
A note on the QFT randomness spectral test a new approach of DST 

 

 

Emil SIMION1,2), Elena Corina CIPU2,3), Vasile – Laurențiu DOSAN4), Andrei-Voicu TOMUȚ5) 

 
1)Department of Mathematical Models and Methods, University POLITEHNICA of  Bucharest, 

2) Center for Research and Training in Innovative Techniques of Applied Mathematics in Engineering “Traian 

Lalescu”, University POLITEHNICA of Bucharest, 
3)Department of Applied Mathematics, University POLITEHNICA of  Bucharest,  

4)Faculty of Applied Sciences, University POLITEHNICA of  Bucharest 

 
 

Abstract.  

Quantum computers provide a new way of solving problems even in cryptography in which digital 

signature make an important role. In this paper, we describe a comparison between the spectral test 

in classical mode and quantum mode through Fourier Transform.  A comparison of the results in 

the two cases was made. Applications of the proposed techniques are from the field of statistical 

testing of the pseudorandom bit generators used for cryptographic applications. The proposed 

statistical test is an extension of the Discrete Fourier Transform statistical test proposed in NIST SP 

800-22. 
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1. Introduction 

 

Random numbers are an essential resource in science and engineering with important 

applications, especially in cryptography, scientific simulations, gambling and lotteries. There are 

two types of random number generators: (i) pseudo-random number generators (PRNGs), based 

on mathematical algorithms which approximate the behavior of randomness and (ii) true random 

number generators (TRNGs), which use the behavior of a physical process. [5]   

The binary “truly” random sequence is defined as the sequence in which each element has a 

probability of exactly 50% of being “0” or “1” and in which the elements are statistically 

independent of each other. It is also difficult to ascertain if the sequence is truly random; therefore, 

the randomness of the sequences is evaluated statistically. [6]  

The customary approach to randomness testing is using a series of statistical tests. The main 

suites available to perform these statistical tests are the NIST, TestU01, DieHard and DieHarder 

suites. Most tests apply statistical analyses similar to the standard chi-squared test. The result is a 

p-value that indicates how likely it is for a purely random number generator to produce the tested 

sequence. Each test suite has different threshold values to determine if a given p-value is 

compatible with randomness or not. NIST SP 800-22 consists of fifteen tests, and every test is 

hypothesis testing, where the hypothesis is that the input sequence is truly random; if the 

hypothesis is not rejected in all the tests, it is implied that the input sequences are random. Among 

the tests included in NIST SP 800-22, the DFT test is of the greatest concern to us. This test detects 



periodic features of a random number sequence; input sequences are discrete Fourier transformed, 

and the test statistic is composed of the Fourier coefficients. [7] 

Spectral is a statistical test. A statistical test is formulated to test a specific null hypothesis 

(H0). For the purpose of this document, the null hypothesis under test is that the sequence being 

tested is random. Associated with this null hypothesis is the alternative hypothesis (Ha), which, 

for this document, is that the sequence is not random. [8] 

In this work, we studied the consequences of replacing the classical (discrete) Fourier 

transform with the Quantum Fourier Transform (QFT) in the Spectral test. Quantum Fourier 

Transform is a linear transformation on qubits and is the quantum analogue of the inverse Discrete 

Fourier Transform (DFT). We define DFT of a signal x, the vector y with the following 

components: 

 𝑦𝑘 = ∑ 𝑥𝑛𝑒
− 
2𝜋

𝑁
𝑖𝑘𝑛𝑁−1

𝑛=0 , k =  0, … , N − 1 

Using notation 𝜔 = 𝑒− 
2𝜋

𝑁
𝑖
, equation becomes: 

𝑦𝑘 = ∑ 𝑥𝑛𝜔
𝑘𝑛

𝑁−1

𝑛=0

, k =  0, … , N − 1 

with |𝜔|= 1. We introduce the matrix W,  

𝑊 = 

[
 
 
 
 
1 1 1 … 1
1 𝜔 𝜔2 … 𝜔𝑁−1

1 𝜔2 𝜔4 … 𝜔2(𝑁−1)

… … … … …
1 𝜔𝑁−1 𝜔2(𝑁−1) … 𝜔(𝑁−1)(𝑁−1)]

 
 
 
 

.  

