for b ∈ {0, 1} where K0 is the genuine shared key
and K1 is a randomly generated object, A will output b′ ∈ {0, 1} to distinguish
K0 or K1 is given. A KE protocol Π is called SK-secure (SK is the short for
Session Key) if the following properties hold for any adversary A in the AM.

1. Protocol Π satisfies the property that if two uncorrupted parties complete
matching sessions then they both output the same key;

2. the probability that A guesses correctly the bit b (i.e. outputs b′ = b) is no
more than 1/2 + negl.

There are also some advanced security notions for key exchange protocols,
such as under unauthenticated channels or with perfect forward secrecy. A pro-
tocol with SK-secure under AM can be transformed into protocols with these
advanced security notions by universal transformation [9].

Public Key Encryption. The conception of public-key encryption was intro-
duced in 1976 [14]. A public-key encryption scheme provides two different keys
for encryption and decryption respectively. The key used for encryption is public
and the key for decryption is kept secret.

Definition 4 An public-key encryption scheme is a triple of PPT algorithms
( KeyGen, Encrypt, Decrypt):
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– KeyGen is the key generation algorithm. KeyGen(param) outputs a pair
of keys (pk, sk), where pk is the public key for encryption and sk is the secret
key for decryption.

– Encrypt is the encryption algorithm. Given a plaintext m from a message
space M, algorithm Encrypt (pk,m) outputs a ciphertext c, which is the
encrypted m under the public key pk.

– Decrypt is the decryption algorithm. Decrypt(sk, c) uses the secret key sk
to decrypt the ciphertext c, and outputs a plaintext m or a symbol ⊥ repre-
senting incorrect decryption. Incorrect decryption can happen for example a
valid ciphertext.

The public parameters param is generated by a Setup algorithm which takes
the security parameter 1λ as input. The encryption scheme has to satisfy both
Correctness and Security properties. The correctness means that for all m ∈M
and all possible (pk, sk) output by KeyGen, we have Decrypt(Encrypt(m)) =
m.

There are different type of security definitions, and here we use the Indistin-
guishability under Chosen Plaintext Attack (IND-CPA). In a CPA scenario, the
adversary has access to the public key pk, and hence can encrypt any messages
she wants. A formal definition of IND-CPA is as follows.

Definition 5 A public key encryption scheme (KeyGen, Encrypt, Decrypt)
is IND-CPA secure (or semantically secure) if for all PPT algorithms A, the
following is negligible:∣∣∣∣Pr

[
(pk, sk)← KeyGen(param); (m0,m1)← A(pk);
b← {0, 1}; c← Encrypt(mb); b

′ ← A(pk, c)
: b = b′

]
− 1

2

∣∣∣∣ (1)

IND-CPA secure not only means that the adversary can not obtain the plain-
text from the knowledge of the public key and the ciphertext, but also that an
adversary can not obtain any partial information about it. Stronger notions of
security such as security under non-adaptive chosen-ciphertext attack (CCA1) or
security under adaptive chosen-ciphertext attack (CCA2) can be achieved from
universal transformations like [16].

3 A Key Exchange Protocol from Coding Theory

In this section, we are going to describe our key exchange protocol. This is a
non-interactive key exchange protocol, i.e. the two participants send messages
to each other independently. The correctness of the KECE protocol relies on the
partly commutatively between the sub-monomial matrices. And the security of
the KECE protocol relies on the hardness of the sub-LE problem.

3.1 Presentation of The Protocol

Assume Alice and Bob want to establish a session key through an eavesdropped
channel.
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– Setup: Input security parameter λ, output public parameters param =
(n, k,G). Here k, n are integers and k > n/2. G ∈ Fk×nq is a generator
matrix of a random linear code.

With the public parameters,

– Alice
Ga−→ Bob:

1. Qa ←$ OMn(q), where OMn(q) ⊂ Monon(q) contains all the matrices
in Monon(q) such that the corresponding linear isometry keeps the even
coordinates unchanged, i.e. OMn(q) = {M ∈ Monon(q)∧Mi,i = 1 if i =
0 mod 2};

2. Sa ←$ GLk(q);
3. Ga = SaGQa.

– Bob
Gb−→ Alice:

1. Qb ←$ EMn(q), where EMn(q) = {M ∈ Monon(q) ∧Mi,i = 1 if i = 1
mod 2} contains all the matrices in Monon(q) such that the correspond-
ing linear isometry keeps the odd coordinates unchanged.

2. Sb ←$ GLk(q);
3. Gb = SbGQb;
4. Gkb = GbQa, and transforms it into a systematic form Gkb ∼ [I | Kb].

Taking Kb as Bob’s final session key.

– Alice calculates Gka = GaQb, and transforms it into a systematic form
Gka ∼ [I | Ka]. Taking Ka as Alice’s final session key.

Fig. 2. Our Key Exchange Protocol

As we will see in Theorem 1, if Alice and Bob run the protocol honestly, they
will share a same code space. Actually, they can choose any (unique) property
of the code as the output session key, e.g. the minimum weight codewords, the
weight distribution function. However, this property must be different to the
code generated by G. Otherwise the session can be calculated from the public
knowledge, and the protocol will be insecure, which is the case in [7]. In our
description, we choose to use the systematic generator matrix of this code as the
final session key. The reason is that to calculate the systematic form only needs
linear operations by Gaussian elimination.
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Correctness. We show that if Alice and Bob run the protocol honestly, they will
share an identical session key Ka = Kb. Since Gka = GbQa = SbGQbQa and
Gkb = GaQb = SaGQaQb, we have Ka = Kb ⇐⇒ QbQa = QaQb. Thus, we
only have to prove that Qa and Qb are commutative to show the correctness.

