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Abstract

The public parameters of the RSA cryptosystem are represented by the pair of

integers N and e. In this work, first we show that if e satisfies the Diophantine

equation of the form ex2 − φ(N)y2 = z for appropriate values of x, y and z

under certain specified conditions, then one is able to factor N . That is, the

unknown y
x can be found amongst the convergents of

√
e√
N

via continued fractions

algorithm. Consequently, Coppersmith’s theorem is applied to solve for prime

factors p and q in polynomial time. We also report a second weakness that

enabled us to factor k instances of RSA moduli simultaneously from the given

(Ni, ei) for i = 1, 2, · · · , k and a fixed x that fulfills the Diophantine equation

eix
2 − y2i φ(Ni) = zi. This weakness was identified by solving the simultaneous

Diophantine approximations using the lattice basis reduction technique. We

note that this work extends the bound of insecure RSA decryption exponents.
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1. Introduction

Since the mid-1990s, the Internet has greatly influenced culture, commerce,

and technology, including the advent of the World Wide Web (WWW) with its

social networking services, discussion forums, blogs, and online shopping sites

[1]. To date, the Internet population has risen from 144 million in 1998 to

approximately 4.66 billion as of January 2021. Thus, the execution of informa-

tion transfer over multiple channels in our daily life has demanded an efficient

exchange of secure information [2]. This prime need for information security

has led to the emergence of a variety of cryptographic algorithms to implement

security in different dimensions and for various purposes [3].

The introduction of asymmetric cryptography in the seminal work of Diffie

and Hellman (1976) [4] and consecutively the invention of the first practical

asymmetric cryptosystem known as RSA by Turing Award winners; Rivest,

Shamir, and Adleman [5] in 1978 are major breakthroughs within the lengthy

history of secret communications. Since its development, RSA became one of

the widely accepted public-key cryptosystems and is being utilized in most web

servers with the goals of providing security, privacy, and authenticity of digital

data. RSA is commonly used to secure web traffic, remote login sessions, e-mail,

e-commerce, and smart cards. Recently, efforts have been reported for the RSA

to be implemented as the underlying security for blockchain technology with

the aim to construct a redactable blockchain structure [6].

The RSA cryptosystem comprises of key generation, encryption, and de-

cryption algorithms. The RSA key generation process includes selecting two

arbitrary random primes p and q. With these two primes, we calculate Euler’s

totient function defined by φ(N) = (p − 1)(q − 1) and the product N = pq

which is referred to as the RSA modulus. Then, an integer e < φ(N) is chosen

such that gcd(e, φ(N)) = 1. Note that, it satisfies the key equation of RSA

defined by ed − kφ(N) = 1 with positive integers d and k. The integers e and

d are also known as the public and private exponents of RSA respectively. Fi-

nally, the algorithm outputs the public key pair (N, e) and the private key tuple
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(p, q, d, φ(N)). To execute the RSA encryption algorithm, one simply computes

the ciphertext given by C ≡Me (mod N) where M ∈ Z∗N . On the other hand,

one simply computes M ≡ Cd (mod N) to execute the RSA decryption process

and retrieve back the message M .

Generally, the security of RSA is entrenched in the hardness of solving the

integer factorization problem (IFP) from a given large integer N and solving

the eth root modulo N problem. In addition, attacks are also proposed upon

RSA, which manipulate the key equation structure being used. To date, the

general number field sieve (GNFS) is the most efficient algorithm to factor N

and is still running in sub-exponential time since the chosen RSA primes p

and q are large n-bit primes (usually n = 1024) [7]. In practice, the second

fastest algorithm is the quadratic sieve (QS) which also runs in sub-exponential

time [8]. QS algorithm is considered simpler than GNFS algorithm and still

the fastest for integers below 100 decimal digits but not better than GNFS

algorithm for integers with 110-120 digits. Thus, no contemporary computers

yet can potentially threaten the security of RSA.

Since its invention, studies on improving the efficiency of RSA’s decryption

execution time and its relation to RSA’s overall security features are discussed

in-depth by the cryptographic research community. As a result, many variants

of RSA were proposed to address all the possible vulnerabilities. There are some

variants that are of interest for efficiency reasons [9, 10]. As new weaknesses are

revealed, new solutions will be developed [11].

In some applications of RSA, a small decrypting exponent d is desired as it

speeds up the modular exponentiation computation during decryption or sign-

ing process. However, Wiener [12] discovered that RSA is vulnerable wherever

d < 1
3N

0.25 for each exponent e that fulfills ed− 1 = 0 mod φ(N), by proving

that the unknown k
d is one of the convergents of e

N via the continued frac-

tions. In a different setting, Boneh and Durfee [13] showed that RSA can be

heuristically cryptanalysed whenever the decrypting exponent d < N0.292 via

the Coppersmith’s lattice-based technique. Both attacks on RSA manipulated

the original structure of the RSA key equation given by ed− kφ(N) = 1.
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Another approach is via the modified version of the RSA key equation. In

particular, Blömer and May [14] exploited the equation ex + y = kφ(N) to

show that for each public pair (N, e) which fulfills ex+ y = 0 mod φ(N) with

conditions

0 < x ≤ 1

3
N0.25 and |y| = O

(
ex

N0.75

)
,

one can obtain the prime factors p and q in polynomial time. This strategy

combines the continued fractions and Coppersmith’s theorem on finding the

small solutions of modular polynomial equations.

