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Abstract

In this paper, we propose a new protocol for secure integer compari-
son which consists of parties having each a private integer. The goal of
the computation is to compare both integers securely and reveal to the
parties a single bit that tells which integer is larger. Nothing more should
be revealed. To achieve a low communication overhead, this can be done
by using homomorphic encryption (HE). Our protocol relies on binary
decision trees that is a special case of branching programs and can be im-
plemented using HE. We assume a client-server setting where each party
holds one of the integers, the client also holds the private key of a ho-
momorphic encryption scheme and the evaluation is done by the server.
In this setting, our protocol outperforms the original DGK protocol of
Damgård et al. and reduces the running time by at least 45%. In the case
where both inputs are encrypted, our scheme reduces the running time of
a variant of DGK by 63%.

1 Introduction

Multi-party computation (MPC) is a cryptographic technique that allows sev-
eral parties to compute a function on their private inputs without revealing any
information other than the function's output [1, 13, 18, 19, 21]. A classic exam-
ple in the literature is the so-called Yao's Millionaire's problem introduced in
[38]. Two millionaires are interested in knowing which of them is richer without
revealing their actual wealth. Formally, let there be two parties P1, P2 with
private input x, y respectively. The goal of the computation is to compute and
reveal b = [x ≥ y] to the parties and nothing else. This is illustrated in Figure 1.

Integer comparison is one of the basic arithmetic operations in computer
programming and algorithm design. Secure integer comparison is therefore nec-
essary in many privacy-preserving computations. In machine learning, private
integers must be compared securely while evaluating classi�ers such as decision
trees or neural networks. In secure enterprise benchmarking, key performance
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indicators are securely compared to determine how companies perform com-
pared to their competitors. In secure auction, bids are privately compared to
determine the winner. Secure integer comparison has application in di�erent
privacy-preserving analytics.

In the following, the party with input x is the client and the party with input
y is the server. The idea of our solution consists of having the server construct a
binary tree that represents y. Then, the client encrypts x using a homomorphic
encryption scheme and let the server evaluate on the tree representing y. Finally,
the client receives the result of the computation and decrypts it. Depending on
the use case, the client can send the result to the server or they could both get
a share of the �nal result. Furthermore, there are two variants of the protocol.
The �rst (basic) variant utilizes the input of the server in plaintext, the second
variant requires both inputs to be encrypted. We compare our results of the �rst
variant to the original DGK protocol [11] and reduce the running time by 45%.
Compared to an optimization of the DGK protocol proposed by Veugen [36],
we can reduce the running time by about 10% for the �rst variant. However,
for the second variant where both inputs are encrypted we achieve a reduction
of more than 63%.

The remainder of the paper is structured as follows. We review preliminar-
ies in Section 2 before de�ning correctness and security of the functionality in
Section 3. We describe our protocol and its algorithms in Section 4 and present
some extensions in Section 5. A detailed complexity analysis can be found in
Section 6. Section 7 and 8 give details about our implementation, evaluation
results and applications. In Section 9, we present related work before concluding
our work in Section 10.

2 Preliminaries

Homomorphic encryption (HE) allows computations on ciphertexts by generat-
ing an encrypted result whose decryption matches the result of a function on
the plaintexts [5, 16].

HE Algorithms. A HE scheme consists of the following algorithms:

� pk, sk, ek ← KGen(λ): This probabilistic algorithm takes a security pa-
rameter λ and outputs public, private, and evaluation keys pk, sk, and
ek.

� c ← Enc(pk,m): This algorithm takes pk and a message m and outputs a
ciphertext c. We will use ⟦m⟧ as a shorthand notation for Enc(pk,m).

� c ← Eval(ek, f, c1, . . . , cn): This algorithm takes ek, an n-ary function f
and n ciphertexts c1, . . . cn and outputs a ciphertext c.

� m′ ← Dec(sk, c): This deterministic algorithm takes sk and a ciphertext c
and outputs a message m′.
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We require IND-CPA security and the following correctness conditions. Given
any set of n plaintexts m1, . . . ,mn, it must hold for any pk, sk, ek:

� Dec(sk,Enc(pk,mi)) = Dec(sk, ⟦mi⟧) = mi,

� Dec(sk,Eval(ek, f, ⟦m1⟧, . . . , ⟦mn⟧)) = Dec(sk, ⟦f(m1, . . . ,mn)⟧).

In practice, a homomorphic encryption de�nes two basic operations for addition
and multiplication that can then be used to compute larger functionalities.

FHE Operations. An FHE scheme de�nes both operations (addition and
multiplication). For all plaintexts m1,m2, we de�ne the following operations
and introduce shorthand notations:

� Addition: Add(⟦m1⟧ , ⟦m2⟧) = ⟦m1⟧ ⊞ ⟦m2⟧ = ⟦m1 +m2⟧,

� Constant Addition : AddCons(⟦m1⟧ ,m2) = ⟦m1⟧ ⊞m2 = ⟦m1 +m2⟧,

� Multiplication: Mul(⟦m1⟧ , ⟦m2⟧) = ⟦m1⟧ ⊡ ⟦m2⟧ = ⟦m1 ⋅m2⟧,

� Constant Multiplication : MulCons(⟦m1⟧ ,m2) = ⟦m1⟧ ⊡m2 = ⟦m1 ⋅m2⟧.

Additively HE. If the scheme supports only addition, then it is called addi-
tively HE (AHE). Schemes such as Paillier [30] or Elliptic Curve ElGamal [22]
are additively homomorphic and have the following properties for all integer
plaintexts m1,m2 and bit plaintexts a, b ∈ {0,1}:

� Addition: Add(⟦m1⟧ , ⟦m2⟧) = ⟦m1⟧ ⊞ ⟦m2⟧ = ⟦m1 +m2⟧,

� Constant Multiplication: MulCons(⟦m1⟧ ,m2) = ⟦m1⟧ ⊡m2 = ⟦m1 ⋅m2⟧,

� Xor: Xor(⟦a⟧ , b) = Add(⟦b⟧ ,MulCons(⟦a⟧ , (−1)b)) = ⟦a⊕ b⟧.

Note that we use the same shorthand notation for FHE and AHE. The actual
implementation depends on the underlying scheme.

Somewhat, Leveled and Fully HE. If the scheme supports addition and
multiplication, but for a limited number of times, then it is somewhat homo-
morphic (SHE). When arbitrary computation can be performed on encrypted
data, then the encryption scheme is fully homomorphic (FHE). Because FHE
requires the so-called bootstrapping that is computationally expensive, it is
sometime useful to use leveled FHE for e�ciency. Leveled FHE can evaluate
only computation up to a given circuit depth that is �xed by the encryption
keys. In the following, we will use only the term FHE for fully homomorphic
encryption and leveled fully homomorphic encryption.
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Client Server

FGT

x y

[x ≥ y] [x ≥ y]

Figure 1: Illustration of the GT functionality

3 De�nitions

Setting. The protocol consists of a server holding an input y, and a client
holding an input x . We assume that both inputs consist of µ−bit integers and
µ is public. The ideal functionality FGT takes y from the server and x from
the client. It computes and outputs a bit b = [x ≥ y] to the parties such that
b = 1 if x ≥ y and b = 0 otherwise. The functionality is illustrated in Figure 1.
In the following, we build our protocol on the case where only the client gets
an output b = [x ≥ y]. It can be easily extended to a symmetric scenario if the
server chooses a random bs ∈ {0,1} and homomorphically computes bc = b ⊕ bs
before sending the result to the client. Then, the client decrypts the result and
both parties holding shares bc, bs respectively and can reconstruct the result
b = bc ⊕ bs. In some larger settings, it might be required to return only these
shares of b to the parties, preventing them to learn intermediate result.

Security and Correctness. A protocol correctly implements the GT func-
tionality if after the computation the output is correct, i.e., b = 1 if x ≥ y and b = 0
otherwise. Besides correctness parties must learn only what they are allowed
to. To formalize this, we need the following de�nition [18]. Two probability dis-
tribution ensembles {Xi}i∈{0,1}∗ ,{Yi}i∈{0,1}∗ are computational indistinguishable
(denoted by

c≡) if for every probabilistic polynomial-time (PPT) algorithm D,
every positive polynomial p(⋅) and all su�ciently long w ∈ {0,1}∗ it holds that
∣Pr[D(Xw,w) = 1] − Pr[D(Yw,w) = 1]∣ < 1/p(∣w∣). In other words, there is no
algorithm that can distinguish between the distributions.

