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Abstract. We initiate the study of werifiable capacity-bound function
(VCBF). The main VCBF property imposes a lower bound on the num-
ber of bits read from memory during evaluation (referred to as minimum
capacity). No adversary, even with unbounded resources, should produce
an output without spending this minimum memory capacity. Moreover, a
VCBEF allows for an efficient public verification process: Given a proof-of-
correctness, checking the validity of the output takes significantly fewer
memory resources, sublinear in the target minimum capacity. Finally,
it achieves soundness, i.e., no computationally bounded adversary can
produce a proof that passes verification for a false output. With these
properties, we believe a VCBEF can be viewed as a “space” analog of a
verifiable delay function. We then propose the first VCBF construction
relying on evaluating a degree-d polynomial f from F,[z] at a random
point. We leverage ideas from Kolmogorov complexity to prove that sam-
pling f from a large set (i.e., for high-enough d) ensures that evalua-
tion must entail reading a number of bits proportional to the size of
its coefficients. Moreover, our construction benefits from existing veri-
fiable polynomial evaluation schemes to realize our efficient verification
requirements. In practice, for a field of order O(2*) our VCBF achieves
O((d 4+ 1)A) minimum capacity, whereas verification requires just O(X).

Keywords: Kolmogorov complexity - Polynomial evaluation - Verifiable com-
putation - Verifiable delay function

1 Introduction

Time and space complexity are functions that measure the efficiency of algo-
rithms. These two functions are related (sometimes appear in the same set-
ting) but distinct. For instance, “time” may refer to the number of memory
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accesses performed by an algorithm, while “space” refers to the amount of mem-
ory needed. In general, we try to minimize these functions, i.e., an ideal algorithm
is one that is fast and tight. However, in cryptography, we are also interested in
algorithms that are deliberately slow or capacious with the idea that, if the adver-
sary must run them, the attack will be slow and costly. This has found numerous
applications, e.g., in the context of proof-of-work for distributed consensus [16],
and anti-spam mechanisms [28,8]; and password hashing or key derivations to
be used against offline brute-force [52,40].

Existing Notions for “space-demanding” functions. The most promi-
nent definitions for “space-demanding” functions proposed in the literature are
memory-hardness [50,5,2,19,1,3,21], and bandwidth-hardness [55,15]. While they
share the same initial motivation, these notions vary in their formalization and
achieved security guarantees. Memory-hardness, as originally defined [50], guar-
antees a lower bound in the memory/time product required to compute the
function. Informally, a function is memory-hard if the product of the evaluation
memory cost m and time ¢ for any adversary cannot be less than mt € O(n?),
where O(n) is the time for an honest part. This has been widely proposed as a
countermeasure against attackers that aim to gain an unfair advantage by using
customized hardware, such as an ASIC, as it forces one to dedicate a significant
area of memory to avoid being too slow. Thus, the cost of ASIC manufactur-
ing would grow proportionally. Bandwidth-hardness guarantees that the energy
cost for evaluating the function does not differ much across different platforms
with variable computing energy costs (e.g., CPU vs. ASIC). In practice, this is
based on the observation that although ASICs may have superior energy con-
sumption for specific tasks, off-chip memory accesses incur comparable energy
costs on ASICs and CPUs. Thus, energy consumption is enforced by ensuring a
substantial amount of off-chip memory accesses.

None of these provides a strict bound on the amount of accessed memory: The
former allows for a trade-off between memory accesses and computing, whereas
the latter bounds the ratio of energy consumption benefits for ASIC adver-
saries. A different notion, predating memory and bandwidth-hardness, is that of
memory-bound functions [27,29,1] that do impose a lower bound on the number
of memory accesses, expressed as cache-misses.

All these notions have “symmetric” hardness in the following sense. Given a
candidate input-output pair (x,y) for function f, verifying whether f(z) =y is,
at best, achieved by evaluating f. In that sense, evaluation and checking require
the same amount of resources. In many applications, it would be desirable to
have an efficient public verification algorithm that can check the correctness of
an evaluation using significantly fewer resources, after the party that evaluates f
provides a proof of correctness m for y. In practice, considering a cryptographic
puzzle application [28,38,44], a challenger receiving multiple candidate puzzle
solutions from different parties should be able to verify their correctness with
much less effort than it took to compute them. Even considering egalitarian
proofs of work [11], checking the validity of a proposed evaluation with con-



siderably smaller memory requirements allows for easy validation by numerous
lightweight clients.

In the context of time-demanding functions, verifiable delay functions (VDF's)
introduced by Boneh et al. [18] achieve such a property; any observer can verify
that the computation of the function was performed correctly and can do so
efficiently. The scope of this paper is to introduce an analogous function but for
capacious/space-hungry algorithms. However, “space” or memory functions ap-
pear to be more intricate. Indeed, space-hardness does cover the memory needed
by an algorithm for instructions, data, and inputs. Still, as discussed above,
hardness often involves a trade-off between space and time, i.e., an algorithm is
allowed to use more time to make up for a smaller memory footprint.

This work: Verifiable capacity-bound functions. In this work, we initiate
the study of verifiable capacity-bound functions (VCBF). At a high level, a VCBF
guarantees: (a) a lower bound m in the necessary number of bits read from
memory in order to evaluate the function (referred to as minimum capacity
complexity), (b) a public verification process that given a proof 7 can check the
correctness of an evaluation by reading only o(m) bits, and (c¢) soundness, i.e.,
no computationally-bounded adversary should be able to produce a convincing
proof for an incorrect evaluation.

Unlike the notion of asymmetric hardness [12], which allows parties with
access to a secret trapdoor to evaluate f quickly, we aim for public verifiability.
In that sense, a VCBF can be viewed as a space-analog of a VDF. Next, we
provide a more detailed discussion of the relation between VCBFs and other
primitives that attempt to bound the resources used when evaluating a function.

Minimum number of computation steps. Such primitives provide a lower bound
on the minimum number of sequential steps necessary. Notable examples include

classic time-locked puzzles [50], key-derivation function PBKDF2 [10], and the
recently proposed verifiable delay functions mentioned above [18,60,51]. Another
related notion is proof-of-sequential-work (PoSW) [13,23,20], which is similar to

VDF except PoSW is not a function. Typically, these enforce a repeated oper-
ation (hashing or squaring in the group with an unknown order). As discussed,
our VCBF shares the same spirit as VDF but for space/energy consumption.

Minimum number of memory access. As explained above, memory-bound func-
tions provide an amortized lower bound on the number of memory accesses for
any polynomial-time bounded adversary. However, they do not support (space-)
efficient verification. In [1,27] a big random table (thus incompressible) is ac-
cessed during evaluation. For verification, this would need to be transferred over
the network, and the verifier must mimic evaluation. Follow-up work [29] sug-
gests a time/space trade-off for the process of constructing the table from a
representation, but this allows an adversary to easily trade memory accesses for
computation workload. One could consider building a VCBF by combining the
constructions of [1,27] with a succinct non-interactive argument of knowledge [13]
to verify the matrix traversal given only its short representation. Intuitively, it
seems this would achieve very similar properties to a VCBF. That said, un-




like our result, which is in the standard model, such a construction would de
facto have to employ non-standard assumptions, due to both the random oracle
of [1,27] and SNARK impossibility results [35].

Code-hard functions. Code-hard algorithms require that a minimum amount of
space is used in order to store the code. This has found different applications, e.g.,
white box encryption [10,16,17,34] or big-key encryption [9]. The key difference
between a code-hard function and VCBF is that while a large amount of memory
space must be dedicated for storing f, it is possible that only a small fraction of
those stored bits must be retrieved during evaluation. A VCBF imposes a strict
lower bound on bits read from memory during each evaluation.

Memory and Bandwidth-hard functions. As discussed above, both these defini-
tions may allow adversaries to trade additional computation for reduced space
or memory accesses; thus, they do not meet our strict lower bound guarantee.
Moreover, many existing formalizations are highly reliant on the random oracle
model, e.g., [55] for bandwidth hardness and [5] for memory hardness (in the
parallel random oracle model). This comes naturally, as many of these works use
variations of a graph-pebbling game to model their computation, heuristically
estimating the energy cost for each unit computation and memory access oper-
ations. On the other hand, our VCBF definition does not rely on the random
oracle model (clearly, this does not preclude the possibility of specific VCBF con-
structions operating in this model). Another impact of relying on the random
oracle model is that it makes it harder to design an efficient verification algorithm
as it “destroys” any algebraic structures between inputs and outputs.

We stress that a VCBEF’s lower bound in memory bits accessed can be used to
infer a lower bound in energy consumption, analogous to the motivation behind
bandwidth-hard functions. E.g., considering an ASIC-based adversary with on-
chip memory of size s bits (such as a hardware cache) a VCBF that guarantees to
access m bits from main memory imposes a u(m — s) lower energy consumption,
where v is the atomic cost for reading one bit from memory.

In a recent work [32], the first memory-hard VDF construction was proposed
by combining a SNARK with parallelizable prover with a memory-hard “sequen-
tial” function. Although this result is close in spirit with what a VCBF tries to
achieve, we do not aim for an explicit time lower bound, whereas the memory
bound we achieve is strict without leaving room for space/time trade-offs, as
explained above.

Proof of space (PoSpace). PoSpace is a puzzle system analogous to proof of
work [6,30,54]. It extends memory-hard functions with efficient verification and
adopts the graph pebbling framework and the random oracle model. The prover
convinces a verifier that it consumed its space capacity to store data while allow-
ing for efficient verification in both space and time. Like memory-hard functions,
the PoSpace constructions can only guarantee a space-time tradeoff, thus cannot
enforce a space lower bound. Also, the security analysis is based on the heuristic
(parallel) random oracle model.

Symmetric key primitives against memory-bounded adversaries. A relatively re-
cent series of works studies symmetric key primitives against memory-bounded




adversaries [59,38,37,25,36]. These results mainly focus on asymptotic adver-
saries with time-space trade-off without enforcing a resource lower bound. More-
over, VCBF (and the previously mentioned primitives) only require constructions
with moderate hardness.

Overview of Techniques. The main challenge in building a VCBF is finding
a function that has a natural lower bound on the space necessary for evaluation
while still allowing for efficient verification. Previous works [55,15,5,2,19,4,3,21]
achieve the first property by relying on assumptions such as the random oracle
or ideal cipher. However, this approach makes it harder to achieve the second
property as it dismantles structured relations between the function’s inputs and
outputs that could be used for efficient verification.

