A Scalable SIMD RISC-V based Processor with
Customized Vector Extensions for
CRYSTALS-Kyber

Huimin Li', Nele Mentens??, and Stjepan Picek®!

! Delft University of Technology, The Netherlands
2 Leiden University, The Netherlands
3 KU Leuven, Belgium
4 Radboud University, The Netherlands

Abstract. This paper uses RISC-V vector extensions to speed up lattice-
based operations in architectures based on HW/SW co-design. We an-
alyze the structure of the number-theoretic transform (NTT), inverse
NTT (INTT), and coefficient-wise multiplication (CWM) in CRYSTALS-
Kyber, a lattice-based key encapsulation mechanism. We propose 12 vec-
tor extensions for CRYSTALS-Kyber multiplication and four for finite
field operations in combination with two optimizations of the HW/SW
interface. This results in a speed-up of 141.7, 168.7, and 245.5 times
for NTT, INTT, and CWM, respectively, compared with the baseline
implementation, and a speed-up of over four times compared with the
state-of-the-art HW /SW co-design using RV32IMC.

Keywords: Lattice-based Cryptography, Polynomial Operation, Vector Instruc-
tion, SIMD Processor, RISC-V, ISA Extension

1 Introduction

Currently, the confidentiality and integrity of communication channels between
multiple parties are greatly supported by public-key cryptography (PKC) algo-
rithms. However, with the arrival of quantum computers, these PKC algorithms
are not secure anymore. The main mathematical problems they rely on, the
factorization of big integers and the calculation of discrete logarithms, can be
solved in polynomial time using Shor’s algorithm [12].

Therefore, post-quantum cryptography (PQC) algorithms, which are resis-
tant to traditional and quantum computer attacks, are proposed. The National
Institute of Standards and Technology (NIST) has initiated a post-quantum
cryptography standardization process worldwide since 2016 [I0]. On July 22,
2020, NIST announced the 15 candidates for Round three [10]. Among these
PQC algorithms, lattice-based algorithms occupy seven places. Thanks to its
security and efficiency, lattice-based cryptography can be used for many secu-
rity applications such as key-encapsulation mechanisms (KEMs), identity-based

encryption (IBE) [20], and Fully Homomorphic Encryption (FHE) [9]. The im-
plementation of lattice-based algorithms is a prominent research area. There are
three types of strategies: pure hardware (HW) design, pure software (SW) de-
sign, and hardware/software (HW/SW) co-design [I]. Among those, HW/SW
co-design combines the advantages of the other two, which are high-speed and
flexibility, by partitioning the whole design into two parts: the hardware part
implemented on FPGA or ASIC, and the software part in one or more processors
that can be embedded in the FPGA or ASIC.

Lattice-based algorithms work with many costly polynomial operations with
a high degree. Especially polynomial multiplication is believed to be one of the
bottlenecks in lattice-based implementations [I]. The number-theoretic trans-
form (NTT), a specialized form of the Discrete Fourier Transform (DFT) [7], is
used by some lattice-based algorithms such as CRYSTALS-Kyber, CRYSTALS-
Dilithium, and Fully Homomorphic Encryption. Even though NTT can reduce
the time complexity from O(n?) (for traditional DFT algorithms) to O(nlog(n)),
the algorithm is still very time-consuming.

Polynomial operations are suitable for working in a data-parallel operation
mode through vector architectures, also called Single-Instruction-Multiple-Data
(SIMD) architectures. One crucial requirement to implement SIMD processors
is to have a vector instruction set architecture (ISA) that is preferably free and
open-source. Fortunately, vector extensions for the RISC-V ISA are available.
The most recent version is RVV1.0, the 1.0 version of the RISC-V vector exten-
sions (RVV). To our knowledge, there is only one work [I3] that adopts RVV for
the implementation of PQC. In [13], the authors use RVV in Classic McEliece,
a PQC algorithm based on code-based cryptography. For lattice-based cryptog-
raphy, performance improvements using RVV are still unexplored.