 

W is a symmetric matrix, and we can compute the product 

 

𝑊 ∙ 𝑊 =  𝑊  ∙ 𝑊 = 𝑁 ∙ 𝐼𝑁  
 

The discrete Fourier transform can be written as follows: 

𝑌 = 𝑊𝑋. 
 

As we can see in the book by Nielsen and Chuang (2010) and in the book by Nakahara and 

Ohmi (2008), the Quantum Fourier Transform (QFT) is based on essentially the same idea with 

the difference that the vectors x and y are state vectors, |𝑥⟩ =  ∑ 𝑥𝑗|𝑗⟩
𝑁−1
𝑗=0 , |𝑦⟩ =  ∑ 𝑦𝑗|𝑗⟩

𝑁−1
𝑗=0 , 

where |𝑗⟩ is a basis vector in the ℋ𝑁 Hilbert space of dimension 𝑁 = 2𝑛 with the inner product 
⟨∙ |∙⟩  

⟨𝜙|𝜓⟩ = [𝜙1, 𝜙2, … , 𝜙𝑛] [

𝜓1
𝜓2
⋮
𝜓𝑛

] =  ∑𝜙𝑘𝜓𝑘

𝑛

𝑘=1

 

 



in which ⟨𝜓| = |𝜓⟩†  is the Hermitian conjugation of a ket vector and |𝑖⟩⟨𝑗| = 𝐼𝑁. In other words, 

QFT is a linear operator whose action on any of the computational basis vectors 

|0⟩, |1⟩, … , |2𝑛 − 1⟩ associated with an n-qubit register is described by the transformation: 

|𝑗⟩  
                
→     𝑊|𝑗⟩  =

1

√2𝑛
∑ 𝑒

2𝜋𝑖𝑗
2𝑛

2𝑛−1

𝑘=0

|𝑘⟩, 0 ≤ 𝑗 ≤  2𝑛 − 1  

 

We observe that 𝑊for N = 2 is the Hadamard gate (H). Hadamard gates are used for preparing 

states. It creates an input state with constant amplitudes. Other gates used for describing QFT 

algorithm are 𝑅𝑘 phase gate and SWAP gate. Phase gate leaves the basis state |0⟩ unchanged and 

map |1⟩ to 𝑒2𝜋𝑖/2
𝑘
|1⟩.𝑅𝑘 =  [

1 0

0 𝑒2𝜋𝑖/2
𝑘]. The SWAP gate swaps two qubits: 

𝑆𝑊𝐴𝑃 = [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

] 

To encode a bit string with length n in the qubit statevector we need 𝑚 = log2 𝑛 qubits. 

To realize QFT, 
𝑚(𝑚+1)

2
 operations are made. It means that the complexity of the algorithm 

becomes 𝑂((log2 𝑛)
2) ≡ 𝑂(𝑚2) which leads to the conclusion that QFT algorithm is more 

efficient than the classical Fast Fourier Transform (FFT), for FFT we have 𝑂(𝑛 ⋅ log2 𝑛). 
 

 
Figure 1 

 

Assuming that we use only native quantum gates, and all the m qubits are interconnected, to 

realize QFT it is necessary a QPU having the Quantum Volume bigger than 𝑚(𝑚 − 1) = 𝑚2 −



𝑚. Unfortunately, this is an unusual situation on superconducting processors. Consequently, a few 

SWAP gates must be added, and the Quantum Volume will increase.  

 

Remark: The states of a system can be pure or mixed. Pure states are of two types: 

• Product or separable states - if it can be described as a tensor product of two subsystems: 

|𝜓⟩ = |𝜑⟩ ⊗ |𝜗⟩ în care |𝜓⟩ ∈ ℋ = ℋ1⊗ℋ2, |𝜑⟩ ∈ ℋ1, |𝜗⟩ ∈ ℋ2 

Such a state describes a situation like a classical one meaning that the state of the system 

expresses exactly the information contained in the states of the subsystem. A change in status 

caused by a measurement made on one subsystem has no effect on the state of the other 

subsystem. This means that the measurement results on different subsystems are uncorrelated 

(or independent). 

• Bipartite states, indestructible states, or (mixed) entangled states. These are correlated states 

that cannot be written as a product of subsystem states. In this case, a local measurement 

reduces the state of the whole and changes the probabilities for potential future measurements 

on any subsystem. For mixed states the product and separable states are not synonymous. 