In this work, we deviate from previous techniques significantly. To model
the inability of an adversary to compute an output without reading enough
data from memory, we turn our attention to Kolmogorov complexity [11], which
measures the complexity of an object in terms of the minimum number of bits
necessary to represent it. Kolmogorov complexity is viewed as a fundamental
theory of computer science and has been shown connected with multiple areas
in cryptography [42,45.57]. (The most recent work of Liu and Pass [12] proves
the equivalence of a computational bounded version of the Kolmogorov com-
plexity and the existence of one-way functions.) Somewhat more formally, the
Kolmogorov complexity of object = is the minimum number of bits needed to
represent any description (T,«) where T is a Turing machine and « is a string
such that T(«) outputs x. One can view T as a decompressing algorithm and «
as a “compression” of x. Based on this, our first observation is that if an algo-
rithm depends on an object = (e.g.,  could be the description of the algorithm
itself or the algorithm’s input), then its execution cannot require reading fewer
bits than the Kolmogorov complexity of x. In that sense, Kolmogorov complexity
is the right tool for us; choosing a function with high Kolmogorov complexity
readily provides an arguably loose bound for the minimum capacity requirement
of a VCBF.

On the other hand, when building our VCBF we need to identify a function
that is amenable to verification; ideally, it should preserve an efficiently check-
able (algebraic) relation between inputs and outputs. One candidate function is
polynomial evaluation for single-variable polynomial f(X) € Fp[z] of degree d
of the form f(X) = Z?:o a; - #*. The good news is that there exist numerous
works in the literature for verifiable polynomial evaluation (e.g., [33,48,62,31]).
In order to use such a scheme for a VCBF we need to ensure it is publicly ver-
ifiable (anyone can verify it using public parameters) and publicly delegatable
(anyone can query it on an evaluation point). In our construction, we use the
lightweight scheme of Elkhiyaoui et al. [31]. Its verification process requires a
constant number of operations among a constant number of elliptic curve ele-
ments. This is important for us since we want VCBF to have verification capacity
complexity sublinear in its evaluation’s minimum capacity. Using [31], the latter
is O((d 4+ 1)\) whereas the former is O(X) (where X is the security parameter),
i.e., the gap is linear in the degree of the polynomial.



The “honest” way of evaluating polynomial f(X) is by reading its coeffi-
cients a;, so by fixing |(ag,...,aq)| > m one would hope to get a VCBF with
minimum capacity m. However, this is not the case as every polynomial has
multiple alternative representations that an adversary may try to exploit in or-
der to bypass the memory capacity bound. For example, all lists of the form
(oy .-y 2q), (f(xo),..., f(xq)), for any choice of d + 1 distinct z;, completely
determine the coefficients (ao,...,aq) of f(X) (by interpolating the points).
Here is where Kolmogorov complexity comes in handy: The above list of eval-
uations and points together with a Turing machine that performs polynomial
interpolation are a valid description, in terms of Kolmogorov complexity, of the
coefficients (ag, . .., aq). As a consequence, it cannot be significantly shorter than
the Kolmogorov complexity C(ao,...,aq) of the coefficients of the polynomial
f(X) (Theorem 6).

What remains is to find a way to sample a polynomial f(X) with high Kol-
mogorov complexity (see Section 2.3). For any large-enough set, most of its
elements have sufficiently high Kolmogorov complexity (Theorem 3). Since this
holds for arbitrary sets, sampling at random from a large-enough set of polyno-
mials guarantees that the chosen polynomial is of high Kolmogorov complexity
with high-enough probability.

As discussed above, many previous works inherently adopt non-standard
models in their definitions to capture the fact that a function is memory-heavy
(e.g., random-oracle, ideal cipher, or heuristic assumptions about graph peb-
bling). Instead, we want to base our security definition in the standard setting,
and we regard our paper on VCBF as a foundational one. Our approach is to
model adversaries as Turing machines that read (at most) a fixed number of dis-
tinct bits m (whose value is estimated using the Kolmogorov complexity) from
a precomputed memory 7 of size n > m (Section 4). We stress that it is crucial
to consider the memory of size n larger than m since an adversary can leverage
a large memory to increase its advantage ¢ while, at the same time, minimiz-
ing the number m of distinct bits it must read to answer a particular challenge
(for example, it can store a large dictionary containing several evaluations of
the polynomial f(X) € F,[z]). However, this introduces the new challenge of
estimating the adversary’s advantage € with respect to the memory size n: A
particularly challenging task when working in the standard model with black-
box access to the adversary. In more detail, it is hard to provide a bound on
the number of (partial) information that can be stored in a memory of size n
since their space requirement highly depends on the precomputation strategy
(e.g., the entropy of the precomputed values) and the encoding (e.g., memory
organization, memory access patterns) used by the adversary. Still, we show that
it is possible to give a positive, meaningful estimation of € and n when consid-
ering adversaries that perform a restricted number of v random accesses (e.g.,
conditional jumps) in order to read discontinuous bits from memory. We dis-
cuss the details of the formulation of our definition and our results in Section 4
and Section 5.1, respectively.



Summary of Our Contributions. Our contributions in this work can be
summarized as follows:

1. We build a cryptographic framework that combines the notion of Kolmogorov
complexity and randomized Turing machines and use it to bound the min-
imum amount of bits required in order to evaluate a polynomial f(X) =
Z?:o a; - z* (Section 3).

2. We propose a formal definition of verifiable capacity-bound functions VCBFs
that captures (a) a lower bound m on the number of bits read from memory
(of bounded size) for evaluation (minimum capacity), (b) efficient verification
of outputs with minimum capacity that is sublinear in m with respect to any
malicious evaluator, and (c) soundness, i.e., no computationally bounded

adversary can produce an incorrect evaluation output that passes verification
(Section 4).

3. We propose the first VCBF construction that satisfies our definition, based
on single-variable polynomial evaluation for polynomial f(X) € Fp[z] of de-
gree d. To achieve efficient verification, we employ the publicly verifiable
and publicly delegatable verifiable computation scheme of [31]. For a target
minimum capacity m € O((d + 1)), it suffices to set the size of the polyno-
mial to (d + 1)\, where X is the security parameter. Hence, to achieve large
capacity bounds, we need to set d > A, e.g., d € O(\°) for ¢ > 1 constant.
On the other hand the capacity complexity of the verification is O()\), i.e.,
independent of d hence verification remains efficient (Section 5).

4. We provide an estimation of the concrete parameters for our construction
in Table 1. For an elliptic curve group of order p of size 1024 bits, a polyno-
mial of size 1GB (d = 78.20 - 105 ~ A\?-29) guarantees a minimum capacity
m of 0.82GB, even with respect to an unbounded adversary that can spend
an exponential amount of computational resources.

We stress that a target minimum capacity m of a VCBF is guaranteed only
in the presence of adversaries with a limited memory size n. As explained, the
estimation of n is a major challenge when working in the standard setting (this
work). Along this line, we initiate a fine-grained study on the memory size n
estimation according to the number v of (adaptive) random accesses performed
by the adversary (denoted by the set .4¥-2¢¢®*#). In particular, we prove (in the
concrete setting) that the evaluation of a polynomial f(X) € F,[z] guarantees a
target capacity m € O((d+ 1)) even if an adversary A € A1-8°¢®sS has access to
a memory whose size n is proportional to the cardinality of the input space of the
polynomial f(X), i.e., exponential (Theorem 9). Our results can be extended to
the asymptotic setting for the class AP (1)-2ecess However, such a result should be
interpreted only as a purely theoretical result about the feasibility of VCBF. This
is because the constants hidden by the asymptotic notation are not negligible.
In Section 4 and Section 5.1 we discuss the results included in this work in more
detail.



1.1 Applications of VCBF

Since VCBF can be seen as a space-analog of VDF, replacing minimum sequential
steps with a minimum number of bits retrieved from memory, we believe they
can find applications in a variety of settings where memory-usage needs to be
enforced. In this direction, we describe how VCBF can be used for building,
energy-consumption client puzzles that achieve fairness among ASIC and CPU
participants. We then briefly discuss other potential VCBF applications.

Energy-consumption client puzzles. The concept of cryptographic puzzles

can be traced back to Merkle’s key exchange [11] and Dwork and Naor’s pricing
function [28]. The formal notion of a client-puzzle was proposed by Juels and
Brainard [39] to mitigate denial of service attacks. The general idea of such puz-

zles is to associate a cost to each resource allocation request by requiring the
client to complete a task before the server performs any expensive operation,
thus making large-scale attacks infeasible. Classic client puzzles [39,7,20,22 58]
will force adversaries to consume certain CPU cycles as the cost for attacks. How-
ever, state-of-the-art hash engines [14,55] could be 200, 000x faster and 40, 000 x
more energy-efficient than a state-of-art multi-core CPU. Hence, denial-of-service
attacks may still be feasible for ASIC-equipped adversaries, even when such client
puzzles are deployed as counter-mechanisms.

Motivated by this, we propose client puzzles that replace CPU cycles with
alternative resources, i.e., energy consumption using a VCBF . Classic ASIC-
resistant methods follow the memory-hard function approach, i.e., ensuring that
solving the puzzle “costs” much memory. In this manner, the cost of manufac-
turing an ASIC for puzzle solving would increase proportionally to the chip area
devoted to memory. However, as argued in [55], memory hardness only partially
solves the problem since it does not address the energy aspect of ASIC ad-
vantage. Indeed, energy consumption can be more important than the one-shot
ASIC manufacturing cost since the corresponding cost (due to electricity con-
sumption) keeps accumulating with time. Hence, a puzzle with a lower bound on
energy consumption, due to off-chip memory accesses enforced via VCBF, could
fill in a critical, but often overlooked, gap in ASIC-resistance.

Our energy consumption puzzle could be a protocol between a server S and
a client C' using VCBF f as follows:

— (' contacts server S, requesting permission to use some service such as es-
tablishing TLS connection [24] or accepting an email [28].

— S returns a fresh challenge x to the client C.

— (' evaluates VCBF f on z, and returns the output and proof 7 to the server
S.

— The server S verifies the correctness of f(z). If the verification succeeds, it
allows C' to use the service.

Jumping ahead, from Theorem 8 (in Section 5), we could easily find a set of
parameters so that an adversary needs to invest a sufficiently large amount of
energy to solve a puzzle.



Other possible applications. Beyond energy puzzles, we believe VCBF may
find a plethora of other applications. One such application could be a proof of
network bandwidth that allows paying customers to verify their real-time upload
bandwidth by requiring their cloud storage service provider to retrieve an up-
loaded test file. Unlike existing bandwidth puzzles (e.g., [53,63]), a VCBF-based
solution would not rely on random oracles. Other applications may include dig-
ital rights management (by requesting the symmetric-key decryption algorithm
used to retrieve copyrighted data to be a VCBF'; hence illegal sharing it on a
large scale would be less feasible), or securing mobile payments (by requiring
that the signing process to authorize a transaction is a VCBF, making it hard
for attackers to “extract” a signing key).