In multi-party protocols the view of a party consists of its input and the
sequence of messages that it has received during the protocol execution [18]. The
protocol is said to be secure if for each party, one can construct a simulator that,
given only the input of that party and the output, can generate a distribution
that is computationally indistinguishable to the party's view. We focus on the
semi-honest security model in which parties follow the protocol but may try to
learn more information from its execution.

A protocol securely implements the GT functionality FGT in the semi-honest
model if each party learns only its output and nothing else. In particular, there
must exists simulators Simgt

C and Simgt
S that simulate the client and the server

given only their input and output to the protocol. Let ΠGT denote a protocol
that securely implements FGT, and let ViewΠGT

P (x, y) denote the view of party
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P during the protocol, then the following hold:

� there exists a PPT algorithm Simgt
S that simulates the server's view ViewΠGT

S

given only y and [x ≥ y] such that:

{Simgt
S (y, [x ≥ y])}x,y∈{0,1}∗

c≡ {ViewΠGT

S (x, y)}x,y∈{0,1}∗ ,

� there exists a PPT algorithm Simgt
C that simulates the client's view ViewΠGT

C

given only x and [x ≥ y] such that:

{Simgt
C (x, [x ≥ y])}x,y∈{0,1}∗

c≡ {ViewΠGT

C (x, y)}x,y∈{0,1}∗ .

4 Our Protocol

Our protocol relies on a branching program that is represented as a binary tree.
We therefore start by de�ning our data structure. Then, we describe how our
algorithms use this data structure to implement the functionality.

4.1 Data Structure

The data structure is a binary tree consisting of inner nodes and terminal nodes.
Each inner node has two child nodes and terminal nodes have no child nodes.
There is a node with no parent node that is called root node. Let v be a node
in the tree. We de�ne a node data structure Node consisting of the following
attributes:

� v.parent: a value representing the pointer to the parent node,

� v.left: a value representing the pointer to the left child node,

� v.right: a value representing the pointer to the right child node,

� v.lEdge: a bit representing the edge label to the left child node,

� v.rEdge: a bit representing the edge label to the right child node,

� v.cLabel: a value representing a node label,

� v.cost: an integer representing the cost on the path from the root.

The pointer to the parent node v.parent is initially null and points to the respec-
tive parent node, when the child node is created. This pointer remains null for
the root node. The pointers to the child nodes v.left, v.right are initially null,
and point to the respective nodes if they are created. The edge labels to the
child nodes v.lEdge, v.rEdge are 0 on the left and 1 on the right. The node label
v.cLabel is 0 or 1 for terminal nodes and unde�ned for inner nodes. The cost
attribute v.cost is computed during evaluation of the tree.
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4.2 Algorithms

Our scheme works for both AHE and FHE but must be implemented di�erently.
To simplify the description of our scheme, we therefore introduce the symbol
β to di�erentiate between AHE and FHE. Namely, if the encryption scheme is
FHE then β = 1 otherwise β = 0. For an integer x, we use x̄ = x[1], . . . , x[µ] to
denote the corresponding bit representation, where x[µ] is the most signi�cant
bit, and we use ⟦x̄⟧ = ⟦x[1]⟧ , . . . , ⟦x[µ]⟧ to denote the bitwise encryption of x̄.

Initialization. The Initialization consists of a one time key generation. The
client generates an appropriate triple (pk, sk, ek) of public, private and evalua-
tion key for a homomorphic encryption scheme. Then, the client sends (pk, ek)
to the server. For each computation, the client just encrypts its input and sends
it to the server.

Creating the Binary Tree. Let y be the server input with bit-length µ. The
server starts by creating a binary tree representing y. The basic idea consists of
creating a binary tree representing all bit strings of length µ. Then the leaf of
the path that represents y and the leaves of all paths right to the path of y are
labelled with 1 (i.e., v.cLabel = 1). The leaves of the paths left to y are labelled
with 0 (i.e., v.cLabel = 0). Finally, we can prune all subtrees that are labelled
with the same bit. That is, if an inner node v has two child nodes labelled with
the same bit b, we remove the child nodes of v from the tree and transform
v into a leaf node labelled with b, (i.e., v.cLabel = b). However, we can avoid
the pruning by traversing the tree a single time with the bits of y. If y[i] = 1,
we insert a leaf node on the left with cLabel = 0, and a new node on the right,
then we traverse to the right. If y[i] = 0, we insert a leaf node on the right
with cLabel = 1 and a new node on the left, then we traverse to the left. Note
that inserting a leaf node is only required if we are using FHE. For AHE, the
traversal works similarly as above except that no leaf node is inserted left from
the traversed path. Therefore, the created tree contains only paths, that can be
evaluated to zero, i.e., paths labelled with integers that are larger or equal to y.
The creation of the binary tree is illustrated in Algorithm 1.

For example, assume that µ = 3, then Figure 2 illustrates the binary trees of
2, 3, and 5 if the scheme is FHE and Figure 3 illustrates the binary trees of 2,
3, and 5 if the scheme is AHE.

Computing Decision Bits. Let x be the input of the client. The client
sends x bitwise encrypted. That is, the client computes the bit represen-
tation x̄ = x[1], . . . , x[µ] and then sends the corresponding ciphertext ⟦x̄⟧ =
⟦x[1]⟧ , . . . , ⟦x[µ]⟧ to the server. The server computes the decision bits at each
inner node v by comparing each ⟦x[i]⟧ against the edge labels of node v. This
is represented by a comparison operation comp. For FHE, it is implemented as
a bit equality test that returns ⟦1⟧ if the two bits are equal and ⟦0⟧ otherwise.
For AHE, it is implemented as an inequality test that returns ⟦0⟧ if the two bits
are equal and ⟦1⟧ otherwise. The operation can be computed by at least one
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Algorithm 1 Creating the Binary Tree for an Integer y.

1: function CreateTree(y)
2: let root be a new node
3: let curr be an empty node
4: let y[1], . . . , y[µ] be the bit string of y
5: curr ← root
6: for i = µ downto 1 do
7: if y[i] = 1 then
8: let v be a new node
9: curr.right← v
10: if β = 1 then ▷ Only FHE
11: let v be a new node
12: v.cLabel← 1 − β
13: curr.left← v
14: curr ← curr.right
15: else
16: let v be a new node
17: curr.right← v
18: if β = 1 then ▷ Only FHE
19: v.cLabel← β

20: let v be a new node
21: curr.left← v
22: curr ← curr.left
23: if β = 1 then ▷ Only FHE
24: curr.cLabel← β

25: root.cost← ⟦β⟧
26: return root
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Figure 2: Tree Creation for FHE (β = 1) and µ = 3
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Figure 3: Tree Creation for AHE (β = 0) and µ = 3

Not gate. For example, consider the FHE case in which we have to achieve an
equality test. If the edge label is 1, we just take the client's input ⟦x[i]⟧ as the
comparison result. If it is 0, we compute ⟦¬x[i]⟧.

The computation of decision bits is illustrated in Algorithm 2.

Aggregating Decision Bits. For each leaf node v, the server aggregates
the comparison bits along the path from the root to v For FHE this is done
using homomorphic multiplication of the decision bits. For AHE, it is done
using homomorphic addition of the decision bits. To unify the depiction of our
algorithms as much as possible, we introduce a new notation for aggregating the
decision bits: DecBitAgg. It refers to the homomorphic multiplication in the
FHE case and to the homomorphic addition in the AHE case. The aggregated
result is then stored at the leaf node of the corresponding path. We implement
it using a queue and traversing the tree in BFS order as illustrated in Algorithm
3. Note that this computation can be improved using path pre�xes, i.e. for two
paths having the same pre�x, the pre�x is evaluated once.