In 2013, Nitaj [15] reconstructed the attack in [14] and considered the case

when the modulus N = pq is a product of unbalanced primes. Nitaj shows that

if every public key pair (N, e) fulfills the equation ex − yφ(N) = z such that

gcd(x, y) = 1 with the conditions

xy <
N

4(p+ q)
and |z| < (p− q)N0.25y

3(p+ q)
,

then the primes p and q can be determined in polynomial time. As a result, the

unknown y
x is found in one of the continued fraction’s convergents of e

N . Then,

it is proven that
∣∣p − U+V

2

∣∣ < N0.25 due to the Coppersmith’s theorem where

the terms U and V are defined as

U = N + 1− ex

y
, V =

√
|U2 − 4N |.

Once p is known, then it completes the factoring problem of N (i.e. q = N
p ).

Nitaj [16] also proves that RSA is insecure by providing that the modulus

N = pq can be factored in the presence of two or three public exponents ei

which satisfy the Diophantine equations eixi − φ(N)yi = zi. That is, one can

find the factorization of a common modulus N depending on certain inequalities

verified by the parameters xi, yi, zi via continued fractions algorithm and the

Coppersmith’s lattice based technique. Additionally, Nitaj and Ariffin [17] have

designed a strategy to address the problem of implicit factoring of k ≥ 2 RSA

moduli. More precisely, the RSA moduli Ni = piqi, i = 1, · · · , k can be fac-

tored simultaneously if some unknown multiples αipi share j amount of Least

Significant Bits (LSBs) or share j amount of Most Significant Bits (MSBs).
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Their attacks are based on the continued fractions algorithm and lattice basis

reduction.

In 2019, Ariffin et al. [18] exploited the original structure of the RSA

key equation ed − kφ(N) = 1 to demonstrate that RSA is vulnerable if d <
√
3√
2
N0.75−δ where 0.25 < δ ≤ 0.5. This attack utilized the small prime differ-

ence method in the form |b2p−a2q| < Nδ and computed the continued fractions

expansion of e

N+1−
⌈

a2+b2

ab

√
N

⌉ to obtain the private parameter k
d among its con-

vergents. Additionally, the authors also show that by using N+1−
⌈
a2+b2

ab

√
N
⌉

as an approximation of φ(N), they can factor the k instances of RSA moduli

simultaneously in polynomial time from the given public key pairs (Ni, ei) for

i = 1, 2, · · · , k.

Kleptography refers to the study of stealing information securely and sublim-

inally [30]. In particular, our cryptanalytic approaches will identify the condi-

tions for weak keys that should be avoided in the usage of the RSA cryptosystem.

Our results show that there are classes of public keys (N, e), which yields the

factorization of N . By publishing these weak keys, a rogue certificate authority

(CA) can produce a fraudulent RSA digital certificate without being noticed

by the users of its peculiarity. The validity of these rogue certificates seems

convincing since the weak keys satisfy the conditions dictated during RSA key

generation. Suppose an adversary knows about the existence of these particular

certificates. Then, the adversary can find the RSA private keys corresponding

to the public keys, although no information on the private keys is disclosed to

the adversary [31]. This whole situation shows that the adversary (i.e. klep-

tographic attacker) is able to steal the private information securely, and in an

exclusive and subliminal manner.

Our contribution. In this work, we present a new weak RSA key equation

structure that wound render the factorization of modulus N using the combi-

nation of continued fractions algorithm and Coppersmith’s method feasible in

polynomial time. Precisely, we show that if e satisfies the Diophantine equation

of the form ex2 − φ(N)y2 = z for appropriate values of x, y and z under cer-
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tain specified conditions, then one is able to factor the RSA modulus N . We

also consider the system of modified generalized RSA key equation that poten-

tially contribute to solve the k instances of RSA moduli simultaneously from

the given (Ni, ei) for i = 1, 2, · · · , k. This attack involves solving the equation

eix
2 − y2i φ(Ni) = zi simultaneously using lattice basis reduction technique.

Organization of the article. Section 1 introduces the RSA cryptosystem

and some former attacks launched on RSA. Section 2 provides a brief review

of the theory of the continued fractions, Coppersmith, and simultaneous Dio-

phantine approximation and also presents several significant results required in

our cryptanalysis method. Section 3 presents the new attacks and also includes

numerical examples of the proposed attacks. Section 4 compares our attacks

against some existing attacks. Finally, concluding remarks are made in Section

5.