2 Preliminaries

2.1 Notation

We use the notation [n] = {1,...,n}. Capital boldface letters (such as X) are
used to denote random variables, small letters (such as x) to denote concrete
values, calligraphic letters (such as X') to denote sets, and sans-serif letters (such
as A) to denote algorithms. All of our algorithms are modeled as (possibly in-
teractive) Turing machines. For a string « € {0,1}*, we let |x| be its length; if
X is a set, |X| represents the cardinality of X. When z is chosen randomly in
X, we write x «s X

Turing machines. If A is an algorithm, we write y <—s A(z) to denote a run of A
on input  and output y. If A is randomized, y is a random variable and A(z; )
denotes a run of A on input x and randomness 7 <—s {0, 1}*=¢ where {0, 1}¢rn¢
is the randomness space of A. An algorithm A is probabilistic polynomial-time
(PPT) if A is randomized and for any input z € {0,1}*,r € {0,1}%nd the
computation of A(x;r) terminates in a polynomial number of steps (in the input
size). We say that an algorithm A is constant-size if the code of the Turing
machine that implements A is independent of the input.

Self-delimiting codes and two-part codes. A self-delimiting code allows us to
encode binary strings in a prefix-free fashion. A set A is prefix-free if there do
not exist two strings x,y € A such that z||ly = z and z € A. A prefix-free code
allows Turing machines to read any input composed by multiple concatenated
values, each of arbitrary length. In this work, we use the Elias delta coding (4-
code in short) that is asymptotically optimal in the length of the original string.
Also, it is very efficient in the concrete setting. The J-encoding E of a string =
of size n is defined as E(x) = 11™||0]|n||z where |n| = [log(n)] is the number of
bits needed to represent n in binary. The d-code produces relatively shorts codes
of size |E(x)| = log(z) + 2log(log(x)) 4+ 1 that are asymptotically optimal: The
bit length of |E(x)| is equal to the length of x in the asymptotic setting, i.e.,
|E(@)| € O(Jx]).



Self-delimiting codes are necessary whenever a Turing machine receives mul-
tiple input values that it must unambiguously read. Suppose a Turing machine
T needs to perform some computation on two values (z,y). Such an input (z,y)
can be encoded in a prefix-free fashion by leveraging two-part codes. In more
detail, a two-part code (-,-) w.r.t. the d-code E(-) is defined as (z,y) = E(z)||y.
Two-part codes can be used recursively. For example, three values (z,y, z) can
be encoded as (z,(y,z)) = E(z)||E(y)||z. For the sake of clarity we write

(z,y,2) = (2, (y, 2))-

2.2 Publicly Verifiable Computation for Polynomial Evaluation

A publicly verifiable computation scheme (VC) for polynomial evaluation allows
a client to outsource the computation of a polynomial f to an untrusted server.
We are interested in VC schemes that are both publicly delegatable and publicly
verifiable. The former allows any querier to submit input to the server, while the
latter allows any verifier to check the computation’s correctness.

Formally, a VC scheme for a family of polynomials F with input space & is
composed of the following algorithms:

Setup(1*, f): Upon input the security parameter 1* and a polynomial f € F,
the randomized setup algorithm returns the evaluation key ek and the ver-
ification key vk for the polynomial f.

ProbGen(vky, z): Upon input the verification key vk, for a polynomial f € F
and an input x € X, the deterministic problem generation algorithm outputs
an encoding o, and the verification key vk, for the input x.

Compute(ekys,0,): Upon input the evaluation key ek for a polynomial f € F
and an encoding o, for input = € X, the deterministic computation algo-
rithm returns a value y and a proof 7Ty.5

Verify(vky, y, my): Upon input the verification key vky for a polynomial f € F,
the verification key vk, for an input z € X, a value y € ), and a proof 7,
the deterministic verification algorithm returns a decisional bit b.

Correctness of a publicly VC scheme captures the fact that an honest execution
of the computation to evaluate a polynomial f € F on input « € X produces
the correct output y = f(x) along with a proof m, that correctly verifies.

Definition 1 (Correctness of VC). A publicly VC scheme II for a family
of polynomials F with input space X is correct if VA € N, Vf € F, Vo € X the
following holds:

(ek s, vkys) <—s Setup(1?, f)
Pr | Verify(vky, y, my) = 1| (04, k) = ProbGen(vkys, z) | = 1.
(y,my) = Compute(eky, o)
® We explicitly detached y from its proof m,. Several works define the output of the

computation algorithm Compute as a singleton oy, (the encoding of the output y)
defined as oy = (y, my).
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As for security, a malicious evaluator cannot convince an honest verifier that
y* # f(x*) is the correct evaluation of f(x*) on an arbitrary input * € X. This
security property is known as soundeness.

Definition 2 (Soundness of VC [49,31]). A publicly VC scheme II for a
family of functions F with input space X is (€)-sound if Vf € F and every PPT
adversary A = (Ao, A1) we have:

Pr[GRWY(1%, f) =1] <,
where G?}’K‘d(l)‘,f) is defined as follows:

(ekys,vkys) s Setup(1?, f).
(z*,aux) <—s Ag(1*, ek, vk, f).
(

(

O+, Vkg=) = ProbGen(vky, z*).
Y*, Ty« ) <=8 A1 (0g+, Vkg+, aux).
If Verify(vkg«, y*, my«) = 1 and y* # f(z*) return 1. Otherwise, return 0.

In this work, we are interested in single-variable polynomials f(X) € F,[z] of
degree d of the form f(X) = Z?:O a; - 2'. An example of such a VC scheme has
been proposed by Elkhiyaoui et al. [31]. It uses an asymmetric bilinear pairing
e : Gy x Gy — Gp where G1,Go, and Gr are groups of prime order p, and its
security follows from the (d/2)-SDH assumption.

Time Efficient Verification. VC schemes allow verifiers to check the computa-
tion’s correctness more efficiently than the work required for the polynomial
evaluation; otherwise, the verifier would perform the computation by itself with-
out outsourcing the computation to an external untrusted server. In more detail,
if an honest evaluation of the polynomial f(X) requires t steps, then the ver-
ification time complexity (i.e., the execution of ProbGen and Verify) must be
sublinear in ¢ (i.e., o(t)).0

The publicly VC scheme proposed in [31] yields a constant time O(1) veri-
fication: The execution of ProbGen requires two multiplications and two expo-
nentiations in Gy and Gy while Verify requires one multiplication in Gp and two
pairing operations, where e : G; X Gy — G is an asymmetric bilinear pairing.

2.3 Kolmogorov Complexity

The Kolmogorov complexity [41] aims to measure the complexity of objects in
terms of the minimum amount of bits required to represent them. We define a
description of a string 2 € {0,1}* in terms of algorithmic complexity as follows.

Definition 3 (Description of a string). Let T be a deterministic Turing

machine and x € {0,1}* a bit string. We say that (T, «) is a (possibly inefficient)

description of x if T(a) = x.

5 We include the algorithm ProbGen as part of the verification phase since we consider
VC schemes that are both publicly delegatable and publicly verifiable.
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Kolmogorov complexity with respect to a Turing machine. We can
look at T as a decoding algorithm and a € {0,1}* as an encoding of z. The
minimum amount of bits needed to represent a fixed bit string = is measured by
the Kolmogorov complexity Ct(x). In more detail, the Kolmogorov complexity
Ct(x) of a bit string « € {0,1}* with respect to a deterministic Turing machine
T (called reference Turing machine) is defined as:

Cr(z) = min {|a|: T(a) =x}.
r(@) = min {lo]: T(a) = 2}
Similarly, the conditional Kolmogorov complexity measures the complexity of x
given some auxiliary information y € {0,1}*, i.e.,

Cr(zly) = min {laf: T({e,y)) =z}
ae{0,1}*

The two above definitions of Kolmogorov complexity are known as plain
Kolmogorov complexity. The name comes from the fact that no constraints are
put on the input a of the Turing machine T. Another type of complexity, called
prefiz-free Kolmogorov complexity [41, Section 3|, focuses only on prefix-free
programs, i.e., Turing machines that only take in input strings encoded in a
prefix-free fashion. In this work, we focus on the plain version, and we refer
the reader to [11, Section 3] for a more detailed discussion about the prefix-free
version.

Kolmogorov complexity independent of the Turing machine. It is possi-
ble to make the definition of plain Kolmogorov complexity independent from the
reference Turing machine. Indeed, Turing machines are enumerable. The code
of any Turing machine T can be interpreted as a binary string i.” Therefore, we
can define a universal Turing machine U as U(i, @) = T;(a). In other words, U
simulates all possible computations that Turing machines perform by taking in
input a € {0,1}* and the code i of the i-th Turing machine T; and executes
the computation T;(a). Based on this observation, it has been proved that the
Kolmogorov complexity with respect to different Turing machines is invariant
only up to a constant that depends on the reference Turing machine.

Theorem 1 (Invariance Theorem [41, Theorem 2.1.1]). There is a uni-
versal deterministic Turing machine U such that for any deterministic Turing
machine T, there is a constant ct that only depends on T, such that for any
string x,y € {0,1}*:

Cy(r) < Cr(z) + cr and Cy(zly) < Ct(zly) + cT,
or equivalently

C(a) — Cr()| < 1 and |Claly) — Cr(ely)] < er.®

" Note that not all binary strings are valid Turing machines.
8 The constant ¢t corresponds to the self-delimiting description of the Turing machine
T.
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Since the choice of the reference Turing machine does not significantly change
the Kolmogorov complexity of any string, we express the Kolmogorov complexity
using the universal Turing machine U as a reference machine.

Definition 4. The Kolmogorov complexity of a string x is defined as C(x) o

Cu(z) and C(x|y) = Cy(z|y) for the universal Turing machine U.

The Kolmogorov complexity is invariant up to a constant (Theorem 1) since
it assumes Turing machines of constant-size, i.e., Turing machines whose de-
scription size does not depend on the input. Note that restricting the size of the
Turing machine is necessary. As mentioned in [41, Section 2.1.4], by removing
the size constraint of T, it is possible to assign low complexity to any string by
simply selecting a reference Turing machine with large complexity. For example,
consider the reference Turing machine T’ that has hardcoded z into its code.
In this case, T’ is able to output = with no input, i.e., T'(L) = z. Hence, we
have Ct/(x) = 0. However, this example does not violate the intuition of the
Kolmogorov complexity since the large size of the Turing machine T’ is captured
by the large constant ct in the invariance theorem. Such an example shows that
it is impossible to reduce a string’s complexity significantly. It may only be split
among the reference Turing machine and its corresponding input.

The constant-size reference Turing machine assumption makes the definition
of complexity precise while covering all the possible descriptions (T, «) of any
string z € {0,1}*. As we will see later, this will be very useful in building
VCBF's since it allows us to precisely measure the minimum number of bits an
algorithm (whose computation is described by a Turing machine) needs to read to
perform specific computations. Observe that the size constraint does not reduce
the number of languages recognizable by a Turing machine. For example, it was
shown the existence of a universal Turing machine with 15 states, 2 symbols,
and 30 state-symbol product (transition function) [61,17], with a polynomial
slowdown of O(t°).