Evaluating leaves. The evaluation of the leaves depends on the scheme as
well. For FHE, after aggregating the decision bits along the paths to the leaf
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Algorithm 2 Computing Decision Bits

1: function EvalNodes(root, ⟦x̄⟧)
2: parse ⟦x̄⟧ to ⟦x[1]⟧ , . . . , ⟦x[µ]⟧
3: v ← root
4: for i = µ downto 1 do
5: if v.left ≠ null then
6: ⟦v.left.cost⟧ ← comp(⟦x[i]⟧ , v.lEdge)
7: if v.right ≠ null then
8: ⟦v.right.cost⟧ ← comp(⟦x[i]⟧ , v.rEdge)
9: if v.right ≠ null and v.right.IsLeaf() = false then
10: v ← v.right
11: else
12: v ← v.left

Algorithm 3 Aggregating Decision Bits

1: function EvalPaths(root)
2: let Q be a queue
3: let leaves be a queue
4: Q.enqueue(root)
5: while Q.empty() = false do
6: v ← Q.dequeue()
7: if v.left ≠ null then
8: ⟦v.left.cost⟧ ← DecBitAgg(⟦v.left.cost⟧ , ⟦v.cost⟧),
9: if v.left.IsLeaf() then
10: leaves.enqueue(v.left)
11: else
12: Q.enqueue(v.left)
13: if v.right ≠ null then
14: ⟦v.right.cost⟧ ← DecBitAgg(⟦v.right.cost⟧ , ⟦v.cost⟧),
15: if v.right.IsLeaf() then
16: leaves.enqueue(v.right)
17: else
18: Q.enqueue(v.right)
19: return leaves
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Algorithm 4 Evaluating leaves using FHE

1: function EvalLeaves(leaves)
2: ⟦b⟧ ← ⟦0⟧
3: for each v ∈ leaves do
4: ⟦b⟧ ← ⟦b⟧ ⊞ (⟦v.cost⟧ ⊡ ⟦v.cLabel⟧)
5: return ⟦b⟧

Algorithm 5 Evaluating leaves using AHE

1: function EvalLeaves(leaves)
2: let c be an array of ciphertexts
3: for i = 1 to leaves.size() do
4: c[i] ← randomize(leaves.get(i).cost) ▷ Randomize the ciphertext

5: for i = leaves.size() to µ do
6: c[i] ← genRandCtxt() ▷ Generate a random ciphertext

7: return permute(c)

nodes, each leaf node v stores either ⟦v.cost⟧ = ⟦0⟧ or ⟦v.cost⟧ = ⟦1⟧. Moreover,
there is a unique leaf with ⟦v.cost⟧ = ⟦1⟧ and all other leaves have ⟦v.cost⟧ = ⟦0⟧.
Then, the server aggregates the costs at the leaves by computing for each leaf
v the value ⟦v.cost⟧ ⊡ ⟦v.cLabel⟧ and summing all the results of all leaves. This
computation is illustrated in Algorithm 4.

For AHE, after aggregating the decision bits along the paths to the leaves
nodes, each leaf node v stores either ⟦v.cost⟧ = ⟦0⟧ or ⟦v.cost⟧ = ⟦r⟧, for a random
plaintext r. Moreover, there is at most one leaf with ⟦v.cost⟧ = ⟦0⟧ and all other
leaves have ⟦v.cost⟧ = ⟦r⟧, for a random r. Note that for y ≠ 0 the number of
paths is smaller or equal to µ. The server randomizes all ciphertexts, chooses
other random ciphertexts permutes the list and sends it to the client. These
operations are implemented to guarantee the server's privacy. Randomization
and permutation of ciphertexts prevents leakage of any information about y
that is not intended. The generation of additional ciphertexts prevents leakage
of the tree structure and therefore, potential information about y as well. Note
that we exclude the case of randomly generating a ciphertext which decrypts to
zero. The computation is illustrated in Algorithm 5.

Decrypting the Result. The client decrypts the result of the evaluation.
For FHE, it is a single encrypted bit. For AHE, the evaluation result consists
of µ ciphertexts among which exactly one encrypts 0 and the remaining ones
encrypt random plaintext. The client uses Algorithm 6 to decrypt and learn the
�nal result.

Putting It All Together. As illustrated in Protocol 4, the whole computa-
tion is performed by the server. The server �rst creates a tree representation of
its input y as illustrated in Algorithm 1. Then, the client sends the encrypted
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Algorithm 6 Decrypting

1: function Decrypt(result)
2: if β = 1 then ▷ FHE case
3: parse result to ⟦b⟧
4: b← Dec(⟦b⟧)
5: return b
6: else ▷ AHE case
7: parse result to c[1], . . . , c[µ]
8: for i = 1 to µ do
9: m← Dec(c[i])
10: if m = 0 then
11: return 1
12: return 0

bit representation ⟦x̄⟧ of its input x and the server sequentially runs the Al-
gorithms 2, 3 and 4/5 described above. The server sends an encrypted result,
which the client can decrypt to learn the �nal comparison bit b = [x ≥ y].

Lemma 4.1 Let y and x be integers of length µ. If the encryption scheme is
correct, then the comparison protocol is correct.

Proof. In the tree of y, there is a single path that is labeled with a pre�x of x.
Evaluating the nodes on this path and aggregating the results produces a bit
1 (if FHE), resp. 0 (if AHE). On all other paths, at least one edge is labelled
with a bit that is di�erent to the bit of x at the same position such that the
evaluation of the path produces a bit 0 (if FHE), resp. an integer r ≠ 0 (if AHE).

Theorem 4.2 Let y and x be integers of length µ. If the encryption scheme
is IND-CPA secure, then the comparison protocol is secure in the semi-honest
model.

Proof (sketch). The client only encrypts its own input and decrypts the �nal
result which for FHE is a single bit, and for AHE a randomly ordered list of µ
ciphertexts among which at most one encrypts 0 and the remaining ones encrypt
each a random plaintext. The server, on the other hand, computes on IND-
CPA ciphertexts. Constructing the simulators therefore consists of on simply
generating corresponding random strings for each protocol message except for
the actual results.

5 Extension

In the previous section, we discuss the basic idea of our scheme. Now we want
to discuss how the basic scheme can be extended to di�erent use cases.
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Client Server

Input: x Input: y

Output: b = [x ≥ y] Output: b = [x ≥ y]

let x[1], . . . , x[µ] be the bits of x root← CreateTree(y)

let ⟦x̄⟧ = ⟦x[1]⟧ , . . . , ⟦x[µ]⟧

⟦x̄⟧

EvalNodes(root, ⟦x̄⟧)

leaves← EvalPaths(root)

result← EvalLeaves(leaves)

result

Decrypt(result)

Protocol 4: The Basic Protocol

5.1 Handling Comparison to Zero for AHE

Recall that if the encryption is AHE, then Algorithm 1 creates a tree containing
only paths, that can be evaluated to zero, i.e., paths labelled with integers that
are larger or equal to y. If y = 0 then the created tree has µ + 1 leaves, since
everything is larger or equal to zero. But the server is supposed to send back
µ ciphertexts to the client. That is, we still want the parties to perform the
computation such that nothing more than the comparison bit is revealed. We
notice that for all values smaller than 2µ−1 (i.e., the most signi�cant bit is 0),
x traverses the tree of y = 0 to the left. To handle the case y = 0, the server,
therefore, replaces the �rst encrypted bit of x by a ciphertext of 0 and omits
the rightmost path of the tree in the evaluation.

5.2 Shared Output Bit

In 2-party comparison like DGK [11], it is usual to share the comparison bit
between the client and server. That is, if b is the comparison bit, then the
server gets bs and the client gets bc such that b = bc ⊕ bs. In our scheme, the
server can randomly choose between computing GT (e.g., [x ≥ y]) or LT (e.g.,
[x ≤ y]) functionality. The server, therefore, �ips a random coin bs and computes
GT if bs = 0, otherwise it computes LT. We will describe later how to compute
LT.
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5.3 Handling Encrypted Inputs

So far we assume that only x is encrypted. In this section, we consider the
case where both inputs are encrypted. In this scenario, the server has to run
the comparison of two encrypted inputs with the help of the client (or another
server) which has the decryption key. It is assumed that the inputs x and y do
not belong to any party and must remain private. After the computation, the
server learns the encrypted comparison bit. If the encryption is FHE, the server
can perform the computation on its own. However, in the AHE case, the client
must help the server to learn the encrypted result.

To guarantee the privacy of both inputs, the protocol has to be evaluated on
ciphertexts only. However, the tree structure reveals a lot of information about
y why we have to use a general representation of the tree to avoid any leakage.
We start with a few formal de�nitions.

De�nition 5.1 (Comparison Tree) A comparison tree or cmp-tree for an
integer y is a binary tree where edges and leaves are labelled with 0 or 1 such
that for every integer x, traversing the tree along a path labelled with the bits
of x (starting with the most signi�cant bit of x) reaches a leaf labelled with 1 if
x ≥ y and 0 otherwise.