Another method of representing a quantum system is to use the notion of density matrix 

[1,3]. This form is especially useful in situations where complete information about that system is 

not known. For a system in the states |𝜓𝑖⟩ with the associated probabilities 𝑝𝑖, 𝑖 = 1…𝑛, we can 

associate the density matrix: 

𝜌 =∑𝑝𝑖

𝑛

𝑖=1

⋅ |𝜓𝑖⟩⟨𝜓𝑖| 

With the help of these density matrices, we can characterize quantum states. Thus, we have:  

 

(i) separable states when 𝜌2 = 𝜌 and 𝑇𝑟(𝜌2) = 1. Pure states occupy points located on the 

surface of the Bloch sphere.  

(ii) entangled states when 𝜌2 ≠ 𝜌 and 𝑇𝑟(𝜌2) < 1. Mixed states are combinations of pure 

states, occupying points inside the Bloch sphere. The completely mixed state for a system of 

n qubits is described by the density matrix𝜌 =
1

2𝑛
𝕝𝑛, located right at the origin of the Bloch 

sphere. The density matrix also proves to be useful in calculating the average values of 

certain operators [4]. The average value of the operator𝐴̂ computed on state 𝜌 is: 

< 𝐴̂ > = 𝑇𝑟(𝜌𝐴̂) 
A density matrix 𝜌 ∈ ℬ(ℋ) is a Hermitian matrix n x n, (𝜌 = 𝜌†) with 𝑇𝑟(𝜌) = 1 and positively 

defined   |𝜓⟩ 𝜌 ⟨𝜓|  ≥ 0, ∀𝜓 ∈ ℋ.  Let be ℬ(ℋ) the set of bounded operators defined in ℋ. 
 

Examples 

The simplest quantum state for N=2 can be written |𝜙⟩ = cos
𝜃

2
|0⟩ + 𝑒𝑖𝜑 sin

𝜃

2
|1⟩. 

If A represents the preparation for polarization of a photon both vertically and horizontally: 
1

2
|0⟩ ⟨0 +

1

2
|1⟩ ⟨1 = (

1/2 0
0 1/2

 ) 

 

The same matrix density is obtained if A represents the preparation for an equal mixture of left 

and right polarized photons or any two pure orthogonal states. □ 



If the qubit state is codified by means of one photon and two optical modes, associating the 

mode 1 to the horizontal polarization |𝐻⟩  and the mode 2 to the vertical one |𝑉⟩, then |𝜓⟩  =
𝛼|𝐻⟩ + 𝛽|𝑉⟩ and the singlet polarization-entangled state of two photons A and B is expressed by  

|𝜓−⟩𝐴𝐵  =
1

√2
(|𝐻⟩𝐴|𝑉⟩𝐵 − |𝑉⟩𝐴|𝐻⟩𝐵), 

that have the property of being rotationally invariant.The density matrix 𝜌𝐴𝐵for the two 

particle entangled singlet state is expressed by  

 

𝜌𝐴𝐵 = (

0 0
0 1/2

0 0
−1/2 0

0 −1/2
0 0

1/2 0
0 0

), 

in the basis {|𝐻⟩𝐴|𝐻⟩𝐵; |𝐻⟩𝐴|𝑉⟩𝐵;  |𝑉⟩𝐴|𝐻⟩𝐵; |𝑉⟩𝐴|𝑉⟩𝐵. (see [9] )□ 

 

2. Description of QRNG 

 

Random bits sequences for data analyse were collected from a typical quantum random number 

generator (QRNG). It is based on single-photon measurement. A photon is prepared in a 

superposition of horizontal (H) and vertical (V) polarizations, described by |𝜓⟩ =
1

√2
( |𝐻⟩ + |𝑉⟩). 

A polarizing beam splitter (PBS) transmits the horizontal and reflects the vertical polarization. For 

random bit generation, the photon is measured by two avalanche photo-diodes (APD). The path 

the photon takes at the output is random and there will be a detection with the same probability at 

each detector. We consider that a click on detector 𝐷0 is recorded as a 0 bit and a detection in 𝐷1 
is a 1. [7] 

 
Figure 2 

 

3. Quantum probabilities context 

 

We make use of the theoretical framework of universal measurements where Gleason property 

(see [9]) and Born rule are considered in the Hilbert space  ℋ𝑁. 