Kolmogorov complexity upper bound. The Invariance Theorem (Theo-
rem 1) allows us to prove upper bounds of C(z). Intuitively, the Kolmogorov
complexity of a string can not exceed the length of the string except for a con-
stant that depends on the choice of the reference Turing machine.

Theorem 2 (Kolmogorov complexity upper bound [41, Theorem 2.1.2]).
There is a constant ¢ such that, for all strings x,y € {0,1}*, the following holds:

C(z) < l|z|+ ¢ and C(zly) < C(z) + c.

String incompressibility. A crucial notion derived from the Kolmogorov com-
plexity is the incompressibility of a string [11, Definition 2.2.1] with respect to
unbounded deterministic Turing machines.

Definition 5 (Deterministic c-incompressibility [41, Definition 2.2.1]).
A string x € {0,1}* is c-DET-incompressible if C(x) > |z| — c.
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We will refer to the above definition as deterministic c-incompressibility (c-
DET-incompressibility in short) since it covers deterministic Turing machines,
i.e., the universal reference Turing machine of the Kolmogorov complexity is
deterministic.

The following theorem provides a lower-bound on the number of ¢-DET-
incompressible elements in a given set X

Theorem 3 ([41, Theorem 2.2.1]). Let ¢ > 0 be a positive constant. For
each y € {0,1}*, every finite set X of cardinality m has at least m(1 —27°) +1
elements x € X such that C(zly) > log(m) — c.

By leveraging Theorem 3, we can calculate the probability of sampling a ¢-DET-
incompressible string from X. The formal proof is included in Appendix A.1

Theorem 4. Let X be a finite set of cardinality m, then the following probability
holds:

1
Pr[z is c-DET-incompressible | x s X] > 1 —27° 4+ —.
m

String incompressibility in the randomized setting. In cryptography, we
deal with randomized adversaries represented by randomized Turing machines.
However, the c-DET-incompressibility only covers deterministic Turing machines
since the reference Turing machine (used to measure the Kolmogorov complexity)
is deterministic. Accordingly, we extend the notion of c-DET-incompressibility
to randomized Turing machines.

Definition 6 (Randomized (c, ¢;,,4)-incompressibility). A stringz € {0,1}*
is (¢, lrna)-RND-incompressible if for all constant-size unbounded randomized
Turing machine T with randomness space {0,1}rma for all v € {0,1}¢, and
for all o € {0,1}1*1=¢ we have Pr[T(a;r) = 2] = 0.

Recall that a string z is c-DET-incompressible (Definition 5) if Ct(x) > |z| — ¢
where T is deterministic. The (¢, £nq)-incompressibility follows the very same
idea of its deterministic version, i.e., it measures the length of the smallest input
(in addition to the randomness) that allows T to output x.

Naturally, there is an obvious connection between the two definitions of in-
compressibility. Indeed, the randomness of a randomized Turing machine can be
seen as part of the input of a deterministic one. Hence, if a string z € {0,1}*
is -DET-incompressible (Definition 5), then z is (¢ + £rpg + 2log(lrna) + 1 +
0O(1), £,1q)-RND-incompressible (Definition 6). The factor £,.,q + 21og(¢nq) + 1
is due to the self-delimiting J-encoding (Section 2.1) to encode the randomness
r € {0,1}%n4.9 Observe that the relation between the two incompressibility def-
initions is up to a constant O(1). This is because the DET-incompressibility
leverages the Kolmogorov complexity defined over universal Turing machines U.
In this setting, as implied by the invariance theorem (Theorem 1), any equality
holds up to a constant factor. The following Theorem 5 reports the formal result,
whose proof appears in Appendix A.2.

9 We only consider constant-size Turing machines. This requires the use of a self-
delimiting coding strategy.
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Theorem 5. Let © € {0,1}* be a string. If © is c-DET-incompressible (Def-
inition 5) then x is (¢, €rnq)-RND-incompressibile (Definition 6) where ¢ =
¢+ lrna + 21og(brna) + 1+ O(1).

3 Kolmogorov-bound for Polynomial Evaluation

At each evaluation, a VCBF scheme forces the evaluator to read at least m dis-
tinct bits from its main memory. To achieve this functionality, our construction
leverages a single variable polynomial f(X) = Z?:o a; - x* € Fy[z] of degree d.
Intuitively, on receiving a challenge = € {0,1}%", an honest evaluator needs to

read the coefficients (ao, . ..,aq) € Fg"’l that determine the polynomial f(X) in
order to compute y = f(z). In this case, we obtain the desired functionality by
setting |(ao, - .., aq)| > m. However, a malicious evaluator may find an alterna-

tive strategy to compute y = f(z) and read fewer than m bits. In this section,
we prove the lower bound on the number of bits read during the polynomial
evaluation by leveraging the Kolmogorov complexity.

Next, we provide some examples of strategies a malicious evaluator could
adopt:

1. Compress the coefficients (ag, . . ., aq) into a smaller string «. In this way, the
evaluator just needs to read a, decompress it into (ag, ..., aq), and evaluate
f(X) on the desired point x.

2. Precompute a dictionary T = (f(zo), ..., f(2n)) composed of the evaluation
of f(X) on points (zg, ..., z,). By accessing T, the malicious evaluator can
simply read and return y; = f(x;) if the challenge x; is one of the precom-
puted points. In this case, the malicious evaluator reads only |y;| < |p| < m.

3. Instead of storing (ao, ..., aq), the evaluator may choose to store d + 1 arbi-
trary points (zg,...,zq), the corresponding evaluations (f(xo),..., f(xaq)),
and the prime p. These pieces of information are enough to recover a via
polynomial interpolation. As a result, if the expression of (f(zo),. .., f(z4)),
the points (xo, ..., xq) and the prime p could be effectively compressed, the
evaluator will read fewer bits than expected when evaluating the polynomial.

To estimate the bits that an adversary/algorithm needs to read to evalu-
ate f(X) correctly, we built a bridge between the Kolmogorov complexity and
polynomial evaluation. Our approach is based on two main observations.

— First, any string a can be encoded into f(X) = Z?:o a; - =* by setting its

coeflicients to different sub-portions of a. Let p be a prime of size A + 1 bits.
We can interpret a string a € {0,1}(4TD* as a = agl|...||aq where a; € F,
(ie., |a;] <A < |p|) and use (ag, . ..,aq) as the coeflicients of f(X).

— Second, if algorithm T is able to compute (f(zg),..., f(zq)) taking in input
a string « and the challenge d points (zo, ..., zq), then (T, (o, xg,...,2q))
is a valid description of (f(zo),..., f(z4)) according to Definition 3. As ex-
plained in Item 3, the tuples (f(xq),..., f(z4)), (o,...,2q), and the prime
p, are enough to reconstruct (ao,...,aq) via polynomial interpolation (i.e.,
the prime’s size A + 1 guarantees the encoding is injective).
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By combining the above two observations, we can easily bound the size of
a with the Kolmogorov complexity C'(a) of a. In more detail, consider a Tur-
ing machine T’ that first executes T(q, xg, ..., Zq4) to compute f(xo),..., f(zq),
and then retrieves and return a via polynomial interpolation. This implies that
(T, {p, ¢, xo, ..., xq)) is a description of a (according to Definition 3). As a conse-
quence, the size of a (the string that T would read to compute (f(zg), ..., f(zq4)))
cannot be too small and must be related to the complexity C(a) of a. Below, we
provide the formal result whose proof appears in Appendix A.3.

Theorem 6 (Kolmogorov-bound for Polynomial Evaluation). For any
A€eEN, leta e {0,1}(‘“‘1))‘ and p be a binary string and a prime p of size
A+ 1, respectively. Fix the polynomial f(X) = Z?:o a; - x' € Fylz] of degree
d with input space {0,1}%" where a = agl|...||aq and a; € F, for i € [d].
If a is (¢, Lrna)-RND-incompressible (Definition 6), then for every constant-
size randomized unbounded Turing machine T with randomness space {0,1}¢nd,
every a € {0,1}™, every r € {0,1}ra, and every tuple (xo,...,2q) such that
i i,j €{0,...,d}, m; # x; and x; € {0,1}%", the following probability holds:
i#]

Pr((f(zo),.. ., f(za)) = T(a, zo, ..., x4;7)] = 0
wherem = (d+1)(A—4i —21og(lin) —1)—c' = A—2log((d+1)A—c')—2log(\) —2.

Remark 1. An alternative way to interpret Theorem 6 is that any possible de-
scription (T, a) of f(X) is bigger than the parameter m (defined in Theorem 6).
Indeed, if there exists a string o« that encodes f(X) such that || < m, then
we contradict Theorem 6 since o would allow the prover to answer to any
point z € {0,1}%". In addition, the parameter m depends on the size of both
a € {0,1}+DX and z € {0,1}%". In particular, we have a loss factor that
is proportional to (d + 1)¢;,. Hence, for some values of ¢;, (e.g., lin = ),
we derive that m < 0, which makes the theorem meaningless. The reason be-
hind this non-negligible loss is due to the fact that (xq,...,24) may contain
several bits of information about f(X). Suppose that ¢;, = A. In this case,
it is possible that (zg,...,2q) = (ag,...,aq) since Theorem 6 holds for ev-
ery tuple of points (zo,...,zq) such that z; € {0,1}%~ for i € {0,...,d}.
In this scenario, we can set « = L since the tuple (zo,...,z4) leaks the en-
tire polynomial f(X).1° For this reason, to ensure that m > 0, we must set
iy < (dEDA=C _Qlog((‘;ﬂ))‘ ¢)=2log(A)—2 — 2log(4;,) — 1 (note that this implies
Lin, < A\). Hence, @ must necessarily contain the bits of information about f(X)
that cannot be reclaimed from the points (zg, ..., zq).

4 Definition of Verifiable Capacity-bound Functions

A VCBF forces an evaluator to read at least m distinct bits from its main
memory. As explained in [54], the number of off-chip memory accesses impacts

10 The example can be expressed in term of Kolmogorov complexity, i.e.,
C(ao, - ..,ad|zo,...,xa) = 0 where z; = a; for i € {0,...,d}.
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the energy consumption of the machine. If the cache’s size is significantly smaller
than m, evaluating the function requires significant resources. However, on the
(honest) receiver’s side, the validity of the computation can be verified efficiently
in terms of capacity.

Formally, a VCBF scheme IT with input space {0, 1} is composed of the
following polynomial-time algorithms:

Setup(1*,1%): Upon input the security parameter 1* and the capacity parameter
1%, the randomized setup algorithm returns the evaluation key ek and the
verification key vk.