To fill in the gap, we use RISC-V vector extensions to improve the efficiency
of lattice-based operations based on HW/SW co-design. We first realize a scal-
able SIMD processor written in SystemVerilog to support RVV1.0. Then, we
analyze the structure of the number-theoretic transform (NTT), inverse NTT
(INTT), and coefficient-wise multiplication (CWM) in CRYSTALS-Kyber, a
lattice-based key encapsulation mechanism. Later, we propose two optimiza-
tions of the HW/SW interface and 16 vector extensions: 12 for CRYSTALS-
Kyber multiplication and four for finite field operations. Our contributions are
the following:

— We realize a scalable SIMD processor supporting RISC-V vector extensions
and implement it on a Xilinx Alveo U250 accelerator card.

— We propose two HW /SW interface optimizations and 16 vector extensions
for CRYSTALS-Kyber multiplication and finite field operations. Our results
show a speed-up of 141.7, 168.7, and 245.5 times for NTT, INTT, and CWM,
respectively, compared with the baseline implementation, and a speed-up of
over four times compared with the state-of-the-art HW/SW co-design using
the RV32IMC ISA.

2 Notation and background information

We use lower-case italic letters like p to denote polynomials, while lower-case
bold letters like p are used to denote vectors of polynomials, and upper-case
bold letters like P denote matrices of polynomials. Furthermore, we use p, p,
and P to represent these variables in the corresponding NTT domain. Further,
let v7 be the transpose of the vector v and A7 be the transpose of the matrix
A. We define v[i] to denote a vector v’s i-th entry (where ¢ starts from zero),
and A[i][j] to denote the entry in row ¢ and column j in a matrix A. We define
polynomial rings R, as Z,[X]/¢(z). Here, ¢(z) is (X™ + 1), ¢ is a prime, and
n is a power of two. We use NTT, NTT !, and CWM for the corresponding
functions. We use - to denote integer and polynomial multiplication, and use o
to denote coefficient-wise multiplication. For two vectors of polynomials, f and
g, the product f-g can be computed efficiently as NTT ' (NTT(f) o NTT(g)).
Finally, we denote messages as m, ciphertexts as ¢, public keys as pk, and secret
keys as sk.

2.1 CRYSTALS-Kyber

CRYSTALS-Kyber is a lattice-based cryptosystem of which the security is based
on the hardness of the Module Learning With Errors (MLWE) problem, with ¢
equal to 3329 and n 256 [2]. Its public-key encryption scheme (Kyber. CPAPKE)
features indistinguishability under chosen plaintext attack (IND-CPA) and in-
cludes three steps: key generation (KeyGen), encryption (Enc), and decryp-
tion (Dec) [2]. These three steps can be summarized as follows, assuming that
A € RE¥F is generated through uniform sampling, and s € R, e € R¥, r € R,
e € R’qC and ez € R, are generated through centered-binomial-distribution sam-
pling [213]:

KeyGen: pk := A o NTT(s) + NTT(e), sk := NTT(s).

Enc: ¢t := (u,v), with u = (NTT 1 (AToNTT(r))+e; and v = NTT ! (pkTo
NTT(r)) + ez + m.

Dec: m := v — NTT (8T o NTT(u)).

2.2 Number-theoretic Transform

For the number-theoretic transform (NTT), when ¢(z) is of form 2™ +1, the nega-
tive wrapped convolution [14] is used to directly compute polynomial multiplica-
tion with coefficients in R,. For a vector f = Z;:Ol fix?, its NTT operation trans-
form is f = NTT(f) = E?:_ol £ X" with f; = Z;L:_()l Y fjw" (mod q) for i =
0,1,...,n—1. w is the twiddle factor, defined as the n-th root of unity, with the
conditions that Vi < n,w® # 1(mod ¢) and w™ = 1(mod q). ¥ = \/w. Similarly,
the corresponding inverse (INTT) operation is defined as f = NTT !(f) =
Z?;OI fi X7 with f; = n~ ™ Z;L;OI fiw™¥(mod q) for i =0,1,...,n— 1.