Gleason property precise that the transition probability depends only on the state before the 

measurement and the eigenstate that is actualized after the measurement. 

Let’s consider an observable quantity expressed by the self-adjoint operator A, described by 

its eigenvectors |𝛼𝑖⟩, that verify the orthogonality relation and the completeness condition  

 

|𝛼𝑖⟩⟨𝛼𝑗|  = 𝛿𝑖𝑗,  𝑖, 𝑗 ∈ 1, 𝑁̅̅ ̅̅ ̅,    ∑ |𝛼𝑖⟩
𝑁
𝑖=1 ⟨𝛼𝑖|  = 𝐼𝑁  

 



and the orthogonal projections and 𝑃𝑖 = |𝛼𝑖⟩⟨𝛼𝑖|, 𝑖 ∈ 1, 𝑁̅̅ ̅̅ ̅. In our case |𝛼𝑖⟩ = |𝑖⟩,   𝑖 ∈ 1, 𝑁̅̅ ̅̅ ̅. Also, 

for |𝜙⟩ a state in ℋ𝑁, we write ⟨𝛼𝑖|𝜙⟩ = √𝑥𝑖𝑒
𝑖𝜑𝑖,  𝑖 ∈ 1, 𝑁̅̅ ̅̅ ̅ in the polar form, with 

condition,    ∑ 𝑥𝑖
𝑁
𝑖=1 = 1.  

Properties: The elements of the set {𝑃𝑖 = |𝑒𝑖⟩⟨𝑒𝑖|, 𝑖 ∈ 1, 𝑛̅̅ ̅̅ ̅} fulfil the conditions: 

1. 𝑃𝑖
2 = 𝑃𝑖 , ∀ 𝑖 ∈ 1, 𝑛̅̅ ̅̅ ̅ 

2. 𝑃𝑖𝑃𝑗 ≠ 0, ∀ 𝑖 ≠ 𝑗 

3. ∑ 𝑃𝑖 = 𝐈
𝑛
𝑖=1  

4. |𝜓⟩ − 𝑃𝑖|𝜓⟩ is orthogonal to |𝑒𝑖⟩ 

(see for instance [ 13]). 

The measurement of the observable expressed by A is a process in which the state |𝜙⟩ pass 

through one of the states of the eigenvectors |𝛼𝑖⟩ and the probability 𝑃(|𝜙⟩ → |𝛼𝑖⟩) to be one 

eigenvector or another is expressed by the Born rule, that is the square norm of the projection 

corresponding to the eigenvalue 𝛼𝑖 
 

𝑃(|𝜙⟩ → |𝛼𝑖⟩) = ‖𝑃𝑖|𝜙⟩‖
2 = 𝑥𝑖, 𝑖 ∈ 1, 𝑁̅̅ ̅̅ ̅. 

 
Now, if the state is degenerate, meaning that some of the 𝛼𝑖 are equal, then |𝛼𝑖⟩, 𝑖 ∈ I𝑚𝑘  are the 

eigenvectors whose index belong to the same eigenvalue 𝛼𝑖𝑘; ⋃ 𝐼𝑚𝑘𝑘 = 𝐼𝑁, ∑ 𝑚𝑘
𝑛
𝑘=1 = 𝑁, then 

according to the Born rule, the transition probabilities are expressed by 

 

𝑃(|𝜙⟩ → |𝜙⟩𝐼𝑚𝑘
) = ‖𝑃𝐼𝑚𝑘

|𝜙⟩‖
2

= ∑ 𝑥𝑗
𝑗∈𝐼𝑚𝑘

 

with 

|𝜙⟩𝐼𝑚𝑘
= ∑ √

𝑥𝑗
∑ 𝑥𝑗𝑗∈𝐼𝑚𝑘𝑖∈𝐼𝑚𝑘

𝑒𝑖𝜑𝑖|𝛼𝑖⟩   

 

Definitions: 

1. The probability that a certain measurement being the result of a matrix density is defined by 

𝑃{𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑥|𝑠𝑡𝑎𝑡𝑒 = 𝜌} = 𝑇𝑟(𝜌𝐸𝑥) 
a semi - positive operator connected to x and 𝐸𝑥 being the projection operator. 