Eval(ek,z): Upon input the evaluation key ek and an input z € {0,1}%~, the
deterministic evaluation algorithm returns the output y and a proof 7.
Verify(vk, ,y, m): Upon input the verification key vk, an input = € {0, 1} an
output y, and a proof m, the deterministic verification algorithm returns a

decisional bit b.

Here, the capacity parameter k regulates the actual capacity cost (the number
of bits read by the evaluator).

Generally speaking, a VCBF scheme should satisfy four basic properties:
correctness, minimum capacity, soundness and capacity efficient verification.

Correctness. Intuitively, a VCBF scheme is correct if the output of an honest
execution of the evaluation algorithm is accepted by the verification algorithm.

Definition 7 (Correctness of VCBF). A VCBF scheme II with input space
{0,1}¢ is correct if YA € N,Vk € N, Yz € {0,1}*, we have:

(ek, vk) <s Setup(1*,1%)

Pr Verlfy(Vk,LyﬂT) =1 (y,ﬂ') = Eval(ek, (E)

=1

Minimum Capacity. The name captures the scheme’s lower-bound on the
number of distinct bits m that must be fetched from the main memory to evaluate
the function. In more detail, on input a random challenge x s {0, l}f’i", the
adversary A is asked to return the correct output y = Eval(ek, 2) while reading
at most m bits from its main memory. We assume the main memory of A is
bounded since there is a strict relationship between the memory available and
A’s advantage e. Indeed, as discussed in Section 3, a viable adversarial strategy
is to precompute a relatively large dictionary 7 = (Eval(ek, z1), ..., Eval(ek, z,))
(stored in the main memory) and return Eval(ek, z), if  has been precomputed
and included into 7. A larger memory would allow the adversary to store more
precomputed values Eval(ek, z;), thus increasing the probability of success.
More formally, let 7 € {0,1}" and 2 € {0,1}%" be the binary string repre-
senting the memory of the adversary A and a challenge, respectively. We denote
with Za(r 2y = {91,792, . . ., i’ }nr<n the set of n/ distinct indexes read by A dur-
ing the computation of the output y = A(7, x; r) for the corresponding challenge
o while having access to memory 7 and randomness r € {0, 1}¢n4. Intuitively,
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on input the challenge x and randomness r, the adversary A fetches the binary
string 7., = b;||...[|b;,, from 7 (where b; represents the i-th bit of 7 and
Ta(ryzsr) = {1,142, ..., in }) and then compute the output y using the knowledge
of Ty, 7, and 7.'1 A VCBF scheme is secure if the adversary does not compute
the correct output Eval(ek,z) # y = A(7, 2;7) when reading |Za(r,4;r)| = m bits
from 7.2 The formal definition is provided below.

Definition 8 (Minimum Capacity of VCBF). Fix the keys (ek,vk) s
Setup(1*,1%). A VCBF scheme IT with input space {0,1}*n satisfies (e,m, Lrna,
n)-min-capacity with respect to keys (ek,vk) if for all constant-size unbounded
randomized adversaries A with randomness space {0,1}¢d¢ and for all T €

{0,1}", we have:

Pr(Eval(ek,z) = y A [Za(r,emy| = m

x s {0, 1}4n,
y=A(r,z;7) ] s6 (1)

where r s {0, 1}frna,

Informally, Definition 8 states that if a VCBF scheme IT satisfies (e, m, £ynq, n)-
min-capacity then the only way for an adversary A to increase its advantage e is
to either read more than m distinct bits or have access to a memory larger than
n bits (e.g., by storing in the memory 7 € {0, 1}"™ more precomputed values).

Relation between the memory size n and the advantage €. Definition 8 is optimal
in the sense that it does not put any constraint on the indexes Za(r . read
by the adversary A. This means that A can arbitrarily access its memory. For
example, it may perform multiple random accesses to the memory 7, i.e., perform
one or more conditional jumps into specific memory indexes to read different
portions of the memory). Hence, one (or more) couple of progressive indexes
{15,444} C Ta(r,z;r) may be not consecutive (i.e., [i; —i;41] > 1).

The optimality of Definition 8 appears to be the primary (apparently insur-
mountable) obstacle when trying to relate the memory size n and the advantage
e. To retain an advantage €, an adversary A may choose to store in the memory a
precomputed data structure in which are stored (possibly partial) precomputed
values about some evaluations y = Eval(ek, ;) of a subset of inputs X C {0, 1}
(e.g., precomputed dictionary). However, the estimation of the memory size n
(required to store the data structure) highly depends on what type of precompu-
tation is performed (e.g., the entropy of the precomputed values, the algorithm
used, etc.) and on the type of encoding and memory access strategy used by A
when fetching the data from memory 7 to answer to an incoming challenge x.
Unfortunately, this turned out to be a primary challenge when having block-box

I Observe that To,r can be fetched from 7 in an adaptive fashion according to the
challenge = and randomness r.

12 Without loss of generality, we assume the adversary reads exactly m bits since the
higher the number of bits read, the higher the probability to compute the correct
y = Eval(ek, z).
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access to A and working in the standard setting (i.e., no oracles, no idealized
functionalities, no ROM).

As a foundation paper of VCBF, we initiate a fine-grained study regard-
ing the level of minimum capacity that can be achieved according to specific
classes of adversaries. In particular, we provide a feasibility result showing (in
the concrete setting) the meaningful relation between parameters € and n (using
an information-theoretic approach) when dealing with the smaller class of ad-
versaries A-3°°5S Such a class is composed by all the adversaries that perform
exactly one (adaptive) random access to the memory 7, i.e., on input the memory
7 € {0,1}", the challenge z € {0,1}%", and randomness r € {0,1}", an adver-
sary A € Al-access adaptively jumps to an index i € [n—m+1] (memory location)
and reads m consecutive indexes. Formally, when dealing with A € A!-2°°°S the
indexes Za(r.z;r) = {i1,.--,%m} read by A are consecutive, i.e., ij +1 = 4;41
for j € [m — 1].'3 Observe that in A72°°®S we can identify several adversarial
strategies used mainly in practice, e.g., precomputed dictionary attacks or any
rainbow table technique that leverages a single adaptive random access.

As we will see during the security analysis of our construction (Section 5.1),
by restricting the adversaries to the ones of the class A1"2°°°S, we can use a
counting argument to concretely estimate the memory size n that an adver-
sary A € A13ccess pequires in order to retain a fixed advantage e (Theorem 9).
For completeness, we also include the results regarding the class AY2°*sS for
1 < v < m, ie., adversaries that perform exactly v (adaptive) random access
to the memory (observe that Definition 8 coincides with Definition 9 when A =
U?;l At-aceessy However, due to the limited power of counting arguments, the
memory size estimation n presents an exponential loss proportional to the num-
ber v of random accesses that A € AY2°°**S performs. In any case, this is enough
to show that there exists a VCBF that satisfies (negl(A), O((d+1)A), o((d+1)N),
exp(A))-min-capacity (in the asymptotic setting) with respect to the class of ad-
versaries A9()-access We now provide the formal security definition of minimum
capacity with respect to a specific class of adversaries A.

Definition 9 (A-class minimum capacity of VCBF). A VCBF scheme IT
with input space {0,1} satisfies (e, m, brna, n)-min-capacity with respect to the
class of adversaries A if IT satisfies (€, m, Lrnq, n)-min-capacity of Definition 8
where A is sampled from A.

To conclude, we stress that any scheme secure under Definitions 8-9 gives
robust guarantees in terms of capacity (according to the corresponding class of
adversaries) as we clarify below:

1. We cover adversaries with unbounded computational power as considered
in information-theoretic cryptography. Hence, once the random challenge
x € {0, 1}51’" is received, the adversary can spend an exponential amount of
time to compute y = Eval(ek, z) after reading 7; € {0,1}"™ from the main
memory.

13 Without loss of generality, we assume that reading the first m bits of 7 requires the
adversary to perform a random access to the first index of 7.
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2. A VCBF scheme guarantees a minimum capacity (for some parameters
(e,m, lyna,n)) only if Equation (1) holds for every possible adversary A
and memory 7 after the instantiation of the scheme, i.e., the execution of
(ek, vk) s Setup(1*, 1¥). Hence, Definitions 8-9 provide a very strong level
of security, since the adversary is allowed to select its strategy according to
the setup result.'*

Since we allow the adversary to select a strategy adaptively after the setup,
it is critical to require the adversary to be of constant size. If we remove this
constraint, Definitions 8-9 becomes meaningless since there always exists an ad-
versary Ag that can answer all challenges z € {0,1}%" by using ek hardcoded
into its code. In a practical scenario, this means that a malicious manufacturer
may defeat VCBF's by merely building a machine with no memory and ek hard-
coded in its hardware.

Enforcing this constraint is reasonable, particularly in the context of ASIC
resistance, where the cost of manufacturing a chip is proportional to its area
[50,55]. Thus, embedding ek may be rendered uneconomic. Furthermore, one
could periodically refresh (ek, vk) to force a manufacturer to build new machines
or rely on external storage.

Standard vs. Ad-hoc Models. Our definition focuses on the minimum number
of bits read from the main memory, while the definition of bandwidth hard-
ness [55,15] focuses on the energy consumption rate. However, there is a more
fundamental aspect to consider regarding Definitions 8-9: They do not rely on
any heuristic assumptions, such as the Random Oracle (RO) or the Ideal Ci-
pher [21], to measure the number of read bits. In fact, previous definitions of
bandwidth-hard or memory-hard functions [55,15,5,2,19,4,3,21] do not directly
measure the bits read by the evaluator. Instead, those models only calculate the
number of the random oracle queries for each step. Thus, they only work within
the RO model and take for granted that the random oracle’s outputs are incom-
pressible. However, the Kolmogorov theorem shows (at least from a theoretical
point of view) that even a purely random string may have a certain probability
of being compressed (See Theorem 3 and [11]). Therefore, the gap between RO
queries and the actual number of bits read by the evaluator is artificially ignored
in previous models. Also, we stress that both RO and Ideal Cipher definitions
neglect (and do not take into account) the adversary’s strategy in organizing
and accessing specific portions of the memory. This is a fundamental aspect
that needs to be considered when proving specific concrete memory bounds for
VCBFs. In fact, this is the main obstacle that forces us to consider Definition 9
for the weaker class of adversaries A1-3°°s5, By fixing the class of adversaries to
Al-access ' we are able to give a meaningful estimation to memory size n (see Sec-
tion 5.1) and prove that our polynomial-based VCBF satisfies min-capacity for
parameters (e, m, {ynq,n) defined in Theorem 9.

4 Note that if a VCBF scheme IT satisfies min-capacity for parameters (e, m, £rnd, n)-
w.r.t. Definition 8, then the very same level of min-capacity holds even if the adver-
sary is sampled before the instantiation of the scheme (ek, vk) <s Setup(1*,1%).