2. Preliminaries

In this section, we provide several results that will be used in the rest of

the paper. We begin by reviewing the fundamental knowledge on the continued

fractions.

Definition 1. For any X ∈ R, the continued fractions expansion of X is defined

by the expression of the form

X = [a0, a1, a2, · · · ] = a0 +
1

a1 + 1
a2+

1
a3+···

where a0 ∈ Z and ai ∈ N for i > 0.

As noticed from Definition 1, the numbers a1, a2, a3, · · · represent partial

quotients of X. When i ≥ 0, the fractions ri
si

= [a0, a1, a2, · · · , ai] represent

convergents of an expansion X.

There is a standard way to generate a unique continued fraction from any

rational number which is via the Euclidean algorithm [19]. When X = a
b where

a and b are co-prime, the Euclidean algorithm will compute the convergents in

polynomial time such that its complexity is O((log max (a, b))) [20].
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In the notable work of Legendre [21], the next theorem ensures that a rational

number a
b can be found amongst the convergents of ξ.

Theorem 1. Suppose ξ is a rational number. Suppose a and b are the positive

integers such that b 6= 0 and gcd(a, b) = 1. If∣∣∣ξ − a

b

∣∣∣ < 1

2b2
,

then a
b is one of the convergents of expansion ξ via continued fractions.

Proof. See [21].

The following result by Coppersmith [22] assures that one is able to identify

the remaining bits of p given that half of the most significant bits of p is known.

Theorem 2. Let N = pq represents the modulus of RSA with balanced primes

(i.e. q < p < 2q). Suppose p is approximated to p̃ with the difference between

the terms is |p− p̃| < N0.25, then the prime p could be obtained in polynomial

time.

Proof. See [23].

Consequently, any knowledge on the approximation of p + q will result in

the knowledge to approximate p.

Lemma 1. Let N = pq represents the modulus of RSA with balanced primes.

Assume p+ q is approximated to S where S > 2
√
N and

|p+ q − S| < p− q
3(p+ q)

N0.25.

Then p is approximated to P̃ = 1
2

(
S +
√
S2 − 4N

)
satisfying |p− P̃ | < N0.25.

Proof. See [24].

Among the highlight of utilizing the LLL algorithm [25] is its ability to solve

the simultaneous diophantine approximations problem that can be defined as

follows.
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Theorem 3. Suppose that for a given rational numbers α1, α2, · · · , αn and

0 < ε < 1, there exist a polynomial time algorithm with respect to log(pi) to

output a list of integers pi where i = 1, 2, · · · , k and q ∈ Z when

max
i
|qαi − pi| < ε and q ≤ 2k(k−3)/4 · 3k · ε−k.

Proof. See [24].

The following theorem provide the ability to factor the primes pi and qi from

the solution to the system of equations of multiple RSA moduli.

Theorem 4. Let Ni = piqi be k RSA moduli where N = miniNi and ei be k

public exponents such that i = 1, 2, · · · , k for k ≥ 2. Define δ = k
2(k+1) . If there

exist an integer x < Nδ and k integers yi < N δ and |zi| < pi−qi
3(pi+qi)

yiN
1
4 such

that eix− yiφ(Ni) = zi for i = 1, · · · , k, then one can factor the k RSA moduli

N1, · · · , Nk within polynomial time.

Proof. See [24].

Next, we provide significant lemmas that enabled us to identify the new

weaknesses.

Lemma 2. Let N = pq be the RSA modulus with q < p < 2q. Then

2
√
N < p+ q <

3
√

2
√
N

2
.

Proof. See [26].

Based on Lemma 2, we easily obtain

φ(N) = N + 1− (p+ q) > N + 1− 3
√

2
√
N

2
>

1

2
N.

Lemma 3. Let N = pq represents the modulus of RSA with q < p < 2q. Then

√
N −

√
φ(N) <

√
2.

Proof. See Appendix A.
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3. The New Weaknesses

In this section, we provide results that outline new weaknesses of the RSA

cryptosystem. We discuss the weaknesses in the following two sections.

3.1. The First Weakness

We now present the newly proposed cryptanalytic strategies. The main

idea is to find the unknown y
x that can be found amongst the convergents of

√
e√
N

via continued fractions algorithm. Then, the unknown term p + q can

be approximated to S by computing S =
[
N + 1 − ex2

y2

]
with the obtained

values of x and y. By knowing S, it has led to an approximation of p given by

p̃ =
[
1
2 (S+

√
S2 − 4N)

]
. Hence, we obtain the prime factor p via Coppersmith’s

theorem. Then, q = N
p . Our cryptanalytic strategy is formally described as

follows.

Theorem 5. Let N = pq and e where e >
√
N be RSA public parameters. Let

ex2 − φ(N)y2 = z where

x <

√
2

4
N

1
2 e−

1
4 , y < 2

1
4N

−3
8
√
ex, and |z| < N

1
4 y2,

then N can be factored within polynomial time.

Proof. See Appendix B.