The negative wrapped convolution technique dramatically improves the work
efficiency of NTT and INTT by eliminating the doubling of the sizes of inputs

with zero padding and a separate polynomial reduction operation by ¢(z) [14].
However, it adds pre-processing and post-processing by multiplying with 7
or ¥~%. Since Round 2 of the NIST PQC competition, the parameter ¢ in
CRYSTALS-Kyber has been reduced from 7681 to 3329, eliminating the need
for pre-processing and post-processing operations. The new NTT operation re-
quires an early termination and generates 128 polynomials with a degree of two.
Analogously, the INTT operation processes 128 degree-2 polynomials, and an
extra coefficient-wise multiplication (CWM) is required to multiply two degree-
2 polynomials in Zy[z]/ (z? — w*). In [19] and [17], the authors use a technique,
named DIVby2, to eliminate the multiplication with n=!(mod ¢) after the but-
terfly structure of the INTT operation. That is, when z is even, x/2(mod q)
equals (z > 1), while when z is odd, z/2(mod ¢) = (x > 1)+z[0] X ((¢+1)/2).
The three algorithms are shown in Algorithms 1, 2, and 3, respectively, where
bri—1(+) is the bit-reversal operation for a word size of { — 1 [16/17].

Algorithm 1 NTT Algorithm in CRYSTALS-Kyber
Input: f(x) € Ry, wy, € Zg, n = 2.

Output: f(z) € R,

1: k1

2: for i from 1 by 1 tol—1 do

30 m 277

4: for s from 0 by m to n do

% for j from s by 1 to s +m do

7 a,b,w < f[j], flm + j],w’"*=1*) mod ¢
8: t < (w-b) mod ¢

9: e,0 < (a+t)modg, (a—t)modg

10: end for

11: k+k+1

12: end for

13: end for

Algorithm 2 INTT Algorithm in CRYSTALS-Kyber
Input: f(x) € Ry, wy,* € Zg, n = 2!

Output: f(z) € R,

1: k<0

2: for i from [—1 by —1 to 1 do

3 m« 27

4: for s from 0 by m to 2! do

o for 5 from s by 1 to s +m do

6: a,b,w < flj], flj +m],wtr-1 M+ mod ¢
7 e,0«+ (a+b)mod g, (a—Db)-wmodgq
8: fl4), flj + m] « DIVhby2 (e), DIVby 2(o)
9: end for

10 k+ k+1

11: end for

12: end for

Algorithm 3 CWM Algorithm in CRYSTALS-Kyber
Input: f(z),j(z) € Ry, w € Z,

Output: é(x) € R,

1: for i from 0 by 1 to 2!=! do

2w w1+ mod ¢

3 ag,ay < f[2i], f[2i + 1]

4: bo,by « g[2],g[2i + 1]

5: ¢[2i] «+ (ap - b1 +a; - bg) mod ¢

6.

:

é[2i+1] «+ (a1 - by -w+ag - bg) mod ¢
nd for

3 System Design

3.1 SIMD Processor Design

Similar to [I1] and [I8], the proposed SIMD processor in our paper contains two
parts, as illustrated in Figure [1} a scalar core (top) and a vector processing unit
(bottom). To accelerate the design process, we use the existing RISC-V core,
Ibex [8], as the scalar core. Ibex is a two-stage, 32-bit open-source core, written
in SystemVerilog [8]. The two parts interface with each other through vector
instructions, scalar registers, and memory data.

The vector unit consists of four modules: Vector Instruction Interface
(VecISAlnterface), Vector Load and Store Unit (VecLSU), Vector Register
File (VecRegfile), and Vector Operation Execution (VecOpExec), as shown in
Figure[l} The VecISAlInterface module decodes the vector instructions, which
are fetched and transferred from the scalar core. It decouples these instructions
into configuration-setting instructions, memory instructions, and vector arith-
metic instructions. Then, the configuration-setting instructions are processed in-
side the VecIS AInterface module; the memory instructions are sent to the Ve-
cLSU module, and vector arithmetic instructions are sent to the VecOpExec
module. In the VecLSU module, the memory instructions are decoupled into
vector load instructions and vector store instructions. In the VecOpExec mod-
ule, the vector arithmetic instructions are decoded further into different opera-
tions by the Arithmetic Operation Pre-Processing (ArithOpPrepro) submod-
ule, according to the two fields of funct3 and funct6 in the instruction. And then,
the exact instructions are sent to the execution modules, all of which are in the
same Execution Lane (ExLane) sub-module. The lane number (LaneNum) pa-
rameter defines the number of ExLane sub-modules instantiated in the SIMD
architecture.