20



Soundness. Soundness captures the infeasibility of convincing the verifier that
y* # Eval(ek, z) is the correct output of the computation. In more detail, it is
infeasible for a malicious evaluator to compute a triple (z*, y*, 7*) that verifies
successfully, but y* is not the correct output of the computation. Soundness is
also fundamental to enforce the (e, m, £,,,4, n)-min-capacity (Definitions 8-9) of
a VCBF scheme. For example, if soundness does not hold, a malicious evaluator
can deceive the verifier by returning a proof 7* and an output y* # Eval(ek, x)
such that Verify(vk, z,y*,7*) = 1. In this case, the energy consumption is not
guaranteed since the value y* is incorrect and may have been computed without
fetching any bit from the main memory.
Below, we provide the formal definition of soundness.

Definition 10 (Soundness of VCBF). A VCBF scheme II with input space
{0,1}¢ is (€)-sound if for all PPT adversary A we have:

Verify(vk, z,y, ) = 1 and | (ek, vk) <s Setup(1*, 1%) <e

Pr Eval(ek, z) # y (z,y,7) <s A(1*, ek, vk) | =

Capacity Efficient Verification. The resource considered by VCBFs is the
capacity since an evaluator is forced to read m distinct bits from its main mem-
ory. The verifier, on the other hand, should not have the same workload. For
this reason, we require a VCBF scheme IT to be efficiently verifiable:

Definition 11 (Capacity Efficient Verification of VCBF). If IT satisfies
(e, m, Lypa,m)-min-capacity (either Definition 8 or Definition 9) then an honest
execution of the verification algorithm requires at most fetching o(m) bits from
the memory (i.e., sublinear in m).

In particular, in this work, the capacity parameter is of the form m € O((d+1)\)
where d is the degree of a polynomial f(X) = Z?:o a;-x' € Fplz] and A+1 is the
size of the prime p. As we will see, to reach high capacities (such as GB or even
TB), for a fixed A we will have to set d € O(A°) for a constant ¢ > 1. Nevertheless,
the verification will be independent of d (by leveraging the publicly VC scheme
of Elkhiyaoui et al. [31]). Hence, we will obtain at least O(A“™!) of min-capacity
for the evaluation, and at most O()\) of min-capacity for the verification.'®

On Energy Consumption. A motivation for VCBFs is ASIC resistance. State-of-
the-art hash engines [14,55] could be 200, 000x faster and 40,000x more energy
efficient than multi-core CPUs. However, the energy consumption for off-chip
memory accesses is similar for CPUs and ASICs [55]. If we assume the ASIC
can hardcode only s bits, min-capacity guarantees that the ASIC will transfer at
least m — s bits from the external memory during the evaluation. If the energy
cost is u nJ per bit for external memory accesses, the evaluation of the VCBF
costs at least u(m — s) nlJ.

15 In the verification, O()) is for reading a constant number of group elements of order p
of size at most A+ 1. In the evaluation, O((d+1)A) = O(A“™!) is for the d coefficients
(ao, - ..,aq) € FAT! of the polynomial f(X) € F[z].
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5 VCBF from VC for Polynomial Evaluation

In this section we show how to build a VCBF from VC for a family of polynomials
Fid,p defined as follows

d
Fadp def{fa(X)Zaiwzi mod p | aa0||...||ad} , (2)
ac{0,1}(d+1r

i=0
where A € N, d € N, and p is a prime of A\ + 1 bits.

Construction 1 Let VC = (Setupy,c, ProbGenyc, Computeyc, Verifyyc) be a pub-
licly VC scheme for the family of polynomials F a4, defined in Equation (2). We
build a VCBF scheme with input space {0,1}%n in the following way:

Setup(l)‘, 1’“): On input the security parameter 1* and the capacity parameter
1%, the setup algorithm proceeds as follows:

— Without loss of generality, we assume k = (d + 1)\ for d € N.

— Samples ag|| . .. ||ag = a s {0, 1} DX where |a;| = A fori € {0,...,d}.
Then, it outputs the evaluation key ek = (eky,,vky, ) and the verification key
vk = vk, where (eky,,vky,) s Setupyc(1*, fo) and fo € Fxa,p as defined
in Equation (2).

Eval(ek,x): On input the evaluation key ek = (eky, ,vky,) and an input © €
{0, 1}%n, the evaluation algorithm returns (y,7) = Computeyc(eky, ,0,) where
(0z,vks) = ProbGenyc(vky,, x).

Verify(vk, z,y, m): On input the verification key vk = vky, , an input x € {0, 1}bin,
an output y € Y, and a proof w, the werification algorithm returns b =
Verifyyc(vky, y, ™) where (o, vks;) = ProbGenyc(vky, , x).

In this scheme, the honest evaluator needs to read at least k = (d+1)A bits to
load all the coefficients of the polynomial regardless of the cost of generating the
proof 7. The correctness follows directly from the correctness of the underlying
schemes. For security and verification complexity, we establish the following
results.

5.1 Security Analysis

The soundness is trivial. It follows from the (€)-soundness of VC. The proof is
standard, so we omit it.

Theorem 7 (Soundness). IfVC is (€)-sound (Definition 2), then the VCBF
scheme II of Construction 1 with input space {0,1}% is (€)-sound (Defini-
tion 10).

Next, we show the level of minimum capacity that our VCBF scheme IT
of Construction 1 satisfies with respect to the class of adversaries A4v72¢¢¢% (Def-
inition 9) for 1 < v < m. Our technique is divided into two parts: 1) We
prove that Construction 1 satisfies an alternative definition of minimum capacity
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dubbed decomposed minimum capacity and, 2) we demonstrate that any VCBF
scheme satisfying the decomposed minimum capacity also satisfies the minimum
capacity with respect to the class of adversaries Av"2°*sS (Definition 9) for some
paramters (€, m, {nq4,n). The second part is only required to give an upper bound
to the memory size parameter n.

(Part one) Decomposed minimum capacity. The definition of decomposed min-
imum capacity is identical to Definition 8 except that the memory 7 is decom-
posed into n independent strings (1,...,7,) such that 7; € {0,1}™ for i € [n]
(intuitively, each 7; represents one possible string of length m that the adversary
can read and interpret from its main memory, i.e., (71,...,7,) is the decomposi-
tion of the main memory).'® Then, the adversary succeeds if there exists i € [n]
such that y = A(7;, z;7;) where r; +—s {0, 1}*m¢ and z < {0, 1}%in.

Definition 12 (Decomposed minimum capacity of VCBF'). Fizx the keys
(ek, vk) <s Setup(1*,1%). A VCBF scheme II with input space {0,1}%" satis-
fies (e, m, Lrpa, n)-decomposed-min-capacity with respect to keys (ek,vk) if for
all constant-size unbounded randomized adversaries A with randomness space
{0,1}¢na and for all (1,...,7,) such that ; € {0,1}™ fori € [n], we have:

z s {0, 1}fin

Pridi € [n), Bvallek ) =il 1 s A(rs, ) e

<e. (3)

Intuitively, Construction 1 satisfies the decomposed minimum capacity (Def-
inition 12). For each string 7; € {0,1}™, the adversary can compute at most d
distinct points € {0, 1}% under the condition that the coefficients (aq, . . ., aq)
of the polynomial f,(X) € Fa 4, are RND-incompressible (see Lemma 1). If
this is not the case, it would violate Theorem 6 which states that a constant-size
Turing machine needs more than m bits to compute d + 1 points if the coeffi-
cients (aog, - . ., aq) are (¢, £rnq)-RND-incompressible. Since the adversary is only
allowed to access n strings 7;, the maximum number of the points the adversary
can evaluate for f,(X) is nd. Based on our parameters, nd points are only a
small fraction of the input space {0,1}%". Then, we conclude the first part of
the proof by showing that the string a = ag|| .. .||aq (i.e., the coefficients of the
polynomial f,(z) described by ek) is (¢, £rnq)-RND-incompressible with high
probability. We report the formal result whose proof appears in Appendix A.4.

Theorem 8 (Decomposed minimum capacity). Fiz the keys (ek,vk) <s
Setup(1*,1%). The VCBF scheme II of Construction 1 with input space {0, 1}
satisfies (€,m, lynd, n)-decomposed-min-capacity (Definition 12) with respect to

16 The decomposed minimum capacity definition can also be interpreted as a selective
security version of minimum capacity in which each tape 7; € {0,1}™ corresponds
to a fetched string according to a particular access pattern fixed before seeing the
challenge = € {0, 1}"i".
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keys (ek,vk) where A € N,d € N,c € N,¢; € [0,1],

m=(d+ 1)(A — by — 2log(¥;,) — 1) — ¢
— XA =2log((d+ )X —=¢') —2log(N) — 2,
' =c+lpg+2log(lrma) + 1+ O(1),

o d+1 1 1
e=¢€ + in 9¢  9(d+1)X’
€1 * Zzi"
= 1.
n p +

(Part two) From Definition 12 to Definition 9. We now show that any VCBF that
satisfies (e, m, rnq, n —m—+ 1)-decomposed-min-capacity (Definition 12) also sat-
isfies (e, m, £,nq, n)-min-capacity with respect to the class of adversaries A!-2ccess
(Definition 9). The result follows by using a counting argument: An adversary
A € Al-access with access to memory 7 of length n can read at most n—m+1 dif-
ferent strings (71, ..., Tn—m+1) each of length m (as defined in Theorem 8). For
completeness, we generalize the technique to every class of adversaries AY-2¢¢ess
for 1 < v < m. However, due to the limited power of counting arguments, we
stress that memory size n presents an exponential loss proportional to v. The
proof is included in Appendix A.5.

Theorem 9 (AU2°c®sS_class minimum capacity). Let v € N and IT be a
VCBF scheme with input space {0, 1}¥in. Fiz the keys (ek, vk) <—s Setup(1*, 1%). If
IT satisfies (€, m, £yrpq, n1)-decomposed-min-capacity (Definition 12) with respect
to keys (ek,vk) then II satisfies (€,m,lrpq, n2)-min-capacity with respect to the
class of adversaries A?"%°°>S and keys (ek,vk) (Definition 9) where

ng—m+1 ifo=1
na =
! na! (m_l) ifl<v<m.

(no—v)!'\v—1

The following corollaries report the concrete and asymptotic min-capacity of Con-
struction 1. The concrete Corollary 1 (whose proof appears in Appendix A.6)
shows that we can obtain a reasonable concrete tradeoff between € and n only for
the class of adversaries A2°°®S (this is due to the limited power of our counting
argument). In Section 5.3 we provide some examples of concrete instantiations.
On the other hand, the asymptotic Corollary 2 shows that a secure VCBF exists
with respect to the class of adversary AP(1)-access We stress that this must be
interpreted as a purely theoretical result showing the feasibility of VCBF since
the constants hidden by the asymptotic notation are significantly large.