Lemma 1 AB = BA if A ∈ OMn(q) and B ∈ EMn(q).

Proof. ∀A ∈ OMn(q) ⊂ Monon(q), there exists a permutation matrix Pa and a
diagonal matrix Da such that A = DaPa. By the definition of OMn(q), which is
a subset of Monon(q), we have Ai,i = 1 if i = 0 mod 2, and this implies Ai,j = 0
for all i = 0 mod 2, i 6= j because there is only one 1 in each column and
each row. In more detail, the corresponding linear isometry τa has the following
property:

For x = (x1, . . . , xn), τa(x) = (v1xσ−1(1), x2, v3xσ−1(3), x4, . . . , vn−1xσ−1(n−1), xn−1).
Namely, xi = τa(x)i for i = 0 mod 2. Similarly, the linear isomety τb corre-
sponding to B ∈ EMn(q) ⊂ Monon(q) has property that xi = τb(x)i for all i = 1
mod 2.

Since AB ∈ Monon(q) also corresponds to a linear isometry τab = τa ◦ τb, we
have

τab(x)i =

{
τb(x)i, i = 1 mod 2;
τa(x)i, i = 0 mod 2.

(2)

Similarly, for BA ∈ Monon(q) which corresponds to a linear isometry τba =
τb ◦ τa, Equation.(2) holds as well.

As a result, τba = τab, and thus AB = BA. ut

Theorem 1 (Correctness). The key exchange protocol KECE described in
Section 3.1 is correct.

Proof. From Lemma 1, for Qa ∈ OMn(q) and Qb ∈ EMn(q), we have QaQb =
QbQa. Since Sa,Sb ∈ GLk(q), there exists A ∈ GLk(q) such that Sb = ASa,
e.g. A = SbS

−1
1 . Hence we have

Gka = GaQb = SaGQaQb = SaGQbQa

∼ ASaGQbQa

= SbGQbQa = GbQa = Gkb

Thus Gka and Gkb generate a same code space, and they share the same sys-
tematic form. ut

3.2 Security Analysis

3.2.1 Sub-LE Problem

Before given the security proof, we first define a new problem named sub-LE
problem, which is a sub-problem of the LE problem. Informally, the decisional
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version of sub-LE problem (i.e. sub-DLE problem) asks whether the two given
codes (given by their generator matrices G and G′ respectively) are linearly
equivalent, i,e, G′ = SGQ. The computational version sub-CLE problem re-
quires to give a pair of matrices S,Q if the answer of the sub-DLE problem is
yes. The difference between the sub-DLE problem and the DLE problem is that
in the DLE problem, we choose the matrix Q ∈ Monon(q) and in the sub-DLE
problem we choose Q ∈ sub-Mn(q). We define the set of sub-Mn(q) as follows:

Definition 6 Define OMn(q) = {Q ∈ Monon(q)∧Qi,i = 1 if i = 0 mod 2} and
EMn(q) = {Q ∈ Monon(q) ∧ Qi,i = 1 if i = 1 mod 2}. Namely, Q ∈ OMn(q)
(resp. Q ∈ EMn(q)) only affects the odd (resp. even) columns of G when do
the right multiplication. Then sub-Mn(q) = OMn(q) ∪ EMn(q) = {Q | Q ∈
Monon(q) ∧ (Qi,i = 1 for all i = 0 mod 2 ∨Qi,i = 0 for all i = 1 mod 2)}.

The following figure Fig.3 shows the relationship between Monon(q) and sub-Mn(q).
Then we can define the sub-LE problem.

Fig. 3. The relationship between Monon(q) and sub-Mn(q).

Problem 3 (sub-CLE Problem) Given two codes C and C′ with generator
matrices G,G′ ∈ Fk×nq respectively, the sub-CLE(n, k, q) problem asks for a pair
of matrices S ∈ GLk(q),Q ∈ sub−Mn such that G′ = SGQ.

Before given a decisional version of the sub-CLE problem, we define the R-
sub-LE distribution at first.

Definition 7 (R-sub-LE distribution) We say a pair of matrices (G1,G2)
is in R-sub-LE distribution, if the sub-matrices of G1 and G2 that consist by
their odd (or even) columns are equivalent.
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Namely, for matrices G1 = [g1,1,g1,2, · · · ,g1,n] and G2 = [g2,1,g2,2, · · · ,g2,n],
if G1,odd ∼ G2,odd or G1,even ∼ G2,even, then (G1,G2) are in R-sub-LE distri-
bution. Here

G1,odd =
[
g1,1,g1,3, · · · ,g1,2dn/2e−1

]
;

G2,odd =
[
g2,1,g2,3, · · · ,g2,2dn/2e−1

]
;

G1,even =
[
g1,2,g1,4, · · · ,g1,2bn/2c

]
;

G2,even =
[
g2,2,g2,4, · · · ,g2,2bn/2c

]
.