Note that for secure comparison the bits are encrypted such that we do not
actually traverse the tree y, but evaluate it on x as explained in the previous
section. Therefore, when we say x traverses the tree of y, we mean that there
is a single path where x evaluates to 1 (if FHE), resp. 0 (if AHE), and on all
other paths x evaluates to 0 (if FHE), resp. to an r ≠ 0 (if AHE).

While De�nition 5.1 describes a cmp-tree, it can be built as follows. Let µ
be the input bit-length of y. First build a binary tree representing all bit strings
of length µ, i.e. left edges are labelled with 0 and right edges are labelled with
1. Then, there is path p representing y, label the leaf of p and the leaves of
all paths right to p with 1. Finally, label the leaves of all path left to p with
0. Such a tree construction is illustrated in Figure 5 for y = 2 and y = 5. Note
that the trees from Figure 5 are unnecessarily to large as there are inner node
whose child nodes are both leaves labelled with the same value. Such resulting
sub-trees can be pruned without changing the semantic of the cmp-tree. We
next formally de�ne pruned cmp-tree.

We �rst recall the depth of a binary tree.

De�nition 5.2 (Depth of a Tree) For a binary tree, we de�ne the depth of
the tree as the length (i.e., number of edges) of the longest path. The depth of
a node is the number of edges between this node and the root node. Let d be the
depth of the binary tree, a deepest inner node is a node whose child nodes are
both leaves with depth d.

De�nition 5.3 (Pruned Cmp-tree) A comparison tree for an integer y is
full-pruned if there is no inner node whose children are both leaves with the
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Figure 5: Comparison Tree Creation for input bit-length µ = 3

same label. A cmp-tree for an integer y is half-pruned if its depth is the bit-
length of y and for each non deepest inner node exactly one child node is a
leaf.

Note that a half-pruned cmp-tree is not necessarily full-pruned. For example
if the bit-length is µ = 3, then half-pruned tree of 4 is not full-pruned. In this
case, the full-pruned tree is only the root with 2 leaves. In the following, we will
rather consider half-pruned tree since the structure is similar for every input.
The half-pruned tree for integer y can be built as follows. Traverse the non-
pruned cmp-tree from De�nition 5.1 along the path of y. At each level, replace
the non-traversed subtree by a leaf node. Let p be the path representing y.
Label the leaf of p and the leaves of all paths right to p with 1. Label the leaves
of all path left to p with 0. By using Algorithm 1 with β = 1, this can be done
without �rst generating the full cmp-tree.

Now, we want to introduce a structure of the tree based on the input size
but independent of the actual inputs. We �rst de�ne further notation. Recall
that we use the symbol β = 1 if the encryption scheme is FHE and β = 0 if
the encryption scheme is AHE. For a bit b ∈ {0,1}, we now de�ne the function
Fβ(b) = β+(−1)β ⋅b. Note that the function Fβ does not have to be evaluated ho-
momorphically, as its only purpose is to simplify the notation. For an encrypted
bit ⟦b⟧, we have Fβ(⟦b⟧) = ⟦b⟧ if the encryption is AHE and Fβ(⟦b⟧) = ⟦1 − b⟧ if
the encryption is FHE with arithmetic encoding or Fβ(⟦b⟧) = ⟦1 + b⟧ for binary
encoding, as the addition is modulo two.

De�nition 5.4 (Normal Cmp-Tree) Let y be an integer of length µ. A nor-
mal Cmp-tree of y is a binary tree with the following structure:

� there is a leftmost path p of length µ which is labelled with the bits of y,

� the deepest inner node of path p has a left leaf node labelled with β,

� each inner node of path p has a right child leaf node,

� for each inner node, let b be the label on the left edge, then the label on the
right edge is 1 − b and the label on the right child leaf node is Fβ(b).
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While Algorithm 1 generates a half-pruned cmp-tree for y assuming the bits
are given in plaintext, the normal cmp-tree can be built even if the input bits
are homomorphically encrypted. For each encrypted bit b of the input string,
one can homomorphically compute the encrypted inverse bit 1− b and build the
cmp-tree. The generation of the normal cmp-tree is described in Algorithm 7.

Note that in contrast to Algorithm 1, left and right edges are not per default
labeled with 0 and 1, but they are assigned according to the de�nition of the
normal cmp-tree. This makes the normal cmp-tree a general structure which is
independent of the actual input y. The input only in�uences the labels of the
edges but not the tree structure itself.

Although both algorithms have the same complexity, Algorithm 7 is shorter
and simpler. An example of normal cmp-trees is illustrated in Figure 6. Before
using the normal form de�ned above, we need to prove that it is indeed a cmp-
tree, by showing that the normal cmp-tree has the same number of nodes (inner
nodes and leaves) as the half-pruned cmp-tree and that they can be transferred
into each other.

Lemma 5.5 Let y be an integer of length µ. The half-pruned tree of y has µ+1
leaves and µ inner nodes.

Proof. The depth of the tree is obviously µ. A complete tree with depth µ
has 2µ+2µ−1 nodes. While constructing the half-pruned cmp-tree as explained
above, we start from the root with depth 0 and stop at a node with depth µ−2,
since node with depth µ − 1 have only leaves as child nodes. In each step at
depth h ∈ {0, . . . , µ − 2}, we replace a subtree, that has 2µ−h − 1 nodes, with a
leaf. That is, at depth h ∈ {0, . . . , µ − 2}, we remove 2µ−h − 2 nodes. Then the
numbers of nodes remaining in the tree is:

S = 2µ + 2µ − 1 −
µ−2
∑
h=0
(2µ−h − 2) = 2µ + 2µ − 1 − (

µ−2
∑
h=0

2µ−h −
µ−2
∑
h=0

2) .

Now we have:

µ−2
∑
h=0

2µ−h =
µ

∑
h=0

2µ−h − (21 + 20) = 2µ (
µ

∑
h=0

2−h) − 3 = 2µ (2 − 2−µ) − 3 = 2µ+1 − 4.

We also have ∑µ−2
h=0 2 = 2(µ−1) = 2µ−2. Therefore we can compute S = 2µ +2µ −

1 − (2µ+1 − 4 − 2µ + 2) = −1 + 2 + 2µ = 2µ + 1. By construction, there are µ inner
nodes and hence µ + 1 leaves.

Note that among the µ + 1 leaves, at most µ leaves are labelled with 1
(if FHE), resp. 0 (if AHE). For the AHE case, if n is the number of these
leaves, then exactly the paths corresponding to them are created in Algorithm
1, evaluated and sent back (with µ − n random ciphertexts) to the client.

De�nition 5.6 Two cmp-trees are equivalent if they represent the same value,
have the same depth and the same number of leaf nodes and inner nodes.

15



Lemma 5.7 The normal cmp-tree of y and a half-pruned cmp-tree of y are
equivalent.

Proof. Given an arbitrary y of length µ. By construction, the normal cmp-tree
has depth µ since the leftmost path is the longest one. The same holds for the
de�nition of a half-pruned cmp-tree.

For the normal cmp-tree, there are µ inner nodes on the leftmost path (in-
cluding the root node). Since every node's right child is a leaf node, there are
exactly µ inner nodes. Moreover, we have µ + 1 leaf nodes because every inner
node has exactly one child leaf node (the right child) except the deepest inner
node where both children are leaf nodes.

Lemma 5.5 shows that a half-pruned tree has the same number of nodes and
therefore they are equivalent.

Theorem 5.8 Let y and x be integers of length µ. If the encryption scheme is
correct, then the comparison protocol is correct.

Proof. By Lemma 5.7, we already know that the normal-cmp tree and a
half-pruned cmp-tree are equivalent. Moreover, we can transfer one representa-
tion into another without changing the result.

By de�nition, a normal cmp-tree is half-pruned. It remains to show that it
is also a cmp-tree. We assume that the encryption scheme is FHE. The case for
AHE is similar. If x and y are equal, then x traverses the normal cmp-tree of y
on the path as y itself.

