
Does Fully Homomorphic Encryption
Need Compute Acceleration?

Leo de Castro1,∗ Rashmi Agrawal2,3,∗,$ Rabia Yazicigil2 Anantha Chandrakasan1

Vinod Vaikuntanathan1 Chiraag Juvekar3 Ajay Joshi2
1MIT, Cambridge, MA, USA; 2Boston University, Boston MA, USA; 3Analog Devices, Boston, MA USA

{ldec, anantha, vinodv}@mit.edu, {rashmi23, rty, joshi}@bu.edu, chiraag.juvekar@analog.com
∗Equal Contribution $Work done during internship at Analog Devices

Abstract—The emergence of cloud-computing has raised im-
portant privacy questions about the data that users share with
remote servers. While data in transit is protected using standard
techniques like Transport Layer Security (TLS), most cloud
providers have unrestricted plaintext access to user data at
the endpoint. Fully Homomorphic Encryption (FHE) offers one
solution to this problem by allowing for arbitrarily complex
computations on encrypted data without ever needing to decrypt
it. Unfortunately, all known implementations of FHE require
the addition of noise during encryption which grows during
computation. As a result, sustaining deep computations requires
a periodic noise reduction step known as bootstrapping. The cost
of the bootstrapping operation is one of the primary barriers to
the wide-spread adoption of FHE.

In this paper, we present an in-depth architectural analysis
of the bootstrapping step in FHE. First, we observe that se-
cure implementations of bootstrapping exhibit a low arithmetic
intensity (< 1 Op/byte), require large caches (> 100MB) and
as such, are heavily bound by the main memory bandwidth.
Consequently, we demonstrate that existing workloads observe
marginal performance gains from the design of bespoke high-
throughput arithmetic units tailored to FHE. Secondly, we
propose several cache-friendly algorithmic optimizations that
improve the throughput in FHE bootstrapping by enabling up
to 3.2× higher arithmetic intensity and 4.6× lower memory
bandwidth. Our optimizations apply to a wide range of struc-
turally similar computations such as private evaluation and
training of machine learning models. Finally, we incorporate
these optimizations into an architectural tool which, given a cache
size, memory subsystem, the number of functional units and a
desired security level, selects optimal cryptosystem parameters
to maximize the bootstrapping throughput.

Our optimized bootstrapping implementation represents a
best-case scenario for compute acceleration of FHE. We show
that despite these optimizations, bootstrapping (as well as other
applications with similar computational structure) continue to
remain bottlenecked by main memory bandwidth. We thus
conclude that secure FHE implementations need to look beyond
accelerated compute for further performance improvements and
to that end, we propose new research directions to address the
underlying memory bottleneck. In summary, our answer to the
titular question is: yes, but only after addressing the memory
bottleneck!

I. INTRODUCTION

The rapid development of cloud-based systems has enabled
reliable and affordable access to shared computing resources
at scale. However, this shared access raises substantial pri-
vacy and security challenges. Therefore, new techniques are
required to guarantee the confidentiality of sensitive user data

<latexit sha1_base64="WWrpcH1StxCO7fV7pVyJCV76dnA=">AAACU3icbVDBbtNAEF2bAsVQmoI4cVkRgVIhRXaFoJdKFVw4Fom0lWITjdfjZJXdtbU7hkaWP6bX8j0c+BYubFIfaMuTRnp6741m9PJaSUdx/DsI723df/Bw+1H0+MnO093B3rNTVzVW4ERUqrLnOThU0uCEJCk8ry2CzhWe5ctPa//sO1onK/OVVjVmGuZGllIAeWk2eFGOLvb5ER9d8Lc8BVUvYP/bwWwwjMfxBvwuSXoyZD1OZnvBm7SoRKPRkFDg3DSJa8pasCSFwi5KG4c1iCXMceqpAY0uazf/d/y1VwpeVtaPIb5R/91oQTu30rlPaqCFu+2txf9504bKw6yVpm4Ijbg+VDaKU8XXZfBCWhSkVp6AsNL/ysUCLAjyld244kiDXdmii6LU4A9RaQ2maNMi9+llN02yNlVYUqrURkHiw4SnVs4XlFrba13km01u93iXnB6Mk/fj5Mu74fHHvuNt9pK9YiOWsA/smH1mJ2zCBGvZJbtiP4NfwZ8wDLeuo2HQ7zxnNxDu/AWRObG6</latexit>

f(x) = (x + ↵)2Outsourcing the Computation of 

Fig. 1. Third-party cloud platform with outsourced FHE-based computing.

when it is sent to the cloud for processing. Fully Homomorphic
Encryption (FHE) [15], [29] enables cloud operators to per-
form complex computations on encrypted user data without
ever needing to decrypt it. The result of such FHE-based
computation is in an encrypted form and can only be decrypted
by the data owner. An illustrative use case of how a data owner
can outsource computation on private data to an untrusted
third-party cloud platform is shown in Figure 1.

While FHE-based privacy-preserving computing is promis-
ing, performing large encrypted computations with FHE still
remains several orders of magnitude slower than operating
on unencrypted data, which makes broad adoption imprac-
tical. This slowdown is an inherent feature of all existing
lattice-based FHE schemes. All of these schemes produce
ciphertexts containing a noise term, which is necessary for
security. Each subsequent homomorphic operation performed
on the ciphertext increases its noise, until it grows beyond a
critical level after which recovery of the computation output
is impossible. Sustained FHE computation thus requires a
periodic de-noising procedure, called bootstrapping, to keep
the noise below a correctness threshold. Unfortunately, this
bootstrapping step is expensive in terms of both compute and
memory requirements and is often > 100× more expensive
than primitive operations like addition and multiplication on
encrypted data.

Real-world applications commonly attempt to amortize this
bootstrapping cost across multiple homomorphic operations.
Even when considering these application-specific optimiza-
tions, bootstrapping consumes more than 50% of the total
compute and memory budget for end-to-end operations like
machine learning training [22]. To make FHE-based comput-

1



ing practical, we need to consider a multi-layer approach to
accelerate both the bootstrapping step as well as its primi-
tive building blocks using a combination of algorithmic and
hardware techniques.

In this work, we first perform a thorough compute and
memory analysis of both simple and complex FHE primitives
including the bootstrapping step, with an intent to determine
the limits and potential opportunities for accelerating FHE.
Our analysis reveals that all FHE operations exhibit low arith-
metic intensity (< 1 Op/byte) and require working-set sizes
of hundreds of MB for practical and secure parameters. In
fact, we observe that most existing performance optimization
techniques for FHE often increase memory bandwidth re-
quirements. These include both linear and non-linear operation
optimizations proposed by Han and Ki [20], Han, Hhan and
Cheon [18], and Bossuat, Mouchet, Troncoso-Pastoriza and
Hubaux [3]. Recent bootstrapping implementation on GPUs
by Jung, Kim, Ahn, Cheon and Lee [22] is the first work to
perform memory-centric optimizations for linear operations in
bootstrapping. Even after these optimizations, their implemen-
tation continues to be bounded by main memory bandwidth
and exhibits an arithmetic intensity of < 1 Op/byte. On the
other side of the design spectrum, recent work by Samardzic
et al. [30] presents an architecture for a high-throughput
hardware accelerator for FHE. This work primarily focuses
on smaller parameter sets where full ciphertexts fit in on-chip
cache memory allowing them to bypass the memory band-
width limitation. However, many natural applications such
as SIMD boostrapping, deep-neural network inference (with
complex activation functions) and machine learning require
larger parameter sets that are not addressed in [30].

In this work, we focus on presenting our three key con-
tributions, i.e., application benchmarking, new techniques to
improve memory performance, and evaluation of these tech-
niques on end-to-end applications. More specifically:

• We present detailed benchmarking of the compute and
memory requirements of various FHE computations rang-
ing from primitive operations to end-to-end applications
such as machine-learning training. We show that all these
benchmarks exhibit low arithmetic intensity and require
large working-sets in on-chip memory. We observe that
these working-sets do not fit in the last level caches
of today’s reticle-limited chips leading to bootstrapping
and other applications being bottlenecked by memory
accesses.

• We next present techniques to improve main memory
bandwidth utilization by effectively managing the mod-
erate last-level cache provided by currently available
commercial hardware. For cache-pressured hardware (<
20 MB LLC) we propose a domain-specific physical
address mapping to enhance DRAM utilization. We then
present hardware-independent algorithmic optimizations
that reduce memory and compute requirements of FHE
operations.

• We finally propose an optimized, memory-aware cryp-
tosystem parameter set that maximizes the throughput

TABLE I
CKKS FHE PARAMETERS AND THEIR DESCRIPTION.

Parameter Description

N Number of coefficients in a polynomial in the cipher-
text ring.

n N/2, number of plaintext elements in a single cipher-
text.

Q Full modulus of a ciphertext coefficient.
q Machine word sized prime modulus and a limb of Q.
∆ Scaling factor of a CKKS plaintext.
P Product of the additional limbs added for the raised

modulus.
L Maximum number of limbs in a ciphertext.
ℓ Current number of limbs in a ciphertext.
dnum Number of digits in the switching key.
α ⌈(L + 1)/dnum⌉. Number of limbs that comprise a

single digit in the key-switching decomposition. This
value is fixed throughout the computation.

β ⌈(ℓ + 1)/α⌉. An ℓ-limb polynomial is split into this
number of digits during base decomposition.

in FHE bootstrapping and logistic regression training by
enabling up to 3.2× higher arithmetic intensity and 4.6×
lower memory bandwidth.

The techniques that we propose often compose with prior
art and can be used as drop-ins to provide performance
improvements in existing implementations without the need
for new hardware. Our proposed bootstrapping parameter set
represents an upper limit on the performance of FHE opera-
tions that can be attained through pure compute acceleration
when paired with existing state-of-art memory subsystems.
Even with this optimal parameter set, we observe that the
bootstrapping step is still primarily memory bound. Thus:

Our key conceptual take-away is that to accel-
erate FHE, we need novel techniques to address
the underlying memory bandwidth issues. Compute
acceleration alone is unlikely to make a dent.

Towards the goal of addressing memory bandwidth issues,
we propose novel near-term algorithmic and architectural
research directions.

II. FULLY HOMOMORPHIC ENCRYPTION: THE API

To set the stage, in this section we present the operations
implemented by the Cheon-Kim-Kim-Song (CKKS) [11] FHE
scheme. We organize these operations in the form of an
API that can be used by any application developer to design
privacy-preserving applications. Specifying the CKKS scheme
requires several parameters, and we summarize our notation
for these parameters in Table I. Though we focus on the CKKS
scheme, the API is generic and can be used for the BGV [5]
and B/FV [4], [14] schemes as well1.