Next, we want to estimate the number of exponents e satisfying the condi-

tions stated in Theorem 5.

Proposition 1. The number of exponents e satisfying an equation of the form

ex2 − φ(N)y2 = z

is at least 1
4N

1
2 .

Proof. See Appendix C.
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We now provide Algorithm 1 to describe the process of factoring N = pq via

the strategy specified in Theorem 5.

Algorithm 1: Factoring the modulus N = pq via Theorem 5

Input: The public parameters N and e.

Output: The primes p and q or ⊥.

1: Calculate the continued fractions expansion of
√
e√
N

.

2: For each convergent y
x of

√
e√
N

,

calculate S =

[
N + 1− ex2

y2

]
and p̃ =

[
1
2 (S +

√
S2 − 4N)

]
.

3: Define F (b) = (b+ p̃) and consider the polynomials with the same small

root modulo p.

4: Construct a matrix M corresponding to the polynomials in Step 3.

5: Apply the lattice basis reduction algorithm onto M.

6: Form the polynomial M′
(b) via the first row of output in Step 5.

7: Calculate the roots of M′
(b) to obtain small solution b0.

8: Calculate p = b0 + p̃ and q = N
p .

9: if q is an integer, then return the primes p, q.

10: else output ⊥.

3.1.1. A Working Example

This section shows a numerical illustration of our first attack by running

Algorithm 1.

Example 1. On input of the RSA public key pair (N, e) with respect to the

conditions specified in Theorem 5,

N =3807961308641511533601475976422683634738477780727399431173557008

083226628206866530603289973,

e =1692427248285107735247994691931291268967208387364747439507603967

145878970092941340566287479,

we proceed to calculate the continued fractions expansion of
√
e√
N

to obtain a list
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of its convergents

[
0, 1, 12 ,

2
3 ,

132709599234851
199064398852277 ,

398128797704555
597193196556834 ,

14863475114303386
22295212671455135 ,

15261603912007941
22892405868011969 ,

· · · , 325677584517478536492488516376776219031769 ,
935463993074503788901
1403195989611759207829 ,

2196605570666486114294
3294908355999737447427 ,

3132069563740989903195
4698104345611496655256 ,

11592814261889455823879
17389221392834227413195 ,

14724883825630445727074
22087325738445724068451 ,

41042581913150347278027
61563872869725675550097 ,

55767465738780793005101
83651198608171399618548 ,

542949773562177484323936
814424660343268272117029 ,

2770516333549668214624781
4155774500324512760203693 ,

6083982440661513913573498
9125973660992293792524415 ,

337389550569932933461167171
506084325854900671349046518 , · · ·

]
.

Then, we calculate the approximation S of p + q by taking the convergent

y
x = 14724883825630445727074

22087325738445724068451 which result in

S =

[
N + 1− ex2

y2

]
= 4012554807100772170569535762337366929477733912,

from which we obtain an integer P̃ such that

P̃ =

[
1

2

(
S +

√
S2 − 4N

)]
= 2472311427367711259093322269577641153164288703.

Now we apply the Coppersmith’s theorem to factor N = pq with the partial

knowledge of p from P̃ . Let F (b) = (b + P̃ ). Suppose the upper bound of the

unknown |p− P̃ | is B = 87005818903900.

Let us consider the polynomials N,F (b), b · F (b) and b2 · F (b), which all share

similar root b0 modulo p [32]. Then, we construct a matrix M corresponding

to these polynomials. In particular,

M =


N 0 0 0

P̃ B 0 0

0 P̃ ·B B2 0

0 0 P̃ ·B2 B3

 .
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Let MLLL be the LLL-reduced basis matrix. We take each element from the

first row of matrix MLLL which denotes the coefficients of polynomial M′(b)

where

M′(b) = 2b3 − 265698307945935b2 − 28336351428068984089405787092b

+ 3159496701891952077970076005170894373378560.

From here, we find the integer root of M′(b) which yields

b = 87005818903680.

Observe that,

p = b+ P̃ = 2472311427367711259093322269577728158983192383.

Next, we solve for q such that

q =
N

p
= 1540243379733060911476213492759671571921926731.

Thus, we complete the factorization of N .

Remark 1. In our case, observe that x2 > N0.25 where x2 ≈ N0.493. This

shows that the attack of Blömer and May in [14] will not succeed to find the

primes p and q.

3.2. The Second Weakness

In 2003, the Taiwan government introduced the Taiwanese digital ID for all

citizens as an initiative to support the national public key infrastructure [27].

The RSA keys are generated and inserted into the cards, digitally signed by

a government authority, and also stored into an online database called “Citi-

zen Digital Certificates (CDCs)”. The physical cryptographic roll out for the

Taiwanese ID was advertised as having passed the FIPS 140-2 Level 2 and the

Common Criteria standards. However, in 2013, Bernstein et al. [27] showed

that an adversary can efficiently solve the factorization of 184 distinct 1024-bit

RSA keys downloaded from Taiwan’s CDSs database. This attack was a suc-

cess due to Coppersmith’s partial-key-recovery attack on a bulk of weak RSA
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keys used. One has to take note that the underlying idea is to identify weak

characteristics within a collection of public RSA keys.

