
A PKI-based Framework for Establishing Efficient MPC Channels

Daniel Masny and Gaven Watson

VISA Research

Abstract

The Transport Layer Security (TLS) protocol is a fundamental building block for ensuring
security on Internet. It provides an easy to use framework for the purposes of establishing an
authenticated and secure channel between two parties that have never physically met. Nev-
ertheless, TLS only provides a simple cryptographic functionality compared to more advanced
protocols such as protocols for secure multiparty computation (MPC).

In this work, we provide a framework for efficiently establishing channels for MPC over the
Internet. We focus on MPC protocols in the oblivious transfer (OT) hybrid model such that it
is sufficient to establish OT correlations for such a channel. We revisit and combine different
notions of UC security proposed in both the MPC and authenticated key exchange settings.
Through this work, we show how an OT protocol can be composed with a secure authenticator
to ensure the authenticity of messages sent during the OT.

In addition, we adapt and analyse non-interactive OTs based on dense key encapsulation
mechanisms (KEMs) in the random oracle model, where the first message, i.e. public key, can be
reused. These KEMs can be instantiated based on CDH, RSA and LWE and after a performance
and security evaluation, it turns out that the resulting OT protocols are very competitive with
the state of the art and are able to leverage existing PKIs.

1 Introduction

The Transport Layer Security (TLS) protocol [RD08, Res18] provides a robust and easy to use
framework for the establishment of confidential and authenticated channels. Nevertheless, this
protocol only provides a basic cryptographic functionality, that is, it enables two parties that
trust each other to share confidential information while protecting said information from other
non-trusted parties.

Secure multi-party computation (MPC) allows a more nuanced setting in which one does not
want to entrust confidential information to the other participants in the protocol but still enable
them to collaborate. This collaboration takes the form of computing a joint function on their own
respective confidential inputs.

It is a natural task to build an efficient and easy to use framework that allows us to execute
MPC protocols with arbitrary parties over the internet. Similar to the TLS setting, we cannot
assume that authenticated or confidential channels between the parties are already established.

A common starting point for many MPC protocols is the OT-hybrid model in which parties have
access to an oblivious transfer (OT) functionality [Yao82, Yao86, GMW87, Kil88, IPS08, IKO+11,

the authors grant IACR a non-exclusive and irrevocable license to distribute the article under the CC BY-NC
(creative commons attribution-noncommercial) license;

1

CvT95, BL18, GS18]. An oblivious transfer (OT) [Rab81, EGL82], is a protocol between a sender
and a receiver with the goal to establish OT correlations between them, i.e. the sender holds k0, k1

and the receiver b, kb for a choice bit b. By the security of OT, k1−b is only known to the sender, b
only to the receiver and kb to the sender and receiver but no other party.

To efficiently establish OT correlations that later could be used for an arbitrary MPC protocol
in the OT-hybrid model, i.e. a channel for MPC, we need an efficient OT protocol. Unlike in a key-
exchange protocol where only one key needs to be established for a confidential channel, an MPC
protocol usually needs a large number of OT correlations. Fortunately, by using a technique called
OT extension [Bea96, IKNP03, OOS17, ALSZ15, KOS15], it is sufficient to establish an amount of
OT correlations that is identical to the security parameter. Nevertheless, to minimize the overhead
compared to a key exchange, it is important to leverage synergies between the OT correlations we
establish.

An efficient notion of OT is the notion of non-interactive OT by Bellare and Micali [BM90].
In their notion, the receiver generates a public key that depends on his choice bit. Given that the
sender has access to this public key, he only needs to send a single message. Even more efficient are
the OTs of Chou and Orlandi [CO15], a variant of Masny and Rindal [MR19], Canetti, Sarkar and
Wang [CSW20] and McQuoid, Rosulek and Roy [MRR20], where [CO15] does not accomplish UC
security [GIR17, HL17]. In these OT constructions, two rounds are sufficient to establish random
OT correlations. The sender starts the protocol by sending a message to the receiver. This mes-
sage is independent of the OT correlation which opens the possibility of reusing it for multiple OT
correlations and hence, leverage synergies. This brings a significant advantage over [BM90] where
using the same public key multiple times leads to OT correlations with the same choice bit. The
OT of Gertner et al. [GKM+00] based on public-key encryption (PKE) with dense ciphertexts also
has this property, though it is only semi-honest secure.

Security for MPC and OT is typically defined in the UC framework [Can01]. The advantage of
the UC framework is that it allows us to universally compose protocols without negatively impacting
security and it ensures maximal confidentiality for the inputs of an MPC protocol execution. The
UC framework has also been used to model security for authenticated key exchange [BCK98,
CSV16], which covers both, authenticity and confidentiality. The authenticity in UC is typically
established using an authenticator. Such an authenticator transforms a protocol that is secure in
a setting that assumes authenticated channels to a protocol that is secure even when the channels
are not authenticated.

In practice, a public-key infrastructure (PKI) is needed for the purposes of establishing authen-
ticated channels and it is a non-trivial task to integrate it into the UC framework. The work of
Canetti, Shahaf and Vald [CSV16] have proposed a UC notion with PKI for the authenticated key
exchange setting.

1.1 Our Contribution

We provide a framework with the goal to make it easier to use MPC protocols in the OT-hybrid
model. We have two main objectives. The first objective is to construct an efficient and secure
OT protocol that follows a TLS-like design and can leverage existing PKI infrastructure, i.e. by
enabling the reuse of public keys. The second objective is to provide suitable security definitions
for authenticating messages sent during the OT protocol.

NIOT We start with the first objective for which the technical details can be found in Section 4.
We consider two constructions of non-interactive OTs (NIOT) in which a sender generates a pk,

2

UC JUC CRS Com Mul GH

[CO15] 7 7 7 log |G| 3 0

[MR19] iDDH ? 7 2 log |G| 4 3

[CSW20] DDH ? 3 2 log |G| 5 2

[MRR20] KA ? 7 |ct|+ κ - -

[MRR20] CDH ? 7 log |G|+ κ 4 3

OT1 KEM ? 7 2|ct| - -

OT2 KEM ? 7 |ct|+ κ - -

OT1 CDH AGM 7 2 log |G| 4 3

OT2 CDH AGM 7 log |G|+ κ 4 3

Figure 1: We compare the OT1 and OT2 construction proposed in this paper which are based on
[MR19, MRR20] with previous works in terms of UC security, UC with joint state (JUC), i.e. public-
key reuse, whether it needs a CRS (CRS), communication (Com), elliptic-curve multiplications
(Mul) and hash operations into the group (GH). For Com, Mul and GHash, we ignore the costs
caused by the public key generation and communication. iDDH stands for interactive DDH [MR19].

sk pair that is independent of its input or generated OT correlations. Therefore, pk can be reused
to generate independent OT correlations. Given that a receiver knows pk, he can generate a single
message to generate the correlations. This changes the traditional paradigm of OT where usually
the sender chooses two strings. In this notion of OT, [MR19] has called it receiver-chosen OT, the
receiver can choose string kb for his choice bit b. The string k1−b is implicitly generated by R and
is indistinguishable from uniform given the view of R.

The two constructions, that we refer to as OT1, OT2, use a cryptographic hash function and
a one-way secure dense key-encapsulation mechanism. Dense KEMs are well known from CDH,
RSA or LWE with a superpolynomial modulus to noise ratio. The latter is unfortunately not very
efficient and hence we put more focus on the CDH and RSA-based dense KEMs.

In the CDH setting, OT1 is a slight variation of an OT proposed by Masny and Rindal [MR19]
and OT2 is a slight variation of an OT proposed by McQuoid, Rosulek and Roy [MRR20]. Both
variants have minimal overhead over [MR19, MRR20] and therefore remain competitive with the
state of art. The two most efficient alternatives that allow a non-interactive OT functionality are
the OTs of Chou and Orlandi [CO15] and, Canetti, Sarkar and Wang [CSW20]. We provide a
comparison in Figure 1. Different to [CO15, MR19, MRR20, CSW20], we also cover the setting
where the public keys are reused across different sessions in our security model. We model this
setting such that it closely aligns with the notion of UC with joint state (JUC) [CR03]. Proving
the security in this setting is quite challenging. We prove it in the algebraic group model (AGM)
[FKL18] under the discrete-log assumption. We provide the details in Theorems in Section 4 and
proofs in Appendix D and E. We emphasize that the JUC security, where the joint state is the
public key, allows composability with any other protocol that is JUC secure with the public key as
joint state. Further, this is also compatible with the generalized UC (GUC) [CDPW07] modeling
of PKIs by [CSV16] such that the public key could be registered in a PKI and used for different
protocols that are GUC secure or JUC secure with the public key as joint state. Further, this also
allows to leverage existing PKIs and reuse registered public keys for the OT1, OT2 protocols. We
refer for more details of the compatibility of JUC and GUC to the technical overview.

Both OT1 and OT2 allow a very simple and efficient OT from a dense KEM based on RSA.
RSA based OTs have to the best of our knowledge not received much attention even though the
OT construction of McQuoid, Rosulek and Roy [MRR20] is generic enough to capture RSA based

3

OTs. Since RSA is a viable option for TLS, we instantiate OT1 and OT2 based on RSA to give an
alternative to cyclic group based OTs. Unfortunately, our results using the AGM do not translate
to the RSA setting so that we do not have a formal security analysis for the JUC security of the
RSA based OT1 and OT2. Nevertheless, we are unaware of any attack and it would be rather
surprising given the generic nature of OT1 and OT2 that JUC security would hold in the cyclic
group setting but not in the RSA setting.

We implement the CDH and RSA-KEM instantiations of OT1 and OT2. The details can be
found in Section 5 which provides a fairer comparison to the works of Chou and Orlandi [CO15]
and, Canetti, Sarkar and Wang [CSW20] than Figure 1. In the RSA setting, we are unaware of
any similarly efficient OT protocol and thus we only provide its performance.

Authentication Our second objective is to define secure authentication for our OT and realize
it efficiently. Similar to TLS, we want to use a public key infrastructure (PKI) for authentication.
Since we want to provide secure channels for MPC protocols we shall use UC definitions, the de facto
standard for MPC. We build on the UC definitions and work for authentication in key exchange
protocols by Bellare, Canetti and Krawczyk [BCK98] and Canetti and Krawczyk [CK02] provide.
In these prior works the authors propose the use of authenticators that can establish authenticated
channels for any protocol.

More recent work in the UC model by Canetti, Shahaf and Vlad [CSV16] propose a technique to
model PKI in the UC setting. Their work focused on the used of signatures but not on KEMs and
message authentication codes (MACs). We follow their approach by defining certification function-
alities that make it easy to build authenticators. We realize these certification functionalities based
on signatures or the KEM and MAC-based authentication mechanism. Further, we define a session
certification functionality that allows to certify a whole session rather than individual messages.
This enable modeling of an efficient KEM and MAC-based approach, where using a single MAC is
more realistically. Our analysis uses techniques and ideas from the JUC framework.

Our final authenticators follow the standard approach of authentication based on either signa-
tures or, KEMs and MACs as proposed in [BCK98] (using a nonce to prevent replay attacks). A
key differentiator between this paper and prior works, is that we analyze their security in a more
realistic PKI-based setting and where the same MAC key may be used for a whole session. Our
more modular approach allows us to analyze the security of unilateral and mutual authentication,
where previous works using the UC model typically only consider mutual authentication. We also
discuss the differences between implicit and explicit authentication in our setting. In key exchange,
upgrading implicit authentication to explicit authentication can be done using a key confirmation
step [FGSW16]. However, in the OT setting this is much more challenging. We do not have a
solution that accomplishes key confirmation in the OT setting that is sufficiently efficient to make
it viable compared to straightforward authentication based on signatures. We provide the technical
details in Section 3.

We emphasize that KEM and MAC-based authentication can be very attractive in combination
with the KEM based OT1 and OT2 protocols since significant synergy effects can be leveraged.
We analyze the GUC security where the KEM public keys are organized in a PKI. Since the GUC
and JUC notions are compatible in our context, we can use the same public key for both, the
authentication mechanism and the OT construction.

1.2 Related Works

Concurrent to our work, McQuoid, Rosulek and Roy [MRR21] addressed the issue when reusing
the first message when generating a batch of OT correlations. They focus on OTs in cyclic groups

4

and found that the OTs of [MR19, MRR20, CSW20] can be securely batched if the hash that
defines the final OT string includes a counter. They prove security based on the oracle Diffie-
Hellman (ODH) assumption which holds in the generic group model combined with the ROM. If
this counter is not included, a malicious party could force the OT correlations of the whole batch
to be identical and in this case, an OT extension using this batch would be insecure. In this sense,
[MR19, MRR20, CSW20] are not secure when reused in a naive manner.

Compared to their result, we base the security on the discrete logarithm in the algebraic group
model combined with the ROM which is weaker than the generic group model combined with the
ROM. In our setting, where the first message serves as a public key which is e.g. registered in a
PKI, the counter solution does not work straightforwardly. We resolve the issue by including the
public key and intermediate transcript in the hash that defines the final OT strings. This does
not immediately guarantee that the OT correlations are different when used in a batch, though
transcripts that force OT correlations to be identical can be efficiently identified and then rejected.
Our ideal NIOT functionality reflects that OT correlations could be force to be identical by allowing
an ideal adversary to indicate that the OT correlations will be identical to a previous session such
that the ideal functionality will reuse these correlations.