A. Homomorphic Encryption API

The basic plaintext data-type in CKKS is a vector of
length n where each entry is chosen from C, the field of
complex numbers. All arithmetic operations on plaintexts are

1An exception is the Conjugate function, which the BGV and B/FV
schemes do not support, since they do not encrypt complex numbers.

2



TABLE II
CKKS FULLY HOMOMORPHIC ENCRYPTION API.

Operation Name Output Implementation Description

PtAdd(JxK ,y) Jx+ yK JxK + y Adds a plaintext vector to an encrypted vector.
Add(JxK , JyK) Jx+ yK JxK + JyK Adds two encrypted vectors.
PtMult(JxK ,y) Jx · yK Algorithm 1 Multiplies a plaintext vector and an encrypted vector.
Mult(JxK , JyK) Jx · yK Algorithm 2 Multiplies two encrypted vectors.
Rotate(JxK , k) Jϕk(x)K Algorithm 3 Rotates a vector by k positions; see Section II-A for an illustration.
Conjugate(JxK) JxK Algorithm 3† Outputs an encryption of the complex conjugate of the encrypted input vector.
† Through a clever encoding [11], the Conjugate operation implementation is identical to the Rotate implementation.

component-wise; the entries of the vector x+y (resp. x·y) are
the component-wise sums (resp. products) of the entries of x
with the corresponding entries of y. We denote the encryption
of a length-n vector x by JxK.

Table II gives a complete description of the API with the
exception of the rotation operation, which we describe here.
The Rotate operation takes in an encryption of a vector x of
length n and an integer 0 ≤ k < n, and outputs an encryption
of a rotation of the vector x by k positions. As an example,
when k = 1, the rotation ϕ1(x) is defined as follows.

x =
(
x0 x1 . . . xn−2 xn−1

)
ϕ1(x) =

(
xn−1 x0 . . . xn−3 xn−2

)
The Rotate operation is necessary for computations that
operate on data residing in different slots of the encrypted
vectors.

B. Modular Arithmetic and the Residue Number System

Scalar Modular Arithmetic: Nearly all FHE operations
reduce to scalar modular additions and scalar modular multi-
plications. Current CPU/GPU architectures do not implement
modular arithmetic directly but emulate it via multiple arith-
metic instructions, which significantly increases the amount of
compute required for these operations. Therefore, optimizing
modular arithmetic is critical to optimizing FHE computation.

To perform modular addition over operands that are already
reduced, we use the standard approach of conditional subtrac-
tion if the addition overflows the modulus. For generic modular
multiplications, we use the Barrett reduction technique [1].
When computing the sum of many scalars, we avoid per-
forming a modular reduction until the end of the summation,
as long as the unreduced sum fits in a machine word. As
an optimization, we use Shoup’s technique [31] for constant
multiplication. That is, when computing x · y (mod p) where
x and p are known in advance, we can precompute a value xs
such that ModMulShoup(x, y, xs, p) = x ·y (mod p) is much
faster than directly computing x · y (mod p).

Residue Number System (RNS): Often the scalars in
homomorphic encryption schemes are very large, on the order
of thousands of bits. To compute on such large numbers, we
use the residue number system (also called the Chinese re-
mainder representation) where we represent numbers modulo
Q =

∏ℓ
i=1 qi, where each qi is a prime number that fits in

a standard machine word (less than 64 bits), as ℓ numbers

modulo each of the qi. We call the set B := {q1, . . . , qℓ} an
RNS basis. We refer to each qi as a limb of Q.

This allows us to operate over values in ZQ without
any native support for multi-precision arithmetic. Instead,
we can represent x ∈ ZQ as a length-ℓ vector of scalars
[x]B = (x1, x2, . . . , xℓ), where xi ≡ x (mod qi). We refer
to each xi as a limb of x. To add two values x, y ∈ ZQ,
we have xi + yi ≡ x + y (mod qi). Similarly, we have
xi · yi ≡ x · y (mod qi). This allows us to compute addition
and multiplication over ZQ while only operating over standard
machine words. The size of this representation of an element
of ZQ is ℓ machine words.

C. CKKS Ciphertext Structure

In this section, we give the general structure of a cipher-
text in the CKKS [11] homomorphic encryption scheme. A
ciphertext is a pair of polynomials each of degree N − 1. The
coefficients of these ciphertexts are elements of ZQ, where Q
has ℓ limbs. Thus, in total, the size of a ciphertext is 2Nℓ
machine words.

In CKKS, we are able to encrypt non-integer values, includ-
ing complex numbers. The ciphertexts are “packed,” which
means they encrypt vectors in Cn, where n = N/2, in a
single ciphertext. For m ∈ Cn, we denote its encryption as
JmK = (am,bm) where am and bm are the two polynomials
that comprise the ciphertext. We omit the subscript m when
there is no cause for confusion.

An example of ciphertext parameters that achieve a 128-bit
security level is N = 217 and ℓ = 35. With an 8-byte machine
word, this gives a total ciphertext size of ∼ 73.4 MB. Note that
in today’s reticle-limited systems, the largest last-level cache
size is 40 MB [28]. Consequently, we won’t be able to fit even
a single ciphertext in the last-level cache, which indicates the
need for multiple expensive DRAM accesses when operating
on ciphertexts.

Polynomial Representation: In order to enable fast poly-
nomial multiplication, we will have all polynomials repre-
sented by default as a series of N evaluations at fixed roots of
unity. This allows polynomial multiplication to occur in O(N)
time. We refer to this representation as the evaluation repre-
sentation. Certain subroutines, defined in section II-D, operate
over the polynomial’s coefficient representation, which is
simply a vector of its coefficients. Addition of two polynomials
and multiplication of a polynomial by a scalar are O(N) in
both the coefficient and the evaluation representation. Moving

3



between representations requires a number-theoretic transform
(NTT) or inverse NTT, which is the finite field version of the
fast Fourier transform (FFT) and takes O(N logN) time and
O(N) space for a degree-(N − 1) polynomial.

Encoding Plaintexts: CKKS supports non-integer mes-
sages, so all encoded messages must include a scaling factor
∆. The scaling factor is usually the size of one of the limbs
of the ciphertext, which is slightly less than a machine word.
When multiplying messages together, this scaling factor grows
as well. The scaling factor must be shrunk down in order
to avoid overflowing the ciphertext coefficient modulus. We
discuss how this procedure works in Section II-D.

D. Implementing the API

To implement the homomorphic API described in Table II,
we need some “helper” subroutines. We first describe these
subroutines and then provide the implementations of the
homomorphic API using the subroutines.

Handling a Growing Scaling Factor: As mentioned in
section II-C, all encoded messages in CKKS must have a
scaling factor ∆. In both the PtMult and Mult implementa-
tions, the multiplication of the encoded messages results in the
product having a scaling factor of ∆2. Before these operations
can complete, we must shrink the scaling factor back down
to ∆ (or at least a value very close to ∆). If this operation is
neglected, the scaling factor will eventually grow to overflow
the ciphertext modulus, resulting in decryption failure.

To shrink the scaling factor, we divide the ciphertext by ∆
(or a value that is close to ∆) and round the result to the
nearest integer. This operation, called ModDown, keeps the
scaling factor of the ciphertext roughly the same throughout
the computation.2 For a more formal description, we refer the
reader to [10]. We sometimes refer to a ModDown instruction
that occurs at the end of an operation as Rescale.

Handling a Changing Decryption Key: In both the Mult
and Rotate implementations, there is an intermediate cipher-
text with a decryption key that differs from the decryption
key of the input ciphertexts. In order to change this new
decryption key back to the original decryption key, we perform
a KeySwitch operation. This operation takes in a switching
key ksks→s′ and a ciphertext JmKs that is decryptable under
a secret key s. The output of the KeySwitch operation is
a ciphertext JmKs′ that encrypts the same message but is
decryptable under a different key s′.

Key Switching [6]: Since the KeySwitch operation differs
between Mult and Rotate, we do not define it separately.
Instead, we go a level deeper, and define the subroutines nec-
essary to implement KeySwitch for each of these operations.
In addition to the ModDown operation, we use the ModUp
operation, which allows us to add primes to our RNS basis.
We follow the structure of the switching key in the work of

2A better name for this operation would be “divide and mod-down” because
it reduces the scaling factor as well as the ciphertext modulus. In this paper,
we stick to the standard ModDown terminology for consistency with the
literature.

Han and Ki [20], where the switching key, parameterized by
a length dnum, is a 2× dnum matrix of polynomials.

ksk =

(
a1 a2 . . . adnum
b1 b2 . . . bdnum

)
(1)

The KeySwitch operation requires that a polynomial be split
into dnum “digits,” then multiplied with the switching key.
We define the function Decomp that splits a polynomial into
dnum digits as well as a KSKInnerProd operation to multiply
the dnum digits by the switching key.

Before proceeding further, we refer the reader to Table III
where all the subroutines described above are defined in more
detail. The implementation of the API functions are given
in Algorithms 1, 2 and 3. We also give a batched rotation
algorithm HRotate in Algorithm 4, which computes many
rotations on the same ciphertext faster than applying Rotate
independently several times.

Algorithm 1 PtMult(JmK ,m′) = Jm ·m′K
1: (a,b) := JmK
2: (u,v) := (a · (∆ ·m′),b · (∆ ·m′))
3: return (ModDownB,1(u),ModDownB,1(v)) ▷ Rescale

Algorithm 2 Mult(Jm1Ks , Jm2Ks , ksks2→s) = Jm1 ·m2Ks
1: (a1,b1) := Jm1Ks
2: (a2,b2) := Jm2Ks
3: (a3,b3, c3) := (a1a2,a1b2 + a2b1,b1b2)
4: −→a := Decompβ(a3)
5: â[i] := ModUp(−→a [i]) for 1 ≤ i ≤ β.
6: (û, v̂) := KSKInnerProd(ksks2→s, â)
7: (u,v) := (ModDown(û),ModDown(v̂))
8: (a′,b′) := (b3 + u, c3 + v)
9: return (ModDownB,1(a

′),ModDownB,1(b
′)) ▷ Rescale

Algorithm 3 Rotate(JmKs , k, kskψk(s)→s) = Jϕk(m)Ks
1: (a,b) := JmKs
2: (arot,brot) := (Automorph(a, k),Automorph(b, k))
3: −→arot := Decompβ(arot) ▷ β digits.
4: â[i] := ModUp(−→arot[i]) for 1 ≤ i ≤ β.
5: (û, v̂) := KSKInnerProd(kskψk(s)→s, â)
6: (u,v) := (ModDown(û),ModDown(v̂))
7: return (u,v + brot)

Key Takeaway: The Shrinking Ciphertext Modulus A main
observation coming out of our description of the homomorphic
API is that the ciphertext modulus shrinks for each PtMult
(algorithm 1) and Mult (algorithm 2) operation. This occurs
in the ModDown operations at the end of these functions. If a
ciphertext begins with L limbs, we can only compute a circuit
with multiplicative depth L− 1, since the ciphertext modulus
shrinks by a number of limbs equal to the multiplicative depth
of the circuit being homomorphically evaluated. This foreshad-
ows the next section where we present an operation called
bootstrapping [15] that increases the ciphertext modulus.