Corollary 1. For anyv € N, the VCBF scheme II of Construction 1 with input
space {0, 1}*in satisfies (€, m, £ynq,n)-min-capacity (Definition 9) with respect to
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the class of adversaries AV%°**s where A € N,d € N,c € N, ¢; € [0,1],
m = (d+1)(A = €, —2log({;,) — 1) — ¢
— A —=2log((d+ 1)A =) —2log(N) — 2,
' =c+Llpa+2log(lrna) + 1+ O(1),
d+1 1 1

€e=¢€ + Sl + 5¢ T~ ST’

Lin .
m—i—% ifv=1

n = .. v—1
JCz= ) (=) 7)o <o

Corollary 2. For any A € N and k = (d+ 1)\ € N such that d € N, there exists
a VCBF that satisfies (negl(\), O((d+1)X), o((d+1)A), exp(A))-min-capacity with
respect to the class of adversaries A91)-access

Proof. The corollary follows directly by setting v € O(1), 4;, € [w(log(X)), 0(N)],
lrng € o((d+ 1)A), and ¢ € [w(log(N)),O((d 4+ 1)A)] in Corollary 1. O

Remark 2. We stress that, independently from the class of adversaries AV-access
considered, the evaluation of a random incompressible polynomial f(X) € Flx],
(as for Construction 1) requires reading m distinct bits (see Theorem 6 and Re-
mark 1). For this reason, it is reasonable to believe that Construction 1 satisfies
(e,m, £rna, n)-min-capacity with respect to any class of adversaries AY2¢¢sS (for
v > 1) where the concrete memory size parameter n is significantly larger than
the one of Corollary 1 (possibly reducing the exponential loss proportional to v).
To support the aforementioned observation, consider an adversary A € Av-26cess
with access to a precomputed memory 7 € {0,1}" whose size n is enough only
to encode in a meaningful way the (possibly partial) information regarding the
evaluations of a relatively small (not exponential) subset of points X C {0, 1}%n,
i.e., |X] < 2%, Tt is clear that A has no choice other than evaluating the ran-
dom polynomial f(x) =y € F, (by reading m bits as defined by Theorem 6) if
x € X (i.e., the challenge does not belong to the small subset X considered dur-
ing the precomputation of 7 € {0,1}"). However, the estimation of the concrete
memory size n according to the number of points |X| (considered during the
precomputation) appears to be a primary challenge when having only black-box
access to adversaries that perform multiple random access (e.g., AV for
v > 1) while using a purely information-theoretical approach. Indeed, counting
all the possible combinations of bits that an adversary AY2°®*S can read from
its memory (see proof of Theorem 9) only allows to prove a loose bound: Not
all combinations of bits (of the memory) are valid and allow the adversary to
extract meaningful information.

5.2 Verification Complexity

Corollary 2 shows that an evaluator needs to read at least O((d + 1)\) dis-
tinct bits from its main memory. We now analyze the verifier capacity com-
plexity. By inspecting Construction 1, we observe that the complexity of Verify

25



Table 1: Example of concrete instantiations of Corollary 1 with respect to the
class of adversaries A'-2¢¢¢ss for k = 1GB and k = 100GB where ¢;,, = lypg =
c=128 and k = (d + 1)\

Capacity Prime Size \ + 1 Advantage Param. ¢

Param. k

2—90 2750

~ 9—90 ~ ~ 9—50 ~
512 (d ~ 15.65 - 100 ~ A266) €~ 2%, n R 069GB, e~ 2%, n~ 2.14PB,

LGB m ~ 0.69GB m ~ 0.69GB
~ 5 ~ 12.29 ex~27% n~082GB, e~ 2% n =~ 4.29PB,

1024 (d ~ 78.20 - 10% = A™) m ~ 0.82GB m ~ 0.82GB
- 108~ 8.30y €~ 2% nx67.25GB, e~ 2%, n~ 22.06TB,

100GB 512 (d & 15.65 - 10% ~ A™™7) m ~ 67.25GB m ~ 67.25GB

e~27% n ~80.20GB, e~ 2% n~ 44.02TB,

~ . 7 ~ 2.95
1024 (d & 78.20 - 107 & A2%%) m ~ 80.20GH m ~ 80.20GB

coincides with the ones of algorithms ProbGenyc and Verifyy of the underly-
ing VC scheme. Therefore, we must consider a concrete instantiation of the
VC scheme. For this reason, we measured the efficiency of our VCBF w.r.t.
the VC scheme of Elkhiyaoui et al. [31], which uses an asymmetric bilinear
pairing e : G; x Go — Gp. The execution of ProbGenyc(vkys,z) computes
and returns vk, = (vk,vkl) = (by - ¢**, 7% - 79) and o, = x where vky =
(bo, 71, fo) € G1 X Gy X Gg X Gg, x € Fp, and g the generator of G;. Moreover,
Verifyyc(vky, y, m,) checks the correctness of the computation by computing:

e(g, hY) ~ e(vkg,wy) . e(g7vk015)7

where vk, = (vkg, vkglc) and h is a generator of Go. Hence, in the worst case, the
verification capacity complexity of our VCBF is O(X) € o((d + 1)), while the
verification time is O(1) in the number of group operations.

This because the executions of ProbGenyc and Verifyy are independent of
the polynomial degree d in terms of both capacity and time.

5.3 Concrete Instantiation

Table 1 shows two candidate instantiations satisfying the requirements of Corol-
lary 1 for the capacity parameter k¥ = 1GB and k£ = 100GB when considering
the class of adversaries A"2°®ss To calculate them, we first set the intermediate
parameter €; as 27°° and 2759, respectively. Then, we compute the adversary’s
advantage €, the bound m of minimum capacity, and the memory size n accord-
ing to Corollary 1. Observe that the bound m of Corollary 1 contains a constant
O(1) which represents the tolerance that depends on the constant-size Turing
machine implementing A € Al-access,

The efficient verification algorithm allows our VCBF scheme to handle very
large capacities (i.e., d > ) since its complexity is independent of the degree of
the polynomial d. Note that d is the dominating factor of the minimum capacity
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bound m. For example, for A+ 1 =512 and k = (d + 1)\ = 1GB, we need to set
the polynomial degree to d = 15.65 - 10¢ ~ 26 (Table 1). Hence, the verifier
complexity is d ~ A?'%6 times smaller than the evaluator complexity, i.e., at most
O(\) verification capacity versus at least O(A3-%%) minimum capacity.

There is always a loss between the capacity parameter &k (the number of bits
read by an honest evaluator) and the provable minimum capacity m. Such a loss
is inevitable due to Theorem 6 (see Section 3 for additional details). To reduce
this gap, one could reduce the input size ¢;,,, but this increases the advantage € of
the adversary. Alternatively, we recommend to increase the security parameter
A and get a larger prime p. For example, by increasing A + 1 from 512 to 1024
bits, the lower-bound m goes from 0.69GB to 0.82GB (resp. from 67.25GB to
80.20GB) for k = 1GB (resp. for k = 100GB).

Lastly, as we discussed in Section 4, the advantage € of the adversary is highly
correlated with the memory size n (see Corollary 1). If the adversary involves
more memory (e.g., increase n from ~ 80.20GB to ~ 22.06TB for k£ = 100GB
and A + 1 = 512), the advantage ¢ could be significantly improved from = 279
to ~= 27°0, This trade-off is inevitable. For example, an adversary may involve its
memory only to store precomputed dictionary, i.e., it encodes in the memory 7
of size n different precomputed polynomial evaluations f(z;) for arbitrary points
zj € {0, 1}%n. Intuitively, the larger the memory n, the more the precomputed
polynomial evaluations f(z;), the higher the advantage e. Analogously, for very
small advantages €, the memory size n decreases close to m (see column € = 2799
of Table 1 and Corollary 1): An adversary needs a small memory in order to retain
very small advantages. This also relates to Theorem 6: A binary string of size
m may allow an adversary to answer to at most d points. Hence, a memory size
n = m is enough for an adversary to retain a very small advantage e ~ d/2%".
Concretely, for & = 100GB and d = 15.65 - 108 (A + 1 = 512) and ¢;,, = 128
(as in Table 1), a memory of size n = m may permit to retain an advantage
e~ d/2n ~ 2799,

6 Future Work

This work lays the foundation for verifiable capacity-bound functions (VCBFS).
We have demonstrated the level of minimum capacity a VCBF can achieve when
only leveraging an information-theoretical approach based on Kolmogorov com-
plexity.

We believe this work opens up several new directions that could be inves-
tigated further. For example, a natural next step is to build new VCBFs (or
extend our polynomial based construction) in stronger security models (e.g., to
provide better concrete bounds between the adversary’s advantage ¢ and mem-
ory size n for other classes of adversaries AY2°°*S for v > 1. See Remark 2)
by combining our results together with additional (computational) assumptions.
Also, it would be relevant to analyze the minimum capacity of VCBF schemes
in a bounded computational model that may provide better bounds in terms of
minimum capacity.
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We have also shown that some classes of polynomials have high Kolmogorov
complexity and require a large amount of space to be evaluated. Identifying
(or even building) other high Kolmogorov complexity functions may yield new
VCBFs.

Finally, our approach based on Kolmogorov complexity could result in new
analysis frameworks that give prominence to space lower bounds for various
cryptographic schemes — an aspect that is often overlooked in cryptography.
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A Supporting Proofs

A.1 Proof of Theorem 4

Let Y C X be the set composed of all strings € X that are c-DET-incompressible.
By using Theorem 3, we conclude that ) is of size at least m(1—27¢)+1. Hence,
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the probability that = <—s X is c-DET-incompressible is defined as follows:

1-2-°¢ 1 1
Pr[z is ¢-DET-incompressible | z s X] = I > md-279+1 =1-2"4—.
|X] m m
This concludes the proof.
A.2 Proof of Theorem 5
The proof follows the same strategy of [11, Lemma 2.1.1]. Let e = lppg +

21og(lyna) + 1. By contradiction assume that, for any constant v € O(1), x is not
(c+e+v,lnq)-RND-incompressible, i.e., there exists a constant-size unbounded
randomized Turing machine T, a string o € {0,1}/#1=¢=¢=% and r € {0, 1}/«
such that Pr[T(a;r) = z] = 1. Let T’ be the deterministic Turing machine de-
fined as T'(a,r) = T(a;r). Without loss of generality, assume that T’ is the i-th
deterministic machine with respect to the enumeration defined by a universal
deterministic Turing machine U, i.e.,

U((i,ra)) = Ti(a,r) = T (a,7) = T(as 7).

The Kolmogorov complexity of x with respect to the deterministic reference
universal Turing machine U is

Cy(z) = |{i,r, )| <log(i) + 2loglog(i) + 1 + lrna + 2log(brna) + 1 + ||
= log(i) + 2loglog(i) + 1 + e + |a| < |z] — ¢ — v + log(i) + 2loglog (i) + 1.