1.3 Technical Overview

Authenticators for UC secure Key Exchange Bellare, Canetti and Krawczyk [BCK98] pro-
pose a UC definition for authenticating key exchange as well as other protocols. They define the
AM and UM model. In the AM model, all channels are authenticated while in the UM model,
an adversary is allowed to drop, inject or alter messages. They construct authenticators that can
transform any protocol secure in the AM model to a protocol that is secure in the UM model. Their
authenticators use either a signature or a KEM (to exchange a MAC key) and for any message
from a party A to a party B, party B first sends a random nonce. After receiving the nonce, party
A certifies the message and nonce using either a signature scheme or MAC and sends the message
and certificate. B can now easily check the authenticity of the message. The random nonce plays
a crucial role since it prevents replay attacks.

Authentication in the Global-PKI Model Canetti, Shahaf and Vlad [CSV16] proposed a
UC model for authentication with a global functionality that models a PKI using the global UC
(GUC) model [CDPW07]. The works of [BCK98, CK02] do not allow such a global functionality.
In their work, Canetti et al. do not use authenticators but instead a certification functionality that
model signature schemes with a public key certified by a certification authority (CA) in a PKI. To
authenticate a message, they sign the message and the session id, a unique id for each session which
is used in the UC model to identify a session. This allows them to authenticate messages more
efficiently than prior works [BCK98, CK02]. Though it also has the drawback that the availability
of such a unique session id seems to be a very strong assumption in practice. One way to generate
such a session id would be secure coin tossing which would incur a significant overhead.

Authenticators in the global-PKI model We revisit these previous works [CSV16, BCK98,
CK02] in order to build authenticators secure in a global-PKI model. In order to achieve this
we must adjust the previous definitions appropriately. We adapt the certification functionality of
[CSV16] such that it does not prevent replay attacks on its own. We also define a session certification
functionality using the JUC model [CR03]. This models a KEM and MAC based certification
process where the same MAC key is used for all messages during a session. In Section 3.1, we show
how to realize the session certification based on a CPA secure KEM and a MAC when for every

5

session new certified KEM keys are used. In Appendix C, we show how to use a signature to realize
message certification and a CCA KEM and a MAC to realize session certification with the same
certified KEM key for multiple sessions. Further, we show that this can also be accomplished when
replacing the CCA secure KEM with a CDH based KEM where the security holds in the AGM.

The certification functionalities are global functionalities that can be used in a straightforward
way to build authenticators. The realization of our authenticators follows the proposed construc-
tions in [BCK98] by using a nonce rather than a session id. This is less convenient but a more
realistic countermeasure against replay attacks and used by TLS in a similar fashion. Other than
[BCK98], we define a hybrid model between the AM and UM model that we denote with AM+.
In the AM+ model, the adversary is only allowed to drop, inject or alter messages sent by specific
parties but not necessarily all parties. This allows us to provide a model to prove unilateral au-
thentication which is in some settings sufficient. We also discuss implicit authentication for OT.
Other than in the key exchange setting, it seems not straightforward to upgrade it efficiently to
explicit authentication by using key confirmation [FGSW16].

Receiver based Non-Interactive OT Our goal for the OT protocol is to accomplish an ideal
OT functionality that we call FmNIOT. FmNIOT consists of two phases. In the first phase, a sender
sends a query to the functionality. In an actual protocol, the sender would send a public key during
this phase. In the second phase, the receiver chooses a key kb and sends b, kb to the functionality.
The functionality outputs k0, k1 to the sender.

OT from Dense KEMs A dense KEM is a KEM for which encapsulations are uniformly random
over some group from which we can efficiently sample elements. This allows us to hash into this
group and the hash is indistinguishable from an encapsulation even given the secret key.

The OT1 and OT2 constructions follow the works of [MR19, MRR20] and use the concept of
programmable once public functions (POPF) [MRR20]. On the high level, they work as follows.
The sender samples a public, secret key pair (pk, sk) and sends pk to the receiver. The receiver
generates a message from which two encapsulations ct0, ct1 can be derived and for which he can
know at most one of the encapsulated keys denoted with kb. ct1−b will be a uniform and simulatable
(in the ROM) group element.

In both constructions, the choice bit of the receiver is hidden, because ct0 and ct1 have the same
distribution thanks to the density of the KEM. At the same time the key k1−b is hidden from the
receiver due to the security of the KEM. When arguing UC security, we replace the hash function
with a random oracle. By observing the order of the random oracle queries, a simulator can extract
the choice bit b of a malicious receiver. He additionally can extract kb by using his secret key.
Through programming the random oracle a simulator can control both encapsulations ct0, ct1 and
therefore both keys when interacting with a malicious sender.

Dense KEMs from CDH, trapdoor functions (RSA) and LWE are well known and in case of
CDH and RSA very efficient. In the LWE case, obtaining correctness is very costly and requires
a superpolynomial modulus to noise ratio. Unfortunately, we cannot improve the efficiency using
a reconciliation mechanism in our case, since this mechanism is not known to be simulateable,
especially not when the secret key or random coins of the encapsulation are known to a corrupted
party.

Multi-use of Public Keys An advantage of our OT is that the sender’s message can potentially
be reused. This however can create security complications since it allows a malicious receiver R∗ to
open several sessions under the same public key. When arguing security against such a receiver, we

6

would like to replace encapsulation ct1−b with a challenge encapsulation ct∗ to argue that he cannot
learn the key k1−b. Unfortunately, UC security allows R∗ to open a fresh session under the same
public key and send ct∗ to the sender who will decapsulate it, send it to the environment which then
forwards it to R∗. Even if the second session is also simulated, R∗ can choose a message such that
ct∗ is the encapsulation corresponding to his choice bit for this session. Thus, the simulator needs
to extract k∗ from ct∗. One solution might be to detect that ct∗ is a challenge encapsulation and not
decapsulate it faithfully. This does not seem to work, since all known dense KEMs have a strong
form of malleability. R∗ could alter ct∗ to ĉt∗ such that ĉt∗ looks uniform given ct∗ but encapsulates
a key k∗ + r, where r is known to R∗. This security issue seems non-trivial to resolve. Therefore,
even though a scheme might functionally allow key reuse, it is unclear whether the security still
holds. To hedge our solution against such an attacker, we hash the encapsulated key together with
parts of the transcript.

We prove this stronger notion of security, i.e. JUC with public keys as joint state, when
instantiating OT1 or OT2 with a CDH-based KEM in the algebraic group model (AGM) [FKL18]
in Section 4 and Appendices D and E. The AGM is weaker than the generic-group model and
security typically does not hold unconditionally. In our case, security holds under the discrete-
log assumption which is equivalent to CDH in the AGM. The AGM imposes a strong constraint
on potential adversaries, especially in our case where we assume in addition a random oracle that
hashes into the group. This helps us to prove security when public keys are reused. A key difference
is that now, we are able to decapsulate encapsulations generated by R∗ without using the secret
key as well as detect altered challenge encapsulations.

Composability of our JUC and GUC results We emphasize that in our setting, we consider
JUC model where the joint states are public keys and therefore can be easily translated to the
GUC setting in a similar fashion as modeling PKI in GUC. The public keys, i.e. joint states, could
be registered in a global bulletin board functionality as proposed by [CSV16] in the context of
authentication. Whenever a protocol reuses a joint state, it would simply request it from the global
bulletin board. Since the joint states are public keys and part of the public transcript, publishing
them in a bulletin board does not affect the JUC security of the protocols. This simple observation
also explains why the proofs of GUC security of the session authentication using the CDH KEM
in the AGM and the JUC security of OT1 and OT2 instantiated with the CDH KEM in the AGM
follow a very similar approach.

As a consequence, we can use the same PKI or global bulletin board to store public keys. By the
global composability, a public key can be used and reused for different authentication methods and
OT protocols simultaneously. This however, might require to instantiate protocols with different
random oracles when the protocols are not proven secure in the global random oracle model as it
is the case for OT1 and OT2.

2 Preliminaries

2.1 Notation

Let κ denote the security parameter. For n ∈ N, we define the following set [n] := {1, . . . , n}. By
x ← X we denote the the sampling of x uniformly from set X. We use ΠA,B, Π when A and B
are clear from the context, to denote a protocol between two parties A and B. For an algorithm
A(x; r), we use x to denote the input and r to denote the random coins. We use (A(a),B(b))Π to
denote the joint output distribution of A and B when interacting in protocol Π with inputs a and b
respectively. For an ideal functionality F and malicious party A, we denote (F ,A)ΠA,B as the joint

7

output of A and F , where A produces the output of party A and F produces the output of party
B respectively. When clear from the context, we omit ΠA,B.

For a cyclic group of order p, we use the bracket notation to denote its elements, i.e. let g be a
generator, then J1Kg := g, JaKg + bJ1Kg := ga+b. We omit g when clear from context.

Definition 2.1 (Random Oracle). A random oracle over a set of domains and an image is a
collection of functions H that maps an element q within one of the domains to a uniform element
H(q) in the image.

2.2 Key Encapsulation Mechanism

Definition 2.2 (Key Encapsulation Mechanism (KEM)). A Key Encapsulation Mechanism con-
sists of three ppt algorithms (KGen, Enc, Dec) and a key space K with the following syntax:

KGen: The key generation algorithm takes as input 1κ and outputs a public-key secret-key pair
(pk, sk).

Enc: The encapsulation takes as input pk and outputs an encapsulation ct and a key k.

Dec: The decapsulation takes as inputs sk and ct and outputs a key k.

Further, we require correctness and one-way security (OW-CPA), indistinguishability under chosen-
plaintext attacks (IND-CPA) or indistinguishability under chosen-ciphertext attacks (IND-CCA):

Correctness:
Pr[k = Dec(sk, ct)] ≥ 1− negl,

where (pk, sk)← KGen(1κ) and (ct, k)← Enc(pk).

OW-CPA Security: For any ppt adversary A and any polynomial size auxiliary input z,

|Pr[A(z, pk, ct) = k] ≤ negl,

where (pk, sk)← KGen(1κ) and (ct, k)← Enc(pk).

IND-CPA Security: For any ppt distinguisher D and any polynomial size auxiliary input z,

|Pr[D(z, pk, ct, k) = 1]− Pr[D(z, pk, ct, u) = 1]| ≤ negl,

where (pk, sk)← KGen(1κ), (ct, k)← Enc(pk) and u← K.

IND-CCA Security: For any ppt distinguisher D and any polynomial size auxiliary input z,

|Pr[D(z, pk, ct∗, k) = 1]− Pr[D(z, pk, ct∗, u) = 1]| ≤ negl,

where (pk, sk) ← KGen(1κ), (ct, k) ← Enc(pk) and u ← K. Further, D has access to a
decapsulation oracle Dec(sk, ·) that allows him to decapsulate arbitrary encapsulations except
ct∗.

Definition 2.3 (Dense KEM). We call a KEM dense over a group G iff for any ppt distinguisher
(D1,D2) and any polynomial size auxiliary input z,

|Pr[D2(z, st, ct) = 1]− Pr[D2(z, st, u) = 1] ≤ negl,

where (st, pk)← D1(1κ), (ct, k)← Enc(pk) and u← G.

8

We can construct a dense OW-CPA KEM from CDH, trapdoor functions and LWE with super-
polynomial modulus to noise ratio (see Appendix A.4 for the definition of CDH, LWE and RSA).
The three constructions are straightforward. Based on CDH, we get the following dense OW-CPA
secure KEM for public parameters consisting of a cyclic group G of prime order p and a generator
J1K.

KGen(1κ): Sample a← Zp \ {0}. Output pk = JaK and sk = a.

Enc(pk): Sample b← Zp \ {0}. Output ct = JbK and k = b · pk.

Dec(sk, ct): Output k = sk · ct.

Correctness follows from k = sk · ct = a · JbK = JabK = bJaK = b · pk. OW-CPA security immediately
follows from the hardness of computing JabK given JaK, JbK (CDH).

Let F be a family of trapdoor functions that maps from an efficiently sampleable domain D into
an efficiently sampleable group G. Then our KEM is constructed as follows:

KGen(1κ): Sample (f, f−1)← F. Output pk = f and sk = f−1.

Enc(pk): Sample x← D. Output ct = f(x) and k = x.

Dec(sk, ct): Output k = f−1(ct).

Correctness follows from the correctness of F and OW-CPA security follows from the one-wayness
of F.

Finally, there is the following LWE-based dense IND-CPA secure KEM using a public parameter
A← Zm×np .

KGen(1κ)): Sample s ← Znp and a noise term e ← X for some noise distribution X . Output
pk = As+ e and sk = s.

Enc(pk): Sample R← {−1, 0, 1}m×m. Output ct = RA, k = bRpke.

Dec(sk, ct): Output k = bct · ske.

For achieving correctness, the rounding function b·e needs to drop all lower significant bits to
completely remove the noise. Then k = bct · ske = bRAse = bRAs+Ree = bRpke. For the density
property, we need that the leftover hash lemma applies. To apply this lemma, we need that A is
uniform and m > n log p. The requirement on the rounding function results in rather inefficient
parameters and as a result we put less focus on this KEM in the rest of this paper.