We have to define this distribution because two random matrices can be
distinguished from two sub-linearly equivalent codes easily. The hardness of dis-
tinguishing whether the given two codes are linearly equivalent mainly relies on
the action of the monomial matrix Q. Since Q ∈ sub-Mn(q) only affects the odd
or even columns, the unchanged columns of two sub-linearly equivalent matrices
must be equivalent. This distribution can be sampled by first choose a full rank
random matrix G1, and then replacing the odd (or even) columns of G1 into
random vectors.

Problem 4 (sub-DLE Problem) Given two codes C and C′ with generator
matrices G,G′ ∈ Fk×nq respectively. Here the given two generator matrices
consist a matrix pair (G,G′) that is in R-sub-LE distribution. Then the sub-
DLE(n, k, q) problem asks to determine whether there exists S ∈ GLk(q) and a
monomial matrix Q ∈ sub-Mn(q) such that G′ = SGQ.

Assumption 1 There is no PPT algorithm that can solve the sub-DLE problem.

3.2.2 Security Proof of Our Key Exchange Protocol

Now we prove the SK-secure of our KECE protocol under AM.

Theorem 1 The KECE protocol is SK-secure under the AM, if the sub-LE
problem is hard.

Proof. The requirement of correctness has been proved in Section 3.2. In the
following proof we focus on the second statement in Def.3.

If there exists an adversary A who can break the KECE scheme with non-
negligible probability, then we can build a distinguisher D to break the sub-
DLE assumption, i.e. solve the sub-DLE problem. Given a pair (G1,G2), the
distinguisher D invokes A in a series of games. The first game Game 0 is the
real game which the adversary gets the real session key K, while the last game
Game 4 outputs a uniformly random K to the adversary.

An outline of the proof is illustrated in Fig.4.

– Game 0: This is the real game between the protocol challenger and the
adversary A. In this game, the adversary obtains the transcripts of Ga,Gb

and the real session key K between Alice and Bob. Then A outputs a guess
b′ ∈ {0, 1}.
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– Game 1: In this game, D set the public matrix as G = G1. Since our
scheme sets the public matrix as the generator matrix of a random code, i.e.
the public matrix can be viewed as a random full rank matrix, this game is
indistinguishable with Game 0.

– Game 2: In this game, D simulates Alice and generates her Ga by change
the odd columns of G1 into random vectors and then multiple Sa ∈ GLn. In
Lemma 2 we prove that under the sub-DLE assumption, the views in Game
1 and Game 2 are computationally indistinguishable for PPT adversaries.

– Game 3: In this game, Bob generates his Gb by change the odd columns of
G1 into random vectors and then multiple Sb ∈ GLn. In Lemma 3 we prove
that under the sub-DLE assumption, the views in Game 2 and Game 3
are computationally indistinguishable for PPT adversaries.

– Game 4: In this game, D sets the output agreement key as G = G2. In
Lemma 4 we prove that under the sub-DLE assumption, the views in Game
3 and Game 4 are computationally indistinguishable for PPT adversaries.

Fig. 4. An outline of the proof.

To summarize, when Game 4 terminates, the adversary A outputs b′ which
indicates that G2 is a random random object for b′ = 0 and is the real session
key for b′ = 1. Thus the dinstinguisher D can determine that the given matrices
pair (G1,G2) are linearly equivalent if A outputs 1. As a result, the advantage
for D to win a sub-DLE problem is

AdvD = SuccA,

which means that if the advantages for any PPT adversaries A to break the SK
secure in the AM of KECE is non-negligible, then we can build an algorithm D
to solve the sub-DLE problem with non-negligible probability. ut

Lemma 2 Game 1 and Game 2 are indistinguishable for any PPT adversary,
if the sub-DLE assumption holds.

Proof. The only difference between Game 1 and Game 2 is the generation of
the matrix Ga. Thus the indistinguishability between Game 1 and Game 2 is
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the indistinguishability between two Ga. In fact, if there exists an adversary A
distinguishes Game 1 and Game 2 with non-negligible advantage, we can sole
the sub-DLE problem as follows: Given a sub-DLE instance G1,G2, we set the
public matrix as G1 and the matrix in Game 2 as Ga = G2. Then invoke A. If
A output ’Game 1’, then we say the instance is sub-linearly equivalent. And if
A output ’Game 2’, then we say the instance is not sub-linearly equivalent. ut

Lemma 3 Game 2 and Game 3 are indistinguishable for any PPT adversary,
if the sub-DLE assumption holds.

Proof. The proof of this lemma is similar as the proof of lemma 2. ut

Lemma 4 Game 3 and Game 4 are indistinguishable for any PPT adversary,
if the sub-DLE assumption holds.