4



TABLE III
CKKS SUBROUTINES: These subroutines enable the implementation of the CKKS API defined in Table II.

Sub-routine Name Output Used-in Description

ModDownB,d([x]B) [x/P + e]B′ PtMult
Mult
Rotate

This function takes in a polynomial x in the coefficient representation, where each
coefficient is modulo Q :=

∏
q∈B q and represented in the RNS basis B = {q1, . . . , qℓ}.

Assume that d < ℓ and let P :=
∏ℓ

i=ℓ−d+1 qi be the product of the last d limbs of B.
Let B′ = {q1, . . . , qℓ−d}, and note that Q/P =

∏
q∈B′ q. The output of this function

is a polynomial [y]B′ where each coefficient of y equals the corresponding coefficient
of x divided by P plus some small rounding error.

ModUpB,B′ ([x]B) [x]B′ Mult
Rotate

Takes a polynomial x where each coefficient is in the basis B and outputs the
representation of x where each coefficient is in the basis B′. B could be a subset or
superset of B′, or they could be unrelated. Note that this operation must also be performed
in the coefficient representation.

Decompβ(x) {x(1), . . . ,x(β)} Mult
Rotate

Takes in a polynomial x and a parameter dnum and splits x into dnum digits. If x has
L limbs, each digit of x has roughly α := ⌈(L+ 1)/dnum⌉ limbs.

KSKInnerProd(ksk,−→x ) (a,b) Mult
Rotate

Takes in a key-switching key ksk with the structure of eq. (1) and a vector of polynomials−→x of length dnum. Let ksk1 be the first row of ksk and let ksk2 be the second row of ksk.
The output of this operation is two polynomials a := ⟨ksk1,−→x ⟩ and b := ⟨ksk2,−→x ⟩.

Automorph(x, k) ψk(x) Rotate Takes a vector x with N elements and an integer k and outputs a permutation ψk(·)
of the elements. This permutation is an automorphism which is not simply a rotation;
intuitively, the permutation ψk of an encoded message will result in the decoded value
being permuted by the natural rotation ϕk .

Algorithm 4

HRotate(JmKs , {ki, kskψki
(s)→s}ri=1) = {Jϕki(m)Ks}

r
i=1

1: (a,b) := JmKs
2: −→a := Decompβ(a) ▷ β digits.
3: â[j] := ModUp(−→a [j]) for 1 ≤ j ≤ β.
4: for i from 1 to r do
5: ârot := Automorph(â, ki) for 1 ≤ j ≤ β
6: (û, v̂) := KSKInnerProd(kskψki

(s)→s, ârot)
7: (u,v) := (ModDown(û),ModDown(v̂))
8: brot := Automorph(b, ki)
9: Jϕki(m)Ks := (u,v + brot)

10: end for
11: return {Jϕki(m)Ks}ri=1

E. Concrete Costs

We present the hardware cost associated with various func-
tions and subroutines in the FHE API in Table IV and Table V,
and discuss the content of the tables briefly. To generate
these performance numbers, we implement an architectural
modeling tool that can perform an in-depth analysis given
the number of functional units, cache size, and the memory
subsystem parameters. In addition, our tool allows us to tune
nearly all parameters of the algorithm, including N , dnum, and
the maximum ciphertext modulus for a given security level.

Key Takeaway: Low Arithmetic Intensity. The key take-
away from the tables, in particular Table V, is that the
arithmetic intensity, defined as the number of operations
per byte transferred from DRAM, of all of the functions
in the CKKS API is less than < 1 Op/byte. This means
that when the ciphertexts do not fit in memory, any natural

application (e.g. logistic regression training, neural network
evaluation, bootstrapping, etc.) built using these functions will
have performance bounded by the memory bandwidth and not
the computation speed.

Since our ciphertexts will remain too large to fit in the
chip cache, much of this work will focus on improving the
arithmetic intensity of CKKS bootstrapping. This translates to
progressing further in the bootstrapping algorithm per memory
transfer, which, in turn, translates to a faster bootstrapping
implementation.

III. FULLY HOMOMORPHIC ENCRYPTION: APPLICATIONS

In this section, we describe how the FHE API from Sec-
tion II can be leveraged to develop applications. As dis-
cussed in Section II-D, a CKKS ciphertext can only support
computation up to a fixed multiplicative depth due to the
shrinking ciphertext modulus. Once this depth is reached,
a bootstrapping operation must be performed to grow the
ciphertext modulus, which allows for computation to continue.

Many applications of interest have a deep circuit that
requires bootstrapping multiple times: in general, machine
learning training algorithms are good examples where deeper
circuits for the training computation often lead to greater
accuracy of the resulting model. In this section, we use logistic
regression training over encrypted data as a running example
to explain the process of FHE-based machine learning training.
Logistic regression training contains both linear (e.g. inner-
products) and non-linear (e.g. sigmoid) operations. The CKKS
scheme naturally supports linear operations, while for non-
linear operations we need to use a polynomial approximation
(as in [19], [23]). The greater the degree of the polynomial, the
greater the accuracy of the approximation, which further drives
an increase in the circuit depth, in turn requiring bootstrapping.

5



TABLE IV
HARDWARE COST OF AUXILIARY SUBROUTINES: These benchmarks were taken for log(N) = 17, ℓ = 35, dnum = 3. The Total Operations column

counts the number of modular additions and multiplications in the operations, (note that this count for the Automorph function is zero). GOP stands for
Giga operations. The Total DRAM Transfers is the sum of DRAM Limb Reads, DRAM Limb Writes, and DRAM Key Reads, the last of which counts the
reads specifically for the switching keys. The KSKInnerProd operation has no limb writes because the limbs are immediately used in the next operation, the
ModDown. The write is counted in the ModDown when the limbs are written out in to be read back in slot-wise format, as discussed in Section IV-A. The

Arithmetic Intensity column defines the number of operations per byte transferred from DRAM.

Sub-routine
Name

Total Operations
(in GOP)

Total Mults
(in GOP)

Total DRAM
Transfers (in GB)

DRAM Limb
Reads (in GB)

DRAM Limb
Writes (in GB)

DRAM Key
Reads (in GB)

Arithmetic
Intensity

(in Op/byte)

ModDown 0.3000 0.1288 0.1877 0.1007 0.0870 0 1.59

ModUp 0.2847 0.1211 0.1510 0.0629 0.0881 0 1.88

Decomp 0.0092 0.0092 0.0734 0.0367 0.0367 0 0.12

KSKInnerProd 0.0629 0.0378 0.4530 0.1510 0 0.3020 0.13

Automorph 0 0 0.1468 0.0734 0.0734 0 0

TABLE V
HARDWARE COST OF FHE APIS: These benchmarks were taken for log(N) = 17, ℓ = 35, dnum = 3. The number of rotations computed in the HRotate

benchmark is 8. See the caption of Table IV for a description of the columns.

Operation
Name

Total Operations
(in GOP)

Total Mults
(in GOP)

Total DRAM
Transfers(in GB)

DRAM Limb
Reads (in GB)

DRAM Limb
Writes (in GB)

DRAM Key
Reads (in GB)

Arithmetic Intensity
(in Op/byte)

PtAdd 0.00459 0 0.1101 0.0734 0.0367 0 0.04

Add 0.0092 0 0.2202 0.1468 0.0734 0 0.04

PtMult 0.2747 0.1098 0.3282 0.1835 0.1447 0 0.84

Mult 1.8333 0.7826 1.9293 0.9070 0.7203 0.3020 0.95

Rotate 1.5310 0.6682 1.5645 0.6501 0.6124 0.3020 0.98

Conjugate 1.5310 0.6682 1.5645 0.6501 0.6124 0.3020 0.98

HRotate 6.2039 2.7363 8.1411 3.2632 2.4621 2.4159 0.76

For our running example, we use the logistic regression
training application given in Han, Song, Cheon and Park [19]
and depicted in fig. 2. The training process is an iterative
process that repeatedly computes an inner product followed
by a sigmoid function on a training data set and the model
weights. The logistic regression update equation is as follows.

w← w +
lr

n

n∑
i=1

σ
(
zTi ·w

)
· zi (2)

The vector w is the weight vector, the values n and lr are
scalars, and zi represents the ith vector of the training data
set. The σ function is the sigmoid function.

To implement this iterative update, we split the update into
two phases: a linear phase that contains the inner product3 and
a non-linear phase that contains the sigmoid function. We im-
plement these phases separately with common building blocks
shown in Table VI. The linear phase can be implemented with
an InnerProduct routine that computes the inner product of
two encrypted vectors. The non-linear phase is approximated
with a polynomial, and the homomorphic evaluation of this
polynomial can be implemented with PolyEval. The scalar
products and summation can be implemented with the PtMult,

3In the real implementation of Equation (2), these inner products are
batched into a matrix-vector product. We use the same algorithm as [19].

Mult, and Add functions. After some number of iterations, the
encrypted weights are passed through the Bootstrap routine.
The exact placement of the Bootstrap operation in a circuit is
application-dependent. In our running example, bootstrapping
needs to be done every three iterations (see Figure 2).

Vector Inner
Product

Sigmoid
Function

Training  
Dataset

30 iterations

Update

B
oo

ts
tr

ap
pi

ng

[[Update]]

Trained
Model

Plaintext Circuit

Encrypted Circuit

[[Inner 
Product]]

PolyEval

[[Training  
Dataset]]

10 iterations

. . .
Vector Inner

Product

Sigmoid
Function

Vector Inner
Product

Sigmoid
Function

[[Inner 
Product]]

PolyEval

[[Inner 
Product]]

PolyEval

3 iterations + Bootstrapping

[[Trained  
Model]]

Fig. 2. Logistic regression training on encrypted data.

6



TABLE VI
HOMOMORPHIC ENCRYPTION APPLICATION BUILDING BLOCKS: These building blocks are implemented using the API from Table II.

Name Output Description

InnerProduct(JxK , JyK) J⟨x,y⟩K Computes the inner product of two encrypted vectors. This computation is the specific encrypted inner product
algorithm from Han et al. [19].