2.3 Oblivious Transfer

We follow the simplified UC security framework which is sufficient for full UC security [CCL15].
Figure 2 defines the ideal NIOT functionality FNIOT.

Definition 2.4 (Oblivious Transfer (OT)). We call a protocol Π between two ppt parties, a sender
S and a receiver R, a oblivious transfer if at the end, S outputs two strings (k0, k1) and R outputs
b ∈ {0, 1} and kb. For security, we require two properties with respect to functionality FNIOT.

Security Against a Malicious Sender: For any ppt adversary A, there exists a ppt adversary
A’ such that for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, (A,R)Π) = 1]− Pr[D(z, (A′,FNIOT)) = 1]| = negl,

where all algorithms receive input 1κ. R additionally receives input S.

9

FNIOT :

registration phase:
Upon receiving a session identity sid from S, FNIOT checks whether sid has been
stored. If not, it stores sid. Otherwise it sets a flag for sid.

protocol phase:
Upon receiving (sid, b, kb) from R, FNIOT checks whether sid has not been stored or
has a flag. If yes, it ignores the message. Otherwise, it samples k1−b ← K and sends
(sid, kid, k0, k1) to S.

Figure 2: The figure shows the ideal FNIOT functionality. The registration phase and protocol phase
happen within the same session.

Security Against a Malicious Receiver: For any ppt adversary A, there exists a ppt adversary
A’ such that for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, (S,A)Π) = 1]− Pr[D(z, (FNIOT,A′)) = 1]| = negl,

where all algorithms receive input 1κ.

3 Authentication

When studying OT protocols we typically assume that they are run over channels which ensure the
integrity and safe delivery of message between the expected parties. However, when deploying such
protocols in practice such channels may not exist. Building channels that provide these properties
is a vital aspect in the study of secure key-exchange protocols. In fact, the Universal Composability
(UC) framework of our security definitions thus far was initially defined with a view towards settings
such as secure and authenticated channels, [BCK98, CK02]. Here we revisit this work and extend
it to our setting.

First we recall the authenticated and unauthenticated links models, AM and UM respectively.
In the AM model there exist n parties P1, ..., Pn running a protocol Π. An adversary is able to
activate instances of Π between parties and control the corresponding communication. In this
model it is assumed that the adversary will deliver messages faithfully, that is, if a message is
intended for party Pi it will be delivered correctly to that party. In the UM model the adversary
is permitted to drop, inject and alter the messages exchanged between parties. In the following,
we use AAM or A to denote an adversary in the AM model and AUM for an adversary in the UM
model.

Definition 3.1. For two protocols Π and Π′ for n parties, we say that Π′ emulates Π in the UM
model if for any ppt adversary A′UM in the UM model, there exists a ppt adversary AAM in the AM
model such that for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, (AAM)Π) = 1]− Pr[D(z, (A′UM)Π′) = 1]| = negl,

where all algorithms receive input 1κ.

To transform any protocol secure in the AM model into one secure in the UM, we make use of
an authenticator which provides the additional security guarantees required.

10

Fbb :

report query:
Upon receiving a message (report, v) from party P , record (P, v) iff P does not have
a record and no record containing v exists.

retrieve query:
Upon receiving a message (retrieve, P), look up and reply with (P, v), where v =⊥
when there is no record for P .

Figure 3: The figure shows the Fbb functionality that models a PKI.

Fcert :

certify message:
Upon receiving a message (sid,mid,m) from party P , query (retrieve, P) to Fbb
for receiving (P, v). If v =⊥, ignore the query. Otherwise send (v, sid,mid,m) to A
and receive σ. Record (v,m, σ, 1) iff (v,m, σ, 0) has not been recorded and output σ
to P . Otherwise, output error.

verify message:
Upon receiving a message (sid,mid,m, σ, P ′) from party P , query (retrieve, P ′)
to Fbb for receiving (P ′, v). If v =⊥, ignore the query. Otherwise send
(v, sid,mid,m, σ, P ′) to A. Look up whether (v,m, σ, b) has been recorded and output
b. If not and P ′ is corrupt, query it for b, record (v,m, σ, b) and output b. Otherwise,
record (v,m, σ, 0) and output 0.

Figure 4: The figure shows the Fcert functionality.

Definition 3.2. [BCK98, Definition 2] A compiler C is an algorithm that takes as input descrip-
tions of protocols and outputs descriptions of protocols. An authenticator is a compiler C where for
any protocol Π, the protocol C(Π) emulates Π in the UM model.

An authenticator ensures the authenticity of all protocol messages. In the following, we pursue
a more modular approach in which we define a certification functionality enables the authentication
individual messages. From the certification functionality, we can easily construct an authenticator.

3.1 Certification Functionalities from PKI

The model of Canetti et al. [CSV16] studies authenticated channels in the context of a global PKI.
They define a global functionality Fbb (see Figure 3) that they call a global bulletin board which
models a PKI in the global UC (GUC) setting [CDPW07]. Further, they define a global certification
functionality Fcert that allows us to certify and verify messages. We use an adapted version which
is defined in Figure 4. Fcert can be instantiated using a signature scheme [CSV16]. Unfortunately,
for their realization of Fcert based on signatures, they sign the session id sid. While this works
fine in the UC model and helps to prevent replay attacks, in a real protocol the security crucially
relies on the uniqueness of the session id among all sessions. This might not be easy to accomplish.
One could use secure coin tossing to generate a string that functions as an sid but this causes an
additional overhead.

11

Fcs :

Fcs runs with two parties Pv and Pc, where Pc can certify its messages and Pv can
verify the certificates.

start certified session:
Upon receiving a message (sid, Pc, w) from party Pv, query (retrieve, Pc) to Fbb for
receiving (Pc, v). If v =⊥, ignore the query. Send (sid, Pv, Pc, w) to A and if he does
not interrupt and no record that contains v, w exists, record (v, w, Pv).

certify message:
Upon receiving a message (sid,mid,m, P ′c, P

′
v) from a party P , lookup (P ′c, v) from

Fbb and (v, w, P ′v). If there is no w with record (v, w, P ′) or P 6∈ (P ′v, P
′
c), ignore

the query. Otherwise send (sid,mid,m, v, w, P ′c, P
′
v) to A and receive σ. Record

(v, w,m, σ, 1) iff (v, w,m, σ, 0) has not been recorded and output σ to Pc. Otherwise,
output error.

verify message:
Upon receiving a message (sid,mid,m, σ, P ′c, P

′
v) from a party P , lookup lookup

(P ′c, v) from Fbb and (v, w, P ′v). If there is no w with record (v, w, P ′) or P 6∈ (P ′v, P
′
c),

ignore the query. Otherwise, send (sid,mid,m, σ, P ′c, P
′
v) to A. Look up whether

(v, w,m, σ, b) has been recorded and output b. If P ′c or P ′v is corrupt, query it for b,
record (v, w,m, σ, b) and output b. Otherwise, record (v, w,m, σ, 0) and output 0.

Figure 5: The figure shows the Fcs functionality.

We use sid only to link different parts of a protocol together such that the parties can link
a message to a message in the protocol description. This brings the advantage that the security
does not depend on the availability of a unique session id. The disadvantage of this approach is
that Fcert allows certifying messages but does not prevent replay attacks. We follow Bellare et al.
[BCK98] to resolve this issue. We use authenticators that use message certification as a building
block to achieve full security in the UM model. These authenticators prevent replay attacks by
sending a challenge nonce N .

Using Fcert for message certification leads to transferable or undeniable authentication since
everyone can verify messages [CSV16]. In Figure 5, we define a session-based certification func-
tionality Fcs. Fcs does not have the transferability property since only the sender and receiver of
a message can verify the certificate. We follow the UC with joint state (JUC) [CR03] model. In
this model, there are subsessions that share a joint state. This is useful for an efficient KEM and
MAC-based authenticator, where the same MAC key is used for authenticating multiple messages.
Instead of calling it a subsession, we use a message id mid which is unique for each message. Again
mid only serves as a method to link messages of a protocol together. In Figure 6, we show a protocol
that realizes Fcs based on a KEM and a MAC.

Theorem 3.3. Let Π be the protocol in Figure 6, KEM be IND-CPA secure and correct and MAC
EU-CMVA secure and correct. Then, for any ppt adversary A in the UM model, there exists a
ppt adversary A’ in the UM model such that for any ppt environment D and any polynomial size
auxiliary input z

|Pr[D(z, (AUM)Π) = 1]− Pr[D(z, (A′UM)Fcs
) = 1]| = negl,

where all algorithms receive input 1κ.

12

Pc: Pv:

start certified session:

(pk, sk)← KGen(1κ)

send pk to Fcert, receive σ send (pk, σ, Pc) to Fcert

abort if Fcert sends 0

(pk, σ)

(ct)

k← KGenMAC(1κ; k′)

(ct, k′)← Enc(pk)k′ = Dec(sk, ct)

k← KGenMAC(1κ; k′)

certify message:

τ = Tag(k,m)

(m, τ)

verify message:

Verify(k,m, τ) = 1

Figure 6: The figure shows a certified session based on a KEM, MAC and Fcert. For the sake of
simplicity, we omit sid and mid, which only serve to identify messages and link them to a session.

Proof. Given A, we construct A’. First notice that environment D can only distinguish A from
A’ in two ways: First, when A creates a valid pair (m, τ) for which m, σ with σ = τ has not been
recorded as (v, w,m, σ, 1) by Fcs (where v is a public key and w an encapsulation of the random
coins of the MAC key generation). Second, when the correctness of KEM or MAC fails.

In case A = Pc or A = Pv, constructing A′ is easy. We let A′ interact with A. A′ either chooses
pk and sends it to A (A = Pv) or A′ chooses and sends the encapsulation (A = Pc). In both cases
A′ knows k, can verify (m, τ) and force Fcs to record (v, w,m, τ, 1) when (m, τ) is valid. This only
fails when the correctness fails.

The non-trivial case is when A 6∈ (Pc, Pv). In this case, we define a sequence of hybrids A′1, A′2.
A′1 follows the protocol by following the description of Pc and Pc. A′2 is identical to A′1 except that
he replaces ct, which encapsulates k, with an encapsulation of a uniform key ku. Notice that pk is
authenticated using Fcert. Therefore A cannot manipulate pk.

Let KEM be εKEM IND-CPA secure, then, conditioned on A 6∈ (Pc, Pv),

|Pr[D(z, (AUM)Π) = 1]− Pr[D(z, (A′2,UM)Π) = 1]| ≤ εKEM.

Now, the communication transcript between Pc and Pv is independent of MAC key k and we
can exploit the EU-CMVA security of MAC. In the EU-CMVA game, we can request arbitrary tags
and win if we can forge a new tag. Our final adversary A′ generates the start certified session
messages as A′2 does with the exception that he looks up pk from Fbb. For the certify message and
verify message phase, he uses the tag and verification queries in the EU-CMVA game to simulate
Pc and Pv. More specifically, whenever Pc requests a tag for m from Fcs, he makes a tag query for
m and sends σ = τ to Fcs. Further, he uses (m, τ) as message for A. Whenever Pv makes a query
(m, τ). A’ checks whether τ has been a response to a tag query. If not, he makes a verification
query. If the verification fails, Fcs answers also with 0 since this query has not been recorded. If
the verification succeeds, D might distinguish A′ from A but A′ breaks the EU-CMVA security.

Let MAC be εMAC EU-CMVA secure. Then, conditioned on A 6∈ (Pc, Pv),

|Pr[D(z, (A2,UM)Π) = 1]− Pr[D(z, (A′UM)Fcs
) = 1]| ≤ εMAC.

13

Let MAC and KEM both be δ-correct. Then

|Pr[D(z, (AUM)Π) = 1]− Pr[D(z, (A′UM)Fcs
) = 1]|

≤ εMAC + εKEM + 2δ.

In Appendix C, we provide realizations of Fcert based on signatures and realizations of Fcs

based on MACs and CCA secure KEMs or MACs and the CDH based KEM, where security is
proven in the AGM.

3.2 Party-Specific Authenticators

In existing UC models for secure channels all parties are assumed to be equal. That is any party
can have the role of the protocol initiator. In protocols for entity authentication it may be the case
that we only wish to ensure unilateral authentication, or in the case of mutual authentication, the
method of authentication in either direction may be different.

We extend the previous model for authenticated and unauthenticated channels to consider
both unilateral and mutual authentication. Within a single session of a protocol, one party will be
designated the role of initiator and the other the responder. In the case of unilateral authentication,
we split the set of all parties into those that are authenticated and those that are unauthenticated.
We all this model the AM+ model. We use AM+

P to denote the setting in which the adversaries
delivers the messages of parties P 6∈ P faithfully. For any party P ∈ P, the adversary is allowed to
drop, inject and alter messages send by this party.

First, we adapt Definition 3.1 to our AM+ model.

Definition 3.4. For two protocols Π and Π′ between parties (P1, . . . , Pn), we say that Π′ emulates
Π in the AM+

P model where P ⊆ (P1, . . . , Pn) if for any ppt adversary A’ in the AM+
P model, there

exists a ppt adversary A in the AM model such that for any ppt environment D and any polynomial
size auxiliary input z

|Pr[D(z, (AAM)Π) = 1]− Pr[D(z, (A′
AM+

P
)Π′) = 1]| = negl,

where all algorithms receive input 1κ.