 

2. An ordered set of operators semi-positive 𝐸 = ⟨𝐸1, 𝐸2, ⋯𝐸𝑚⟩, for which  ∑ 𝐸𝑥
𝑚
𝑥=1 = 𝕝𝑚 

express an POVM - Positive Operator of Measure Valuation, that could be applied to a 
quantic system. ℳ = {𝐸|𝐸  is POVM} 

 

3. Probability of error PE, between two probabilities densities is defined by   

𝑃𝐸(𝑝0, 𝑝1) =
1

2
∑ min (𝑝0(𝑥), 𝑝1(𝑥)𝑥∈𝑋  or 𝑃𝐸(𝜌0, 𝜌1) = inf

𝐸∈ℳ
(𝜌0(𝐸), 𝜌1(𝐸))   

 

4. The Kolmogorov distance between two matrix densities is 𝐾(𝜌0, 𝜌1) =
1

2
∑ |𝜆𝑖|
𝑛
𝑖=1  , where 𝜆𝑖 

are eigenvalues of the difference 𝜌0 − 𝜌1. 



5. The distance between two states as a result of a measurement, or as an application of a protocol 

is given by the distance between two matrix densities 

𝐷(𝜌0, 𝜌1) = 𝑚𝑎𝑥
0≤𝑀≤𝕝

𝑇𝑟[𝑀(𝜌0 − 𝜌1)] =
1

2
𝑇𝑟(𝜎),  𝜎2 = 𝐴†𝐴, 𝐴 = 𝜌0 − 𝜌1 

where M describes the measurement or protocol applied. 

Remarks: 

1. Two identical distributions have 𝑃𝐸 =
1

2
 . Two orthogonal distributions have 𝑃𝐸 = 0 .  

2. PVM-Projection Valuation Measurement is a particular case of POVM with condition 

𝐸𝑘𝐸𝑙 = 𝛿𝑘𝑙𝐸𝑘, 𝐸𝑥 being the projection operator and 𝛿(𝑘, 𝑙) = 𝛿𝑘𝑙 = {
1, 𝑘 = 𝑙
0, 𝑘 ≠ 𝑙

 Kronecker symbol. 

3. If 𝜌1 = |𝜓⟩  ⟨𝜓|  and 𝜌2 = |𝜑⟩  ⟨𝜑|  are two pure states, then 𝐾(𝜌1, 𝜌2) = √1 − ⟨𝜓|𝜑⟩2. 

Using the Pauli matrices, 𝜎𝑥 = 𝜎1 = (
0 1
1 0

), 𝜎𝑦 = 𝜎2 = (
0 −𝑖
−𝑖 0

), 𝜎𝑧 = 𝜎3 = (
1 0
0 −1

) and the 

base |𝑒1⟩ =
1

√2
(
1
1
), |𝑒2⟩ =

1

√2
(
1
−1
), that have the eigenvalues 𝜆1 = 1, 𝜆2 = −1, one find that for 

all matrix densities for which  𝜌1 − 𝜌2 = 𝜎𝑖, the Kolmogorov distance between them is 

𝐾(𝜌1, 𝜌2) = 1. 

4. For the ideal result, the expected one, 𝜌0, and 𝜌1, the obtained result obtained by applying the 

algorithm maximum of the probability to make the distinction between the two states is:  

max p = max(
1

2
𝑇𝑟[𝑀𝑖𝑑𝑒𝑎𝑙(𝜌0)] +

1

2
𝑇𝑟[𝑀𝑟𝑒𝑎𝑙(𝜌1)])= 

1

2
+
1

2
max
0≤𝑀≤𝕝

𝑇𝑟[𝑀(𝜌0 − 𝜌1)]. 

Proposition: 

Let be two matrix densities 𝜌0, 𝜌1 ∈ ℋ with 𝐾(𝜌0, 𝜌1) =
1

2
𝑇𝑟|𝜌0 − 𝜌1| then the probability of 

error can be computed by  

𝑃𝐸(𝜌0, 𝜌1) =
1

2
−
1

4
∑|𝜆𝑖|

𝑛

𝑖=1

=
1

2
−
1

4
𝑇𝑟|𝜌0 − 𝜌1| =

1

2
(1 − 𝐾(𝜌0, 𝜌1)) 

with 𝜆𝑖 the eigenvalues of the difference 𝜌0 − 𝜌1. 