PolyEval(JxK , p(·)) Jp(x)K This operation takes an encrypted vector x and a (univariate) polynomial p as input. The result is an encryption
of the evaluation of p at x, where each entry of p(x) is the evaluation of p on the corresponding entry of x.

PtMatVecMult(M, JxK) JMxK This operation takes a plaintext matrix M and multiplies it by an encrypted vector x. The result is an encryption
of the vector Mx. This is a major subroutine in Bootstrap.

Bootstrap(JxK) JxK This operation takes in an encryption of a vector x and outputs an encryption of the same vector x. This
operation is necessary to be able to compute indefinitely on encrypted data. Far from being a null operation,
this is nearly always the bottleneck operation when computing over encrypted data.

A. Bootstrapping

As discussed in Section II-D, the ciphertext modulus of
CKKS shrinks with each multiplication. In order to com-
pute indefinitely on a CKKS ciphertext, we must grow the
ciphertext modulus without also growing the noise. This is
not as simple as performing a ModUp function. The CKKS
bootstrapping procedure [9] begins with this ModUp opera-
tion, which gives the new plaintext as ∆ · m + kq where
q is the modulus for the input ciphertext and k is some
polynomial with small integer coefficients. The primary goal
of the bootstrapping operation is to homomorphically evaluate
the modular reduction operation modulo q on this plaintext,
returning the plaintext back to ∆ ·m.

The CKKS bootstrapping algorithm follows a general struc-
ture that has remained relatively static in the literature [3],
[8], [9], [18], [20] over the past few years. This structure has
three main components: a linear operation, an approximation
of the modular reduction function followed by another lin-
ear operation. The linear operations in bootstrapping require
homomorphically evaluating the DFT on the encrypted data
so that we perform modulus reduction on the coefficient
representation of plaintext, rather than the evaluation (or
slot) representation. The first of these DFT operations is
called CoeffToSlot and the second is called SlotToCoeff. In
between these two DFT operations is an approximation of
the modular reduction function that consists of a polynomial
evaluation followed by an exponentiation. For further details
on polynomial evaluation and the exponentiation, we refer the
readers to [3], [20].

To homomorphically evaluate the DFT, we use the observa-
tion that the DFT matrix can be factored into submatrices of
smaller dimension. This turns the homomorphic DFT into a se-
ries of PtMatVecMult operations. However, there is a trade-off
between the number of PtMatVecMult operations that must be
computed and the size of the matrices in each PtMatVecMult
instance. Each PtMatVecMult has a multiplicative depth of 1.
The total dimension of the DFT is n = N/2 = 216 for our
parameters. Options to evaluate this DFT include evaluating
a single PtMatVecMult with an n × n input, which would
require a very large number of rotations, or evaluating 16
PtMatVecMult instances in sequence with only two rotations

per instance. The former corresponds to treating DFT as a
matrix-vector multiplication without using the structure of
the DFT matrix while the latter corresponds to running the
O(N logN) algorithm for DFT.

We can interpolate between these two extremes to find the
optimal depth vs. computation trade-off. Each sub-matrix in
the factorization of the DFT matrix has a radix correspond-
ing to the number of non-zero diagonals. The smaller the
radix, fewer the rotations that must be computed during the
PtMatVecMult instance. The rule is that the product of the
radices of the PtMatVecMult iterations (in the DFT algorithm)
must equal n. For example, for our parameter of n = 216,
this gives the options of three PtMatVecMult iterations with
radices of 25, 25, and 26, or five PtMatVecMult iterations with
four iterations having a radix of 23 matrix and one iteration
with a radix of 24. We call the number of iterations as fftIter.
The homomorphic inverse DFT is computed in an analogous
way.

Our approximation of the modular reduction function fol-
lows the literature, where we represent the modular reduction
function modulo q with a sine function with period q, then
approximate this sine function with a polynomial. We repre-
sent this polynomial with sine(·), and we use the Chebyshev
polynomial construction used in Han and Ki [20]. The degree
of this polynomial is 63. We give a high-level pseudocode for
the bootstrapping algorithm in Algorithm 5.

Algorithm 5 Bootstrap(JxK) = JxK
1: (a,b) := JxK
2: JtK := ModUp(a,b)
3: for i from 1 to fftIter do ▷ CoeffToSlot phase.
4: JtK← PtMatVecMult(Mi, JtK)
5: end for
6: JtK← PolyEval(JtK , sine(·))
7: for i from 1 to fftIter do ▷ SlotToCoeff phase.
8: JtK← PtMatVecMult(Mi, JtK)
9: end for

10: return JtK

7



B. Concrete Costs

We give the concrete costs of the logistic regression and
Bootstrap subroutines in Table VII and Table VIII respec-
tively. As the table shows, the arithmetic intensity of the sub-
routines is less than 1 Op/byte. As discussed in Section II-E,
since our ciphertexts do not fit in cache, this means that
the performance of all sub-routines is bounded by the main
memory bandwidth. In Table VII, we give benchmarks for the
logistic regression implementation based on our architecture
modeling discussed in Section II-E. The parameters we use are
from the work of Jung et al. [22], and these parameters were
chosen to optimize their secure logistic regression application
that leverages a GPU implementation of CKKS bootstrapping.
We refer to the original work of Han et al. [19] for the
full algorithm benchmarked in Table VII. We note that the
logistic regression iteration is the “most expensive” of the
three iterations that follow a Bootstrap, since the ciphertexts
in this iteration are the largest. As the ciphertext shrinks due
to the reduced ciphertext modulus, the computation becomes
cheaper. However, the arithmetic intensity remains essentially
the same, and the performance of each phase of the algorithm
is bottle-necked by the memory bandwidth. Overall, roughly
half of the total runtime is spent in bootstrapping.

Key Takeaway: Bootstrapping is often the bottle-neck opera-
tion in HE applications, especially applications that implement
a deep circuit. For example, even when using a heavily-
optimized GPU implementation of bootstrapping, nearly half
of the time in HE logistic regression training is spent on
bootstrapping [22] (table VII). This motivates the need to
optimize the Bootstrap operation to efficiently support deep
circuits. Furthermore, the building blocks of bootstrapping are
the same as many other HE applications; there are essentially
no subroutines that are unique to bootstrapping. Many of the
optimizations we give in Section IV and Section V apply more
generally to HE applications.

IV. CKKS BOOTSTRAPPING: CACHING OPTIMIZATIONS

In this section and section V, we present our optimizations
to the CKKS bootstrapping algorithm. These optimizations fall
into two categories: those that rely on hardware assumptions
and those that do not. Our first class of optimizations assume
a lower bound on the amount of available cache size relative
to the size of the ciphertext limbs while second class of opti-
mizations are more general as they reduce the total operation
count of CKKS bootstrapping as well as the total number of
DRAM reads, regardless of the hardware architecture.

This section focuses on the first set of optimizations. These
caching optimizations do not affect the operation count of
Bootstrap; instead, they reduce DRAM reads and writes
to reduce the overall memory bandwidth requirement. Our
optimizations demonstrate how best to utilize caches of various
sizes relative to the size of the ciphertext limbs. We quantify
the improvements of these optimizations in Section IV-E,
where we give benchmarks for progressively larger cache
sizes. Our baseline benchmark is the parameter set from the

GPU bootstrapping implementation of Jung et al. [22]. The
parameters are given in Table XI.

A. Caching O(1) Limbs

This is the first in a series of optimizations that details how
best to utilize a cache for various cache sizes relative to the
ciphertext limbs. We begin by discussing how to utilize a cache
that can store a constant number of limbs. Intuitively, this
optimization computes as much as possible on a single limb
before writing it back to the main memory. This often involves
performing the operations of several higher-level functions
on a single limb before beginning the same sequence of
operations on the next limb. This technique was referred to
by Jung et al. [22] as a “fusing” of operations, and we include
all fusing operations listed in their work in our bootstrapping
algorithm. In addition, we provide a novel data mapping
technique to handle caching data with different data access
patterns.

Data Access Patterns: Having a small-cache (about 1-
3 MB) in any FHE compute system has a caveat that must be
carefully addressed. Some operations in CKKS such as NTT
and iNTT operate on data within the slots of the same limb,
independent of the other limbs in the ciphertext. On the other
hand, RNS basis change operations in ModUp and ModDown
require interaction between a certain number of slots across
various limbs. This requires having a few slots from multiple
limbs in on-chip memory to reduce the number of accesses
to main memory for a single operation. To account for this,
we define two different types of data access patterns. For the
functions where limbs can be operated upon independently,
we define the data access pattern as limb-wise and for the
functions where slots can be operated upon independently,
we define the data access pattern as slot-wise. A summary
of this is given in Table IX. We have also illustrated this by
giving a high-level pseudo code of ModUp in Algorithm 6.
From this algorithm, it is evident that the ModUp operation
includes both limb-wise and slot-wise operations, requiring a
memory mapping that is efficient for both access patterns. A
naive memory mapping would result in low throughput for at
least one of these access patterns. Therefore, we describe a
novel memory mapping approach to handle these two access
patterns.

Algorithm 6 ModUpB,B∪B′([x]B) = [x]B∪B′

1: for i from 1 to |B| do
2: [x]i ← iNTT([x]i) ▷ limb-wise
3: end for
4: for j from 1 to |B′| do ▷ Basis conversion.
5: [x]j ← NewLimbj([x]1, . . . , [x]|B|) ▷ slot-wise
6: end for
7: for j from 1 to |B′| do
8: [x]j ← NTT([x]j) ▷ limb-wise
9: end for

10: return [x]B∪B′

8



TABLE VII
HARDWARE COST OF FHE APPLICATIONS: These benchmarks were taken for log(N) = 17, ℓ = 35, dnum = 3. See the caption of Table IV for a

description of the columns. The number of features in the logistic regression is d = 256. The InnerProduct and PolyEval benchmarks are for the first
iterations after a Bootstrap. The “Full LR Iteration” row is the first iteration of the training algorithm after a Bootstrap. The degree of the polynomial

evaluated in PolyEval is 3.

Sub-routine
Name

Total Operations
(in GOP)

Total Mults
(in GOP)

Total DRAM
Transfers(in GB)

DRAM Limb
Reads (in GB)

DRAM Limb
Writes (in GB)

DRAM Key
Reads (in GB)

Arithmetic
Intensity

(in Op/byte)

InnerProduct 7.8558 3.3806 16.5413 7.2918 4.8455 4.4040 0.47

PolyEval 2.9314 1.2188 3.5484 1.7144 1.3118 0.5222 0.83

Full LR Iteration 92.4225 39.6322 195.052 86.7822 56.1387 52.131 0.47

Bootstrap 149.546 64.6859 207.982 109.91 65.2434 32.8288 0.72

TABLE VIII
HARDWARE COST OF BOOTSTRAPPING: These benchmarks were taken for log(N) = 17, ℓ = 35, dnum = 3. See the caption of Table IV for a description

of the columns. These benchmarks represent the performance of the main sub-routines of bootstrapping. The degree of the polynomial in PolyEval is 63.