Proof. In the real game, the session key is sub-linearly equivalent with Ga and
Gb, and is linearly equivalent with the public matrix G. Hence the indistin-
guishability between Game 3 and Game 4 is the indistinguishability between
GbQa and G2. In fact, if there exists an adversary A distinguishes Game 3 and
Game 4 with non-negligible advantage, we can sole the sub-DLE problem as
follows: Given a sub-DLE instance G′1,G

′
2,

1. set the public matrix as G by change the even columns of G′1 into random
vectors and then multiple by S ∈ GLk(q);

2. Set Gb = G1 in Game 3;
3. Set the output session key in Game 4 as G2 = G′2.
4. Invoke A(Game 3, Game 4).

If A output ’Game 3’, then we say the instance is sub-linearly equivalent. And if
A output ’Game 4’, then we say the instance is not sub-linearly equivalent. ut

3.2.3 Hardness of The Sub-LE Problem

Now let us discuss the hardness of the sub-DLE problem. An intuition is that if
the sub-DLE problem between matrices G and G′ has a ’YES’ answer, then the
matrix G only differs from G′ in the odd or even columns. As a consequence,
their identical columns may leak some information about the linear equivalence
relationship. To observe this problem deeply, we do another permutation de-
noted by matrix P on G′ such that the action of Q only affects the first n/2
columns of SG, and depart this part into two k/2× n/2 matrices as showed in
Fig.5. Then solving the sub-DLE problem can be depart in to two questions:

1. Solve S by solving the linear system SG2 = G′2, which needs to solve k2

variables to determine S. Since there are nk/2 equations in the linear system,
the solution will contain (2k−n)k/2 free variants. Each of these free variants
can be evaluated in Fq and thus the solution space has q(2k−n)k/2 elements
and only one of them is the correct S. As a result, it needs q(2k−n)k/2 trails
to determine the matrix S.
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Fig. 5. Depart the matrix M ∈ sub-Mn(q) into three sub-matrices.

2. Solving the DLE problem between SiGiQ
′ and Gi for i ∈ {1, 2}.

If we depart G̃ = SGQ into two parts, i.e. the odd columns as G̃1 and the even
columns as G̃2, an observation is that G̃2 does not contain any information of
Q, and may let out the matrix S. To prevent this leakage, we put a limitation
on the parameters n, k such that recover S by solving the linear system invoke
G̃2 is difficult. Moreover, the length of G̃1 is cut off from G̃, and the entropy
of Q is decreased from the LE problem. As a result, we have to choose lager
parameter size to ensure the hardness of the sub-DLE problem.

Based on these observations, we can make a reduction from the sub-DLE
problem to the DLE problem. Namely, if there exists an algorithm which can
solve the sub-DLE problem between two given [2n, 2k] codes with non-negligible
advantage, we can call it to solve the DLE problem between two [n, k] codes. We
prove the following theorem to support the sub-DLE assumption.

Theorem 2 If there exist a PPT algorithm A can solve the sub-LE problem
between two [2n, 2k] code, we can build a PPT algorithm B to solve the LE
problem.

Proof. Suppose A is an algorithm can solve the sub-LE problem. Given two
codes (described by their generator matrices) to A, it will output b = 1 if the
two codes are sub-LE and b = 0 otherwise. If b = 1, A will also output a pair of
matrices S∗,Q∗ such that G2 = S∗G1Q

∗.
Given a LE instance G1,G2 ∈ Fk×nq , we construct two matrix G̃1, G̃2 ∈

F2k×2n
q , and then use the algorithm A to solve the LE instance. A sketch of the

reduction algorithm is illustrated in Fig.6.
More precisely, we depart the generator matrix G̃1, G̃2 into four n× k sub-

matrices at first. Then put the given DLE instance G1 and a random full rank
matrix R on the main diagonal sub-matrices, i.e.

G̃1 =

[
G1 0
0 R1

]
.

Afterwards we permute them by a permutation

σ =

{
i/2 + n, i = 0 mod 2
(i+ 1)/2, i = 1 mod 2
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Fig. 6. A sketch of the reduction.

G̃2 is constructed by the same way except that R1 is replaced by R2 = S2R1

where S2 is a full rank k × k matrix. Thus if there exists

S̃ =

[
S1 S3

S4 S2

]
and Q̃odd or Q̃even such that G̃2 = S̃G̃1Q̃, we have G2 = S1G1Q. Here Q
denotes the first sub-matrix in σ(Q̃), i.e.

Q̃ = σ−1(D) · σ−1(P)

[
Q1 0
0 I

]
,

where I is an identity matrix. We illustrate the full reduction algorithm in Al-
gorithm 1 as follows:

As a result, our algorithm will output b ∈ {0, 1} to answer the DLE problem
between G1 and G2. A pair of matrices S,Q will also be output iff b = 1 such
that G2 = SG1Q. Hence the theorem holds. ut

4 A New Code-based Public-key Encryption Scheme

4.1 Presentation of The Scheme

– Setup: Input the security parameter λ, output public parameter param =
(q, n, k,G,H), where G is a full rank n×k matrix over Fq, and H is a secure
hash function which output a string s ∈ {0, 1}512.

– KeyGen: Input the public parameter param, output the secret key sk and
corresponding public key pk.
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Algorithm 1: Reduction from LE problem to sub-LE problem

Input: G1,G2,A.
/* G1 and G2 is a given LE instance; A is an algorithm

which can solve the sub-LE problem. */

Output: b ∈ {0, 1}.
If b = 1, also outputs matrices S and Q such that G2 = SGQ.