 

4. Spectral Test for randomness 
 

For randomness testing of binary sequences the law of large numbers will be used, if that (𝜀𝑛) 
is a sequence of independent random variables with the same distribution of expectation 𝑚 and 

variance , then for large values of n we have:  

𝑃𝑟( 𝑎 < 𝜀1+. . . +𝜀𝑛 < 𝑏) ≈ 𝛷 (
𝑏 − 𝑛 ⋅ 𝑚 + 0.5

𝜎√𝑛
) − 𝛷 (

𝑎 − 𝑛 ⋅ 𝑚 − 0.5

𝜎√𝑛
). 

where 𝛷(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑡2

2 𝑑𝑡
𝑥

−∞
 is the Laplace-Gauss function. Also, if that (𝜀𝑛) is a sequence of 

independent random variables with variable 𝑋:𝑃(𝑥 = 1) = 𝑝, 𝑃(𝑥 = 0) = 1 − 𝑝, then for large n one 
has 𝜎 = 𝑝(1 − 𝑝) (see [1,2]] 

For the Frequency (monobits) test where is investigated whether the frequency of ones in a 

sequence of length n is approximatively n/2, as would be expected under an assumption of 

randomness the probability of failing to reject the null hypothesis when it is false, 

𝛽(𝑎𝑐𝑐𝑒𝑝𝑡 H0|H0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒) is expressed by (see [1,2,3]) 



𝛽(𝑝1) = 𝛷 (√
𝑝0𝑞0

𝑝1𝑞1
(𝑢1−𝛼

2
−
𝑛(𝑝1−𝑝0)

√𝑛𝑝0𝑞0
)) − 𝛷 (√

𝑝0𝑞0

𝑝1𝑞1
(𝑢𝛼

2
−
𝑛(𝑝1−𝑝0)

√𝑛𝑝0𝑞0
)), 

where 𝑢1−𝛼
2
 and 𝑢𝛼

2
 stand for quantiles of the standard normal distribution and 𝑞1 = 1 − 𝑝1, with 

H0: 𝑝 = 𝑝0; H1: 𝑝 = 𝑝1 and 𝑝1 ≠ 𝑝0. 
 

For the spectral test (DFT), under an assumption of randomness, the values obtained from the 

test should not exceed the threshold value T = 0.95 (see [8]). The algorithm computes the number 

𝑛1 of peaks in the subsequence given by the first half of the sequence, that are less than T. 

𝛽(𝑎𝑐𝑐𝑒𝑝𝑡 H0|H0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒) = 𝛽(𝑝1) = 𝑃 (𝑢𝛼
2
≤

𝑛1−0.95 𝑛 𝑝0

√𝑛𝑝0𝑞0∙0.95∙0.05
≤ 𝑢1−𝛼

2
| 𝑝 = 𝑝1). 

The focus of the test is the peak heights of the sequence in order to detect periodic features, 

whether the number of peaks exceeding the threshold is significantly different than those that does 

not. 

For the n, the length of the bit string, 𝜺 = 𝜺𝟏, 𝜺𝟐, ⋯ 𝜺𝒏−𝟏, 𝜺𝒏, the sequence of bits being tested, 

produced by a Bernoulli variable 𝑋: 𝑃(𝑥 = 1) = 𝑝, 𝑃(𝑥 = 0) = 1 − 𝑝  and 𝑇 = 0.95  the value 

𝑝𝑣𝑎𝑙𝑢𝑒 = 𝑒𝑟𝑓𝑐 (
|𝑑|

√2
) is computed.  If the computed 𝑝𝑣𝑎𝑙𝑢𝑒is  less than 0.01, then is concluded that 

the sequence is non-random. The spectral test in both cases was described in the following table: 
 

Steps Quantum using QFT Classic usig DFT 

Input - n, the length of the bit string (n = 2𝑚, 𝑚 ∈ ℕ) 

- 𝜺, the sequence of bits being tested 

- n, the length of the bit string  

- 𝜺, the sequence of bits being tested 

T
es

t 
d

es
cr

ip
ti

o
n

 

1 The zeros and ones of 𝜀 are converted to values -1 

and 1 to create the sequence X (X: 0 → −1, 1 →
1). 