Vector Register File Besides the scalar register file inside the Ibex core, an-
other vector register file is foreseen inside the vector processing unit. According
to the RVV1.0 specification, there should be in total 32 vector registers [15]. In
each vector register, there are several vector elements. The width of every element
is defined by the parameter ELEN. To be compatible with the Ibex core, ELEN

Ibex Core

)

ID Stage EX Block

I :'
oesMULT &
woEDV T
L A
Reg File pat addr o
(m CSR Lsu wdataj.v52
@ lowrisc I : d A [A S

I Scalar Reg & Mem data

Instruction Mem

Data Mem

[

Vec Instr

VeclSAlnterface

I i

VecRegfile VecLSU

ArithOpPrepro

Exlane[vl-1]

MULT
DIV

Fig. 1: The architecture of the SIMD RISC-V based Processor.

is fixed to 32-bit in this work. The width of the vector registers is defined by
the parameter VLEN. Consequently, LaneNum is determined by VLEN /ELEN.
That is, a vector register is viewed as being divided into VLEN/ELEN ele-
ments [15]. VL and LMUL are two other important parameters in RVV1.0. VL
is the vector length and specifies the number of elements to be operated on in
parallel within a vector extension. It can be less or greater than LaneNum. When
VL is less than LaneNum, all elements are put in the same vector register. When
VL is greater than LaneNum, several vector registers are grouped. RVV1.0 [I5]
defines the parameter LM UL, the vector length multiplier, to specify the number
of vector registers that are grouped.

Figure |2 shows an example with LaneNum = 4 and VL = 8. In this case,
LMUL should be set to 2. As defined in the RVV specification, the maximum
value of LMUL is 8. When LMUL is greater than one, the base address of each

vector that uses the vector register file changes. For the instruction: {vadd.vv
v0,v0,v1}, the base address of v0 is zero, while the base address of v1 is two.
The VecISAlInterface module takes care of the address allocation.

Vector Registers / Execution procedure \
31
vadd.vv v0, vO, v1 vadd.vv vO, vO, v1

! !

: vi-t v0_0 # vo_1

e L L =1]

1 vo_1 l l ‘I

0 VO v0_0 \e [0] ex[lane-1 ex[0] exX[lane-1 /
0o 1 2 3
(LaneNum)

Fig. 2: Vector register file and address allocation.

Vector Load and Store The vector unit shares the same datapath as the
scalar core to read and write scalar registers and load and store memory data.
The data from the two read ports in the scalar register file are always ready.
The writing to the scalar register file is only enabled when a configuration-
setting instruction is processed. For vector load and store instructions, our SIMD
processor supports all three different types of address modes as specified in the
RVV1.0, including vector unit-stride mode, vector constant-strided mode, and
vector indexed mode [15]. Vector unit-stride mode accesses contiguous elements
in memory, starting from the base address. Vector constant-strided mode accesses
memory elements with a constant address space bigger than the width of one
element in memory, starting from the base address. The vector indexed mode
accesses several elements with their address offset value given by a vector and
the base address provided by a scalar register.

The vector load and store instructions are the only ones that cannot do data-
parallel implementations because only one RAM address can be set, and only one
RAM element can be accessed. Thus, these memory instructions are the most
time-consuming in the SIMD processor. When the store instruction is triggered,
the VecLSU module first reads all elements from the first vector register address.
It then sends these elements to Data RAM one by one corresponding to the
lane order from zero to {LaneNum - 1}. Then, all elements from the following
vector data registers belonging to the same vector will be fetched in sequence
and sent to RAM through the procedure mentioned above. The process of the
load instruction is the reverse process of the store instruction. The required data

will be fetched from RAM with the address order defined by the three different
modes. All readout data will be sent directly to the vector register file.