Sub-routine
Name

Total Operations
(in GOP)

Total Mults
(in GOP)

Total DRAM
Transfers(in GB)

DRAM Limb
Reads (in GB)

DRAM Limb
Writes (in GB)

DRAM Key
Reads (in GB)

Arithmetic
Intensity

(in Op/byte)

CoeffToSlot 58.486 25.8087 86.7424 46.8651 25.2875 14.5899 0.67

PolyEval 57.834 24.4496 65.643 33.0406 23.744 8.8584 0.88

SlotToCoeff 33.2265 14.4275 55.5001 30.004 16.1156 9.3806 0.59

TABLE IX
DATA DEPENDENCIES AND ACCESS PATTERN IN DIFFERENT FUNCTIONS

The NewLimb function is used in both ModUp and ModDown.

Operation Interaction Independent Access pattern

NTT, iNTT Intra-limb Inter-limb limb-wise
NewLimb Inter-limb Intra-limb slot-wise

Physical Address Mapping: When we re-purpose the last
level cache to support both limb-wise and slot-wise access
patterns, we observe that the physical address mapping of the
data in main memory has a substantial impact on the time
it takes to transfer data from the main memory. Figure 3 (a)
shows a natural physical address mapping for a ciphertext.
We call this the baseline address mapping. Through simu-
lations in DRAMSim3 [25] we notice that for this baseline
address mapping, the limb-wise accesses require 2.3 ms to read
35 limbs worth of data. However, we notice that the slot-wise
access pattern requires 9.2 ms to transfer the same amount of
data. This is significantly lower as with the peak theoretical
bandwidth (i.e., 19.2 GB/s) for DDR4 the time required to
read 35 limbs worth of data is 1.9 ms.

There are two reasons for this performance hit while doing
slot-wise accesses. With L = 35, the size of the ciphertext
is 36.7 MB whose limbs can be stored sequentially within a
memory bank in one of the bank groups in main memory.
Each limb of the ciphertext spans across multiple rows of
the memory bank. Typically, each bank in main memory has
a currently activated row whose contents are copied into a
row buffer (acting as a cache) that can be accessed quickly.
However, with slot-wise access pattern, every access is trying

Bank
group

Column 
Index

Byte index
within a row

Bank 
Index

Rank 
Index

Row  
Index

Lower-order bits
for slot index

Higher-order bits
for slot index

Lower-order bits
for limb index

Higher-order bits
for limb index

012345678910111213141516171819202122232425262728293031

Slot indexLimb index

(a) Baseline address mapping

(b) Optimized address mapping
012345678910111213141516171819202122232425262728293031

Fig. 3. DDR4 physical address mapping. Baseline address mapping indexes
all the slots (217) using the lower-order 17 bits and all limbs using the
immediate next 6 bits. In optimized physical address mapping, slots are
indexed using 7 bits from the column and 10 bits from the row, accounting
for 217 slots. The limbs are indexed using the 4 bits that index bank group,
bank, and rank and 2 bits from the row index.

to read a different row, which takes longer because each row
must be activated first. Moreover, with slot-wise accesses, we
are unable to exploit the fact that bank accesses to different
banks’ groups require less time delay between accesses in
comparison to the bank accesses within the same bank’s group.
Instead, we keep accessing data from the memory bank within
the same bank group.

We propose an optimized physical address mapping as
shown in Figure 3 (b). As shown in Table X, with this
proposed address mapping, we observe that the limb-wise
access requires a data transfer time of 2.5 ms, which is
about 8% reduction in the times observed for the baseline
limb-wise accesses. However, compared to the baseline slot-
wise access pattern, our optimized slot-wise access pattern
sees an increase in data transfer time by 76%, which is
a significant improvement. We observe that the total data
transfer time for baseline address mapping is about 2.4×
higher than our optimized mapping. Our optimized physical

9



address mapping ensures that when performing limb-wise and
slot-wise reads/writes, we exploit bank-level parallelism, and
we focus on reducing the bank thrashing by not changing
a bank’s currently activated row frequently. Note that for a
different DRAM type such as HBM2 or GDDR5/6, similar
physical address mappings can be done to optimize the main
memory bandwidth utilization.

TABLE X
DRAM TRANSFER TIMES WITH BASELINE AND OPTIMIZED MAPPING FOR

DIFFERENT ACCESS PATTERNS: Transfer times are computed for reading
L = 35 limbs worth of data, which is 36.7 MB for our baseline parameter

set.

Mapping limb-wise
access

slot-wise
access Total Time

Baseline 2.3 ms 9.2 ms 11.5 ms
Optimized 2.5 ms 2.2 ms 4.7 ms

B. β-Limb Caching

The next optimization considers a cache size that is O(β).
Recall that β is the number of digits generated from a
polynomial key switching. We refer to Han and Ki [20] for
more details. For our parameters where β ≤ dnum = 3, this
amounts to about 6 MB of cache. We need space for 3 limbs
at all-times and 3 limbs worth of space to store intermediate
results and other required constants. With this optimization, we
can greatly reduce the number of accesses to main memory
during key-switching.

Consider the HRotate function in Algorithm 4. There are β
digits that are produced as the output of the ModUp operations.
Naively, for each rotation we would read the limbs for each of
the β digits, rotate them, then compute the inner product with
the key-switching key. Since now we have space in the cache
for β digits, we can instead pull in a single limb from each of
the β outputs of ModUp, then compute the rotation and the
inner product with the switching key limbs all at once. This
allows us to read in the outputs of the ModUp function only
once, regardless of the number of rotations computed.

C. α-Limb Caching

For this optimization, we assume that we have a relatively
large LLC that can hold O(α) limbs. Recall that α is the
number of limbs in a single digit after output by the Decomp
function for key switching. We refer to Han and Ki [20]
for more details. In practice, this optimization requires only
slightly more than 2α limbs, using about 27 MB (2α + 3 MB)
for α = ⌈L+ 1/dnum⌉ = 12 as L = 35 and dnum = 3.

Under this assumption, we observe a dramatic decrease in
the number of accesses to the main memory. This is because
all of the slot-wise basis conversion operations in ModUp
(line 5 in algorithm 6) and ModDown operate over α limbs.
If we can fit these α limbs in cache, then we can generate
new limbs in their entirety within the cache. With each new
limb in cache, we can perform the NTT on the limb, which
completes the basis change operation, and write this limb out
to memory. This lets us generate all new limbs in evaluation

Fig. 4. DRAM transfers with various memory optimizations. As the cache
size grows from left-to-right more optimizations become available. The impact
is assessed cumulatively i.e. each successive optimization builds on top of the
earlier ones. The order of the optimizations correspond to the order of the
sections in Section IV.

format without having to write them out in slot-wise format
and then reading them back in limb-wise format.

Accumulator Caching: We briefly mention an optimiza-
tion that is easily enabled by a large cache but is also available
with smaller caches (O(β) or even smaller). This optimization
improves the memory bandwidth of the baby-step giant-step
polynomial evaluation from Han and Ki [20]. A straight-
forward optimization is to cache the leaves (the baby-step)
polynomials and reuse them to compute all of the giant-step
limbs. However, if there is not enough space for the baby-
step polynomials, we can still save DRAM reads by caching
the partial sums of the giant step limb. When we read in a
baby-step limb, we add this limb to all cached accumulators.

D. Re-Ordering Limb Computations
For the ModDown operation, the limbs that are being

reduced need additional operations to be performed on them.
The ModDown operations in key switching and bootstrapping
drop α limbs. In this re-ordering optimization, we propose
computing these α limbs first so that the additional operations
can be performed immediately. This optimization is especially
potent when these α limbs can be cached, since then there is
no need to write out these limbs as they are being computed.
Once we have the α limbs, we can begin the ModDown
operation by computing the output of the basis conversion.
Then, for each subsequent limb that is computed, this limb can
be immediately combined with the basis conversion output,
saving DRAM transfers.

E. Key Takeaway
The benefits of the optimizations in this section are pre-

sented in Figure 4. As the figure shows, growing the cache size
reduces the DRAM transfers of the bootstrapping algorithm by
employing the optimizations described in this section. Note
that the number of compute operations in the bootstrapping
algorithm remains fixed for all these benchmarks.

V. CKKS BOOTSTRAPPING: ALGORITHMIC
OPTIMIZATIONS

In this section, we present our algorithmic optimizations
to the CKKS bootstrapping algorithm. These optimizations

10



represent strict improvements to the CKKS bootstrapping
algorithm and they do not depend on the cache size. However,
as an added benefit of reducing the compute operation count,
they also reduce the memory bandwidth, as displayed in
Figure 5.

Our baseline for demonstrating the improvements of these
optimizations is the memory-optimized algorithm from Sec-
tion IV. Therefore, the left-most baseline bar in Figure 5 con-
tains all of the memory optimizations described in Section IV.
For the algorithm that includes all of our optimizations, we
performed a parameter search to optimize the bootstrapping
throughput for a 128-bit security level. We discuss our param-
eter search method further in Section VI. These parameters
are given in Table XI, and all benchmarks in Figure 5 were
taken using these same parameters.

A. Combining ModDown and Rescale in Mult

This optimization merges the two ModDown operations in
lines 7 and 9 in Algorithm 2. To merge these ModDown
operations, we must lift the addition step in line 8 above the
first ModDown. We achieve this by modifying the double-
hoisting method from Bossuat et al. [3], multiplying the two
polynomials by P to efficiently lift the two polynomial to
the modulus PQ. We denote the operation that multiplies
by P modulo Q and then interprets the result modulo PQ
as PModUp. By applying the PModUp function, we can
move the addition above the first ModDown, making the
two ModDown operations adjacent, which allows them to be
combined. This new Mult algorithm, denoted as NewMult,
is given in Algorithm 7, and the lines in blue denote the
differences from Algorithm 2.

Faster Encrypted Inner Product: As a direct result of this
optimization, we obtain a faster encrypted inner product. Con-
sider the operation that computes JzK =

∑
iMult(JxiK , JyiK)

where
−→
JxK and

−→
JyK are vectors of ciphertexts. Using the

NewMult operation, we need to compute only one ModDown
operation over the entire sum. This is because we can merge
the additions in line 8 to sum all of the polynomials before
any ModDown is computed.