An exact scenario occured on Estonia’s digital identity card. In 2017, Ne-

mec et al. [28] crippled millions of high-security crypto keys, specifically the

RSA keys, by providing a practical factorization methodology on RSA moduli

utilized. Precisely, [28] proposed a feasible method based on a refined version

of Coppersmith’s method (i.e. Howgrave-Graham) [29] to factor a collection

of RSA moduli N with various key lengths including 1024 and 2048 bits. The

authors reported that all the vulnerable keys can be quickly identified, even in

very large datasets.

As such, continuous research on scenarios which involves collection of RSA

public keys is of utmost important in order to avoid vulnerable situations in real

life applications.

By the above motivation, in this paper we highlight a second weakness on

the RSA. This newly identified weakness is the case when the adversary obtains

a set of weak RSA public key pairs that would render the factorisation of each

N simultaneously in polynomial time feasible. That is, the collection of RSA

keys will have its parameters satisfying the system of equations given by eix
2−

y2i φ(Ni) = zi where x2 ∈ Z. Note that, this weakness was identified through

solving the simultaneous Diophantine approximations using the lattice basis

reduction technique. Our cryptanalytic strategy is formally described as follows.

Theorem 6. Let k RSA moduli be denoted by Ni = piqi for i = 1, 2, · · · , k.

Let N = min{Ni} and ei be k public exponents. If there exist an integer

x2 < N δ, k integers y2i < N δ and |zi| < pi−qi
3(pi+qi)

y2iN
1
4 where δ = k

2(k+1) that

satisfies the equation eix
2−y2i φ(Ni) = zi, then one can factor the k RSA moduli

simultaneously within polynomial time.

Proof. See Appendix D.

Next, we provide Algorithm 2 to demonstrate the process of factoringN = pq

via the strategy specified in Theorem 6.
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Algorithm 2: Factoring k RSA moduli simultaneously via Theorem 6

Input: The public RSA key pairs (Ni, ei) for i = 1, 2, 3, · · · , k.

Output: The prime factors pi and qi or ⊥.

1: Set N = min(N1, N2, · · · , Nk).

2: Compute δ = k
2(k+1) .

3: Compute ε =
√

5Nδ− 1
2 .

4: Compute C =
[
3k+1 · 2

(k+1)(k−4)
4 · ε−k−1

]
.

5: Compute lattice L spanned by the the rows of the matrix M as shown in

the proof of Theorem 3.

6: Compute matrix K by applying LLL algorithm onto M.

7: Compute matrix H = KM−1.

8: Assign each element in the first row of H (starting from most left) as

X,Y1, · · · , Yk respectively.

9: for i = 2, , 3, · · · , k do

10: Compute Si =

[
N + i+ 1− eiX

Yi

]
.

11: Compute P̃i = 1
2

(
Si +

√
S2
i − 4Ni

)
.

12: Apply the Coppersmith’s method in Theorem 2 onto Pi to output pi.

13: Compute qi = Ni

pi
.

14: if qi ∈ Z, then output pi, qi.

15: else Algorithm fails or ⊥.

16: end for

3.2.1. A Working Example

Next, we provide a numerical illustration of the proposed attack according

to Theorem 6 and Algorithm 2.

Example 2. Let us consider the following three pairs of RSA moduli and its

corresponding public exponents:
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N1 = 595320594314653717, e1 = 87693103457412687,

N2 = 8324526487133150381, e2 = 4884469043442535176,

N3 = 1939786546012035661, e3 = 192778371459086335.

Then, we set N = min(N1, N2, N3) = 595320594314653717. Since in this case

of k equal to 3, we obtain δ = 0.3750 and ε =
√

5Nδ−0.5 ≈ 0.01342.

Next, we use the formula stated in proof of Theorem 4 in [24] to compute

C = [3k+1 · 2
(k+1)(k−4)

4 · ε−k−1] = 4674184425.

We also compute ci =

[
− C·ei

(Ni+1)

]
for i = 1, 2, 3 and get

c1 = −688526052, c2 = −2742607542, c3 = −464526194.

Then, we compute lattice L spanned by the following matrix

M =


1 c1 c2 c3

0 C 0 0

0 0 C 0

0 0 0 C

 =


1 −688526052 −2742607542 −464526194

0 4674184425 0 0

0 0 4674184425 0

0 0 0 4674184425

 .

Afterwards, we compute a reduced basis matrix by applying the LLL algorithm

into L to obtain

K =


−2042599 −7058127 −4156242 −2199094

15186560 25305 −2716845 −5661565

5093487 11394351 −18084654 3083247

−7588606 5196912 4492677 −33934561

 .