Vector Execution In the VecOpExec module, the ArithOpPrepro sub-
module further decodes the vector arithmetic instructions based on the three-
bit funct3 and six-bit funct6 fields. The funct3 field is to specify sub-categories
of arithmetic instructions: whether the two operands are vector-vector (.vv),
vector-immediate (.vi), or vector-scalar (.vx), and whether the corresponding
operations are integer operations, multiply/division (MULT/DIV) operations, or
fixed-point operations. The funct6 field specifies the operation type, for example,
whether the operations are addition, shift, multiplication, etc.

As shown in Figure 2] after the instruction {vadd.vv v0,v0,v1} is sent to the
VecOpExec module, it is recognized as an integer operation with two operands
to be vector-vector (.vv), and the operation code to be an addition. Then the
two vectors: v0 and v1, will be read from the vector register file, with the vectors’
base addresses set to zero and two, respectively. All elements from the first vector
register are read out at the same time. Two elements from the vector vO and
vl in Figure [2| with the same index number (or lane order), will be sent to
the same ExLane sub-module for the addition operation. After the addition
operation finishes, the result from every ExLane sub-module will be sent to
vector v0 according to the index number. Then, all elements from the following
vector registers belonging to the same vector will be fetched in sequence. Again,
two elements with the same index number will be sent to their corresponding
ExLane sub-module, and the result from every ExLane sub-module will be
written back to vector v0. The parameter LMUL defines the total number of
operations.

3.2 NTT Design

We propose two HW /SW interface optimizations to improve the performance of our
architecture: register pooling and automatic index generation. Further, we propose
custom vector instructions for NTT and for finite field arithmetic operations.

Register Pooling We use the term register pool for multiple registers doing the
same job. Unlike RAM, where there is often only one address that can be set, the
data in the same register pool operate independently, and multiple data can be read
and written simultaneously. The purpose of applying register pooling is to increase the
loading and storing throughput in every loop of NTT, INTT, and CWM and eliminate
the time lost when exchanging data with the Data RAM. Three types of register pools
are proposed in this design to support the parallel computation of the NTT, INTT,
and CWM algorithms in CRYSTALS-Kyber.

The first register pool, named coeff _data, is used to store coefficient data. There
are two register sub-pools in coeff_data, called coeff_datag and
coeff _data,, respectively, in which there are 256 12-bit registers to store all polyno-
mial coefficients in one NTT vector. coeff_datag serves as temporary storage for the
coefficient data of the NTT and INTT algorithms, and for the first coefficient data

PIOLA @tury o) ur omg £q yndyno Lgeyng ayy aprarg| gfigarpa oM], Aq UOISIAL(] P[OLd 23UL{
UOT)ONPaY IR[NPOIN powa, UoIONPaYy IR[NPOIN
UoI}ORIIqNG PIOT] 9TULT powgnsa, UOIORIIGNG PIOL] 99TUT]
TANTHT UOnIppY PIOL 93Ul powppoa UOnIppy PIotd 93Ulg
"O[I] I99SI30Y 10109/ O} M7 WOJJ SI0JOR] A[PPIM) peay mIpva.Ln proy 10308 9[PPIM [, Pazitio)sn))
"e1ep” JJOO0O 0} O[] I19)SI39Y 10309\ woly [eroud[od 9)uIpy| fijodagiima 9ILIA\ S[RIUOUATOJ POZIMIO)SN))
‘(1 I99SIS9Y 10109/ 09 elep” JJood wol [erouijod pesy] fiyodpvasa proy S[RIWOUA[O] PoZIWIo)sn))
~roquinu doof jes pue
¢ INAD 29 03 adAy uorpeordiynur sansyuo)) bfomoa
‘ 20 03 o5y wonempdnm omaghop|
LLNT °q 03 3 TOBUOCH A®) uoryeIn3yuo)) uoredIdijny paziuo)sny)
~roqunu dooj jes pue Bfopua
¢ LIN 29 03 od4y uorjestdiynur oInsyuoy) H
“NA-gE/NA-9T /M-8 JO YIPIA JUSWS[D [ITM
TA+T JVH BIe(0} BYEp- Goos SENmouA[og SI0S 28/91/82f0dsa 910G S[RTWOUA[OJ POZIUIOISTL))
“NA-¢E/NA-9T /M-8 JO YIPIA JUSWS[D [ITM
TA+T yEp-go0o 0} VY #1E] WO SErmoukiog peor @8/91/8afod)n PeoT] S[eIouA[0q PIZItolsn)
Kouayer] uornjdirose(q suorjonJjsuy adA, uorjonaysuy