Algorithm 7 NewMult(Jm1Ks , Jm2Ks , ksk) = Jm1 ·m2Ks
1: (a1,b1) := Jm1Ks
2: (a2,b2) := Jm2Ks
3: (a3,b3, c3) := (a1a2,a1b2 + a2b1,b1b2)
4: −→a := Decompdnum(a3)
5: âi := ModUp(−→a [i]) for 1 ≤ i ≤ dnum.
6: (û, v̂) := KSKInnerProd(ksks2→s, â)
7: (b̂3, ĉ3) := (PModUp(b3),PModUp(c3))
8: return (ModDown(û+ b̂3),ModDown(v̂ + ĉ3))

B. Hoisting the ModDown in PtMatVecMult

In section II-D, we discussed how r rotations on the
same ciphertext can be computed more efficiently than simply
applying the Rotate function r times. This function HRotate
described in Algorithm 4 achieves an improved performance

by identifying an expensive common subroutine in all of the
Rotate operations: the ModUp routine.

Bossuat et al. [3] present an optimization that hoists the
second slot-wise operation in the function: the ModDown
routine. However, their technique is similar to the one in
NewMult, where the message polynomial is lifted to the raised
modulus via the inexpensive PModUp procedure. They call
this optimization “double-hoisting.” Our ModDown hoisting
optimization is used in the context of a baby-step giant-
step (BSGS) algorithm that implements PtMatVecMult. The
trade-off in this algorithm is that a larger baby-step and a
smaller giant step means more DRAM reads for the switching
keys, while a smaller baby-step and a larger giant step means
more DRAM reads for the ciphertexts, since the baby-step
ciphertexts must be read in for each giant-step.

In Section V-C, we give a simple optimization to compress
the size of the keys by a factor of 2. Using our architecture
modeling tool, we determine that this optimization shifts the
balance between the baby-step size and the giant-step size
so significantly that the optimal number of giant steps is 1.
This essentially collapses the baby-step giant-step structure
into just a single step that computes all r iterations at once.
Therefore, by removing the giant steps in the BSGS algo-
rithm, the PtMatVecMult collapses into a single instance of
HRotate that includes the PModUp double-hoisting optimiza-
tion, which allows the PtMult to be absorbed into the inner
loop. This algorithm is given in Algorithm 8, and the lines
that differ from HRotate are in blue.

Algorithm 8 PtMatVecMult(M, JxK , {ki, kski}ri=1) = JMxK
1: (ax,bx) := JxKs
2: −→ax := Decompβ(ax) ▷ β digits.
3: âj := ModUp(−→ax(i)) for 1 ≤ j ≤ β.
4: (ây, b̂y)← 0, 0 ▷ We will have y = Mx.
5: for i from 1 to r do
6: â

(j)
rot := Automorph(âj , ki) for 1 ≤ j ≤ β

7: (û, v̂) := KSKInnerProd(kski,
−→
ârot)

8: brot := Automorph(bm, ki)
9: b̂rot, M̂i ← PModUp(brot),PModUp(∆ ·Mi)

10: ▷ Mi is the ith non-zero diagonal of M
11: (ây, b̂y) += M̂i · (û, v̂ + b̂rot) ▷ PtMult
12: end for
13: return (ModDown(ây),ModDown(b̂y))

Removing Giant-Steps Beyond Bootstrapping: This opti-
mization is not a bootstrapping-only optimization. The hoist-
ing optimizations that are described for PtMatVecMult for
bootstrapping are more broadly applicable to the InnerProduct
computation. When multiple InnerProduct operations needs
to be performed in parallel, this hoisting optimization can
be amortized across these parallel InnerProduct computations,
which results in about 35% improvement in logistic regression
training iterations for our running example.

11



Fig. 5. This figure displays the algorithmic optimizations described in Sec-
tion V. The impact is assessed cumulatively i.e. each successive optimization
builds on top of the earlier ones. The baseline benchmark begins with all of
the memory optimizations from Section IV. All benchmarks are taken with
the Best-case Parameters from Table XI. GOP on y-axis stands for Giga
operations.

C. Compressing the Key with a PRNG

This optimization is not our own; rather, it is a folklore
technique often used to reduce communication when sending
ciphertexts or keys over a network (e.g. it is used in Kyber, a
leading candidate public-key encryption scheme in the ongoing
NIST post-quantum cryptography standardization [2]). How-
ever, to our knowledge, we are the first to use this optimization
to reduce the memory bandwidth for hardware acceleration of
homomorphic encryption as well as the first to analyze this
optimization alongside the other optimizations listed in this
section. As discussed in Section V-B, this optimization has
subtle yet highly impactful effects on the other optimizations
that we list, drastically changing the optimal parameters for
CKKS bootstrapping.

This optimization is a natural result of the observation that
half of the switching key consists of truly random polynomials.
By replacing these truly random polynomials with pseudoran-
dom polynomials generated via PRNG, we can avoid shipping
the large random polynomials to and from DRAM, instead
sending only the short PRNG key.

D. Key Takeaways

Figure 5 shows how various optimizations impact the oper-
ation count and the DRAM transfers for CKKS bootstrapping.
Moving from left to right on the plot, arithmetic intensity
starts to improve as each successive optimization is applied
and enabling all our optimizations result in a cumulative 2.43×
improvement and a final arithmetic intensity value of 1.75. We
now contextualize this compute and bandwidth optimization in
the context of current computing platforms.

Datacenter CPUs: Consider an example of a top-of-line
datacenter CPU such as the AMD EPYC 7763. This CPU
supports a maximum of 128 parallel thread across 64 SMT
cores running at a base clock frequency of 2.45 GHz. This
configuration supports peak integer theoretical throughput of
2.5 TOp/s (Each operation here is a 64-bit Integer Fused
Multiply Add in AVX256 mode). Each socket consists of 8
compute die (CCD) with a local 32 MiB L3 cache per die. The

total L3 cache per socket comes out to 256 MiB. Additionally,
the socket offers an 8-channel DDR4-3200 memory subsystem
with an aggregate bandwidth of 204 GB/s.

At first glance the total L3 capacity appears to be more than
sufficient for storing multiple ciphertexts in cache. However
the die-to-die bandwidth is limited by the underlying inter-
connect (Infinity Fabric) to 51.2 GiB/s reads and 25.6 GiB/s
writes. There are similar bandwidth limits at the L1-L2 and
L2-L3 interfaces on each die. Thus, it is necessary to consider
the compute available on each die in the context of the
bandwidth available to that die.

Each CCD pairs 310 GOp/s with 51.2 GiB/s of memory
bandwidth. This gives a theoretical INT64 FMA arithmetic
intensity of ∼ 6. On current hardware, 64-bit modular opera-
tions need to be emulated using multiple arithmetic operations
as seen in section II-B. Compensating for this, we observe that
the final arithmetic intensity of our bootstrapping procedure is
similar to what can be supported by state-of-art CPUs. Note
that the addition of modular arithmetic vector extension to
existing vector engines would already result in the overall
application being memory bottlenecked.

Datacenter GPUs: For GPU analysis we consider the
NVIDIA A100 datacenter GPU. This GPU offers a peak
19.5 TOp/s 32-bit Integer FMA performance when clocked
at 1.41 GHz. It has an on-chip 40 MB L2 last-level cache
and uses an HBM2 DRAM interface supporting 1.55 TB/s
of bandwidth. Note again that a single die cannot fit a
complete ciphertext in memory. Applications with an INT32
FMA arithmetic intensity lower than ∼ 12 will tend to be
memory bottlenecked. In addition, 64-bit integer arithmetic
is not natively supported on a datacenter GPU and must be
emulated in assembly which has a significant overhead (up to
20 instruction for 64-bit Integer multiply). As such for GPU
implementations, it is advisable to use an RNS representation
with 32-bit limbs to avoid this overhead. Addition of native 32-
bit modular multiplication to future GPU will further worsen
the memory bottleneck.

While the above estimations are simplistic and do not take
into account the intricacies of instruction scheduling, the
underlying point remains that raw access to compute power is
not what bottlenecks existing FHE implementations. Building
new hardware that merely adds an order-of-magnitude to the
compute capability is unlikely to give an order of magnitude
performance improvements without addressing the memory
side of the story.

VI. EVALUATION

In this section, we compare our bootstrapping algorithm to
prior art to demonstrate the improved throughput achieved by
our optimizations. In addition, we show how our improved
CKKS subroutines directly result in more efficient HE appli-
cations.

A. Maximizing Bootstrapping Throughput
Bootstrapping Throughput: Our metric to evaluate boot-

strapping performance is based on the bootstrapping through-
put metric of Han and Ki [20]. This metric attempts to capture

12



the effectiveness of a bootstrapping routine by improving
with the number of slots the algorithm bootstraps (which
is the number of plaintext slots n), the number of limbs ℓ
in the resulting ciphertext (which translates to the number
of compute levels supported by the ciphertext), and the bit-
precision bp of the plaintext data. These factors are then
divided by the runtime of the bootstrapping procedure, denoted
as brt. This gives us the throughput metric in Equation (3).

throughput =
n · ℓ · bp

brt
(3)

Optimal Bootstrapping Parameters: Given the through-
put metric from Equation (3), we can select parameters to
optimize it. We employ our architectural modeling tool to
explore the parameter space of bootstrapping to maximize the
throughput. As DRAM transfer times dominate in bootstrap-
ping, our architectural model accounts for DRAM transfer
time in the total runtime analysis, resulting in parameters
that minimize DRAM transfers. The throughput-maximizing
parameters for our fully-optimized bootstrapping algorithm
(with all optimizations from Section IV and Section V) are
given in Table XI.

TABLE XI
BOOTSTRAPPING PARAMETERS

The L parameter denotes the number of limbs in the ciphertext after the
initial ModUp procedure in Bootstrap. The fftIter parameter is the

number of PtMatVecMult iterations in the CoeffToSlot and SlotToCoeff
phases in Bootstrap. The radix values for these iterations are all balanced,
with any values that need to be larger placed at the end. The λ value is the

bit-security level.

L dnum fftIter λ

Baseline 35 3 3 < 128†

Best-case 40 2 6 128

† The baseline set is based on [22] originally targeting λ =
128. Updated cryptanalysis in [3] reduces the security level
for sparse keys. The parameters in this work include these
updated recommendations.

B. Bootstrapping Performance Comparisons

We now compare the throughput of our most optimized
bootstrapping algorithm to prior art. To compare our algorithm
to prior works, we re-implemented each algorithm in our
architecture model. We then took the parameters given in each
of these works and ran the algorithm in our model with these
parameters. This allowed us to measure the total operations as
well as the DRAM transfer times for each of these algorithms.