Otherwise, x and y have a common pre�x that labels a path from the root
to a node v with depth h such that y traverses the tree to the left of v while
x traverses to the right of v. By construction of the normal cmp-tree, the left
edge from v is labelled with the bit y[h], while the right edge is labelled with
the bit 1 − y[h]. Moreover, the right child node of v is a leaf vr labelled with
1−y[h]. If y[h] = 0 (resp. y[h] = 1), then vr is labelled with 1 (resp. 0) and the
path to vr evaluates to 1 (resp. 0). On all other paths at least one edge label
di�ers from the bit of x at the same position such that the path evaluates to 0.
This is su�cient to conclude whether x ≥ y or not.

For the other direction, we have to transfer a half-pruned cmp-tree into a
normal cmp-tree. We start at the root node. If the left child node is not a leaf,
we proceed with the left child. If not, we switch the below sub-trees and proceed
with the left child which is now a leaf node. We repeat this procedure until we
reach the tree's depth. The resulting structure ful�lls all the requirements of a
normal cmp-tree and still represents the same value y.

With the normal cmp-tree we have a structure independent of the actual tree
which allows the server to compute on ciphertexts without learning anything of
input x. This structure is also equivalent to the structure we used for our
basic protocol and yields correct results such that we can apply nearly the same
routines. The only di�erence is in the computation of decision bits since the
server does not know the edge labels in plaintext. Therefore, we have to apply
an inequality/equality test on ciphertexts. For FHE we need an inequality test
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Figure 6: Normal Cmp-Tree for input bit-length µ = 3 and β = 1

Algorithm 7 Creating a Normal Cmp-Tree for an Integer y.

1: function CreateNormalCmpTree(⟦y⟧)
2: let root be a new node
3: parse ⟦y⟧ to ⟦y[1]⟧ , . . . , ⟦y[µ]⟧
4: curr ← root
5: for i = µ downto 1 do
6: curr.rEdge← Not(⟦y[i]⟧)
7: let vr be a new node
8: vr.cLabel← Fβ(⟦y[i]⟧)
9: curr.right← vr
10: curr.lEdge← ⟦y[i]⟧
11: let vl be a new node
12: curr.left← vl
13: curr ← curr.left
14: curr.cLabel← ⟦β⟧
15: return root

which can be implemented using an FHEXnor gate. For AHE we must perform
an equality test which can be implemented using an AHE Xor gate.

5.4 Handling Encrypted Inputs under AHE

The handling of encrypted inputs described above works only for FHE. The
reason is that the Xor-operation for AHE encrypted bits requires one bit to
be in the clear. In this section, we describe how to extend the previous section
to handle the case for AHE. We assume the client sends two encrypted inputs
⟦x⟧ and ⟦y⟧ to the server. The server creates the normal cmp-tree of ⟦y⟧ using
Algorithm 7, evaluates the encrypted input ⟦x⟧ on the tree and sends back a
result that only the client can decrypt. However, the encrypted result is not an
encrypted bit, but a set of µ ciphertexts.

The computation needs two basic bit-operations, namely Not and Xor,
that have to be simulated under AHE. Let ⟦a⟧ and ⟦b⟧ be two encrypted bits. We
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compute the Not-operation as ⟦¬b⟧ = ⟦1 − b⟧ = Add(⟦1⟧ ,MulCons(⟦b⟧ ,−1)).
Then, we compute the Xor-operation as ⟦a⊕ b⟧ = ⟦a − b⟧. Note that while the
Not-operation is correct, this is not always the case for the Xor-operation,
namely we have ⟦0⊕ 1⟧ = ⟦−1⟧. We will handle this before aggregating the
paths.

Recall that we have encrypted bits of x and y and we want to compute a
comparison bit. First, using the encrypted input ⟦y⟧, we can build the normal
cmp-tree as explained in Algorithm 7. This requires only the Not-operation.
Then we can evaluate the bits of ⟦x⟧ on the built tree. For that, we �rst have
to apply the Xor-operations on the bits of ⟦x⟧ along the paths of the tree and
then sum the result along the paths. Our goal is that, if x ≥ y, then exactly one
path will have all Xor-results equal 0 such that the sum along the path is also
0. The remaining paths will have at least one Xor-result that is di�erent to 0
resulting in a sum di�erent to 0.

Now we have the following problem: If the Xor-results of a path contain
⟦1⟧ and ⟦−1⟧ then this path too may sum to 0. To get rid of the problem,
we multiply the Xor-result at level i (i.e., edges starting at a node with depth
i) by 2i before aggregating the results along the paths. Since 2i is constant,
the multiplication can be applied on an AHE ciphertext. The following lemma
ensures that the sum on such a path is then always di�erent to 0.

Lemma 5.9 Let (b0,⋯, bl) ∈ {−1,0,1}l+1 such that there exist at least one bi ≠ 0
then it holds ∑l

i=0 bi ⋅ 2i = b0 ⋅ 20 +⋯ + bl ⋅ 2l ≠ 0.

Proof. W.l.o.g, we assume bl ≠ 0 otherwise we can set l = l−1. Now we compare
X = ∣∑l−1

i=0 bi2
i∣ and Y = ∣bl2l∣ = 2l. Since ∣bi∣ ≤ 1, we obtain

X ≤
l−1
∑
i=0

2i = 2l − 1 < Y.

This concludes that Y strictly dominates X and therefore, the whole sum can
never be 0.

For example, let y = 2, x = 1 and µ = 3. Since we are evaluating [x ≥ y]
under AHE, no path should evaluate to 0. However, the leftmost path of the
cmp-tree of y = 2 is labelled with (0,1,0,0), where the last entry describes the
label of the leaf node. Its evaluation on (0,0,1) would result in (0 − 0) + (0 −
1)+(1−0)+0 = 0. By multiplying with powers of 2 as explained above, we have
(0 − 0) ⋅ 20 + (0 − 1) ⋅ 21 + (1 − 0) ⋅ 22 + 0 = 0 − 2 + 4 + 0 = 2, which is di�erent to 0
as expected.

5.5 Less Than (LT) Comparison

The computation of the Less-Than (LT) function is similar by using the following
de�nition that is the inverse of the normal cmp-tree.

De�nition 5.10 (Inverse Normal Cmp-Tree) Let y be an integer of length
µ. An inverse normal Cmp-tree of y is a binary tree with the following structure:
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� there is a rightmost path p of length µ which is labelled with the bits of y,

� the deepest inner node of path p has a left leaf node labelled with β,

� each inner node of path p has a left child leaf node,

� for each inner node, let b be the label on the right edge, then the label on
the left edge is 1 − b and the label on the left child leaf node is 1 − Fβ(b).

While the inverse normal cmp-tree is de�ned with a right oriented structure
(contrary to the left oriented structure of De�nition 5.4), the inverse normal
cmp-tree can be represented with a left oriented structure as well. The only
di�erence is that all leaves except the leftmost one must be labelled with 1−Fβ(b)
as in De�nition 5.10 instead of Fβ(b) as in De�nition 5.4. Hence, the inverse
normal cmp-tree can be constructed similar to De�nition 5.4 with the exception
that the last is updated as follow: for each inner node, let b be the label on the
left edge, then the label on the right edge is 1−b and the label on the right child
leaf node are 1 − Fβ(b).

6 Analysis

In the sections above, we proved already that the computation correctly returns
1 if x ≥ y and 0 otherwise. The computation is also secure as the server evaluates
input encrypted under the client's public key. In this section, we therefore focus
on the complexity analysis and count the number of homomorphic operations
(addition and multiplication).

6.1 Number of Operations

We start by counting the number of operations depending on the main steps of
the algorithm, namely: node evaluation, path evaluation, leaves aggregation. In
the following, we use A1, A2, A3 (resp. M1, M2, M3) to denote the number of
addition (resp. multiplication) operation in node evaluation, path evaluation,
leaves aggregation and AT (resp. MT ) for the total.

Node Evaluation. For node evaluation at each inner node, the algorithm
performs exactly one Not gate due to the fact that the left and right edges
of an inner node are always labelled with opposite bits. For the encrypted case
(Section 5.3), we need one Not and one Xor. Hence, we have in total µ
Not-operations.

Path Evaluation. For path aggregation, the algorithm performs µ− 1 multi-
plications on the leftmost path and 2 multiplications on each right path except
the rightmost path that requires only 1 multiplication. This result in total of
µ − 1 + 2 ⋅ (µ − 1) + 1 = 3µ − 2.
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Hom. Add. Hom. Mult.