1 R1 ← FullRankRandomMatrix(Fq, k, n);
2 S2 = GLk(q);
3 R2 = S2R1;

4 G̃1 ← ZeroMatrix(Fq, 2k, 2n);

5 G̃2 ← ZeroMatrix(Fq, 2k, 2n);
6 for i = 1 to 2k do
7 r = (i+ (i mod 2))/2;
8 for i = 1 to n do
9 if i mod 2 == 1 then

10 G̃1[j][i] = G1[j][r];

11 G̃2[j][i] = G2[j][r];

12 else

13 G̃1[j + n][i] = R1[j][r];

14 G̃2[j + n][i] = R2[j][r];

15 b← A(G̃1, G̃2);
16 if b == 1 then

/* In this case A outputs S̃ and Q̃ s.t. G̃2 = S̃G̃1Q̃. */

17 σ = PermutationSequence(2n);
18 S1 = ZeroMatrix(Fq, k, k);
19 for i = 1 to n do
20 σ(2 ∗ i− 1) = i;
21 σ(2 ∗ i) = n+ i;

22 P = PermutationMatrix(σ);

23 Q = Q̃P;
24 for i = 1 to k do
25 for j = 1 to k do

26 S[i][j] = S̃[i][j];

27 Return b,S,Q;
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1. S←$ GLk(q);
2. Q←$ OMn(q);
3. Gp = SGQ;
4. sk = Q, pk = (G,Gp);

– Encrypt: Input the public parameter param, the public key pk, and a plain-
text m, output the ciphertext c.
1. Se ←$ GLk(q);
2. Qe ←$ EMn(q);
3. c1 = SeGQe;
4. GE = GpQe;
5. [I | Ge] = GE(GE);
\∗ here GE denotes the Gaussian elimination algorithm, which takes a
matrix as input and output a systematic matrix ∗\

6. c2 = H(Ge) +m;
7. c = (c1, c2);

– Decrypt: Input the public parameter param, the secret key sk, and a ci-
phertext c = (c1, c2), output the plaintext m.
1. GD = c1 · sk = SeGQeQ;
2. [I | Gd] = GE(GD);
3. m = c2 −H(Gd);

Correctness. It is obvious that Decrypt (Encrypt(pk,m)) = (Ge+m)−Gd =
m + (Ge −Gd). Hence the correctness holds that if Ge = Gd, i.e. there exists

Ŝ ∈ GLk(q) such that GE = ŜGD.

GE = GpQe = SGQQe → GQQe → SeGQQe = SeGQeQ

Thus we have GE = SeS
−1GD, i.e. Ŝ = SeS

−1, which proves that the correct-
ness holds.

4.2 Security Proof

Theorem 3 The public key encryption scheme described above is IND-CPA un-
der the sub-DLE assumption.

Proof. If there exists a PPT adversary A which breaks the IND-CPA secure of
the underline scheme, we can build an algorithm B which solves the sub-DLE
problem. To see this, B build a series of games as follows:

– Game 1: This is the real IND-CPA game as described in definition. In this
game, the plaintext m0 is encrypted.

– Game 2: This game is the same as Game 1 except that we forget the secret
key, i.e. we put random vectors on the odd columns of the public matrix G.
We claim that Game 1 and Game 2 are indistinguishable under A’s view.
More precisely, if A can distinguish this two games, then for a given sub-DLE
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instance G̃1, G̃2, B can invoke A by setting the public matrix as G̃1, and the
public key in Game 2 as G̃2. If A outputs ’Game 1’ then B decides G̃1 and
G̃2 are sub-DLE, otherwise are not. In fact, since the only difference between
Game 1 and Game 2 is that the public key is sub- linearly equivalent with
the public matrix in Game 1, and in not sub-linearly equivalent in Game
2, we have the advantage for B to solve the sub-DLE instance is equal to
the advantage for A to distinguish the two games.

– Game 3: In this game, we start by taking the first part of the ciphertext as
another matrix by changing the even columns of Ge as random vectors, the
other parts remain the same as Game 2. As a result, Ge has no relationship
with Qe now.

Then we claim that Game 2 and Game 3 are indistinguishable under A’s
view. In more detail, if A can distinguish this two games, then for a given
sub-DLE instance G̃1, G̃2, B can invoke A by setting the public matrix as
G̃1, and c1 in Game 3 as G̃2. If A outputs ’Game 2’ then B decides G̃1 and
G̃2 are sub-DLE, otherwise are not. This is because that the only difference
between Game 2 and Game 3 is that c1 is sub linearly equivalent with the
public matrix in Game 2, and is not sub linearly equivalent in Game 3,
we have the advantage for B to solve the sub-DLE instance is equal to the
advantage for A to distinguish the two games.

– Game 4: This game is the same as Game 3, except that we take GE as a
random matrix, and this will lead to the second part of the ciphertext c2 as
a random matrix since c2 = GE +m0.

As before, we show that Game 3 and Game 4 are indistinguishable under
A’s view. More precisely, in Game 3 GE is in fact linearly equivalent to
the public matrix G, and sub linearly equivalent to Gp and Ge. In Game
4, given a ciphertext c, the adversary A can calculate G′ = c2 −m0. If the
encrypted plaintext is m0, G′ will be sub linearly equivalent to both Gp

and Ge. Otherwise, G′ is not sub linearly equivalent to them. Thus if A
can distinguish this two games, then for a given sub-DLE instance G̃1, G̃2,
B can invoke A by setting the public key Gp as G̃1, and c2 in Game 4

as G̃2 + m0. If A outputs ’Game 3’ then B decides the sub-DLE problem
between G̃1 and G̃2 is true, otherwise is false. We have the advantage for B
to solve the sub-DLE instance is equal to the advantage for A to distinguish
the two games.