We define a party-specific authenticator following Definition 3.2 to transform any protocol secure
in the AM model into one secure in the AM+ model, we make use of an authenticator which provides
the additional security guarantees required.

Definition 3.5. A compiler C+
P is an algorithm that takes for input descriptions of protocols and

outputs descriptions of protocols. An authenticator is a compiler C+
P where for any protocol Π with

parties (P1, . . . , Pn) secure in the AM model and P ⊆ (P1, . . . , Pn), the protocol C+
P (Π) emulates Π

in the AM+
P model.

Notice that when P = (P1, . . . , Pn), the AM+
P model is equivalent with the UM model while

when P = ∅ it is equivalent with the AM model. In Figure 7 and Figure 8, we show party specific
compilers for a party A. One authenticates individual messages while the other authenticates all
messages sent by A during a whole session which causes less overhead. Both authenticators are
basically the authenticators of [BCK98] adapted to our certification functionalities. As in [BCK98],
the round complexity can be compressed by sending the nonce together with the previous message.

14

A: P :
for any session between A and any other party P :

start authenticated session:
sample w

send (sid,A, w) to Fcs

for any message sent by A during session sid:

N ← {0, 1}κsid,mid, Nsend
(sid,mid, (N,m),A, P)

to Fcs and receive σ sid,mid,m, σ
send
(sid,mid, (N,m), σ,A, P)

to Fcs and receive b
ignore m iff b = 0

Figure 7: The figure shows an authenticator C+
A that authenticates all messages sent by A during

all sessions based on Fcs.

A: P :
for any session between A and any other party P :

for any message sent by A during session sid:

N ← {0, 1}κsid,mid, Nsend
(sid,mid, (N,m),A, P)

to Fcert and receive σ sid,mid,m, σ
send
(sid,mid, (N,m), σ,A, P)

to Fcs and receive b
ignore m iff b = 0

Figure 8: The figure shows an authenticator C+
A that authenticates all messages sent by A during

all sessions based on Fcert.

15

Theorem 3.6. Let Π be a protocol between parties (P1, . . . , Pn) that is secure in the AM+
P model

where P ⊆ (P1, . . . , Pn). Let A = Pi for some i ∈ [n] and C+
A be one of the two authenticators

defined in Figure 7 or 8. Then C+
A (Π) emulates Π in the AM+

P∪A model.

Proof. The difference between the AM+
P and AM+

P∪A model is that in the latter an adversary A can
drop, inject or alter messages sent by A. The two models are equivalent, when A = A since then he
can drop, inject or alter messages of A in both models. Another trivial case is when A is the receiver
of the messages from A. In this case he might accept an injected or altered message. Again, A can
trivially alter or inject messages for himself in both models without breaking security. Therefore,
we consider in the following the case when A is neither A nor the recipient of the message that he
wishes to alter or inject.

Since in C+
A (Π) all messages that do not have a certificate are ignored, A needs to either generate

certificates for his injected or altered messages or he needs to reuse previous messages with a valid
certificate. Let us first consider the authenticator in Figure 8. Fbb uniquely binds v to A. Further,
Fcert only allows A to enter a record (v,m, σ, 1) through a certify or verify query. Thus, A cannot
generate a new tuple m, σ that will not be ignored by a receiver of the message.

The receiver of a message from A will always sample a random nonce N from {0, 1}κ. Except
with a negligible probability this nonce will collide with a previous nonce. The receiver will always
expect a certificate for (m, N) which forces the adversary to generate a certificate for a new mes-
sage (except when the nonce collides). Therefore, we have proven the theorem statement for the
authenticator of Figure 8.

For the session-based authenticator in Figure 7, the theorem statement follows for similar rea-
sons. Again, the receiver of the message samples a random nonce such that A is forced to generate
a new message that contains this nonce together with a valid certificate. There are only two parties
that can enforce a recording of (v, w,m, σ, 1) in Fcs. This must either happen through a certify
or verify query to Fcs. The first party is the party that Fbb ties to v which can only be A due to
the uniqueness of v. The second party is the party P for which there is a record (v, w, P). There
is only one such party which is the receiver of the message from A. Thus, it is straightforward to
construct an adversary A′ from A which can perform the same attack in the AM+

P model that A
performs in the AM+

P∪A model.

3.3 Implicit Authentication for KEM-based OT

As mentioned in the Introduction, we provide a construction of OT for which the first message,
which is sent from sender to receiver, can be reused. This first message will be the public key of
the KEM. It is immediate that one might want to use a PKI to authenticate this public key. Since
only the owner of this public key (and corresponding secret key) can decapsulate keys under this
public key, this provides implicit authentication. In our case, the owner is the OT sender. When
a receiver generates a message under a certified public key from a PKI, only the owner of the key
can obtain the two strings of the sender. This implicit authentication is strictly weaker than the
explicit authentication provided by an authenticator. An adversary might alter the OT message
of the receiver such that the sender learns different OT strings. The sender will therefore have no
guarantees that the correct message was delivered.

In the case of a standard KEM, explicit authentication can be achieved through the addition
of a key confirmation step, where in the receiver sends back a message using the received key.
Key confirmation has been widely studied in game-based definitional settings [FGSW16] but is
not explicitly discussed with the UC framework. In the case of OT, key confirmation seems a
challenging property to obtain. On one hand, the receiver has only one of the keys and revealing

16

Sender:
registration phase:

(pk, sk)← KGen(1κ)
pk

protocol phase:

k′0 = Dec
(
sk, r0 ⊕ H0(pk, r1)

)
k′1 = Dec

(
sk, r1 ⊕ H1(pk, r0)

)
output: (H2(r0, r1, k

′
d))d∈{0,1}

Receiver(b ∈ {0, 1}):

(ct, k′b)← Enc(pk)

r1−b ← G
rb = ct	 Hb(pk, r1−b)

(r0, r1)

output: (b,H2(r0, r1, k
′
b))

Figure 9: The figure shows the OT1 protocol based on [MR19] using a dense KEM (KGen,Enc,Dec)
and random oracles H0, H1 that hash into a group G with operations ⊕, 	. H2 is a random oracle
from the keyspace K to {0, 1}κ. The protocol consists of a registration and a protocol phase.

which one to the sender via key confirmation would break his security. On the other hand, the
sender could confirm both keys without exposing them. Nevertheless, the receiver is only able to
validate one of the two. This opens the possibility for selective abort (selective failure) attacks.
The sender/owner (or a man-in-the-middle adversary) can send a faulty confirmation for one of the
keys, as this is dependent on the choice bit it will either go unnoticed by the receiver (since he does
not know the key), or the receiver will abort since he thinks the key confirmation has failed. As a
result, we do not provide a key confirmation step for OT. Implicit authentication will however be
enough for many applications. We discuss implicit authentication further in Appendix F.

4 NIOT from Dense Key Encapsulation

4.1 UC Security

The OT1 construction of NIOT from a dense KEM is depicted in Figure 9. In Figure 10, we depict
the OT2 construction. Theorem 4.1 and Theorem 4.4 establish their security with respect to ideal
functionality FNIOT. Both constructions can be instantiated with any of the dense KEMs from
Section 2.2.

Theorem 4.1. Given a dense KEM that is correct and OW-CPA-secure, then the NIOT in Figure 9
is UC secure with respect to FNIOT in the programmable random oracle model.

The proof of Theorem 4.1 is in Appendix B.

Theorem 4.2. Given a dense KEM that is correct and OW-CPA-secure, then the NIOT in Figure 10
is UC secure with respect to FNIOT in the programmable random oracle model.

The NIOT in Figure 10 is almost identical to the protocol of [MRR20] with the difference, that
we include pk and s, T in the hash computation. This does not have any impact on the proof in
[MRR20] and we therefore refer to [MRR20, Theorem 11] for the proof of Theorem 4.2.

4.2 Security under Public Key Reuse

We define a new ideal functionality for the setting where the same public keys are used across
different sessions. We align our definition with the UC definition with a joint state (JUC) [CR03].

17

Sender:
registration phase:

(pk, sk)← KGen(1κ)
pk

protocol phase:

r0 = s+ H0(pk, 0, T)

r1 = s+ H0(pk, 1, T)

k′0 = Dec
(
sk,H1(pk, 0, r0)	 T

)
k′1 = Dec

(
sk,H1(pk, 1, r1)	 T

)
output: (H2(s, T, k′d))d∈{0,1}

Receiver(b ∈ {0, 1}):

(ct, k′b)← Enc(pk)

r ← {0, 1}κ
T = H0(pk, b, r)	 ct

s = r + H1(pk, b, T)
(s, T)

output: (b,H2(s, T, k′b))

Figure 10: The figure shows the OT2 protocol which is a variant of [MRR20] with the difference
that it uses a dense KEM (KGen,Enc,Dec) instead of a key agreement and that it includes the
public key and the receiver’s messages in the hash computations. It uses random oracles H0, H1

that hash into a group G with operations ⊕, 	. H2 is a random oracle from the keyspace K to
{0, 1}κ. The protocol consists of a registration and a protocol phase.

In our case the joint state is the public key which is being reused. As in JUC, a sender can start a
joint state by publishing or transferring a public key. A receiver can then start a subsession under
this public key to generate OT correlations. We define this functionality in Figure 11 and denote
it with FmNIOT. For the sake of simplicity, FmNIOT only considers a single receiver. Our security
claims still hold when considering multiple receivers that are different entities.

This setting is slightly different from the global UC (GUC) setting [CDPW07] where all protocols
can use a single instantiation of a global functionality. In our case, each party can run multiple
copies of FmNIOT where each copy might have multiple subsessions. Nevertheless, our results in the
JUC setting translate to the GUC setting when considering the public keys as part of a PKI that
is modeled as a global bulletin board.

In Theorem 4.3, we show that the construction in Figure 9 instantiated with the CDH KEM of
Section 2.2 is secure with respect to ideal functionality FmNIOT in the AGM.

Theorem 4.3. Let the CDH assumption hold over group G. Then the NIOT in Figure 9 instantiated
with the CDH KEM in Section 2.2 is UC secure with respect to FmNIOT in the programmable random
oracle model combined with the algebraic group model.

We refer for the proof to Appendix D. We show the same statement for the OT2 construction
in Theorem 4.4 and refer for the proof to Appendix E.

Theorem 4.4. Let the CDH assumption hold over group G. Then the NIOT in Figure 10 instan-
tiated with the CDH KEM in Section 2.2 is UC secure with respect to FmNIOT in the programmable
random oracle model combined with the algebraic group model.

Since both of the protocol use the same public key in the CDH KEM setting, a party can use
the same public key to run both protocols and the security follows from the JUC composability.
There is one caveat, both protocols are proven in the local random oracle model and local AGM.
This technically requires that different random oracles or groups are used. When this is not the
case, there could be issues when simulating the random oracle or group. Since in the AGM setting,

18

FmNIOT :

registration phase:
Upon receiving a session identity sid from S, FNIOT checks whether sid has been
stored. If not, it stores sid. Otherwise it sets a flag for sid.

protocol phase:
Upon receiving (sid, ssid, b, kb, ssid

′) from R, FmNIOT checks whether sid has not been
stored or has a flag. It also checks whether ssid has been stored. If any check outcome
is yes, it ignores the message. Otherwise, if ssid′ = ∅, it samples k1−b ← K and if
ssid′ 6= ∅ it looks up k′1−b from session ssid′ and sets k1−b = k′1−b. Afterwards it stores
and sends (sid, ssid, k0, k1, ssid

′) to S.

Figure 11: The figure shows the ideal FmNIOT functionality. For each session identity, the protocol
phase can be executed multiple times and each protocol phase has its own subsession id (ssid).

we do not simulate the group, this should not pose an issue and reusing a group seems less of a
concern than reusing the same hash function.

5 Implementation

We provide an implementation of the OT1 (based on [MR19]) and OT2 (based on [MRR20]) protocol
when instantiated with the CDH KEM and RSA KEM. We report the cycle and running time
amount in a modular fashion such that it is easy to compare our results with previous works based
on elliptic curves. We only compare our results with OT protocols in which the first message could
be seen as a public key and therefore potentially reused. These two protocols are those of Chou
and Orlandi [CO15] and, Canetti, Sarkar and Wang [CSW20]. In Figure 1 one can observe the
basic operations required for the three protocols. Using the running time reported in Figure 12,
one can roughly estimate the performance and compare their efficiency. We emphasize that these
performance estimates are only rough estimates based on a non-optimized implementation.

Our Protocol Implementation We use the relic toolkit [AGM+] for the basic cryptographic
functionalities which includes all elliptic curve operations and RSA key generation, encryption and
decryption. To implement our elliptic curve based OT protocol, the operations of multiplication,
addition, subtraction, hashing to a curve over an elliptic curve are sufficient. We chose the relic
toolkit [AGM+] since it provides all operations over a large set of elliptic curves. Additionally, in
provides the hashing to a curve point operation which is a less standard.

We implement our protocol in a straightforward fashion without optimization. We benchmark
our performance on an Intel® Core™ i5-10210U CPU @ 1.60GHz × 8 with 15GB memory. In
Figure 12, we report the running time and cycles of our protocol and the basic group operations
such as exponentiation, division and hashing into an elliptic curve. For the latter operation, we
use the operation provided in [AGM+]. For our implementation, we choose curve25519 which has
been previously used in the implementations by [CO15].