From this analysis as well as our discussion in Section V-D,
we know that all of these bootstrapping algorithms are bot-
tlenecked by the memory bandwidth. Therefore, we used the
memory bandwidth requirement of each of these algorithms as
a proxy for the overall runtimes. The memory requirement was
converted to DRAM transfer time based on the memory band-
width of the NVIDIA Tesla V100 [27], which is 900 GB/s.

The results of this analysis is presented in Table XII. We
now discuss each comparison in more detail. The parameter set
selected from Jung et al. [22] is the same parameter set used as

the baseline comparison in Section IV, which is the parameter
set they give for their logistic regression implementation.

We selected the parameter set from Bossuat et al. [3]
that maximized their throughput. Note that this parameter set
maximized the throughput when the runtime was measured
on a CPU. For our architecture model, we are considering
the case where computation has been accelerated to the point
where runtime is completely dominated by memory transfers.

The throughput computation for Samarzdic et al. [30] was
computed slightly differently since this work gives the DRAM
bandwidth of their algorithm. However, this work only gives
benchmarks for unpacked CKKS bootstrapping (i.e., there is
no slot packing and the ciphertext only holds one element).
Rather than re-implementing their algorithm, we use the
memory bandwidth usage they give for their unpacked CKKS
bootstrapping, which is 721 MB. To compute the runtime,
we also use the peak DRAM bandwidth provided by the
authors for their architecture, which is 1 TB/s. Using these
two numbers, we found their bootstrapping procedure runtime
to be 0.721 milliseconds leading to the throughput number
mentioned in Table XII.

TABLE XII
BOOTSTRAPPING COMPARISON

This table measures the bootstrapping throughput. The Throughput column
is computed using Equation (3) with the DRAM transfer time as a proxy for

the runtime. The DRAM transfer time is measured in microseconds.

Work n ℓ bp
DRAM

Transfers
(in GB)

Throughput

Jung et al. [22] 216 20 19 193.09 116.07

Bossuat et al. [3] 215 16 19 75.30 119.05

Samarzdic et al. [30] 1 13 24 0.721 0.43

Our Best Throughput 216 19 19 45.33 469.68

C. Application Comparison

A faster bootstrapping algorithm directly results in faster
HE applications. Continuing with our running example of
logistic regression training, we give benchmarks of the logistic
regression algorithm from Section III using our optimized
bootstrapping routine and parameters. These benchmarks are
given in Table XIII.

D. Key Takeaways

In this section, we demonstrated that our optimizations,
which mostly focus on improving the arithmetic intensity of
bootstrapping and other CKKS building blocks, result in a
much higher memory throughput than prior art that mostly
focused on optimizing the compute throughput. This shows
that focusing on compute throughput overlooks a crucial
bottle-neck in CKKS applications: the memory bandwidth. To
improve the overall performance of many important CKKS
applications such as bootstrapping and encrypted logistic
regression training, the memory bandwidth must be directly
optimized.

13



TABLE XIII
PERFORMANCE OF LOGISTIC REGRESSION TRAINING EXAMPLE

This table displays benchmarks of the logistic regression bootstrapping
application using our optimized bootstrapping parameters. In parentheses

next to each benchmark, we give the improvement over Table VII.

Sub-routine
Name

Total
Operations
(in GOP)

Total
DRAM

Transfers
(in GB)

Arithmetic
Intensity

(in Op/byte)

InnerProduct 6.8256(1.2×) 3.3261(4.9×) 2.05(4.4×)

PolyEval 2.2569(1.3×) 0.9745(3.6×) 1.97(2.4×)

Full LR Iteration 77.3846(1.2×) 41.0811(4.7×) 1.88(4×)

Bootstrap 79.2401(1.9×) 45.3341(4.6×) 1.75(2.43×)

VII. DISCUSSION

Despite our algorithmic and cache optimizations to CKKS
FHE bootstrapping (see Sections IV and V), our analysis re-
veals that FHE bootstrapping continues to have low arithmetic
intensity and is heavily bounded by main memory bandwidth.
This issue is not specific to CKKS bootstrapping alone. For
one, bootstrapping algorithms for other FHE schemes such as
BGV [5] and B/FV [4], [14] have the same high-level structure
and suffer from the same problem, although with different
quantitative thresholds. Additionally, as discussed in Sec-
tion III-B, many natural applications (e.g. logistic regression
and secure neural network evaluation) have the same high-level
structure as bootstrapping, namely, global linear operations
followed by local non-linear operations, and consequently,
they suffer from the main memory bottleneck as well.

Below, we discuss potential research avenues to solve this
issue that is so central to the practicality of FHE.
Future Improvements to Bootstrapping: At a high-level, our
optimizations can be viewed as improving the “thrashing” of
various low-level operations in the bootstrapping algorithm (as
well as other natural applications of FHE such as encrypted
training of machine learning models). While future improve-
ments may reduce thrashing in the baseline algorithms, the size
of the ciphertexts and the size of the switching keys suggests
that the overall arithmetic intensity is unlikely to drastically
improve without a dramatic overhaul to FHE schemes.

In one extreme, we could be in the best-case-scenario
for FHE bootstrapping. In this world that we call “FHE-
mania”, all of bootstrapping can be done in cache without
any DRAM reads or writes beyond the initial input and
the final output. This world would call for true hardware
acceleration of bootstrapping and would make our DRAM
optimizations useless. On the other hand, we could be living
in a world where the best possible bootstrapping algorithms
remain bounded by the memory bandwidth. In this world that
we call “thrashy-land”, our optimizations remain crucial to
achieving the highest throughput for bootstrapping. While it
may be possible to optimize our way out of thrashy-land, as
long as the RNS representation remains the dominant format
of FHE data, our α-limb and β-limb caching optimizations
will remain relevant.

A realistic possibility is a world that is somewhere in be-
tween FHE-mania and Thrashy-land. For example, it turns out
that bootstrapping in GSW-like FHE schemes [13], [16] incurs
slower noise growth and consequently smaller parameters N
and Q; however, it does not support packed bootstrapping as
in BGV, B/FV and CKKS FHE schemes, a feature that is
fundamentally important for efficiency. Can we achieve the
best of both worlds? We believe there is exciting research to
be done here (see [26] for a preliminary attempt); our analysis
provides a compelling reason to pursue this line of research.
Increase Main Memory Bandwidth: There are two ap-
proaches to increasing the main memory bandwidth. First, we
can use multiple DDRx channels, effectively using parallelism
to increase the main memory bandwidth. We could also use
alternate main memory technologies like HBM2/HBM2e [21]
that provide several times higher bandwidth than DDRx tech-
nology. The second approach involves improving the physical
interconnect between the compute cores and the memory by
using silicon-photonic link technologies [32]. Judicious use
of silicon-photonic technology can help improve the main
memory bandwidth, and has the additional benefit of reducing
the energy consumption for memory accesses.
Improve Main Memory Bandwidth Utilization: Here, there
are two complementary approaches. The first is to attempt
a cleverer mapping of the data to physical memory to take
advantage of spatial locality in cache lines such that we reduce
the number of memory accesses required per compute oper-
ation. To complement this, we can improve FHE-based com-
puting algorithms such that we perform more operations per
byte of data that is fetched from main memory, i.e., improve
temporal locality. The second approach is algorithmic: namely,
improve FHE bootstrapping algorithms (as discussed above)
so that we reduce the size of the key-switching parameter,
the main culprit for low arithmetic intensity, or eliminate it
altogether. These two complementary approaches may result
in an increase in the arithmetic intensity, effectively reducing
the time required for bootstrapping and FHE as a whole.
Use In-Memory/Near-Memory Computing: Two potential
architecture-level approaches include performing the opera-
tions in FHE APIs within main memory i.e., in-memory com-
puting, and having a custom die very close to main memory
for performing operations in FHE APIs, i.e., near-memory
computing. In the in-memory computing approach, we can
eliminate a large number of expensive main memory accesses
by performing matrix-vector multiplication operations in the
main memory itself [12]. In contrast, in case of near-memory
computing, we perform all the FHE compute operations in a
custom accelerator that is placed close to the main memory.
Here, we cannot eliminate the memory accesses, but the cost
of a memory access is lower than that of accessing a traditional
memory.
Use Wafer-Scale Systems: A radical technology-level solu-
tion is to design large-scale distributed accelerators such as
Cerebras style wafer-scale accelerators [7] that have 40 GB
of high-performance on-wafer memory. Tesla’s Dojo acceler-
ator [33] also fits in this category wherein a large wafer is

14



diced into 354 chip nodes, which provides high bandwidth
and compute performance. Effectively, we can have large
SRAM arrays i.e. large caches on the same wafer as the
compute blocks, thus limiting all communication to on-chip
wafer communication and avoiding expensive main memory
accesses after the initial loads.

VIII. RELATED WORK

Algorithmic optimizations for CPUs: The key bottleneck
in the FHE bootstrapping process is the large homomorphic
matrix-vector multiplication required to convert ciphertexts
from coefficient to evaluation representation and back. This re-
quires many key-switching operations, which require accessing
large number of switching keys from the DRAM, adding both
to the computational cost and to data access latency. Initial
implementations of bootstrapping in software (for example, the
HEAAN library [11]) did try to reduce the number of rotations
required in this linear transformation step by using baby-step
giant-step (BSGS) algorithm, originally invented by Halevi
and Shoup [17]. Using this algorithm, one can reduce the
number of rotations to O(

√
N) while still requiring only O(N)

scalar multiplications. The HEAAN library also optimizes the
operational cost of approximating the modular reduction step
by evaluating the sine function using a Taylor approximation.
With these techniques, the HEAAN library takes about eight
minutes to bootstrap 128 slots within a ciphertext of degree
216 on a CPU.