Binary Circuit

Node Eval. 2µ -

Path Eval. - 3µ − 2

Leaves Aggr. µ -

Ours (total) 3µ 3µ − 2
Cheon et al. 2µ − 2 2µ − 3 + (µ−1) log(µ−1)

2

Arithmetic Circuit

Node Eval. 2µ µ

Path Eval. - 3µ − 2

Leaves Aggr. µ -

Ours (total) 3µ 4µ − 2
Cheon et al. 2µ − 2 3µ − 4 + (µ−1) log(µ−1)

2

Table 1: Overview Number of Operations in FHE (Encrypted Case). �-� indi-
cates that there is no such operation in this step.

Leaves Aggregation. In the case of FHE, the algorithm �nally aggregates
the µ + 1 paths requiring µ additions.

6.2 Complexity for FHE

For FHE, we need to distinguish between binary and arithmetic circuit or en-
coding. An overview can be found in Table 1.

FHE Binary Circuit. For binary encoding, all operations are done modulo
2 such that Xor and Not operations are implemented as an addition. As
a result, we have A1 = µ additions in node evaluations, no addition in path
evaluation (i.e., A2 = 0) andA3 = µ additions during leaves aggregation resulting
in a total of AT = µ + 0 + µ = 2µ additions. For the encrypted case, we need an
additional Xor at each node resulting in A1 = 2µ additions and in a total of
AT = 3µ additions. Only path aggregation requires M2 = 3µ − 2 multiplications
(M1 =M3 = 0), such that MT = 0 + (3µ − 2) + 0 = 3µ − 2. As a comparison, the

scheme of Cheon et al. [8] requires 2µ − 2 additions and 2µ − 3 + (µ−1)log(µ−1)
2

multiplications using a binary encoding.

FHE Arithmetic Circuit. For arithmetic encoding, the Xor operation a⊕b
is homomorphically computed as (a−b)2, such that each Xor operation requires
1 addition and 1 multiplication. The Not operation ¬b is computed as 1−b. As
a result, the node evaluation requires A1 = µ additions. For the encrypted case,
we need A1 = 2µ additions and M1 = µ multiplications. For path and leaves
evaluation, we have A2 = 0, M2 = 3µ − 2, A3 = µ, M3 = 0. The evaluation of the
tree, therefore, requires AT = µ+0+µ = 2µ additions andMT = 0+(3µ−2)+0 =
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Hom. Add. Const. Mult.

Constant Case

Node Eval. µ -

Path Eval. 2µ − 2 -

Leaves Aggr. - -

Ours (total) 3µ − 2 -

Veugen 4µ -

Encrypted Case

Node Eval. 2µ -

Path Eval. 3µ − 1 2µ

Leaves Aggr. - -

Ours (total) 5µ − 1 2µ

Veugen ≥ 5µ + 3 ≥ 2/3µ2 + 3µ + 2/3µ

Table 2: Overview Number of Operations in AHE. �-� indicates that there is no
such operation in this step.

3µ−2 multiplications. In the encrypted case, the total is AT = 3µ additions and
MT = 4µ − 2 multiplications.

Comparison to Previous Work. In [8], Cheon et al. assume binary encod-
ing which means that their addition is modulo two, i.e., Xor operation. Using
arithmetic encoding, the 2µ − 2 additions, therefore, require an addiitonal µ − 1
homomorphic multiplications. As a result, the total number of multiplications

in their scheme is 3µ − 4 + (µ−1)log(µ−1)
2

. As our approach, they also achieve a
logarithmic depth.

6.3 Complexity for AHE

For AHE, we need to distinguish between the encrypted case where both inputs
are encrypted and the the constant case where only one input is encrypted. An
overview can be found in Table 2. In both cases, Xor and Not operations are
realized using homomorphic addition. As a result, there are A1 = µ homomor-
phic operations for node evaluation. In the encrypted case, we have A1 = 2µ
homomorphic operations.

Constant Case. Recall that in this case, we can omit the leaves (See Al-
gorithm 1 and Figure 3). This results in A2 = 2µ − 2 operations for paths
evaluations, i.e., µ − 1 operations for evaluating the leftmost path and one op-
eration for each of the µ − 1 deepest right oriented paths. In total, our scheme
requires AT = µ+ 2µ− 2 = 3µ− 2 operations. As a comparison, in [11], the DGK
scheme performs 5µ additions, µ constant multiplications which is equivalent
to 2µ additions. In total, DGK has 7µ additions plus additional µ encryption

21



operation and µ modular inverse operations. Veugen [36] improved the DGK
scheme by requiring only 4µ operations.

Encrypted Case. We now have A1 = 2µ homomorphic operations for node
evaluation, but A2 = 3µ − 1 operations for paths evaluation, as we have to
consider the leaves. Additionally, we need 2µ constant multiplications to prevent
the problem explained in Section 5.4. A constant multiplication ⟦m⟧⊡n requires
in worst case 2 logn homomorphic additions. For each level i, we perform in
Section 5.4 two multiplications by 2i resulting in 2∑µ−1

i=2 i = O(µ2) operations
which dominates the number of operations for nodes and paths evaluation.

Comparison to Previous Work. As a comparison Veugen also proposed
two extensions of the DGK scheme in the encrypted case: a statistical and
perfect secure scheme. Both have 2 rounds, i.e., 4 moves between the parties
(while our scheme contains still one round as the initial DGK). Both schemes
require e�cient decryption of a random plaintext and cannot be e�ciently im-
plemented using ECC ElGamal (see section on ElGamal). In their scheme the
server computes ⟦z⟧ = ⟦x − y + 2µ + r⟧, where the random value r blinds the dif-
ference and has length µ+ 1+σ bits for statistical security or r is an arbitrarily
long plaintext for perfect security. The client gets and decrypts ⟦z⟧ and com-
putes y′ = z mod 2µ, while the server computes x′ = r mod 2µ. For the statistical
security case, the parties then run a normal DGK protocol to compare x′ and
y′, which requires additional homomorphic operations to get the �nal result.

For the perfect security case, Veugen proposed a modi�ed DGK protocol
that is very complex and requires two times the same constant multiplication
by 2i as our scheme and additional operations, such as encryption, decryption
and modular inversion, to get the �nal result. Since the scheme is very complex
and the number of operations depends on the actual values, we use a complexity
lower bound for a comparison with our scheme. Table 2 shows that our scheme
is a signi�cant improvement even to the lower bound of the optimized DGK
protocol. As in [36], we assume a homomorphic multiplicative inversion to need
2
3
e multiplications where e is the bit-length of the number which is a ciphertext

in this case. For the inversions used by the modi�ed DGK protocol, this is on
average µ

3
multiplications.

7 Implementation

In this section, we describe some implementation details and report on the
experimental results of our implementations.

7.1 Optimized Implementation

Instead of implementing our scheme using a binary tree, we can rely on a simpler
data structure by using a two dimensional array a[(1, . . . , µ + 1), (1,2,3)] with
µ + 1 rows and three columns. The idea is illustrated in Figure 7 for x = 1, y =
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3, µ = 3, β = 1. The array is initialized with the cmp-tree of y = 3, where the �rst
column stores the labels on the leftmost path. Column 2 and 3 store the right
oriented paths from the �rst row to the last one. That is, the last row and the
last column store leaf labels, where on the last row, only the �rst cell if �lled.

The evaluation itself is illustrated in Algorithm 8. On each row, we store the
equality of current bits of x[i] and y[i] in the �rst cell, its negation in the second,
and Fβ(y[i]) in the third cell. This corresponds to the computation of decision
bits and the leaf node labels. Then, for the �rst row, we multiply the second
and third cell and store the result in the third cell. For the remaining rows, we
multiply a[i,1] and a[i − 1,1] and store the result in a[i,1], which corresponds
to the aggregation of the leftmost path. We also multiply a[i − 1,1], a[i,2]
and a[i,3] and store the result in a[i,3] corresponding to the evaluations of the
paths with right child nodes. Because the �rst cell of the last row is 1 for FHE
(resp. 0 for AHE), it does not change the result already computed so far on the
leftmost path which is then just copied in the third cell of the last row. Finally,
we have to evaluate the leaves. Summing up the third column yields the result
for FHE. For AHE, the third column can be sent back to client permuted and
with ciphertexts randomized.