– Game 5: Now we begin to encrypt the other plaintext m1, and other parts
remain the same as Game 4.

Since GE is a random matrix, the second part of the ciphertext c2 is uni-

formly distributed over F(n−k)×k
q . As a result, Game 4 and Game 5 is

indistinguishable from the information theory knowledge.

– Game 6: This game is the same as Game 5 except that GE is generated
honestly from GpQe. The indistinguishability between Game 5 and Game
6 is similar to that between Game 3 and Game 4.
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– Game 7: This game is the same as Game 6 except that c1 is generated
honestly from the public matrix G. The indistinguishability between Game
6 and Game 7 is similar to that between Game 2 and Game 3.

– Game 8: This game is the same as Game 7 except that the public key Gp

is generated honestly from the public matrix G. The indistinguishability be-
tween Game 7 and Game 8 is similar to that between Game 1 and Game
2. Moreover, Game 8 is the real IND-CPA game in which the plaintext m1

is encrypted.

To summarize, every two adjacent games in among the above eight games are in-
distinguishable, and thus Game 1 and Game 8 are indistinguishable. Namely,
the real IND-CPA games in which the plaintext m0 and m1 are encrypted respec-
tively are indistinguishable, i.e. the scheme is IND-CPA secure if the sub-DLE
assumption holds. ut

Here we remove the effect caused by the hash function in the second part of the
ciphertext. The invoke of a secure hash function will ensure a better randomness
of c2, and thus the scheme will be more secure.

4.3 Performance

The main attacks toward the code equivalence problem includes Leon’s attack
and the The Support Splitting Algorithm (SSA) attack. We give a glance of
them and then present a set of parameters.

Leon’s Attack [19]. Leon [19] proposed an algorithm for computing the
automorphism group of an error correcting code. The automorphism of a code
C is a monomial permutation σ such that σ(C) = C. Leon’s attack [19] consists
simply of analysing the actions of the algorithm on the subset of codewords with
fixed weight w. Once such a set is computed, it gets partitioned into smaller
subsets, which are then used to retrieve the permutation mapping one code
to the other. The partitioning phase has very low complexity, while finding all
codewords of weight w is the actual bottleneck of the algorithm. Usually w
is set as the minimum distance of the code. And for random codes, this can be
estimated with the GV bound. If this set does not have sufficient structures, then
w is slightly increased. We now briefly describe how the codeword enumeration
can be performed. Let G be the generator matrix of a code C of an [n, k] code
with systematic form Gs. For δ ≤ w and i ≤ k − δ, we define U(δ, i) = {u ∈
Fkq s.t. wt(u) = δ, ui = 1, uj = 0∀j < i}. It can then be easily seen that when
w < k (which is the case we consider in this paper) we have

{c ∈ C s.t. wt(c = w)} ⊂ {a(uGs), a ∈ F∗q \ {1},u ∈ ∪wδ=1 ∪k−δi=0 U(δ, i)}.

From a practical point of view, the codeword search can be performed by testing
all codewords of the form uGs. Once a codeword of weight w is found, then
all of its scalar multiples are computed. In particular, few scalar multiples will
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be computed with respect to the whole number of tested codewords, since we
expect the set of weight w codewords to be relatively small. Thus we can neglect
the computational cost of this step. For each candidate u, we need to compute
n− k multiplications (since the first non zero entry of u is 1) and δ − 1 sums in
Fq. Since all sets U(δ, i) are disjoint, it can be straightforwardly shown that the

number of vectors u that are tested is
∑w
δ=1

(
k
δ

)
(q − 1)δ−1. Then, by neglecting

the cost of partitioning step, we have

OLeon = O

(
4(n− k)

w∑
δ=1

(δ − 1)

(
k

δ

)
(q − 1)δ−1

)
. (3)

One final remark is about eventual future developments regarding Leon’s algo-
rithm. Indeed, the algorithm is inefficient for large codes, or for large finite fields,
since the codeword enumeration becomes infeasible. This step can not be avoid
as the algorithm requires to find all the codeword of weight w.

SSA Attack [26]. The SSA was introduced in [26]. This algorithm aims to
distinguish whether the two given linear code are permutation equivalent or not,
and recover this permutation furthermore. The algorithm employs the concept
of invariants and signatures, where invariants are mappings such that any two
permutationally equivalent codes take the same value, and signature depends on
the code and one of its positions. The key point of SSA is to choose a suitable
signature, whose formal definition is presented as follows:

Definition 8 Let C be an [n, k] linear code. S is called a signature function over
a set F if it maps C and a position i ∈ [0;n− 1] into F and satisfies

S(C, i) = S (σ(C), σ(i)) ,∀σ ∈ Sn.

Moreover, a signature function is fully discriminant if C, i 6= S(C, j),∀i 6= j. Form
this property, we have that signature functions can be used to recover infor-
mation about the permutation that is acting on the code. In particular, once
in possession of a fully discriminant signature, the permutation σ can imme-
diately be recovered because S(C, i) = S(C′, j) ⇔ j = σ(i). The fundamental
idea of SSA is first try to find a distinct property for the code and one of its
positions, and thus by labelling them accordingly it is possible to recover the
permutation between equivalent codes. Considering the difficulty of calculating
the weight enumerator of the code, [26] chooses the weight enumerator of the
hull, i.e. its intersection with its dual Hull(C) = C ∩ C⊥. For each σ ∈ Sn, we
have Hull(σ(C)) = σ(Hull(C)). Let Ci be the code obtained by puncturing C in
position i, then a valid signature can be obtained by letting S(C, i) be the weight
enumerator function of a Hull(Ci). With this choice of signature function, the
complexity of SSA can be estimated with some simple observations.