*10880201d (TINIS 92 UI SUOISU9)XD I0109A PIZIWOISN)) T 9[RBT,

10

in the CMW algorithm. coeff_data; serves as temporary storage for the second co-
efficient data in the CMW algorithm. The second register pool, called poly_index, is
used to store the index number for each loop. There are three register sub-pools in
poly_index, called poly_index, and poly_indexy, and poly_index,,, respectively,
in which there are 128 7-bit registers to store the index number of a, b and w in
Algorithms 1, 2, and 3. The third register pool, named tw, has 128 12-bit registers to
store the twiddle factors. The initial value of all twiddle factors is pre-calculated and
stored in bit-reversal order, and updated to different values according to the type of

algorithms.

Automatic Index Generation Before the three algorithms get started, all poly-
nomials in one vector are stored in the register pool coeff _data. That is, the result of
the previous operation is not sent back to the Data RAM but stored here in coeff _data.
Our design keeps the outer loop structure and unloops the inner two loop structures
(Algorithms 1 and 2). Customized vector extensions control the loop number of the
outermost layer. The register pool poly_index changes automatically according to the
loop number. In Figure 3] we illustrate the processing of a vector in NTT with the
polynomial number, the index and the loop number equal to 16, 8 and 3, respectively.

Addr. Addr. Addr. Addr.
7/ 0] 0] o0 70 7|15 1 7|11)15 | 3 7|13 |15 | 7
6|/ 000 6|6 |14 1 610 | 14 | 3 612 |18 | 7
5|0 0 o0 5|5 13| 1 5|9 | 13]3 5|9 |11 6
NTT Loop 1 NTT Loop 2 NTT Loop 3
4 4|8 |10 6

410 0 0 4 |12 1 418 123
3]0 0 0 I 3|3 1|1 | 3|3 7 2 3|5 7 5

210 0 |0 212 |10 1 2 |2 6 | 2 214 |6 5

110 |0 |o 1|1 |9 |1 1|1 5 |2 1|1 |3 |4

olo o |o o|lo |8 |1 o0 |4 |2 o|lo |2 |4
index_a _b w index.a _b _w index.a _b _w index_a _b _w

Fig. 3: Automatic index generation for a, b, and w in NTT

In each loop, vector a and vector b are read from register pool coeff_data, and
vector w is read from register pool tw. Their polynomial order is changed according
to register pool poly_indexa, poly_indexp, and poly_indexy, respectively. Later,
the re-ordered vectors a, a and w are stored in the destination vector registers for
the consecutive arithmetic operations. After all operations in one loop are finished,
the order of polynomials in vectors a and b will be changed back to their initial
order according to poly_index, and poly_indexy, and written back to register pool
coeff _data. Note that vector w is not sent to tw because it does not change with the
loop number. The whole process is illustrated in Figure@, where all parameters are the

same as in Figure [3]

11

coeff data |DD ‘Dl |D2 ’Da ‘DA |D5 ‘DB |D7 ‘DB ‘DQ ‘Dlﬂ ‘011‘012 ‘DlS‘DlA[DlS| tw ‘wu ‘w1 ‘wz ‘wa ‘wa ‘ws ‘ws ‘w7|