For the FHE case, the multiplicative depth of the procedure is of relevance
if the encryption scheme is leveled FHE. This is because a leveled FHE has a
�xed parameter L such that circuits with depth at most L can be evaluated
without bootstrapping. Therefore, we �rst evaluate the inner nodes as before
by evaluating Xor operations, but use the multiplication with a direct acyclic
graph described in [33]. This is illustrated in Figure 8 and consists of �rst
computing a dependency list (DL) table for each element of the matrix (the
middle table in Figure 8). The DL is a stack, represented as [) with bottom [
and top ) that contains cells' numbers along a multiplication path, i.e., the set
of cells that must be multiplied together. In Figure 8, we have the following
multiplication paths: (1,4,7,10), (1,4,8,9), (1,5,6), (2,3). For each path, we
start with a list of nodes. First, we group the elements by pairs and add the �rst
element to the second elements' DL. Then, we reduce the list by all elements that
occur in any DL and repeat the procedure until there is only one element left.
If a multiplication path consists of nodes a, b, c, d in this order, then the DLs are
as follows: [), [a), [), [b, c). Note that the computation of the DL table does not
depend on the input but only on the tree structure. In fact, it can be computed
once and given as input to the algorithm. While multiplying, we move from top
to down and from left to right in the matrix and compute the aggregated result
of each cell using its DL. For example, using the DLs [), [a), [), [b, c), there is
nothing to do for nodes a and c since their DLs are empty. For node b, we
compute b← a ⋅ b. For node d, we �rst compute d← c ⋅ d and then d← b ⋅ d. For
a path of length k, this procedure reduces the multiplicative depth from k to
log k.
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7.2 Choice of AHE Scheme

For AHE, we choose ElGamal encryption [12] that we implement as elliptic curve
ElGamal (ECE) [22,23]. We brie�y describe it in the following and refer to the
literature for more details. Let G be an elliptic curve group over F(pn) generated
by a point P of prime order p. ECE consists of the following algorithms:

� Key Generation pk, sk ← KGen(λ): This algorithm randomly chooses s ∈
Zp and outputs sk = s and pk = s ⋅ P as private and public key.

� Encryption c ← Enc(pk,m): This algorithm takes pk and a message m,
then it chooses a random r ∈ Zp and outputs the ciphertext c = (r ⋅ P,m ⋅
P + r ⋅ pk).

� Decryption m ← Dec(sk, c): This algorithm takes sk and a ciphertext
c = (Q1,Q2), compute Q = Q2 −Q1 ⋅ sk and returns the discrete logarithm
of Q on G.

The above scheme is indeed AHE. If c1 = (r1 ⋅ P,m1 ⋅ P + r1 ⋅ pk) and c2 =
(r2 ⋅P,m2 ⋅P + r2 ⋅pk) are ciphertexts of two plaintexts m1 and m2 then c1 + c2 =
((r1 + r2) ⋅ P, (m1 +m2) ⋅ P + (r1 + r2) ⋅ pk)) is a ciphertext of m1 +m2.

While the decryption requires the computation of the discrete logarithm, we
stress that in our comparison protocol, computing the discrete logarithm is not
necessary as in Algorithm 6, we are looking for a ciphertext of zero. A ciphertext
of zero has the form c = (r ⋅ P, r ⋅ pk). Hence, checking if the random ciphertext
c = (Q1,Q2) is encrypting 0, is e�ciently done by computing Q = Q2 −Q1 ⋅ sk
and then checking if Q is the neutral element of G that for an elliptic curve is
the point at in�nity.

7.3 Setup Environment

For AHE, we implemented DGK [11], the optimized DGK by Veugen [36] and
our scheme in Java. We instantiated AHE with ElGamal on elliptic curve as
described above using curve secp256r1. We implemented our scheme in three
variants: the naive implementation using tree representation (Section 4), the
optimized implementation using array representation (Algorithm 8) and the
encrypted case (Section 5). We note that Veugen [36] also proposed a protocol
for the encrypted case, which is computationally more complex and no longer
one round. For this reason, we did not implement it as it no longer �ts with
our basic protocol (Protocol 4) and our encrypted case is already theoretically
better. It is one round and requires only a constant multiplication (by 2i as
explained above) per bit.

We evaluated our implementation according to our basic protocol which
is a one round protocol. That is, the client encrypts its input and sends it
to the server. The server evaluates and sends back encrypted result to the
client. The client �nally decrypts to learn the result. We therefore evaluated all
implementations on a single Laptop with a 6-core Intel(R) Xeon(R) E-2176M
CPU @ 2.70GHz and 32GB of RAM running Windows 10 Enterprise.
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yi ¬yi

0 1 1

1 0 0

1 0 0

1

xi⊕̄yi xi ⊕ yi

0⊕̄0 = 1 0 1

0⊕̄1 = 0 1 0

1⊕̄1 = 1 0 0

1 1

Figure 7: Illustration of the optimized implementation for x = 1, y = 3, µ = 3, β =
1. The left table is an array representation of the cmp-tree of y = 3, where
the �rst column represents the leftmost path, the second column represents the
right oriented paths and the gray cells represent the leaves. The right table
illustrates the evaluation of the cmp-tree of y = 3 on input x = 1. The arrows
illustrate paths evaluation, where a → b means that a and b are aggregated
and the result is stored in b. The �nal results of paths evaluation are stored
in the third column, such that leave evaluation is performed by aggregating of
the third column. The dashed arrow means that the aggregation result of the
leftmost path is copied in the third column.

1 2 3
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[) [) [2)

[1) [1) [5)

[) [) [4,8)

[4,7)

1 2 3

4 5 6

7 8 9
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Figure 8: Illustration of the optimized implementation for µ = 3 and levelled
FHE. The left table is as in Figure 7 an array representation of the cmp-tree
of y = 3, where the xor-results are omitted for simplicity, and the cells are
numbered. The middle table illustrates dependency lists (DL), where [) stands
for a stack with bottom [ and top ). The right table illustrates as in Figure 7
paths evaluation. The arrows are computed according to the DL, i.e., if cell b
has a in its DL, then there is an arrow a → b. The solid (resp. dashed-dotted)
arrows have multiplicative depth 1 (resp. 2).
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Algorithm 8 E�cient implementation

1: function EvalCmp(⟦x̄⟧ , ⟦ȳ⟧)
2: parse ⟦x̄⟧ to ⟦x[1]⟧ , . . . , ⟦x[µ]⟧
3: parse ⟦ȳ⟧ to ⟦y[1]⟧ , . . . , ⟦y[µ]⟧
4: let a[(1, . . . , µ + 1), (1, . . . ,3)] be a matrix of (µ + 1) × 3 elements
5: for i = 1 to µ do
6: a[i,1] ← comp(⟦x[µ + 1 − i]⟧ , ⟦y[µ + 1 − i]⟧)
7: a[i,2] ← Not(a[i,1])
8: if β = 0 then ▷ Encryption is AHE
9: a[i,1] ←MulCons(a[i,1],2i−1) ▷ Section 5.4
10: a[i,2] ←MulCons(a[i,2],2i−1)
11: a[i,3] ← Fβ(⟦y[µ + 1 − i]⟧)
12: if i = 1 then
13: a[i,3] ← DecBitAgg(a[i,3], a[i,2])
14: else
15: a[i,1] ← DecBitAgg(a[i,1], a[i − 1,1])
16: a[i,3] ← DecBitAgg(a[i,3],DecBitAgg(a[i,2], a[i − 1,1]))
17: a[µ + 1,3] ← a[µ,1]
18: if β = 1 then ▷ Encryption is FHE
19: return ∑µ+1

i=1 a[i,3]
20: else ▷ Encryption is AHE
21: let c[1, . . . , µ + 1] be an array
22: for i = 1 to µ + 1 do
23: c[i] ← randomize(a[i,3])
24: return permute(c)
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µ = 8 µ = 16 µ = 32 µ = 64 µ = 96 µ = 128
DGK [11] 27.54 48.20 101.24 180.21 267.48 374.48
Veugen [36] 16.12 29.13 60.50 109.87 165.38 232.16

Naive 16.32 28.80 59.90 104.06 152.37 215.86
Ours Optimized 14.31 25.85 56.13 101.87 152.63 207.36

Encrypted 18.25 33.33 71.61 132.87 216.84 306.29

Table 3: Performance Comparison of Running Time in milliseconds

7.4 Results

For all three schemes (DGK, Veugen constant case and our scheme), the com-
munication is the same, i.e., number of ciphertexts (µ ciphertexts from client
and µ ciphertexts from server) sent times the length of a ciphertext. However,
for the encrypted case, the scheme in [36] additionally requires Paillier encryp-
tion to encrypt large randomized plaintexts. This cannot be done with additive
ElGamal, as decryption requires computing the discrete logarithm over a large
domaine. Veugen's Scheme additionally sends few Paillier ciphertexts and re-
quires 2 rounds instead of one in the encrypted case. The above is also true for
client computation e�ort. In DGK, constant case Veugen and our scheme, the
client encrypts µ plaintext bits and decrypts µ ciphertexts. We therefore focus
our evaluation on the server computation.