Chen, Chillotti and Song [8] proposed a level collapsing
technique along with BSGS for the linear transformation
step to improve the number of rotations. They also replaced
the Taylor approximation with a more accurate Chebyshev
approximation to evaluate a scaled-sine function instead. For
the same parameter set as the HEAAN library, they observe a
3× speedup. More recently, Han and Ki [20] proposed a hybrid
key-switching approach to efficiently manage the amount of
noise added through the key-switching operation. They eval-
uated a scaled, shifted cosine function instead of the scaled-
sine function in modular reduction to reduce the number of
non-scalar multiplications by half. Their optimizations led to
an additional 3× speedup. Bossuat et al. [3] further lower
the operational complexity of the linear transformations by
optimizing rotations through double-hoisting the hybrid key-
switching approach. Double-hoisting the key-switch operation
reduces the number of basis conversion operations signifi-
cantly, which are expensive in terms of accessing the main
memory. They also carefully manage the scale factors for non-
linear transformations for error-less polynomial evaluation.
Their implementation in Lattigo library [24] shows a further
speedup of 1.5× on a CPU.
Algorithmic optimizations for GPUs: All the above men-
tioned optimizations heavily focused on lowering the operation
complexity of bootstrapping, which led to a minor reduction
in the main memory accesses as well. Recently, Jung et
al. [22] presented the first ever GPU implementation of CKKS
bootstrapping. Their analysis, even though limited to GPUs,
rightly points out the main-memory-bounded nature of the

bootstrapping operation. Thus, their optimizations, such as
inter- and intra-kernel fusion, are all focused on improving
the memory bandwidth utilization rather than accelerating
the compute itself. Their bootstrapping implementation is
so far the fastest requiring only 328.25 ms (total time) for
bootstrapping all the slots of a ciphertext of degree N = 216.
As discussed in Section IV and V, our techniques are com-
posable with all these prior works and consequently, result in
3.2× higher arithmetic intensity and 4.6× reduction in main
memory accesses.

Hardware Accelerators for HE: Samardzic et al. [30]
recently presented the architecture of a programmable hard-
ware accelerator for FHE operations. Their analysis also shows
the fact that the FHE operations are memory bottlenecked.
However, they implement a massively parallel compute block
(having 4096 modular multiplications) in their accelerator.
From their performance analysis, it is evident that the compute
block is underutilized due to the memory bottleneck.

IX. CONCLUSION

In this paper, we undertook a thorough architecture-level
analysis of the compute and memory requirements for fully
homomorphic encryption to identify the limits and opportu-
nities for hardware acceleration. Our analysis shows that the
bootstrapping step is the critical performance bottleneck in
FHE-based computing, and it has low arithmetic intensity and
is heavily constrained by today’s main memory systems. We
argue that to accelerate FHE-based computing, the research
community should focus on improving the arithmetic intensity
of FHE-based computing and leverage novel memory system
architectures. We proposed several architecture-independent
and cache-friendly optimizations that improve arithmetic in-
tensity by about 2.43×. We also propose custom physical
address mapping for limb-wise and slot-wise operations to
enhance the main memory bandwidth utilization. To further
mitigate the impact of memory bandwidth on FHE-based
computing, we suggest directions for the research community
to explore novel techniques to either increase main memory
bandwidth or improve its utilization, use in-memory/near-
memory computing, and/or use wafer-scale systems with large
on-chip memory.

REFERENCES

[1] P. Barrett, “Implementing the Rivest-Shamir-Adleman public key en-
cryption algorithm on a standard digital signal processor,” in Advances
in Cryptology — CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1987, pp. 311–323. 3

[2] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS - kyber:
A cca-secure module-lattice-based KEM,” in 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018, London, United
Kingdom, April 24-26, 2018. IEEE, 2018, pp. 353–367. [Online].
Available: https://doi.org/10.1109/EuroSP.2018.00032 12

[3] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Efficient bootstrapping for approximate homomorphic encryption with
non-sparse keys,” in Advances in Cryptology – EUROCRYPT 2021,
A. Canteaut and F.-X. Standaert, Eds. Cham: Springer International
Publishing, 2021, pp. 587–617. 2, 7, 11, 13, 15

15

https://doi.org/10.1109/EuroSP.2018.00032


[4] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical gapsvp,” in Advances in Cryptology – CRYPTO 2012,
R. Safavi-Naini and R. Canetti, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 868–886. 2, 14

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully ho-
momorphic encryption without bootstrapping,” in ITCS ’12, 2012. 2,
14

[6] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” in IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, 2011, R. Ostrovsky, Ed. IEEE Computer Society, 2011,
pp. 97–106. [Online]. Available: https://doi.org/10.1109/FOCS.2011.12
4

[7] “Cerebras wse-2,” Online: https://cerebras.net/, April 2021, cerebras. 14
[8] H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for ap-

proximate homomorphic encryption,” in Advances in Cryptology –
EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. Cham: Springer
International Publishing, 2019, pp. 34–54. 7, 15

[9] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for
approximate homomorphic encryption,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2018, pp. 360–384. 7

[10] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography – SAC 2018, C. Cid and M. J. Jacobson Jr., Eds. Cham:
Springer International Publishing, 2019, pp. 347–368. 4

[11] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology –
ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. Cham: Springer
International Publishing, 2017, pp. 409–437. 2, 3, 15

[12] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in Proceedings
of the 43rd International Symposium on Computer Architecture,
ser. ISCA ’16. IEEE Press, 2016, p. 27–39. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.13 14

[13] L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic
encryption in less than a second,” in Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, ser. Lecture
Notes in Computer Science, E. Oswald and M. Fischlin, Eds.,
vol. 9056. Springer, 2015, pp. 617–640. [Online]. Available:
https://doi.org/10.1007/978-3-662-46800-5 24 14

[14] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, Report 2012/144, 2012, https:
//ia.cr/2012/144. 2, 14

[15] C. Gentry, A fully homomorphic encryption scheme. Stanford university,
2009. 1, 4

[16] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, ser. Lecture Notes in Computer Science,
R. Canetti and J. A. Garay, Eds., vol. 8042. Springer, 2013, pp. 75–92.
[Online]. Available: https://doi.org/10.1007/978-3-642-40041-4 5 14

[17] S. Halevi and V. Shoup, “Faster homomorphic linear transformations
in helib,” in Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part I, ser. Lecture Notes in Computer
Science, H. Shacham and A. Boldyreva, Eds., vol. 10991. Springer,
2018, pp. 93–120. [Online]. Available: https://doi.org/10.1007/978-3-
319-96884-1 4 15

[18] K. Han, M. Hhan, and J. H. Cheon, “Improved homomorphic discrete
fourier transforms and fhe bootstrapping,” IEEE Access, vol. 7, pp.
57 361–57 370, 2019. 2, 7

[19] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression
on homomorphic encrypted data at scale,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, pp. 9466–9471,
Jul. 2019. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/5000 5, 6, 7, 8

[20] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” in Topics in Cryptology – CT-RSA 2020, S. Jarecki, Ed.

Cham: Springer International Publishing, 2020, pp. 364–390. 2, 4, 7,
10, 12, 15

[21] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “HBM
(high bandwidth memory) dram technology and architecture,” in 2017
IEEE International Memory Workshop (IMW), 2017, pp. 1–4. 14

[22] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x
faster bootstrapping in fully homomorphic encryption through memory-
centric optimization with gpus,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2021, no. 4, p. 114–148,
Aug. 2021. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/9062 1, 2, 8, 13, 15

[23] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regression
model training based on the approximate homomorphic encryption,”
BMC Medical Genomics, vol. 11, 2018. 5

[24] “Lattigo v2.2.0,” Online: http://github.com/ldsec/lattigo, April 2021,
ePFL-LDS. 15

[25] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3:
A cycle-accurate, thermal-capable dram simulator,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 106–109, 2020. 9

[26] D. Micciancio and J. Sorrell, “Ring packing and amortized FHEW
bootstrapping,” in 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, ser. LIPIcs, I. Chatzigiannakis, C. Kaklamanis,
D. Marx, and D. Sannella, Eds., vol. 107. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018, pp. 100:1–100:14. [Online].
Available: https://doi.org/10.4230/LIPIcs.ICALP.2018.100 14

[27] NVIDIA, “NVIDIA Tesla V100 GPU Architecture,” 2017. 13
[28] NVIDIA, “NVIDIA A100 Datasheet,” 2021, https://www.nvidia.

com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-
datasheet-us-nvidia-1758950-r4-web.pdf. 3

[29] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Foundations of Secure Computation,
Academia Press, pp. 169–179, 1978. 1

[30] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable accelerator
for fully homomorphic encryption,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 238–252. [Online]. Available: https://doi.org/10.1145/3466752.
3480070 2, 13, 15

[31] V. Shoup et al., “NTL: A library for doing number theory,” 2001, https:
//libntl.org/. 3

[32] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas,
A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R.
Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J.
Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. Popović,
and V. M. Stojanović, “Single-chip microprocessor that communicates
directly using light,” Nature, vol. 528, no. 7583, pp. 534–538, 2015.
[Online]. Available: https://doi.org/10.1038/nature16454 14

[33] “Tesla dojo d1,” Online: https://www.datacenterdynamics.com/en/news/
tesla-details-dojo-supercomputer-reveals-dojo-d1-chip-and-training-
tile-module/, Aug. 2021, tesla. 14

16

https://doi.org/10.1109/FOCS.2011.12
https://cerebras.net/
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1007/978-3-662-46800-5_24
https://ia.cr/2012/144
https://ia.cr/2012/144
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://ojs.aaai.org/index.php/AAAI/article/view/5000
https://ojs.aaai.org/index.php/AAAI/article/view/5000
https://tches.iacr.org/index.php/TCHES/article/view/9062
https://tches.iacr.org/index.php/TCHES/article/view/9062
http://github.com/ldsec/lattigo
https://doi.org/10.4230/LIPIcs.ICALP.2018.100
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3466752.3480070
https://libntl.org/
https://libntl.org/
https://doi.org/10.1038/nature16454
https://www.datacenterdynamics.com/en/news/tesla-details-dojo-supercomputer-reveals-dojo-d1-chip-and-training-tile-module/
https://www.datacenterdynamics.com/en/news/tesla-details-dojo-supercomputer-reveals-dojo-d1-chip-and-training-tile-module/
https://www.datacenterdynamics.com/en/news/tesla-details-dojo-supercomputer-reveals-dojo-d1-chip-and-training-tile-module/

	Introduction
	Fully Homomorphic Encryption: The API
	Homomorphic Encryption API
	Modular Arithmetic and the Residue Number System
	CKKS Ciphertext Structure
	Implementing the API
	Concrete Costs

	Fully Homomorphic Encryption: Applications
	Bootstrapping
	Concrete Costs

	CKKS Bootstrapping: Caching Optimizations
	Caching O(1) Limbs
	-Limb Caching
	-Limb Caching
	Re-Ordering Limb Computations
	Key Takeaway

	CKKS Bootstrapping: Algorithmic Optimizations
	Combining ModDown and Rescale in Mult
	Hoisting the ModDown in PtMatVecMult
	Compressing the Key with a PRNG
	Key Takeaways

	Evaluation
	Maximizing Bootstrapping Throughput
	Bootstrapping Performance Comparisons
	Application Comparison
	Key Takeaways

	Discussion
	Related Work
	Conclusion
	References