If we set v = log(i) +2loglog(i) +1 € O(1) we obtain that Cy(z) < |z|—c. (Note
that v is a constant that only depends on the enumeration U.) This contradicts
the fact that x is c-DET-incompressible.

A.3 Proof of Theorem 6

Suppose there exists a constant-size randomized unbounded Turing machine

T with randomness space {0,1}* 4, a string o € {0,1}™, a randomness r €

{0,1}%4 and a tuple (zo,...,zq) such that zvi,j € {0,...,d}, z; # x; and
i#]

x; € {0,1}%n for which the following probability holds
Pr[(f(on), ey f(xd)) = T(Oé,.’I}o, <o Td; 7")] = 1'17

Then, we show that a is not (¢/, ¢,,q4)-RND-incompressible (Definition 6). Let
o = (p,a,xg,...,xq4) and consider the following Turing machine T':

T'(a/;7"): On input o/ = (p, @, g, ..., zq) and a randomness r’ € {0, 1}frmd, T’
proceeds as follows:

17 Note that the randomness is made explicit. Hence, the probability is equal to either
Oor 1.
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1. Interpret the input o/ = (p,a, zg,...,xq) and separate the inputs p, «
and xg, ..., 4.

2. Compute (f(xo),..., f(xqa)) = T(a, xo,...,zq;7").

3. Reconstruct the polynomial via interpolation.

4. Return a = agl|. .. ||aq.

The steps executed by T’ can be implemented by a constant number of operations
if T receives in input all the pieces of information on which the computation de-
pends on. That is, (p, o, zg, ..., z4,7, T,d) and the structure of the polynomial.
Note that the values (p,«,zo,...,2zq) are d-encoded (Section 2.1) into o', r’
is taken as input, and the degree d can be computed by counting the points
(2o, ...,2q) and decrease that amount by 1 (i.e., [{zg,...,2q4}| — 1 = d). More-
over, T and the structure of f(X) are of constant size and can be hardcoded
into the code of T’. Hence, we can conclude that T’ is of constant size.

In addition, it is easy to see that T’, on input o/, correctly computes a, if
r’ = r. We can bound the size of o’ as follows:

/| = [(p, @, @0, - . ., z4)]
< A+ 2log(A) +m + 2log(m) + (d + 1) (lin + 2log(lin) + 1) + 2
< (d+ 1A= +2log(m) — 2log((d + 1)\ — ')
<log(a) —c < (d+1)A-{,

where we used the fact that |a] < m = (d+ 1)(A — €, — 2log(lin) — 1) — ¢ —
A —=2log((d + 1)\ — ) — 2log(N\) — 2 and log(m) < log((d + 1)A — ¢). This
contradicts the fact that a is ¢’-RND-incompressible with respect to randomized
Turing machines with randomness space {0, 1}%d.

A.4 Proof of Theorem 8

Let fo(z) € Fx,a,p be the polynomial sampled by Setup (as defined in Construc-
tion 1). Let EZYP be the event that the string a = agl|...||aq (the coefficients
of the polynomial f,(z) described by ek) is (¢, £nq)-RND-incompressible (Def-
inition 6). We first prove the following lemma.

Lemma 1. If ERNDd holds, then the VCBF scheme II of Construction 1 with

cLrp,
input space {0,1}¢n satisfies (€', m, lrna,n)-decomposed-min-capacity (Defini-
tion 12) with respect to keys (ek,vk) where A € N;d € N,c € N, ¢; € [0,1],

m=(d+ 1)(A — by — 2log(¥;,) — 1) — ¢
—A—=2log((d+ 1)A = ') — 2log(\) — 2,
d =c+lpg+2log(lrna) + 1+ O(1),

, d+1
€ =€+ oln
€1 - 2€m
= 1.
n P +
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Proof. Assume there exists a constant-size randomized unbounded adversary A
with randomness space {0, 1}*"»¢ and a tuple (71, ...,7,) such that 7; € {0, 1}™
for i € [n] for which the following probability holds:

RND
Ec Lrnd?

s {0,1}in, =

{y’i s (T’La )}ZE
RND

Pr|3i € [n], Eval(ek,z) = y;

Pr|3i € [n], Eval(ek, z) = y;

{yi = A(Ti, 2573) bien)

where Eval(ek, z) = f,(z) and r; s {0, 1}*rd is the i-th fresh randomness taken
in input by A, together with 7;, at the i-th independent execution.

Next, we count the number of points x that A can successfully compute. We
fix the code and the random tape (randomness r;) of A, and run A on different
x*. In this case, let X be the set of inputs z* € {0,1}% for which A is able
to correctly compute y* = f,(z*) in at least one of n independent executions.
Respectively, let X; (such that &; C X) be the set of inputs 2* € {0, 1} for
which A can correctly compute y* = f,(2*) during the i-th execution with string
7; and randomness r;. Formally,

X et {0, 1)0 | fulet) = Alratir)} and X | A

i€[n]

By leveraging Equation (4), we can conclude that the following inequality holds
Pr[z € X|z +s{0,1}0] = ‘X‘ > ¢’ (otherwise A’s advantage cannot be greater
than €’). This implies that the set X has cardinality |X| > €/-2%n = ¢;-20n +-d+1.

We now claim that conditioned on EENP | we have | ;] < d, for all i € [n].
Assume the contrary, i.e., |X;| > d+ 1. Hence, we can build a Turing machine T
by running A on d + 1 pomts in X; with 7; € {0,1}™ and r; € {0, 1}, since
fa(x®) = A(mi,x*;r;) for all 2* € X; and | ;| > d+1. This would contradict The-
orem 6 and accordingly |X;| < d. Since each i-th execution of A on input 7; and
r; allows us to correctly compute at most |X;| < d, then we conclude that the
only way to cover all points z* € X is to set n to be at least

m> € - 20in +d+1 - € - 2bin 1
d d d d '
This concludes the proof of Lemma 1. O

To conclude the proof of Theorem 8, we need to bound the probability of ERND
Let EPET be the following event

EPFT = (g is - DET-incompressibile ) ,

where a = agl|...||aq are the coefficients of the polynomial f,(z) sampled by
Setup. By using Theorem 5, we know that if a is ¢-DET-incompressible then
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a is (¢, rng)-RND-incompressible for ¢ = ¢ + g + 2log(lrnq) + 1 + O(1)
as defined in Theorem 8. Since we only consider randomized adversaries with

randomness space {0, 1}*¢ we have that EPET implies EZNP | and ~EZNP
implies ~EP¥T. Thus, Pr[-EPET] > Pr PE}}}RJ. Hence, we conclude that,

given 7; < {0,1}%rn¢ and for i € [n], the following inequality holds:

Pr [Eli € [n], Eval(ek, z) = y;

x s {0, 1}4n, -
{yz s A(Tzvx)}ze[n]

@ = {0, 1},
{yi = A(Tia Z; ri)}ie[n]

Pr [EIZ' € [n], Eval(ek,z) = y;

Pr|die [n], Eval(ek, x) =Yy; T s {O7 1}57‘%’ .Pr [ERND ] (5)

¢ Lrnd
{yi = A(i, 5 70) Yien)

RND
“ECI Lrnd?

x s {0, 1}Fin, Pr[-=EZN° ] (6)
{yi = A, x; Ti)}ie[n]
1 1 d+1 1 1

/ _ _ _
<e€ +§—72(d+1)>\—€1+72em +§ S@Fx = € (7)

+ Pr|3i € [n], Eval(ek,z) = y;

where in Equation (5) we used the fact that Construction 1 satisfies (€¢/, m, £ynq, n)-
decomposed-min-capacity when EB}}BM occurs (Lemma 1) and Pr {E?%BLJ <1
Conversely, in Equation (6) we used the fact that the advantage of A is at most 1

" RND RND DET 1 1
(even conditioned to =EJ3" ) and Pr [_‘Ec’,emd} < Pr[-EPPT] < 52 — sutox

when a <—s {0, 1}(@+ DX (Theorem 4). This concludes the proof.

A.5 Proof of Theorem 9

Case v = 1. Recall that, on input = € {0, 1}%» r € {0,1}¢¢ and 7 € {0,1}"2, a
constant-size randomized unbounded adversary A € A!-2°¢®ss (with randomness
space {0, 1}%n) performs exactly one (adaptive) random access to 7 and, then,
read m consecutive bits (i.e., Za(r z;r) = {1, .., %m} such that i; + 1 =4;,, for
i € [m — 1]). Independently from the challenge x € {0,1}%, the randomness
r € {0,1}¢4 the memory 7 € {0,1}"2, an adversary A € A1-2¢ess ig able to read
at most ng—m—+1 strings {71, ..., Thy,—m+1} each of length m. This because there
are at most ng —m+1 different valid indexes of the memory 7 € {0,1}"2 that al-
low A to read m (consecutive) bits. Since IT satisfies (e, m, €4, n1)-decomposed-
min-capacity for ny = ny —m + 1, then a constant-size randomized unbounded
adversary A € A'"2°°°S with randomness space {0,1}‘¢ retains at most the
same advantage ¢ when having access to 7 € {0, 1}"2.

Case 1 < v < m. We now give an upper bound on the number of strings n;
of length m that an adversary A € AV2°®sS can read from a memory of size
ng. Recall, an adversary A € AY2°°*SS performs exactly v random accesses to
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the memory. Hence, the number of valid ordered random access combinations

that A can perform with a memory 7 € {0,1}"2 are at most P(ng,v) = (n:iilu)'

where P(n, k) = (nfi'k), is the number of permutation of k elements (without
replacement) out of n distinct elements. Fix the random access composed by v
different indexes V = {i1,...,4y}. Let ¢; be the number of consecutive bits read
by A starting from the index 4;. The number of different strings ¢ of length m
that A can read using the fixed random access V are at most ¢ < |S| where

SE{(t1,....ty) EN"[t; > 1for j € [v] and ty +...+t, =m}.

Observe that the cardinality of |S| = (T:ll) can be estimated by leveraging the
stars and bars combinatorial theorem where the number of stars is m and the
number of bars is v. To conclude, the number n; of distinct strings of length m

that an adversary A € AV72°sS could potentially read are at most

e < ’ng! m—1
" e =) \v—1)

This concludes the proof.

A.6 Proof of Corollary 1

Proof. For v =1, we easily obtain n = m + # by combining Theorems 8-9.
We now proceed with the case 1 < v < m. Let n; as defined in Theorem 9. By
leveraging the fact that (f;) > (0/k)" and —22 - = ("2)v! we conclude that

(no—w)!

w2 (0 = () (0 e () ()

v—1
This means that Theorem 9 still holds if we consider n; = v! (%)U (m’l) )

The latter equality allows us to obtain the following bound

By substituing n, = # + 1 as defined in Theorem 8 and setting n = ny we
obtain the bound of n as defined in the Corollary 1. a
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