– As mentioned in [26], the hull of a punctured code can be conveniently
obtained from the hull of the original code. Thus, as an initialization, the
Hulls of C and C′ are computed. A basis for the Hull can be computed with
a simple Gaussian elimination. Thus this step requires O(n3) operations.
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– For each position i ∈ [1;n], the Hull of Ci can be obtained with negligible
computation from Hull(Ci) must be generated. This requires O(nqh log n)
operations in Fq, where d denotes the dimension of Hull(Ci).

– In the conservative assumption that such a signature is fully discriminant,
it is sufficient to evaluate it for 2n times (for codes C and C′, and for each
i ∈ [1;n]).

Thus the overall complexity of SSA is given by

OSSA = O(n3 + n2qh log n). (4)

Improved Leon’s Attack [6]. In [6], a new attack which can be viewed as
an improved Leon’s algorithm was proposed to attack cryptosystems based on
code equivalence problem. This algorithm works best with large finite fields and
hulls. Their improvement is based on the observation that if the size of the finite
field is large enough then the implication also holds in the other direction with
large probability. That is to say, if x ∈ C1 and y ∈ C2 are low-weight codewords
with the same support and entries, then with large probability σ(x) = y. For
example, if x = (1, 0, 0, 5, 0, 23, 0, 7, 0) ∈ C1 and y = (0, 7, 0, 23, 1, 0, 0, 0, 5) ∈ C2,
then we know σ(1) = 5, σ(4) = 9, σ(6) = 4 and σ(8) = 2.

The case becomes a little complexity for linearly-equivalence. The strategy
above does not work because the linear isometries τ do not preserve the entries.
[6] proposed to use a pair of 2-dimensional subspaces (U, V ) with small support
instead of the codeword pairs (x,y) above. With the help of a function lex(·),
codewords that have a same scale in the two given codes can be found. Here
lex(V ) is defined to be the lexicographically first basis of a 2-space in the orbit
of linear isometries of V . If τ(V ) = U , then the orbit of linear isometries of V
and U will be the same and hence lex(V ) = lex(U). By generating a list L that
contains enough (V, lex(v)) pairs, the attack algorithm then try to find U ∈ C2
such that lex(V ) = lex(U). If such a pair is found, then add (V,U) into a list P
until P has 2 log(n) elements. At last, all the linear isometries τ will be iterated
to find the unique one such that τ(V ) = U for all (V,U) ∈ P . This τ is considered
to satisfies τ(C1) = C2. The complexity of this algorithm can be estimated as

Beullens = O


√(

n
w

)
· log n(

n−k
w−2

) q−w+2+n−k

 . (5)

Parameters. We simulate our public key encryption scheme by online MAGMA
[20]. The most cost in encryption and decryption is the Gaussian elimination
algorithm and the matrix multiplications. Our simulation is only a craft imple-
mentation to test the correctness, and there is a lot of room for optimization.
Roughly speaking, the generation of a random permutation matrix and a diago-
nal matrix needs O(n) operations, the multiplication among k×k, k×n and n×n
matrices need O(k2n+kn2) operations, and the Gaussian elimination algorithm
costs O(n3) operations. As a result, our KeyGen step needs n+k2n+kn2 +n2
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operations over Fq, Enc step needs n + k2n + kn2 + n2 + n3 operations over
Fq, and Dec step needs k2n+n3 operations over Fq. Our scheme does not need
any decoding algorithms, and this is a breakthrough in constructing code-based
public-key encryption schemes.

1λ q n k KeyGen Encrypt Decrypt
2128 31 400 194 22.56 ms 95.48 ms 63.92 ms
2192 31 600 294 55.75 ms 244.40 ms 184.47 ms
2256 31 800 394 128.40 ms 489.17 ms 360.96 ms

Table 1. Parameters and Timings

Moreover, our scheme also performs well in the key size. We compared the
key size of our scheme with the Classic McEliece scheme [1] and HQC scheme [22]
where the former is in the round-3 finalist of NIST post-quantum cryptog-
raphy standardization and the latter is in the alternate candidates. Classic
McEliece provides ten sets of parameters, and we choose kem/mceliece348864,
kem/mceliece460896, kem/mceliece6688128 for security level 128, 192, 256 re-
spectively.