To evaluate the running time, we generated random inputs x and y and
compare them using each protocols at security level 128. We repeated the ex-
periment 100 times and computed the average running time which is illustrated
in Table 3, for input bit-length µ = 8,16,32,64,96,128. While Veugen scheme
clearly performs better than the original DGK scheme, our naive implementa-
tion is most of the time better than Veugen scheme (except for the case µ = 8)
and our optimized implementation always better. Although our encrypted case
requires additional constant multiplications per bits, it still performs better than
the original DGK scheme. Veugen's scheme in the encrypted case additionally
requires few Paillier ciphertext operations to the both client and server.

The scheme works as followed. The server holds ⟦x⟧ and ⟦y⟧ encrypted
under Paillier with modulus N = pq, where p and q are large primes. The server
chooses a random number r, such 0 ≤ r < N , computes ⟦z⟧ ← ⟦x − y + 2µ + r⟧ =
⟦x⟧ ⋅ ⟦y⟧−1 ⋅ ⟦2µ + r⟧mod N2 and sends it to client, which the client decrypts to
get z. Then the server with α = r mod 2µ and the client with β = z mod 2µ

run a modi�ed DGK protocol resulting in the parties learning shares δS and
δC of the comparison bit [β < α]. The client then encrypts and sends ⟦z/2µ⟧
and ⟦δC⟧. The server �nally computes the encrypted comparison bit for [β <
α] as ⟦[β < α]⟧ = ⟦1 + (−1)δS + (−1)1−δSδC⟧ and the �nal comparison bit as

⟦[x < y]⟧ = ⟦z/2µ⟧ ⋅ (⟦r/2µ⟧ ⋅ ⟦[β < α]⟧)−1 mod N2. All the operations described
above are done under Paillier encryption. We implemented and evaluated them
at security level 128 (i.e., bit-length of the modulus N is 3072) on a single
laptop as described above. These extra Paillier operations require on average
600 milliseconds which almost double our running time for µ = 128. Note that
the network cost for the extra protocol round is not included.
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8 Applications

Secure integer comparison is a fundamental building block in many multi-party
computation protocols. In this section, we describe few applications where our
scheme can be useful. The following description is of course not exhaustive and
gives only an overview of applications.

Machine Learning. Many applications in machine learning require integer
comparison. For example, a decision tree is a common and very popular classi�er
that consists of decision nodes, each marked with a test condition, and leaf
nodes, each marked with a classi�cation label. Each test condition is actually
of a greater-than comparison between a threshold value and an attribute of the
input to be classi�ed. In private decision trees setting, a server holds a private
decision tree and a client holds a private attribute vector. The goal is to classify
the client's attribute vector using the server's decision tree model such that
the result of the classi�cation is revealed only to the client and nothing else
is revealed neither to the client nor the server. Wu et al. [37] and Tai et al.
[31] proposed a private decision tree protocol, that uses the DGK comparison
and AHE. Based on the idea of Tai et al. [31], Tueno et al. [33] proposed a
non-interactive protocol that uses the comparison scheme of Cheon et al. [8].
In [34], Tueno et al. proposed an application for range queries that uses search
tree structure to implement order-preserving encryption (OPE). They overcame
the limitation of private-key OPE by using garbled circuit or DGK comparison
to traverse the search tree.

Benchmarking and Auction. In this case, the goal is to securely compute
the kth-ranked element in a distributed setting. That is, given n parties each
holding a private integer, the problem is to securely compute the element ranked
k (for a given k such that 1 ≤ k ≤ n) among these n integers. The computation
should reveal to the parties only the kth-ranked element (or the index of party
holding it) and nothing else. The computation of the kth-ranked element has
applications in benchmarking, where a company is interested in knowing how
well it is doing compared to others, or in auctions where bidders are interested in
knowing the highest bid. In fact, the DGK protocol were proposed with online
auction as application [11]. Other work, including [3], [4], [35], have proposed
protocols for computing the kth-ranked element using the DGK comparison
protocol. In [35], Tueno et al. also proposed a variant of their protocol based
on SHE/FHE and using the comparison scheme of Cheon et al. [8].

9 Related Work

In his seminal paper [38], Yao introduced the millionaires' problem where two
millionaires are interested in knowing which of them is richer without revealing
their actual wealth. The underlying functionality takes two integers and returns
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to the parties a comparison bit. Later, di�erent alternatives of securely compar-
ing integers have been proposed. In [25,26] Kolesnikov et al. proposed optimized
boolean circuits that are tailored for garbled circuits. In [11], Damgård et al.
proposed the so-called DGK protocol, where the client holding a private-public
key pair sends its input bitwise encrypted using AHE. The server holding only
the public key homomorphically computes ⟦z1⟧ , . . . , ⟦zµ⟧ where

zi = s + x[i] − y[i] + 3
µ

∑
j=i+1
(x[j] ⊕ y[j]).

The variable s can be set either to 1 (for LT) or -1 (for GT) and allows secret-
sharing the comparison bit. Finally, the server randomizes each ciphertext ⟦zi⟧
and sends them back to the client in a random order. In [36], Veugen improved
the DGK protocol and proposed di�erent variants such as the case where both
inputs are encrypted. In [27], Lin and Tzeng introduced another protocol using
AHE, where the parties compute for each bit position so-called 0-encoding and
1-encoding. Client's encoding is sent encrypted to the server that evaluates by
just performing homomorphic additions with its own encoding. This scheme has
later been improved in [35]. Fischlin [14] also proposed a similar protocol but
using Goldwasser-Micali encryption scheme [20]. Other protocols using AHE or
a so-called arithmetic black-box1 include [2, 6, 10, 15, 28, 29, 32]. In [7, 8], Cheon
et al. proposed a comparison circuit that can be evaluated using SHE/FHE.
They compute ⟦c1⟧ , . . . , ⟦cµ⟧ and return ⟦cµ⟧ as the comparison bit, where

⎧⎪⎪⎨⎪⎪⎩

c1 = (1⊕ x[1]) ⋅ y[1],
ci = ((1⊕ x[i]) ⋅ y[i]) ⊕ ((1⊕ x[i] ⊕ y[i]) ⋅ ci−1), for i > 1.

Gentry et al. [17] proposed a scheme that reduces GT to zero testing using
somewhat homomorphic encryption. Based on the observation of [28, 32] that
the comparison of two strings can be reduced to comparing the �rst equal length
sub-strings on which they di�er, Couteau [9] proposed a scheme that uses exclu-
sively oblivious transfer on short strings [24], instead of public-key primitives.

In summary, the schemes described above require access to the bit repre-
sentation of the integers and perform operations on private data using garbled
circuit, homomorphic encryption or additive secret sharing. Several schemes
have a constant number of rounds but require a complexity that is at least lin-
ear in the bit-length of the integers [2, 8, 11, 14, 25�27]. The scheme of Garay
et al. [15] and the scheme of Gentry et al. [17] have a logarithmic (in the
input bit-length) number of rounds and a linear complexity, but in contrast to
[2,11,14,27] they output an encrypted comparison bit. The scheme of Couteau
[9] has a log-logarithmic (in the input bit-length) number of rounds and a linear
complexity, but outputs secret shares of the comparison bit.

1The arithmetic black-box (ABB) is an ideal functionality that performs basic arithmetic
operations (i.e., addition and multiplication). While any party can in private specify input to
the ABB, only a majority of parties can ask to perform any feasible computation and make
(only) the result public. The ABB itself can be implemented using additive secret sharing or
AHE.
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10 Conclusion

We proposed a new protocol for secure integer comparison of two parties using
the evaluation of binary trees. Our approach is based on HE and is a non-
interactive solution which can be used for a broad range of applications or as a
subroutine for larger protocols. We theoretically presented an FHE and an AHE
mode with several extensions and optimizations and implemented both variants
using improved data representations and evaluations to reduce the computa-
tional overhead.
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