We do not benchmark our results over a network. Due to the non-interactive nature of our
protocol, we estimate that the impact of network delays is less significant and should not vary from
previous works such as [CO15] or [CSW20]. We also do not include the authentication mechanism
in the benchmark in Figure 12. The authenication mechanism is an orthogonal property that each

19

Operation cycles running time

Mul 584561 0.277 ms

Sub 1228 0.001 ms

Add 1118 0.001 ms

GHash 245569 0.116 ms

Key Generation 232424 0.110 ms

OT1,R 1378214 0.653 ms

OT1,S 1867754 0.885 ms

OT2,R 1195311 0.566 ms

OT2,S 1879205 0.890 ms

Figure 12: We benchmark elliptic curve multiplications (Mul), subtractions (Sub), additions (Add)
and hash operations into the group (GH) for curve25519 and average over 25k runs. We use
OT1,R,OT2,R, OT1,S,OT2,S to denote the protocol execution of R, S respectively. In OT1,S,OT2,S,
we do not include the key generation. Further, we consider the protocol in the unauthenticated
setting.

Operation cycles running time

Key Generation 277570659 131.415 ms

RSA Enc 142624 0.068 ms

RSA Dec 3820942 1.810 ms

OT1,R 186457 0.089 ms

OT1,S 7654668 3.625 ms

OT2,R 179813 0.085 ms

OT2,S 7640627 3.618 ms

Figure 13: We benchmark our protocol instantiated with the RSA trapdoor permutation with a
key length of 2048 by averaging over 100 runs. We use OT1,R,OT2,R, OT1,S,OT2,S to denote the
protocol execution of R, S respectively. In OT1,S,OT2,S, we do not include the key generation.
Further, we consider the protocol in the unauthenticated setting.

of the OT protocols can use in a similar fashion.
We use the same hardware settings to benchmark our RSA-based OT. We report the running

time and cycle amounts in Figure 13.
Multiplications with the base generator of an elliptic curve group are significantly more efficient

that with a random element. This leads to a major discrepancy between the cycle amounts of a
multiplication and the key generation reported in Figure 12. This fact benefits in particular the
OT construction of Chou and Orlandi and using Figure 1 to estimate their performance leads to an
overestimate in terms of cycles and running time. A related hidden cost the OT1 protocol comes
from the requirement to sample a random group element. In Relic this is implemented in a similar
fashion as for key generation and therefore causes the same computational complexity. The OT2

protocol does not generate such a random element which not only decreases the communication
complexity but also the running time by roughly 180K cycles.

In the OT1 protocol, the receiver has to encapsulate a key, sample a random group element,
hash to a group and subtract it from the encapsulation. Since the encapsulate a key procedure
requires two multiplication of which one is with a random element, we need one multiplication with
a random element, two multiplications with the base generator and one hash operation in total.

20

Adding the cycles for these individual operations based on Figure 12 results in roughly 1295K
cycles which matches the receivers total running time of 1378K cycles almost, with an overhead of
83K cycles. In OT2, there are almost the same operations minus generating one random element.
Therefore the individual operations sum up to roughly 1146K cycles with a discrepancy of around
50K cycles compared to the cycles reported in Figure 12.

On the sender’s side, a sender has to compute two hash to a group operations and two decapsu-
lations. Each decapsulation requires one multiplication with a random group element. This results
in two multiplications with a random element and two hash operations which based on Figure 12
totals in 1660K cycles. This has a discrepancy of 207K cycles compared to the sender’s actual
running time and is roughly twice the discrepancy of 83K cycles on the receiver’s side. This can
be explained by the fact that the sender has to do roughly twice the amount of group additions
(subtractions) and standard hash operations compared to the receiver. This leads to the conclusion
that the estimate of the overall running time of sender and receiver based on the individual group
operations provides a realistic estimate when distinguishing different forms of multiplications and
sampling random elements.

Comparison with Chou Orlandi [CO15] The protocol of Chou and Orlandi uses the iden-
tical key-generation procedure. On the receiver’s side, it requires operations that are identical to
encapsulation in the CDH KEM, which totals 816K cycles based on Figure 12. On the sender’s
side, the protocol can be optimized such that he only needs to compute a single multiplication with
a random element which results in around 585K cycles at the cost of requiring a precomputation of
another multiplication with a random element. This would increase the computational cost of the
key generation to around 816K cycles. This optimization makes sense when the first OT message
(the public key) is reused.

Based on these estimates, which rely on the curve25519 implementation of the relic toolkit, the
OT protocol of Chou and Orlandi is significantly faster and in case of OT1 additionally requires less
communication. However, it has the drawback that it does not accomplish UC security even when
the public key is only used once. In applications where a weaker security notion is sufficient and
where the performance is very significant, the Chou and Orlandi OT seems to be the better choice.
When UC security is required, which is the de facto standard for MPC, the Chou and Orlandi OT
should not be used and the alternative to OT1 (based on [MR19]) and OT2 (based on [MRR20]) is
the OT protocol of Canetti, Sarkar and Wang [CSW20] which is tailored to the CDH setting.

Comparison with CSW [CSW20] The CSW OT protocol achieves UC security when the first
message (public key) is only used once. Their optimized variant requires a CRS, in addition to a
random oracle. In their protocol, the receiver needs to compute two hash into the group operations,
one multiplication with the base generator and two with a random element. Based on Figure 12,
this leads to 1892K cycles which is a 46% overhead compared to the estimate of the receiver of
OT1 and 65% in case of OT2. The sender’s key generation requires a multiplication with the
base generator and one with a random element. This results in 816K cycles and an overhead of
251% compared to the estimates for the OT1,OT2 key generation. An optimization of the protocol
requires another precomputation by the sender of two multiplications with random elements which
results in a total of 1984K cycles of the sender’s precomputation including key generation. This
would result in an overhead of 755% for the precomputation which is typically not an issue when
the first message is reused since it will be amortized over the amount of OT sessions. During the
protocol, the sender needs to only compute two multiplications with random elements which results
in around 1168K cycles which is only 70% of the estimate for what the OT1 and OT2 sender needs

21

to compute during the protocol.
It is not straightforward to compare the CDH-based OT1 and OT2 with the CSW OT [CSW20].

The public key size is identical and OT2 has roughly half the communication costs on the side of
the receiver. The main difference seems to be that the CSW OT have a faster sender and a slower
receiver at the cost of requiring a CRS and slightly more storage to store the precomputed elements.
It seems that the best choice between CSW and MRR depends on the application. When the first
message is reused, OT1 and OT2 are secure under discrete log in the AGM while the security of
CSW remains unclear in this setting.

Summary We are unaware of any efficient OT-protocol based on RSA. The RSA-based OT1,
OT2 are nice alternatives to a CDH-based OT in settings where RSA is preferred over elliptic-curve
cryptography. As expected for RSA-based cryptosystems, the key generation and decryption oper-
ations are expensive. The sender needs to perform two decryption operations which we implement
using the faster option available in the relic toolkit exploiting the CRT representation. Neverthe-
less, two decryptions are still very expensive which causes the sender’s higher computational costs
during the protocol phase. Since the receiver only needs to perform an encryption which is very
fast, the receiver computational costs are very low which could be interesting in a setting where
the receiver might be a resource constraint device and the sender is a server where computational
costs are less an issue. The overhead of OT1, OT2 on top of the RSA key generation, encryption
and decryption is minimal since we can use standard hashing opposed to hashing to a curve as in
the CDH case. Sampling a random element is straightforward and very efficient. This makes it
very easy to use wherever RSA is used.

In summary, OT1, OT2 seem competitive with the state of art in terms of efficiency while they
improve the state of art in terms of security when the first message (public key) is reused. The
estimates are dependent on the implementation of the RSA and elliptic curve operations provided
by the relic toolkit as well as the specific curve choice. These estimate might significantly vary for
different parameter choices and optimized implementations.

References

[AGM+] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC is
an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer extensions with security for malicious adversaries. In Elisabeth Os-
wald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 673–701. Springer, Heidelberg, April 2015.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract). In 30th
ACM STOC, pages 419–428. ACM Press, May 1998.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computa-
tions. In 28th ACM STOC, pages 479–488. ACM Press, May 1996.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532.
Springer, Heidelberg, April / May 2018.

22

https://github.com/relic-toolkit/relic

[BM90] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In
Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 547–557. Springer,
Heidelberg, August 1990.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally compos-
able security for standard multiparty computation. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 3–22.
Springer, Heidelberg, August 2015.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 61–85. Springer, Heidelberg, February 2007.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange
and secure channels. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 337–351. Springer, Heidelberg, April / May 2002.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In
Kristin E. Lauter and Francisco Rodr´iguez-Henr´iquez, editors, LATINCRYPT 2015,
volume 9230 of LNCS, pages 40–58. Springer, Heidelberg, August 2015.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg,
August 2003.

[CSV16] Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authentica-
tion and key-exchange with global PKI. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages
265–296. Springer, Heidelberg, March 2016.

[CSW20] Ran Canetti, Pratik Sarkar, and Xiao Wang. Efficient and round-optimal oblivious
transfer and commitment with adaptive security. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 277–308. Springer,
Heidelberg, December 2020.

[CvT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious trans-
fer and private multi-party computation. In Don Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 110–123. Springer, Heidelberg, August 1995.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors,
CRYPTO’82, pages 205–210. Plenum Press, New York, USA, 1982.

[FGSW16] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan Warinschi. Key confir-
mation in key exchange: A formal treatment and implications for TLS 1.3. In 2016
IEEE Symposium on Security and Privacy, pages 452–469. IEEE Computer Society
Press, May 2016.

23

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its
applications. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

[GIR17] Ziya Alper Genç, Vincenzo Iovino, and Alfredo Rial. “The simplest protocol for
oblivious transfer” revisited. Cryptology ePrint Archive, Report 2017/370, 2017.
https://eprint.iacr.org/2017/370.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious transfer.
In 41st FOCS, pages 325–335. IEEE Computer Society Press, November 2000.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg,
April / May 2018.

[HL17] Eduard Hauck and Julian Loss. Efficient and universally composable protocols for obliv-
ious transfer from the CDH assumption. Cryptology ePrint Archive, Report 2017/1011,
2017. https://eprint.iacr.org/2017/1011.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sa-
hai. Efficient non-interactive secure computation. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May
2011.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Heidelberg, August 2008.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31. ACM Press, May 1988.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 724–741. Springer, Heidelberg,
August 2015.

[MR19] Daniel Masny and Peter Rindal. Endemic oblivious transfer. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
309–326. ACM Press, November 2019.

[MRR20] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Minimal symmetric PAKE and 1-
out-of-N OT from programmable-once public functions. In Jay Ligatti, Xinming Ou,

24

https://eprint.iacr.org/2017/370
https://eprint.iacr.org/2017/1011

Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 20, pages 425–442. ACM
Press, November 2020.

[MRR21] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Batching base oblivious transfers.
IACR Cryptol. ePrint Arch., 2021:682, 2021.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-N OT
extension with application to private set intersection. In Helena Handschuh, editor,
CT-RSA 2017, volume 10159 of LNCS, pages 381–396. Springer, Heidelberg, February
2017.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical report,
Harvard University, 1981.

[RD08] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, August 2008.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
August 2018.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Additional Definitions

A.1 Message Authentication Code

Definition A.1 (Message Authentication Code (MAC)). A Message Authentication Code consists
of three ppt algorithms (KGen, Tag, Verify) and a key space K with the following syntax:

KGen: The key generation algorithm takes as input 1κ and outputs a key k.

Tag: The tagging algorithm takes as inputs a key k and a message m and outputs a tag τ .

Verify: The verification takes as inputs a key k, a message m, a tag τ and outputs either 0 or 1.

Further, we require correctness and existential unforgeability under chosen message and verification
attacks (EU-CMVA):

Correctness:
Pr[Verify(k,m,Tag(k,m)) = 1] ≥ 1− negl,

where k← KGen(1κ).

EU-CMVA Security: For any ppt adversary A and any polynomial size auxiliary input z,

|Pr[Verify(k,m∗, τ∗) = 1 | A(z, 1κ) = (m∗, τ∗)] ≤ negl,

where k ← KGen(1κ) and A can make any polynomial amount of queries to Tag(k, ·) and
Verify(k, ·) but τ∗ must not be a response to a query to Tag(k, ·).

25

A.2 Signature Scheme

Definition A.2 (Signature Scheme (SIG)). A Signature Scheme consists of three ppt algorithms
(KGen, Sign, Verify) with the following syntax:

KGen: The key generation algorithm takes as input 1κ and outputs a key pair (sk, pk).

Sign: The signing algorithm takes as inputs sk and a message m and outputs a signature σ.

Verify: The verification takes as inputs pk, a message m, a signature σ and outputs either 0 or 1.

Further, we require correctness and existential unforgeability under chosen message attacks (EU-
CMVA):

Correctness:
Pr[Verify(pk,m,Sign(sk,m)) = 1] ≥ 1− negl,

where (sk, pk)← KGen(1κ).

EU-CMA Security: For any ppt adversary A and any polynomial size auxiliary input z,

|Pr[Verify(pk,m∗, σ∗) = 1 | A(z, 1κ) = (m∗, σ∗)] ≤ negl,

where (sk, pk) ← KGen(1κ) and A can make any polynomial amount of queries to Sign(sk, ·)
but σ∗ must not be a response to a query to Sign(sk,m∗).