NTT Loop 1 < a b w
| DO | D1 |DZ ‘DS ‘Dtl ‘DS ‘DE ‘D7 | | D8 ‘D9 ’DlO ‘Dll ‘DlZ’Dl.’»‘ Dl4‘D15 ‘ | Wl‘Wl ‘Wl |W1 ‘Wl |W1 |W1 |W1 ‘
a b w
NTT Loop 2
| Do |D1 |DZ ‘D3 ‘DB ‘DQ ‘Dlo ‘Dll | | D4 ‘DS ‘DG |D7 ‘Dll |D13 |D14 lDlS ‘ | WZ‘ w2 ‘WZ |W2 ‘W3 |W3 ‘W3 |W3 ‘
a b
NTT Loop 3 w
|D0’Dl ’DA ‘DS ‘DS‘DS‘DH’D13| |D2 ‘03 IDB ‘D7 ‘DIU‘DII‘DM‘DIS| |W4|W4‘W5‘W5‘W6’WE’W7|W7|

Fig. 4: The polynomial order changes according to the loop number in NTT.

Customized Vector Instructions for NTT There are usually three methods to
extend instructions in RISC-V: 1) using custom instructions; 2) modifying the compiler;
3) rewriting unused existing instructions. In [I] and [5], the authors use the first method,
while the second method is adopted in [4]. Modifying the compiler is often too time-
consuming and inflexible because the toolchain needs to be configured whenever one
instruction changes. In this paper, we use the first and third methods.

To realize the above mentioned operations in we use custom instructions, in-
cluding custom_0 and custom_1, to extend the specific vector extensions for multipli-
cation in CRYSTALS-Kyber, see Table[I] In our design, all these vector extensions are
R-Type [1I5]. The two source operands and the destination operand can be scalar reg-
isters or vector registers. We design 12 customized Vector extensions for NTT, which
belong to six categories.

Polynomial Load Extensions include vlpolye8, vipolye16, and vipolye32. They are
used to load data from Data RAM to the vector register file with a data width of 8-bit,
16-bit, and 32-bit, respectively.

Polynomial Store Extensions include vspolyeS8, vspolyel6, and vspolye32. They are
used to store data from the vector register file to Data RAM with a data width of
8-bit, 16-bit, and 32-bit, respectively.

Multiplication Configuration Extensions include wnttcfg, vinttcfg, and vcwcfg.
They configure the multiplication to NTT, INTT, and CWM, respectively. They also
set the loop number.

Polynomial Read Extension includes wreadpoly. It is used to read a polynomial
from coeff_data to the vector register file.

Polynomial Write Extension includes vwritepoly. It is used to write polynomials
from the vector register file to coeff _data.

Twiddle Factor Read Extension includes vreadtw. It is used to read twiddle factors
from tw to the vector register file.

Optimization for finite field arithmetic operations In this work, we also
extend four vector extensions for finite field operations using the third method men-
tioned in including vaddmod, vsubmod, vmod, vdivby2, as listed in Table [1} We
define vaddmod for finite field addition, vsubmod for finite field subtraction, vmod for
modular reduction, and vdivby2 for /2 mod g after the INTT operation, as described
in Section What is worth mentioning here is the modular reduction operation,
vmod. We adopt the technique proposed in [I7] to reduce the latency to one clock cycle
by utilizing the property that 2'2 = 2% + 2% — 1(mod 3329).

12

4 Experimental Results

We first develop the scalable SIMD processor using SystemVerilog and select a Xilinx
Alveo U250 Data Center accelerator card for FPGA evaluation. The Alveo U250 has
rich resources to support multiple lanes, within a total of 1728K LUTs, 791K LU-
TRAM, 3456K flip-flops, 2688 BRAM, 12288 DSP, 676 10, 1344 BUFG, and 32 PLL.
After completing the behavioral simulations using Vivado 2019.2, we set LaneNum to
4, 8, 16, and 32, respectively. The four different architectures and the original IBex
core (zero lanes) are synthesized and implemented through Vivado 2019.2 using the
Alveo U250 card. The resource usage is shown in Table [2] where the LUT, LUTRAM,
FF, BRAM, and DSP usage is compared.

Table 2: Resource usage for SIMD Processor supporting CRYSTAL-Kyber mul-
tiplication.