1λ Instance Public key Secret key Cipher text KEM message

2128
Our Scheme 24978 250 25042 25106

Classic McEliece 261120 6492 96 128
HQC Scheme 2761 218 2761 2825

2192
Our Scheme 56228 375 56292 56356

Classic McEliece 524160 13608 156 188
HQC Scheme 6227 385 6227 6291

2256
Our Scheme 99978 500 100042 100105

Classic McEliece 1044992 13932 208 240
HQC Scheme 10807 509 10807 10871

Table 2. Theoretical Key Size (in Bytes)

The public key of our scheme is pk = (G,Gp). The first matrix G is a full
rank random matrix, which can be generated by a seed. In our simulation, we
use a 256 bits seed to generate a string with length nk, thus the size of this part
is 32 bytes. The second matrix can be presented in a systematic form and takes
(n− k)kdlog(q)e bits. The secret key is sk = Q ∈ OMn(q) where Q = DP. Here
D is a diagonal matrix with Di,i = 1 for i = 0 mod 2 and P is a permutation
matrix related to a permutation function σ with σ(i) = i for i = 0 mod 2.
Thus D and P can be stored by two strings in Fq with length n/2, and the size
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of secret is hence ndlog(q)e. The cipher text of our scheme contains two parts,
where the first part is a k×n matrix (can be presented in systematic form) and
the second part is a string of 512 bits. This cost a size of (n− k)kdlog(q)e+ 512
bits. Our IND-CPA secure public key encryption scheme can be transformed
into an IND-CCA2 key encapsulation mechanism (KEM) by Fujisaki-Okamoto
transformation technique [16]. The KEM message contains an original ciphertext
and a hash value. We takes the SHA-512 function (HQC uses SHA-512 as well,
while Classic McEliece uses SHAKE256) to calculate this value. Thus the size
of the KEM message is (n− k)kdlog(q)e+ 2 · 512 bits.

Since our scheme is an El Gamal type public-key encryption scheme, the
first part of the ciphertext has a similar structure with the public-key, and thus
has a huge size. But we think this is not a serious problem in practice. In a
KEM scheme or a hybrid encryption system, the KEM message or a ciphertext
only need to be transmitted once to establish a secure channel for subsequent
communication. With the arrival of the 5G era, data transmission takes less cost
nowadays. A high-definition film with several gigabytes can be download in a few
seconds, not to mention a message within 100KB. Thus our new scheme with
high communication cost but small computation cost can be applied in many
areas.

5 Conclusion

In this paper, we introduce a new hard problem in coding theory called sub-
DLE problem. This is a subproblem of the well-known LE (linearly equivalence)
problem, which has been widely used in code-based cryptosystems. We proved
that the sub-DLE problem can be reduced to the DLE problem. Based on this
new hard problem, we construct the first code-based key exchange protocol,
KECE. A public-key encryption scheme in a new paradigm is constructed as
well. The security of both schemes only relies on the hardness of the sub-DLE
problem, which is different from most existed code-based cryptosystems that rely
on the syndrome decoding problem. One of the advantages of our construction is
a smaller key size compared with the traditional code-based cryptosystems. The
reason is that we can make full use of the whole code space instead of only using
one codeword. However, this also causes a drawback that our communication
cost (ciphertext size) is larger than others.

The construction of the KECE protocol is very similar to the classic Diffie-
Hellman key exchange protocol (DH) [14]. Although KECE is the first code-based
key exchange protocol, there have existed lots of researches on the DH protocol.
Many of these researches are possible to be promoted to KECE. For example,
since DH does not provide authentication, it can not resist the men-in-middle
attack. Authenticated key exchange is then proposed to solve this problem. In
[4], a secure authenticated key exchange protocol from DH is proposed, and a
three rounds password-based authenticated key exchange protocol from DH is
presented in [18]. As our KECE protocol shares many similar properties with DH,
transforming KECE to an authenticated protocol seems to be feasible. However,
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the commutative property in the sub-CLE problem is not as strong as the CDH
problem, which may cause challenges in the transformation.

Furthermore, our KECE protocol is a two-party key exchange protocol. Since
there have existed many multi-parity DH protocols, how to modify our protocol
into a multi-parity protocol is worth considering. An observation is that in order
to ensure the commutative of matrices Qa and Qb, we depart the columns of
them into odd and even parts such that their action affects disjoint columns
of G, and also requires k > n/2. If more participants are involved, the actions
of the sub-monomial matrix have to be departed into more disjoint sets, which
indicates a much more large k, i.e. k > (l − 1)/l · n for a l-parity protocol. This
larger k will cause a smaller dimension k′ for its dual code. Since that if two codes
are linearly equivalent, then so are their dual, the small k′ may consequence in
an effective SSA attack. Thus a multi-parity protocol from coding theory is not
an easy promotion.

Moreover, our KECE protocol is not only the first code-based non-interactive
key exchange protocol, but also the first post-quantum non-interactive key ex-
change protocol besides SIDH. Since the hardness of super-singular isogenies is
not studied throughout, KECE is a very competitive candidate. There also ex-
ists some lattice-based key exchange protocols, including [15], authenticated key
exchange protocol [33] and [32]. However, these protocols all need interactive be-
tween participants. As far as we are considered, the reason is that lattice-based
cryptosystems, especially those based on LWE assumptions, are impossible to be
clear. Namely, the noise is difficult to be removed and thus further interaction
is necessary to eliminate the effects taking by the noise.

The new code-based public-key encryption scheme also needs to follow with
interest. One of the main drawbacks of code-based cryptosystems is the so large
key size. Nowadays, the main ideas to solve this problem contains (1) referring to
the lattice-based scheme like [22] and (2) using codes with special structures and
powerful error correction capability like [31]. Our new scheme provides a brand-
new solution, i.e. using the full code space instead of one codeword. Base on this
new idea, how to build more practical code-based cryptosystems is worthwhile to
work on. Since the sub-DLE problem shares a similar property as DDH problem,
this provides new hope in constructing a new and efficient code-based signature
system.
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