A.3 Algebraic Group Model

The algebraic group model (AGM) has been introduced by [FKL18] and can be seen as a trade-off
between the standard model and generic group model. Security proofs in the AGM typically still
require assumptions.

In the AGM, adversaries are considered algebraic. This means that if an adversary (A) has
access to group elements Ja1K, . . . , JanK, any group element that he outputs will be of the form∑n

i=1 αiJaiK and α1, . . . , αn can be efficiently extracted from A.
In our case, we also give A access to a random oracle to the group. Outputs of this oracle will

be contained in the set of group elements that A can access. This does not create any complications
because the random oracle can for each query sample u ← Zp \ {0} and output JuK. The party in
control of the oracle can then extract u from the oracle.

Similar to a random oracle, there could be session specific (local) groups or there could be a
global group, which requires more care when combining the AGM with the UC model. We are
unaware, of any works that combine the AGM with the UC model. Therefore and also for the sake
of simplicity, we consider the former case. Nevertheless, this comes at the drawback that it does
not accurately model reality where usually the same group is used across different sessions.

A.4 Cryptographic Assumptions

We recap standard assumptions such as discrete log, CDH, LWE and RSA.

Definition A.3 (Discrete Logarithm). A ppt algorithm A solves the Discrete Logarithm problem
for a group G of order p and generator J1K with probability ε if

Pr[A(J1K, JaK) = a] ≥ ε,

where a← Zp.

26

Definition A.4 (Computational Diffie-Hellman (CDH)). A ppt algorithm A solves the Computa-
tional Diffie-Hellman (CDH) problem for a group G of order p and generator J1K with probability ε
if

Pr[A(J1K, JaK, JbK) = JabK] ≥ ε,

where a← Zp, b← Zp.

Definition A.5 (Learning with Errors (LWE)). A ppt algorithm A solves the Learning with Errors
(LWE) problem for parameters n,m, q ∈ N and noise distribution X with probability ε if

Pr[A(A,As+ e) = s] ≥ ε,

where A← Zm×nq , s← Znq and e← X .

Definition A.6 (RSA). A ppt algorithm A solves the RSA problem for parameters p, q ∈ N with
probability ε if

Pr[A(pq, e,M e mod pq) = M] ≥ ε,

where e ∈ N is a fixed parameter.

B Proof of Theorem 4.1

By the correctness of the KEM, the protocol will produce the correct outputs when two honest
parties interact.

We continue with proving that the NIOT is secure against a malicious sender.

Claim B.1. Given an ε-dense KEM, then it holds that in the programmable random oracle model
for any ppt adversary A, there exists a ppt adversary A’ such that for any ppt distinguisher D and
any polynomial size auxiliary input z,

|Pr[D(z, (A,R)Π) = 1]− Pr[D(z, (A′,FNIOT)) = 1]|
≤ ε+ 2−κ+2,

where all algorithms receive input 1κ and R additionally receives an input b.

Proof. To prove the claim, we use a sequence of hybrids, i.e an intermediate receiver (R1) that
interacts with A. R1 behaves like R with the exception that it generates two encapsulations and
uses its capability to program the random oracle such that the two recombined encapsulations
match the two generated encapsulations.

We define R1 as follows. When A makes a random oracle query, R1 uses the lazy sampling
approach and returns a random element in the domain of the random oracle and stores it in a list.
If the query has been done before, it returns the output for that query in the list instead.

During the protocol phase, R1 takes the session public key pk and generates two encapsulations
(ct0, k0) ← Enc(pk) and (ct1, k1) ← Enc(pk). It then samples r0, r1 ← G. Due to the high entropy
of r0, r1 and the uniqueness of sid, the lazily sampled random oracle is undefined for inputs r0, r1

except with probability 2 · 2−|G| which is smaller than 2 · 2−κ. Therefore, R1 can program the
random oracles H0 on point sid, r1 and H1 on point sid, r0 such that ct0 = r0 ⊕ H0(sid, r1) and
ct1 = r1 ⊕ H1(sid, r0).

When A is able to distinguish an interaction with R from R1, then it must distinguish ct1−b
(R1) from the uniformly distributed ct1−b (R). This would break the density property of the KEM.

27

Therefore
|Pr[D(z, (A,R)) = 1]− Pr[D(z, (A,R1)) = 1]| ≤ ε+ 2−κ+1.

Since R1 is, during all sessions, independent of the choice bit b (except for its output), we can use
it to construct our adversary A′ that interacts with the ideal functionality FNIOT and returns the
output of A (by interacting with him as well). A’ follows the description of R1 with the following
exceptions. When A registers pk during the registration phase, A’ sends sid to FNIOT. During the
protocol phase, A’ receives message (sid, b, kb) from FNIOT. A’ generates ct0, ct1 as R1 does. The
encapsulated keys k′0, k

′
1 of ct0, ct1 have high entropy and therefore, because sid is unique, the lazily

sampled H2 is undefined on inputs k′0, k
′
1 except with probability less than 2 · 2−κ. Thus, A’ can

program H2 such that H2(sid, k′0) = k0 and H2(sid, k′1) = k1. A’ sends r0, r1 and then outputs the
output of A.

This implies

|Pr[D(z, (A,R1)) = 1]− Pr[D(z, (A′,FNIOT) = 1]| ≤ 2−κ+1.

We finish the proof of the theorem by showing that the OT protocol is secure against a malicious
receiver.

Claim B.2. Given an ε1-dense KEM that is ε2 OW-CPA secure. Then it holds that in the pro-
grammable random oracle model for any ppt adversary A, there exists a ppt adversary A’ such that
for any ppt distinguisher D and any polynomial size auxiliary input z,

|Pr[D(z, (S,A)Π) = 1]− Pr[D(z, (FNIOT,A′)) = 1]|
≤ q2

hε1 + q5
hε2,

where all algorithms receive input 1κ and qh is an upper bound on the amount of random oracle
queries of A. 1

Proof. We use again a sequence of hybrids. This time, the hybrids iterate over all random oracle
queries to H0,H1 for the same session sid. We consider a collection of senders (Si)i∈[qh], where S0 is
identical to S.

We define the hybrids in the following way. Si is identical to Si−1 except how he computes a key
k given a k′ from a specific set K′ which we will define as follows2. Instead of querying the random
oracle H2 on input k′ to compute k, he samples k uniformly at random. Let r be the i-th query to
random oracles H0(sid, ·),H1(sid, ·) and let that oracle be Hd for d ∈ {0, 1}. We define the set

K′ := {k′ | k′ ← Dec(sk, ct), ct = r ⊕ H1−d(sid, rn), i < n ≤ qh},

where rn is defined as the n-th query to oracle H1−d(sid, ·).
Now, we show that A cannot distinguish Si from Si−1 using a hybrid S′i−1. S′i−1 is identical

to Si−1 except that he programs the random oracle H1−d(sid, rn) for all i < n ≤ qh such that
ct = r ⊕ H(sid, rn) is an output of Enc(pk). He can do this by sampling (ct, k′) ← Enc(pk) and
programming H1−d(sid, rn) = r	 ct. For every n, he samples a fresh ct. S′i−1 programs H1−d(sid, ·)

1We did not optimize the tightness of our analysis. The loss of the reduction can be reduced e.g. by using an
IND-CPA KEM.

2Additionally Si differs from Si−1 in the fact that some outputs of H1−d are distributed the same as encapsulations
generated by Enc(pk).

28

on rn whenever A makes a query rn to H1−d. Since we assume that A does not query the same
input to the same oracle twice3, H1−d will be undefined such that the programming does not fail.

If A can distinguish Si−1 and S′i−1, then he can distinguish a uniform ct from an output of Enc
and hence break the density property of KEM. Therefore,

|Pr[D(z, (Si−1,A)) = 1]− Pr[D(z, (S′i−1,A)) = 1]| ≤ qhε1.

Notice that for all programmed encapsulations, their encapsulated key is in the set K′. Further,
Si is identical to S′i−1 except that for all encapsulated keys k′ of the encapsulations ct that were
used to program H1−d, i.e. k′ ∈ K′, Si defines k as uniform instead of k = H2(sid, k′). A can
only distinguish Si from S′i−1 if he makes a query a key from K′ to H2(sid, ·). Though if that is
the case, we can build an adversary AKEM that breaks the key recovery security of KEM in the
following way. AKEM registers the challenge public key and guesses a random query j in (i, qh] of
A to H1−d(sid, ·) and programs it to the challenge ciphertext. AKEM fails if (r0, r1) of the protocol
do not correspond to queries (ri, rj). Assuming that this is not the case, AKEM needs to generate
the senders output. He rolls a three sided dice. If one, he guesses that A has made its query for k0

to H2(sid, ·), if two or three he guesses not. In the first case AKEM picks his k0 randomly from the
outputs of H2(sid, ·). In the second case, he chooses a uniform k and he picks a random future query
to H2(sid, ·) that he will program to k. The third case is identical to the second case, except that
he does not program H2(sid, ·) for any future query. He follows the same strategy for computing
k1. AKEM returns protocol output (k0, k1). After all queries to H2(sid, ·) have been finished, AKEM

returns the preimage of k1−d to the challenger.
We can now bound the probability that Si and S′i−1 can be distinguished as follows.

|Pr[D(z, (Si,A)) = 1]− Pr[D(z, (S′i−1,A)) = 1]| ≤ 9q4
hε2.

For any choice of (r0, r1) of A that have been queried to H0,H1, at least one of the keys in the
output of Sqh does not match the actual key. Let this key be k1−b which is unnoticed by A or D.
Therefore, we can use Sqh to construct A′. A′ needs to send (sid, b, kb) to FNIOT. He follows the
description of Sqh . Instead of outputting (kb, k1−b) where k1−b is fake, it sends (sid, b, kb) to FNIOT

and outputs the output of A. The output of Sqh is identical to the output of FNIOT. Thus,

Pr[D(z, (Sqh ,A)) = 1] = Pr[D(z, (NIOT,A′)) = 1].

C Secure Certification Directly based on PKI

In the first part of this section, we show how to realize Fcert based on signature schemes. During
the second part, we show how to obtain secure session certification without relying on Fcert. We
first show it based on a CCA secure KEM. Second, we also show it based on the CDH KEM in the
AGM.

C.1 Signature based Message Certification

In Figure 14 shows a realization of Fcert based on a signature scheme. The construction is basically
identical to the construction of Canetti et al. [CSV16] with the difference that we do not sign the
session or message identity, which results in a weaker ideal functionality that allows replay attacks.

3We make this assumption only for simplicity. If A has already queried rn, i.e. rn = rj for j < n, then if i < j,
it has been already successfully programmed or if i > j, it does not need to be programmed.

29

Pc:

PKI registration phase:

(pk, sk)← KGen(1κ)

register (Pc, pk) with PKI

Pv:

pull (Pc, pk) from PKI

certify message:

σ = Sign(sk,m)

(m, σ)

verify message:

Verify(pk,m, σ) = 1

Figure 14: The figure shows a certified message functionality based on a signature scheme and PKI.

Theorem C.1. Let Π be the protocol in Figure 14 and SIG EU-CMA secure and correct. Then, for
any ppt adversary A in the UM model, there exists a ppt adversary A’ in the UM model such that
for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, (AUM)Π) = 1]− Pr[D(z, (A′UM)Fcert
) = 1]| = negl,

where all algorithms receive input 1κ.

Proof. Given A, we construct A’. First notice that environment D can only distinguish A from A’
in two ways. First, when A creates a valid pair (m, σ) which has not been recorded as (v,m, σ, 1)
by Fcert. Second, when the correctness of SIG fails.

In caseA = Pc, constructingA′ is easy. We letA′ interact withA. A′ knows sk, can verify (m, σ)
and force Fcert to record (pk,m, σ, 1) when (m, σ) is valid. This only fails when the correctness fails.

The non-trivial case is when A = Pv. In this case, A has no control over pk since it is authenti-
cated using the PKI. We can use the security of the SIG scheme as follows. In the EU-CMA game,
we can request arbitrary signatures and win if we can forge a new signature. Our adversary A’
interacts with A as follows. To certify message, he uses the signature queries in the EU-CMA game
to simulate Pc. More specifically, whenever Pc requests a certificate for m from Fcert, he makes a
signature query for m and sends σ to Fcert. Further, he uses (m, σ) as message for A. Whenever
Pv makes a query (m, σ). A’ checks whether σ has been a response to a signature query. If not, he
makes a verification query. If the verification fails, Fcert answers also with 0 since this query has
not been recorded. If the verification succeeds, D might distinguish A′ from A but A′ breaks the
EU-CMA security.

Let SIG be ε EU-CMA secure. Then, conditioned on A 6= Pc,

|Pr[D(z, (AUM)Π) = 1]− Pr[D(z, (A′UM)Fcert
) = 1]| ≤ ε.

Let SIG be δ correct. Then

|Pr[D(z, (AUM)Π) = 1]− Pr[D(z, (A′UM)Fcert
) = 1]|

≤ ε+ δ.