Next, we compute matrix N = K ·M−1

N =


−2042599 −300883 −1198508 −202996

15186560 2237041 8910811 1509259

5093487 750291 2988636 506197

−7588606 −1117832 −4452663 −754165

 ,
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which later we observe from its first row the following[
−2042599 −300883 −1198508 −202996

]
.

Observe the first row of matrix N , hence we deduce

X = 2042599, Y1 = 300883, Y2 = 1198508 and Y3 = 202996.

We note here that, we assigned the term X ∈ Z to denote the term x2 whilst

Yi ∈ Z to denote y2i as formally described in Theorem 6.

Next, we compute Si =

[
N + i+ 1− eiX

Yi

]
for each i = 1, 2, 3 which yields

S1 = 3157932677, S2 = 6152899180 S3 = 4582853369.

We also compute P̃i = 1
2 (Si +

√
S2
i − 4Ni) for each i = 1, 2, 3 which returns

P̃1 = 2956578078, P̃2 = 4144164717 P̃3 = 4111000730.

For i = 1, 2, 3, we apply the Coppersmith’s approximation of p (Theorem 2)

onto each P̃i which result in

p1 = 2956578083, p2 = 4144164721 p3 = 4111000753.

We completed the factorization of N1, N2 and N3, respectively, by solving qi =

Ni

pi
for each i = 1, 2, 3 such that

q1 = 201354599, q2 = 2008734461 q3 = 471852637.

Remark 2. We remark that in our case, X ≈ N0.355 is larger than Blömer-

May’s bound x < 1
3N

0.25 as reported in [14], Nitaj et al.’s bound x ≈ N0.344 as

proposed in [24] and Ariffin et al.’s bound d ≈ N0.345 as observed in [18].

4. Comparison with Former Attacks

In this section, we provide a comparative analysis in terms of the structure

of key equation being manipulated and its specified conditions in Table 1.
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Attacks The Structure of Conditions

Key Equation

Wiener ed− kφ(N) = 1 d < 1
3
N0.25

(1990, [12])

Blömer and May ex− kφ(N) = −y x < 1
3
N0.25

(2004,[14]) and |y| = O(N−0.75ex)

Nitaj ex− yφ(N) = z xy < N
4(p+q)

(2013,[15]) and |z| < (p−q)N0.25y
3(p+q)

Nitaj et al. eix− yiφ(Ni) = zi N = miniNi,

(2014,[24]) x < Nδ, yi < Nδ,

|zi| < pi−qi
3(pi+qi)

yiN
0.25,

where δ = k
2(k+1)

, x, yi ∈ Z

Ariffin et al. ed− kφ(N) = 1 |b2p− a2q| < Nδ,

(2019,[18]) d <
√
3√
2
N0.75−δ,

where 0.25 < δ ≤ 0.5

Ariffin et al. eid− kiφ(Ni) = zi N = maxiNi,

(2019,[18]) d < Nδ, ki < Nδ, zi < Nδ,

where δ = 3k
2(4k+1)

Our Attack ex2 − φ(N)y2 = z e >
√
N ,

(Theorem 5) x <
√

2
4
N0.5e−0.25,

y < 2
1
4N−0.375√ex,

and |z| < N0.25y2

Our Attack eix
2 − y2i φ(Ni) = zi N = miniNi,

(Theorem 6) x2 < Nδ, y2i < Nδ,

|zi| < pi−qi
3(pi+qi)

y2iN
0.25,

where δ = k
2(k+1)

, x2, y2i ∈ Z

Table 1: Comparison of Our Attacks Against Existing Attacks
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In Table 1, it shows an evolution of results with the sole objective to increase

the security bound of the unknown parameters of the RSA Diophantine key

equation. Initial results revolved around the original RSA Diophantine key

equation.

It then came to the attention of researchers on the importance to observe

generalizations of the RSA Diophantine key equation in order to properly un-

derstand the consequences upon the security of the RSA modulus. The first

attempt by Blömer and May [14], which utilized continued fractions and Cop-

persmith’s method, reaffirmed result by Wiener [12]. Then in 2013, Nitaj [15]

observed the generalized RSA key equation in the form of ex − φ(N)y = z

where the prime factors can be unbalanced. Suppose p and q are balanced

primes. Based upon the assumptions, z = 1 is a valid parameter. Following

through the assumptions, the value of y can be taken as small as possible, hence

increasing the value of x to approximately N0.5. At the same time, if y is in-

creased up till N0.25, the value of x is approximately N0.25. This reaffirms result

by Wiener [12]. As a note, if y is further increased, the value of x gets smaller.

In 2019, Ariffin et al. [18] performed an attack on RSA by manipulating the

standard RSA key equation and managed to improve the upper bound of d to

d <
√
3√
2
N0.28125 when δ = 15

32 .

In retrospect, as observed from our attack upon our defined generalized

RSA Diophantine key equation, when considering the public exponent e of size

approximately N0.5, we are able to conclude that the chosen size of parameter

x is approximate to N0.375, y is approximate to N0.25 and z is approximate to

N0.75. Our result differs from Nitaj [15] because initially the value of x does not

represent a generalization of the RSA decryption exponent. Rather, it represents

a variable, where if it exists together with the variables (y, z) according to the

hypothesis, the RSA modulus can be factored.