The zeros and ones of 𝜀 are converted to values -1 and 1 

to create the sequence X (X: 0 → −1, 1 → 1). 

2 Apply a Quantum Fourier Transform (QFT) on X 

to produce 𝑆 = 𝑄𝐹𝑇(𝑋): 
2.1. Normalize the bit string. 

2.2. Compute the number of qubits used in QFT: 

𝑚 = log2 𝑛. 

2.3. For each qubit (i), apply a Hadamard gate and 

(m-i-1) phase gates: 

- For I from 0 to m: 

- Apply H(i) 

- For j from 0 to m-i-1: 

o Apply phase gates (
𝜋

2𝑗+1
, 𝑖, 𝑖 + 𝑗 + 1) 

o Apply barrier. 

- End (for j). 

- End (for i). 

- Measure the qubits: for i from 0 to m: 

measure (qubit[i]) 

- Simulate the quantum circuit with 100 ⋅
𝑚 shots → Obtain 𝑆 = 𝑄𝐹𝑇(𝑋) 

Apply a Fast Fourier Transform (FFT) on X to produce 

𝑆 = 𝐹𝐹𝑇(𝑋). 
 

3 - Calculate 𝑀 = |𝑆′|, where 𝑆′ is the substring consisting 

of the first 
𝑛

2
 elements in S. 

4 Compute the 95% peak height threshold value,  

𝑇 = √(log
1

0.05
) ⋅ 𝑛. 

Compute the 95% peak height threshold value,  𝑇 =

√(log
1

0.05
) ⋅ 𝑛. 

5 Compute the expected theoretical number of 

peaks, 𝑛0 = 0.95 ⋅
𝑛

2
. 

Compute the expected theoretical number of peaks, 

𝑛0 = 0.95 ⋅
𝑛

2
. 

6 Compute the actual number of peaks in S that are 

less than T, 𝑛1. 
Compute the actual number of peaks in M that are less 

than T, 𝑛1. 



7 Compute 𝑑 =
𝑛1−𝑛0

√
𝑛⋅0.95⋅0.05

4

. Compute 𝑑 =
𝑛1−𝑛0

√
𝑛⋅0.95⋅0.05

4

. 

8 Compute 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 𝑒𝑟𝑓𝑐 (
|𝑑|

√2
). Compute 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 𝑒𝑟𝑓𝑐 (

|𝑑|

√2
). 

Output p-value p-value 

   

Table 1. 

In the quantum case the step 2 of the algorithm was explicitly presented. 

5. Results and some conclusions 
 

A comparision between the two cases for different length of the strings is made in Table 2. 
 

n Classic Quantum Both 

passed failed passed failed 

128 1985 15 1955 45 1 

256 1977 23 1975 25 1 

512 1983 17 1979 21 0 
Table 2. 

 

 

 

 

 

Figure 3 Table 3. 

 

 

  



Figure 3. 𝛽(𝑝1) computed for 2000 strings of 256 length 

𝑝0 = 𝑝1 =
1

2
; 𝑝1𝜖[0.48; 0.52] 

𝛽(𝑝1) = 𝑃 (𝑢𝛼
2
≤

𝑛1 − 0.95 𝑛 𝑝0

√𝑛𝑝0𝑞0 ∙ 0.95 ∙ 0.05
≤ 𝑢

1−
𝛼
2
| 𝑝 = 𝑝1) 

= 𝛷(𝑢
1−
𝛼
2
√
𝑝0𝑞0
𝑝1𝑞1

+
0.95 𝑛 (𝑝0 − 𝑝1)

√𝑛𝑝1𝑞1 ∙ 0.95 ∙ 0.05
) − 𝛷(𝑢𝛼

2
√
𝑝0𝑞0
𝑝1𝑞1

+
0.95 𝑛 (𝑝0 − 𝑝1)

√𝑛𝑝1𝑞1 ∙ 0.95 ∙ 0.05
) 

 

We can conclude that the new technique is useful as a working tool in the validation of 

random generators obtained on quantum principles. 
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