C.2 CCA KEM based Session Certification

In Figure 15, we show a secure session certification solely based on PKI, a CCA secure KEM and

30

Pc:

PKI registration phase:

(pk, sk)← KGen(1κ)

register (Pc, pk) with PKI

Pv:

pull (Pc, pk) from PKI

start certified session: (ct)

k← KGenMAC(1κ; k′)

(ct, k′)← Enc(pk)k′ = Dec(sk, ct)

k← KGenMAC(1κ; k′)

certify message:

τ = Tag(k,m)

(m, τ)

verify message:

Verify(k,m, τ) = 1

Figure 15: The figure shows a certified session based on a CCA KEM and MAC solely based on
PKI.

a CMVA secure MAC without relying on any other certification mechanisms. During the protocol
of Figure 6, we also used Fcert to certify the KEM public key in order to prove security. This is not
the case in the protocol in Figure 15.

Theorem C.2. Let Π be the protocol in Figure 15, KEM be IND-CCA secure and correct and MAC
EU-CMVA secure and correct. Then, for any ppt adversary A in the UM model, there exists a
ppt adversary A’ in the UM model such that for any ppt environment D and any polynomial size
auxiliary input z

|Pr[D(z, (AUM)Π) = 1]− Pr[D(z, (A′UM)Fcs
) = 1]| = negl,

where all algorithms receive input 1κ.

Proof. The proof follows the framework of the proof of Theorem 3.3. The only difference is that
we use the same public key across different sessions. Notice that in the non-trivial case, I.e.
A 6∈ (Pc, Pv), the adversary cannot manipulate the public key pk which is directly obtained from
the PKI.

During the hybrids, there is a step where we switch the encapsulation to an encapsulation that
is uncorrelated to the MAC key. During this step, we will lose access to the secret key. Since our
KEM is CCA secure, we will use the decapsulation oracle to decapsulate incoming encapsulations
of other sessions. If the encapsulation of another session matches our challenge encapsulation, they
will end up being uncorrelated to the MAC key as well while due to correctness, the session must
use the same MAC k. Therefore, we can handle such sessions identical to the challenge session.

Once we have switched the encapsulation to be uncorrelated, the rest of the proof is identical
to last parts of the proof of Theorem 3.3 in which we exploit the security of the MAC.

C.3 KEM based Session Certification in AGM

In Figure16, we show a session certification protocol that is based on the CDH KEM and secure in
the AGM based on discrete log. To prove this theorem, we use a similar approach as for proving
Theorem 4.3. This allows us to use the same KEM for the OT procedure and to encapsulate the
MAC key.

31

Pc:

PKI registration phase:

(JaK, a)← KGen(1κ)

register (Pc, JaK) with PKI

Pv:

pull (Pc, JaK) from PKI

start certified session: (JbK)

k← KGenMAC(1κ;H(JabK))
(JbK, JabK)← Enc(JaK)

k← KGenMAC(1κ;H(JabK))
JabK = Dec(a, JbK)

certify message:

τ = Tag(k,m)

(m, τ)

verify message:

Verify(k,m, τ) = 1

Figure 16: The figure shows a certified session based on a CCA PKE, a hash function H and a
MAC solely based on PKI.

Theorem C.3. Let Π be the protocol in Figure 16, MAC EU-CMVA secure and correct and the
discrete log assumption hold over group G. Then, in the random oracle model combined with the
AGM model, for any ppt adversary A in the UM model, there exists a ppt adversary A’ in the UM
model such that for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, (AUM)Π) = 1]− Pr[D(z, (A′UM)Fcs
) = 1]| = negl,

where all algorithms receive input 1κ.

Proof. As in Theorem C.2, the main challenge is how to replace encapsulations that are related to
the MAC key with unrelated encapsulations. We use a similar strategy as in Theorem 4.3 for the
hybrid of replacing the ciphertexts. Let A′1 be a hybrid which follows the protocol except that the
encapsulation is independent of the MAC key. More specifically, A′1 will use the extract mechanism
of the AGM to try to extract the randomness b ∈ Zp used for the encapsulation. The extract
algorithm will return α, β with ct = αJaK +βpk. Whenever β 6= 0, it just uses a random key rather
than a random oracle output as MAC key. When β = 0, it follows the normal protocol by setting
k = H(αpk).

Our reduction between A and A′1 plays the discrete log game in the AGM as follows. First it
receives a discrete log instance JaK. In each session where it needs to generate an encapsulation,
he samples a random γ ← Zp and sends encapsulation γJaK and samples an independent MAC
key. Whenever the adversary makes a random oracle query q to H, the reduction checks for any
γ whether q

γ J1K = JaK, if so it breaks discrete log by returning q
γ = a. When the adversary sends

an encapsulation for which the reduction extracts α, β with β = 0, the reduction uses H(αJaK) to
compute the MAC key. When the adversary sends an encapsulation where β 6= 0, the reduction
checks for all previous and all future random oracle the following. Let the query be q and the
extraction returns αq, βq with q = αqJ1K + βqJaK. It then solves the equation for â (using the
Tonelli-Shanks algorithm)

βâ2 + (α− βq)â− αq = 0. (1)

If it has a non-trivial solution, check for any solution whether âJ1K = JaK. If so break the discrete
log by returning â.

32

Due to the perfect correctness of the CDH based KEM, the environment D can only distinguish
A from A′1 when A generates an encapsulation JbK = αJ1K + βJaK with β 6= 0 and makes a random
oracle query for q = αqJ1K + βJ1K = JabK. In this case, Equation 1 is non-trivial because of β 6= 0
and has a solution â such that the reduction will break the discrete log assumption. Therefore, if
discrete log is ε hard, then

|Pr[D(z, (AUM)Π) = 1]− Pr[D(z, (A′1,UM)Π) = 1]| ≤ ε.

For the remaining part of the proof, we following the proof of Theorem 3.3 using the security of the
MAC for any session for which the MAC key is independent of the encapsulation. In the remaining
sessions it is easy for A’ to recover the MAC key using the extraction queries and is therefore similar
to the trivial case.

D Proof of Theorem 4.3

The CDH KEM of Section 2.2 has statistical density and perfect correctness. Therefore it is easier
to prove security against a malicious sender than in Theorem 4.1.

Claim D.1. In the programmable random oracle model for any ppt adversary A, there exists a ppt
adversary A’ such that for any ppt distinguisher D and any polynomial size auxiliary input z,

|Pr[D(z, (A,R)Π) = 1]− Pr[D(z, (A′,FmNIOT)) = 1]| ≤ qssid2−κ+2,

where all algorithms receive input 1κ, qssid is the amount of protocol subsessions and R additionally
receives an input b for each subsession.

Proof. We construct our adversaryA′ that interacts with the ideal functionality FmNIOT and outputs
the output of A (by interacting with him as well) as follows. A’ lazily samples all random oracles
and just forwards the queries and responses between the oracles and A. A sends a message (sid, pk).
A’ sends the session id sid to FmNIOT. FmNIOT outputs one message (sid, ssid, k0, k1, ssid

′) for each
subsession. A’ handles them as follows. If ssid′ = ∅, he samples two encapsulations together
with their encapsulated keys, i.e. (ct0, k

′
0), (ct1, k

′
1) ← Enc(pk). He also samples uniform r0, r1

and programs H0, H1 such that ct0 = r0 + H0(pk, r1) and ct1 = r1 + H1(pk, r0). Since r0, r1 have
high entropy, the programming step will succeed except with at most probability 2 · 2−κ. Because
the encapsulations are uniform, this does not change the output distribution of the oracles. A’
also programs H2 such that k0 = H2(r0, r1, k

′
0) and k1 = H2(r0, r1, k

′
1) which also succeeds except

probability at most 2 · 2−κ. Then A’ forwards (r0, r1) to A. If ssid′ 6= ∅, A’ just resends r0, r1 of
session ssid′ to A. After handling all subsessions, A’ outputs the output of A.

Therefore

|Pr[D(z, (A,R)Π) = 1]− Pr[D(z, (A′,FmNIOT) = 1]| ≤ qssid2−κ+2.

We finish the proof of the theorem by showing that the OT protocol is secure against a malicious
receiver. For proving this statement, we need the power of the AGM.

Claim D.2. Let the discrete log assumption hold over group G except advantage ε. Then, in the
programmable random oracle model combined with the algebraic group model for any ppt adversary

33

A, there exists a ppt adversary A’ such that for any ppt distinguisher D and any polynomial size
auxiliary input z,

|Pr[D(z, (S,A)Π) = 1]− Pr[D(z, (FNIOT,A′)) = 1]|
≤ ε+ qssid2−κ+1,

where all algorithms receive input 1κ and qh is an upper bound on the amount of random oracle
queries of A and qssid is a bound on the amount of protocol subsessions.

Proof. We use again a sequence of hybrids, i.e. a collection of senders (Si)i∈[2]. S1 is identical
to S except that he uses the extract mechanism on A and the random oracle (as described in
Section A.3) to decapsulate ct0 and ct1 instead of his secret key. More concretely, S1 generates
(JaK, a) ← KGen(1κ) and sends JaK to A. A has access to group elements J1K, JaK and all the
group elements that are outputs of the random oracles. When A sends r0, r1, S1 computes ct0, ct1
according to protocol and uses the extraction mechanism to learn α0,0, α0,1, α1,0, α1,1 such that for
all d ∈ {0, 1}, ctd = αd,0J1K + αd,1JaK. A’ computes k′d = (αd,0 + αd,1a)pk. He queries H2 on k′0 and
k′1 according to protocol and outputs k0, k1. Thus,

Pr[D(z, (S,A)Π) = 1] = Pr[D(z, (S1,A)) = 1].

S2 is identical to S1 except that he sometimes outputs a uniform string instead of a k with the
guarantee that this is the case for at least one of the keys k0, k1 for each subsession. We show
that based on the discrete log assumption the two sender are indistinguishable as follows. Given a
discrete log instance JaK, the reduction sends JaK as pk to A. It responds to all oracle queries to
H0,H1 with βnJaK for uniform βn ∈ Zp \ {0}, where n is the query number. This is statistically
indistinguishable from responding with βnJ1K as long as JaK is a generator for G.

Whenever A makes a query q to Hd for d ∈ {0, 1}, the reduction computes all new candidates
r̂0,i,j , r̂1,i,j as follows. Let q be the i-th query. For every query qj with j < i to H1−d, it computes
candidates r̂d,i,j := q, r̂1−d,i,j := qj . We assume that A always queries his r0, r1 to H1,H0. If not,
the reduction will make the queries for him.

The reduction extracts (αd,`,i,j)d∈{0,1},i∈{0,1} such that

r̂d,i,j = αd,0,i,jJ1K + αd,1,i,jJaK.

The reduction then runs a check procedure with the goal to extract a discrete log solution. Before
describing this procedure, we describe how the reduction handles oracle queries to H2.

The reduction monitors all oracle queries to H2. For a query qm with m ∈ [qh], the reduction
extracts γ0,m, γ1,m such that q = γ0,mJ1K + γ1,mJaK. It then runs the same check procedure as
mentioned earlier. We will describe this procedure later. When this check fails, it returns the
output of H2.

Now, we describe the check procedure. For every (i, j,m) ∈ [qh]3 and d ∈ {0, 1} for which the
αs and γs are defined, the reduction solves the following quadratic equation for âi,j,m which can be
solved efficiently (using e.g. the Tonelli-Shanks algorithm)

(αd,1,i,j + βd,i,j)â
2
i,j,m + (αd,0,i,j − γ1,m)âi,j,m − γ0,m = 0 mod p.

When it has a non-trivial solution s, the reduction checks whether sJ1K = JaK and if yes it outputs
the challenge discrete log s = a to the challenger.

34

For each subsession, there is at least one encapsulated key k′ such that if A queries k’ to H2,
this check will successfully extract a discrete log solution for the following reason. Recap that the
candidate encapsulations are defined as

ĉtd,i,j = αd,0,i,jJ1K + (αd,1,i,j + βd,i,j)JaK,

where βd,i,jJaK = Hd(pk, r̂1−d,i,j). Further, the corresponding candidate keys are defined as

k̂d,i,j := H2(r̂0,i,j , (αd,0,i,j + aαd,1,i,j + aβd,i,j)JaK).

Matching this input with a query to H2 leads to the quadratic equation from above.
Now we need to argue that for each subsession at least one of the encapsulated keys k′0, k′1 of

the actual messages r0, r1 if queried to H2 would lead to extracting a. Let rd = qj and r1−d = qi
such that j > i for some d ∈ {0, 1}. Then β1−d,i,j is sampled after (αd,c,i,j)d,c∈{0,1} have been chosen
by A. Therefore α1−d,1,i,j + β1−d,i,j 6= 0 except with a probability of at most 2−κ+1. This ensures
that computing k′1−d is non-trivial or from a different perspective, that the quadratic equation has
a non-trivial solution. Notice that a solution is guaranteed since a exists and is a solution. Thus if
k′1−d is queried to H2, the reduction can compute a and terminates. S2 will output a uniform string
u instead k1−d. d can be reconstructed by the query order of r0, r1. rd is the query that has been
last.

Based on the ε-hardness of discrete log,

|Pr[D(z, (S1,A)) = 1]− Pr[D(z, (S2,A)) = 1]| ≤ ε+ qssid2−κ+1.