On the other hand, since z = 1 < N0.75 is a valid parameter, our analysis

can correctly be viewed as an RSA Diophantine key equation where x2 is ap-

proximate to N0.75. This is a significant improvement in identifying the lower

bound for the value of the RSA decryption exponent d to be secure.
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5. Conclusion

Taken as a whole, this paper focuses on a cryptanalytic approach to factor

the RSA modulus of N = pq with generalized RSA Diophantine key equation

of the form ex2 − φ(N)y2 = z for suitably small integers x, y and z under

certain defined conditions. We proved that the unknown y
x can be determined

via the continued fractions expansion of
√
e√
N

. Then, we utilized the obtained

unknown values to complete the prime factoring ofN via Coppersmith’s method.

In addition, we formulated our work on the scenario when k samples of weak

RSA public key pairs are given that satisfy the equation eix
2 − y2i φ(Ni) =

zi, we can simultaneously retrieve the unknown primes of each modulus N

within polynomial time. This attack combines the simultaneous Diophantine

approximations and lattice basis reduction methods.
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Appendix A. The proof of Lemma 3

Proof. We have 0 < N − φ(N) = p+ q − 1 < p+ q. Then

0 <
√
N −

√
φ(N) <

p+ q√
N +

√
φ(N)

.

Now we have
√
N +

√
φ(N) >

√
N + 1

2

√
N = 3

2

√
N . Hence, by combining with

Lemma 2, we obtain

0 <
√
N −

√
φ(N) <

3
√

2
√
N

3
√
N

=
√

2.

Appendix B. The proof of Theorem 5

Proof. Consider the equation ex2 − φ(N)y2 = z, then divide with x2φ(N) to

get

e

φ(N)
− y2

x2
=

z

x2φ(N)∣∣∣∣( √
e√

φ(N)
− y

x

)( √
e√

φ(N)
+
y

x

)∣∣∣∣ =
|z|

x2φ(N)∣∣∣∣∣
√
e√

φ(N)
− y

x

∣∣∣∣∣ =
|z|(

x
√
e+ y

√
φ(N)

)
x
√
φ(N)

. (B.1)
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Since x > 0 and y > 0, then x
√
e + y

√
φ(N) > x

√
e. Combining this with

φ(N) > 1
2N , (B.1) becomes∣∣∣∣∣

√
e√

φ(N)
− y

x

∣∣∣∣∣ < |z|√
eφ(N)x2

<

√
2|z|√
eNx2

. (B.2)

Next, we have ∣∣∣∣ √e√N − y

x

∣∣∣∣ ≤
∣∣∣∣∣
√
e√
N
−

√
e√

φ(N)

∣∣∣∣∣+

∣∣∣∣ √eφ(N)
− y

x

∣∣∣∣
<
√
e

√
N −

√
φN√

Nφ(N)
+

√
2|z|√
eNx2

. (B.3)

By Lemma 3 and using φ(N) > 1
2N , (B.3) yields∣∣∣∣ √e√N − y

x

∣∣∣∣ < 2
√
e

N
+

√
2|z|√
eNx2

. (B.4)

Now, suppose that |z| < N
1
4 y2. Then, (B.4) becomes∣∣∣∣ √e√N − y

x

∣∣∣∣ < 2
√
e

N
+

√
2N

1
4 y2√

eNx2
. (B.5)

Next, suppose that y < 2
1
4N

−3
8
√
ex. Then, (B.5) yields∣∣∣∣ √e√N − y

x

∣∣∣∣ < 4
√
e

N
. (B.6)

Finally, suppose that x <
√
2
4 N

1
2 e−

1
4 . Then∣∣∣∣ √e√N − y

x

∣∣∣∣ < 1

2x2
. (B.7)

As a result, by Theorem 1, yx is a convergent of the continued fractions expansion

of
√
e√
N

. Afterwards, we get an approximation term for p+ q with the obtained

values of x and y, ∣∣∣∣p+ q −
(
N + 1− ex2

y2

)∣∣∣∣ =
|z|
y2
.

Since |z| < N
1
4 y2, then

∣∣∣p+ q −
(
N + 1− ex2

y2

)∣∣∣ < N
1
4 , and by Lemma 1, we

can determine the primes p and q.
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Appendix C. The proof of Proposition 1

Proof. We want to estimate the number of exponents e satisfying an equation

of the form

ex2 − φ(N)y2 = z,

with the conditions

x <

√
2

4
N

1
2 e−

1
4 , y < 2

1
4N

−3
8
√
ex, |z| < N

1
4 y2.

First, let y be an integer with 1 ≤ y ≤ N
1
4 . Let x be an integer satisfying

gcd(x, y) = 1, and x < y. Define e by the nearest integer function

e =

[
φ(N)

y2

x2

]
.