As a last step, we use S2 to construct A’. A’ will use the same strategy as S2 to reconstruct the
subsession choice bits from A. As S2 does, A’ samples (pk, sk) ← KGen and sends it to A. Upon
receiving sid, ssid, rssid,0, rssid,1 from A, A’ checks whether rssid,0, rssid,1 are identical to r

ŝsid,0
, r

ŝsid,1

of a previous subsession. If that is the case, it looks up its message (sid, ŝsid, b̂, k̂b̂, ŝsid
′) and sends

message (sid, ssid, b̂, k̂b̂, ŝsid) to FmNIOT. Otherwise, it follows the strategy of S2 to extract subsession
choice bit b and the corresponding key kb. It then sends message (sid, ssid, b, kb, ∅) to FmNIOT.

After all subsessions are over, A’ outputs the output of A. Further, the CDH KEM is perfectly
correct. Therefore,

|Pr[D(z, (S2,A)) = 1] = Pr[D(z, (A′,FmNIOT)) = 1].

E Proof of Theorem 4.4

The proof is very similar to the proof of Theorem 4.1. We use the same underlying CDH KEM
and thus only the part how the random oracles are used differs between the two constructions. We
give the full proof for the sake of completeness.

Claim E.1. In the programmable random oracle model for any ppt adversary A, there exists a ppt
adversary A’ such that for any ppt distinguisher D and any polynomial size auxiliary input z,

|Pr[D(z, (A,R)Π) = 1]− Pr[D(z, (A′,FmNIOT)) = 1]| ≤ qssid2−κ+2,

where all algorithms receive input 1κ, qssid is the amount of protocol subsessions and R additionally
receives an input b for each subsession.

35

Proof. We construct our adversaryA′ that interacts with the ideal functionality FmNIOT and outputs
the output of A (by interacting with him as well) as follows. A’ lazily samples all random oracles
and just forwards the queries and responses between the oracles and A. A sends a message (sid, pk).
A’ sends the session id sid to FmNIOT. FmNIOT outputs one message (sid, ssid, k0, k1, ssid

′) for each
subsession. A’ handles them as follows. If ssid′ = ∅, he samples two encapsulations together with
their encapsulated keys, i.e. (ct0, k

′
0), (ct1, k

′
1) ← Enc(pk). He also samples uniform s ← {0, 1}κ,

T ← G and programs H1, such that ct0 = H1(pk, 0, s + H0(pk, 0, T)) 	 T and ct1 = H1(pk, 1, s +
H0(pk, 1, T))	 T . Since s, T have high entropy, the programming step will succeed except with at
most probability 2 · 2−κ. Because the encapsulations are uniform, this does not change the output
distribution of the oracles. A’ also programs H2 such that k0 = H2(s, T, k′0) and k1 = H2(s, T, k′1)
which also succeeds except probability at most 2 · 2−κ. Then A’ forwards (s, T) to A. If ssid′ 6= ∅,
A’ just resends s, T of session ssid′ to A. After handling all subsessions, A’ outputs the output of
A.

Therefore

|Pr[D(z, (A,R)Π) = 1]− Pr[D(z, (A′,FmNIOT) = 1]| ≤ qssid2−κ+2.

We finish the proof of the theorem by showing that the OT2 protocol is secure against a malicious
receiver. For proving this statement, we again use the power of the AGM.

Claim E.2. Let the discrete log assumption hold over group G except advantage ε. Then, in the
programmable random oracle model combined with the algebraic group model for any ppt adversary
A, there exists a ppt adversary A’ such that for any ppt distinguisher D and any polynomial size
auxiliary input z,

|Pr[D(z, (S,A)Π) = 1]− Pr[D(z, (FNIOT,A′)) = 1]|
≤ ε+ qssid2−κ+1,

where all algorithms receive input 1κ and qh is an upper bound on the amount of random oracle
queries of A and qssid is a bound on the amount of protocol subsessions.

Proof. We use again a sequence of hybrids, i.e. a collection of senders (Si)i∈[2]. S1 is identical
to S except that he uses the extract mechanism on A and the random oracle (as described in
Section A.3) to decapsulate ct0 and ct1 instead of his secret key. More concretely, S1 generates
(JaK, a) ← KGen(1κ) and sends JaK to A. A has access to group elements J1K, JaK and all the
group elements that are outputs of the random oracles. When A sends s, T , S1 computes ct0, ct1
according to protocol and uses the extraction mechanism to learn α0,0, α0,1, α1,0, α1,1 such that for
all d ∈ {0, 1}, ctd = αd,0J1K + αd,1JaK. A’ computes k′d = (αd,0 + αd,1a)pk. He queries H2 on k′0 and
k′1 according to protocol and outputs k0, k1. Thus,

Pr[D(z, (S,A)Π) = 1] = Pr[D(z, (S1,A)) = 1].

S2 is identical to S1 except that he sometimes outputs a uniform string instead of a k with the
guarantee that this is the case for at least one of the keys k0, k1 for each subsession. We show
that based on the discrete log assumption the two sender are indistinguishable as follows. Given
a discrete log instance JaK, the reduction sends JaK as pk to A. It responds to all oracle queries
to H1 with βnJaK for uniform βn ∈ Zp \ {0}, where n is the query number. This is statistically
indistinguishable from responding with βnJ1K as long as JaK is a generator for G.

36

whenever A makes a query (pk, dj , Tj) to H0 (let j be the query number), the reduction extracts
and stores (αj,0, αj,1) such that

Tj = αj,0J1K + αj,1JaK.

Further, for any i, n ∈ [q] with i < j, n < j and the ith query is a query to H1 and the nth a query
to H2, the reduction performs a check. We will explain this check later.

Whenever A makes a query (pk, di, ri) to H1 (let i) be the query number), the reduction stores
βi such that

H1(pk, di, ri) = βiJaK.

Further, for any j, n ∈ [q] with j < i, n < i and the jth query is a query to H0 and the nth a query
to H2, the reduction performs a check. We will explain this check later.

Whenever Amakes a query (sn, Tn, k
′
n) to H2 (let n be the query number), the reduction extracts

and stores (γn,0, γn,1) such that
k′n = γn,0J1K + γn,1JaK.

Further, for any j, i ∈ [q] with j < n, i < n and the jth query is a query to H0 and the ith a query
to H2, the reduction performs a check. We explain this check now.

For any i, j, n ∈ [q] for which (αj,0, αj,1), βi and (γn,0, γn,1) are defined, the reduction tries to
solve the quadratic equation for âi,j,n (using the Tonelli-Shanks algorithm)

(βn − αj,1)â2
i,j,n − (γj,1 + αj,0)âi,j,n − γj,0 = 0 mod p.

If there is a non-trivial solution s, the reduction checks whether sJ1K = JaK and if yes, the reduction
outputs the challenge discrete log s = a to the challenger.

We assume that A always make such queries for his s, T to H1,H0. If not, the reduction will
make the queries for him.

For each subsession, there is at least one encapsulated key k′ such that if A queries k’ to H2,
this check will successfully extract a discrete log solution for the following reason. Recap that the
candidate encapsulations are defined as

ĉtj,n = (βn − αj,1)JaK− αj,0J1K.

Further, the corresponding candidate keys are defined as

k̂d,i,j := H2(si,j , Tj , (aβn − aαj,1 − αj,0)JaK),

for a matching d ∈ {0, 1} and si,j . Matching this input with a query to H2 leads to the quadratic
equation from above.

Now we need to argue that for each subsession at least one of the encapsulated keys k′0, k′1 of
the actual messages s, T if queried to H2 would lead to extracting a. Let i, i′, j ∈ [q] and d ∈ {0, 1}
such that T = Tj , i < i′, the ith query to H1 is for input (pk, d, ri) and the i′th query to H1 is for
input (pk, 1 − d, ri′) with s = ri + H0(pk, d, T) and s = ri′ + H0(pk, d, T). First notice that when
making the i′th query, there is a unique Tj such that

ri + H0(pk, 1− d, Tj) = ri′ + H0(pk, d, Tj)

holds. Therefore, in order to make the i′ query, A needs to first query j, i.e. j < i′. Thus, βj is
sampled after (αi′,0, αi′,1) have been chosen by A. Therefore βn−αi′,1 6= 0 except with a probability
of at most 2−κ+1. This ensures that computing k′1−d is non-trivial or from a different perspective,
that the quadratic equation has a non-trivial solution. Notice that a solution is guaranteed since a

37

exists and is a solution. Thus if k′1−d is queried to H2, the reduction can compute a and terminates.
S2 will output a uniform string u instead k1−d. d can be reconcstructed by observing the query
order.

Based on the ε-hardness of discrete log,

|Pr[D(z, (S1,A)) = 1]− Pr[D(z, (S2,A)) = 1]| ≤ ε+ qssid2−κ+1.

As a last step, we use S2 to construct A’. A’ will use the same strategy as S2 to reconstruct
the subsession choice bits from A. As S2 does, A’ samples (pk, sk) ← KGen and sends it to A.
Upon receiving sid, ssid, sssid, Tssid from A, A’ checks whether sssid, Tssid are identical to s

ŝsid
, T

ŝsid

of a previous subsession. If that is the case, it looks up its message (sid, ŝsid, b̂, k̂b̂, ŝsid
′) and sends

message (sid, ssid, b̂, k̂b̂, ŝsid) to FmNIOT. Otherwise, it follows the strategy of S2 to extract subsession
choice bit b and the corresponding key kb. It then sends message (sid, ssid, b, kb, ∅) to FmNIOT.

After all subsessions are over, A’ outputs the output of A. Therefore,

|Pr[D(z, (S2,A)) = 1] = Pr[D(z, (A′,FmNIOT)) = 1].

F KEMs and Implicit Authentication

As discussed in Section 3.3 in many practical use cases it is sufficient to use a KEM (together with
a PKI) for the purposes of providing authentication. However, when using a KEM-only approach
we achieve implicit authentication, that is, we are ensured that only the owner of the certified key
will be able to receive the sent message. In contrast, an explicitly authenticated protocol ensures to
the authenticating party that the authenticated party is present and has engaged in the protocol.

In this section we formalize a global-UC functionality which permits for implicit authentication
through the use of global PKI. We again model our PKI through the use of the global bulletin-board
functionality Fbb as depicted in Figure 3. However, instead of a certification functionality Fcert we
instead define an encapsulation functionality Fencaps which models the case of a party encrypting
a message towards a certified public key, only the holder the certified (secret) key will be able to
decrypt and receive the message. This functionality is show in Figure 17.

We now turn our attention to key confirmation and how it can be used to elevate from implicit
authentication to explicit authentication. Reconsider the protocol in Figure 6, if we now simply
focus on the KEM functionality (removing use of the MAC) we can prove through similar arguments
to Theorem 3.3 that this protocol realizes the Fencaps functionality. More informally the protocol
provides implicit authentication. Through the addition of the MAC (used in Figure 6) we can then
transform the KEM-only protocol into one that achieves explicit authentication.

More generally, we can extend this relationship between implicit authentication, explicit authen-
tication and key confirmation. To transform any protocol which realizes in the Fencaps functionality
to also realize the Fcs functionality one can make use of complier which performs key confirmation,
as defined below. In practice this key confirmation step could be the MAC step performed in
Figure 6. This therefore provides an alternate route to prove the security of Theorem 3.3.

Definition F.1. A compiler C is an algorithm that takes as input descriptions of protocols and
outputs descriptions of protocols. A key confirmer is a compiler C where for any protocol Π which
realizes the Fencaps functionality, the protocol C(Π) realizes the Fcs functionality.

38

Fencaps :

Encapsulate message:
Upon receiving a message (sid,mid,m, Pd) from party P , query (retrieve, Pd) to
Fbb to receive (Pd, v). If v =⊥, ignore the query. Otherwise send (v, sid,mid) to A
and receive either ⊥ or mid in response. Record (v,m) iff the adversary responded
with mid and (v,m) has not been recorded. Otherwise, output error.

Decapsulate message:
Upon receiving a message (sid,mid) from party P , query (retrieve, P) to Fbb to
receive (P, v). If v =⊥, ignore the query. Look up whether an entry (v,m) has been
recorded for some m, if it exists then output m to P . Additionally if P is corrupted
then also send m to the A. If P is not corrupted and no entry exists then output
error.

Figure 17: The figure shows the Fencaps functionality.

One could take a similar approach to formalize implicit authentication for OT-based protocols
which would be sufficient for our purposes. Here assuming secure reuse of the public key is possible,
then the public key can be certified as part of a PKI to provide these authentication properties.
However, as discussed in subsection 3.3, elevating such an OT protocol to explicit authentication
through defining an efficient key confirmation step seems to be difficult.

39

	Introduction
	Our Contribution
	Related Works
	Technical Overview

	Preliminaries
	Notation
	Key Encapsulation Mechanism
	Oblivious Transfer

	Authentication
	Certification Functionalities from PKI
	Party-Specific Authenticators
	Implicit Authentication for KEM-based OT

	NIOT from Dense Key Encapsulation
	UC Security
	Security under Public Key Reuse

	Implementation
	Additional Definitions
	Message Authentication Code
	Signature Scheme
	Algebraic Group Model
	Cryptographic Assumptions

	Proof of Theorem 4.1
	Secure Certification Directly based on PKI
	Signature based Message Certification
	CCA KEM based Session Certification
	KEM based Session Certification in AGM

	Proof of Theorem 4.3
	Proof of Theorem 4.4
	KEMs and Implicit Authentication