Set ex2 − φ(N)y2 = z. Then

|z| < 1

2
x2 <

1

2
y2 < N

1
4 y2.

Next, suppose that there are two couples (x, y) and (x′, y′) such that

e =

[
φ(N)

y2

x2

]
=

[
φ(N)

y′2

x′2

]
.

Then ∣∣∣∣φ(N)
y2

x2
− φ(N)

y′2

x′2

∣∣∣∣ ≤ 1,

or equivalently

φ(N)
∣∣y2x′2 − y′2x2∣∣ ≤ x2x′2.

Since x < y < N
1
4 , and x′ < y′ < N

1
4 , and 1

2N < φ(N) < N , then

φ(N)
∣∣y2x′2 − y′2x2∣∣ ≤ x2x′2 < N

2
4 ×N 2

4 = N,

which is possible only if y2x′2 − y′2x2 = 0, that is yx′ = y′x. Since gcd(x, y) =

gcd(x′, y′) = 1, this implies that (x, y) = (x′, y′). This allows us to count the

number of exponents e with the former conditions. We have

#e =

N
1
4∑

y=1
x<y,gcd(y,x)=1

1 =

N
1
4∑

y=1

φ(y),

25



where φ(y) is the Euler totient function of y. Theorem 330 of [21] states that∑X
y=1 φ(y) > 3

π2X
2. For X = N

1
4 , we get

#e >
3

π2
N

1
2 >

1

4
N

1
2 .

It follows that the number of public exponents e satisfying the equation is at

least 1
4N

1
2 .

Appendix D. The proof of Theorem 6

Proof. For k ≥ 2, let Ni = piqi be defined as k RSA moduli for i = 1, 2, · · · , k.

Then, we rewrite eix
2 − y2i φ(Ni) = zi as

eix
2 − y2i (Ni + 1− (pi + qi)) = zi

eix
2 − y2i (Ni + 1) = zi − y2i (pi + qi).

Hence ∣∣∣∣ eix2Ni + 1
− y2i

∣∣∣∣ =
|zi − y2i (pi + qi)|

Ni + 1
. (D.1)

Now, we chooseN = min{Ni} and suppose that y2i < Nδ and |zi| < pi−qi
3(pi+qi)

y2iN
1
4 .

Then |zi| < y2iN
1
4 < N δN

1
4 < N δ+ 1

4 . Since we have pi + qi <
3
√
2
√
N

2 from

Lemma 2, we will obtain

|zi − y2i (pi + qi)|
Ni + 1

≤ |zi|+ y2i (pi + qi)

N

<
Nδ+ 1

4 +Nδ · 3
√
2

2

√
N

N

=
Nδ+ 1

4 + 3
√
2

2 Nδ+ 1
2

N

<

√
5Nδ+ 1

2

N
=
√

5Nδ− 1
2 . (D.2)

Plugging (D.2) into (D.1), we get∣∣∣∣ eix2Ni + 1
− y2i

∣∣∣∣ < √5Nδ− 1
2 .

Here, we continue to show the existence of an integer x2. Define δ = k
2(k+1) and

ε =
√

5Nδ− 1
2 . We have

Nδ · εk = Nδ ·Nkδ− k
2 · (
√

5)k = Nδ(1+k)− k
2 · (
√

5)k. (D.3)
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Since δ = k
2(k+1) , (D.3) becomes

N
k

2(k+1)
(1+k)− k

2 · (
√

5)k = N0 · (
√

5)k = (
√

5)k < 2
k(k−3)

4 · 3k. (D.4)

Combining (D.3) and (D.4), we obtain

Nδ < 2
k(k−3)

4 · 3k · ε−k.

It follows that if x2 < Nδ, then x2 < 2
k(k−3)

4 · 3k · ε−k. To sum up, for i =

1, 2, · · · , k, we have∣∣∣∣ eix2Ni + 1
− y2i

∣∣∣∣ < ε, x2 < 2
k(k−3)

4 · 3k · ε−k

which fulfills the conditions mentioned in Theorem 3 and leads to successfully

find x2 ∈ Z and y2i ∈ Z for i = 1, 2, ..., k. Hence, rearrange eix
2 − y2i φ(Ni) = zi

as

pi + qi = Ni + 1− eix
2

y2i
+
zi
y2i
.

Since |zi| < pi−qi
3(pi+qi)

y2iN
1
4 , then zi

y2i
< pi−qi

3(pi+qi)
N

1
4 and Si = Ni + 1 − eix

2

y2i
is an

integer close to pi+qi with absolute different less than pi−qi
3(pi+qi)

N
1
4 . Thus, we can

find an approximation P̃i = 1
2 (Si +

√
S2
i − 4Ni) of pi satisfying |pi − P̃i| < N

1
4
i .

Based on Theorem 2, the prime factors of the RSA moduli N1, N2, · · · , Nk can

simultaneously be obtained in polynomial time, respectively.
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