Lane Num|LUT |[LUTRAM|FF |BRAM|DSP
0 24K |48 890 |16 4

4 45.5K |48 13.3K|16 26

8 93.2K |48 17.9K|16 42
16 166.1K |48 27.2K|16 74
32 318.2K |48 46.0K |16 138

Table 3: Execution time for different values of LaneNum in our SIMD processor
and comparisons with the baseline implementation and [4].

@ C-baseline Our SIMD Processor
Test (Ibex) Laned Lane8 Lanel6 Lane32
Cycles| Cycles [Cycles|Speedup|Cycles|Speedup|Cycles|Speedup|Cycles|Speedup
NTT | 1935 54261 3022 18 1538 35.3 796 68.2 383 141.7
INTT| 1930 76413 3582 21.3 1818 42 936 81.6 453 168.7
CMW| — 28 228 926 30.5 466 60.6 236 119.6 115 245.5

The next step is to optimize the NTT, INTT, and CWM algorithms. We use the
RISC-V GNU Compiler Toolchain (version rvv-intrinsicﬂ Similar to [4], we set the
optimization flag to ‘O3’ to compile the code and the baseline implementations to
the clean C-code of the PQ-M4 project [6]. First, we run the baseline code on the
pure IBex core, the clock cycle count for the three algorithms are 54261, 76414, and
28 228, respectively. Then we optimize these three algorithms using RV32IMC, RVV1.0,
and customized vector extensions for CRYSTALS-Kyber multiplication and finite field
operations. Again, we set the LaneNum to 4, 8, 16, and 32 and then count the clock
cycles for the NTT, INTT, and CWM algorithms. All results are shown in Table
From the results, we can see that the execution time of NTT, INTT, and CWM in
our design is optimized by 141.7, 168.7, and 245.5 times respectively, compared to the
baseline when the LaneNum is set to 32. When compared with relevant related work

® https://github.com/riscv-collab/riscv-gnu-toolchain/tree/rvv-intrinsic

https://github.com/riscv-collab/riscv-gnu-toolchain/tree/rvv-intrinsic

13

in [4], which is a RISC-V based HW/SW co-design written in SystemVerilog using the
RV32IMC ISA, the execution times of NTT and INTT are optimized by nearly 5.1 and
4.3 times, respectively.

5 Conclusions and Future Work

In this paper, we explore RISC-V vector extensions to improve the efficiency of lattice-
based operations based on HW/SW co-design. We first realize a scalable SIMD proces-
sor written in SystemVerilog to support RVV1.0. And then, we analyze the structure
of the three polynomial multiplication algorithms in CRYSTALS-Kyber, namely NTT,
INTT, and CWM. We propose two techniques, called register pooling and automatic
index generation, to optimize the HW/SW interface and design 12 vector extensions
for CRYSTALS-Kyber multiplication and 4 for finite field operations. Our results show
a speed-up of 141.7, 168.7, and 245.5 times for NTT, INTT, and CWM, respectively,
compared with the baseline implementation, and a speed-up of over four times com-
pared with state-of-the-art HW/SW co-design using RV32IMC. In future work, we
will focus on the vectorization of the Keccak core and the whole CRYSTALS-Kyber
cryptosystem. Additionally, we will also consider countermeasures against side-channel
attacks on SIMD architectures. We will publish all our code to facilitate follow-up
research.

References

1. Alkim, E.; Evkan, H., Lahr, N., Niederhagen, R., Petri, R.: Isa extensions for finite
field arithmetic. IACR Transactions on Cryptographic Hardware and Embedded
Systems pp. 219-242 (2020)

2. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber algorithm specifications
and supporting documentation. NIST PQC Round 2(4) (2017)

3. Chen, Z., Ma, Y., Chen, T., Lin, J., Jing, J.: Towards efficient kyber on fpgas: A
processor for vector of polynomials. In: 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC). pp. 247-252. IEEE (2020)

4. Fritzmann, T., Sigl, G., Sepuilveda, J.: Risq-v: Tightly coupled risc-v accelerators
for post-quantum cryptography. IACR Transactions on Cryptographic Hardware
and Embedded Systems pp. 239-280 (2020)

5. Isman, E.N., Topal, C., Akcay, L., Ors, B.: Instruction extension of an open source
rv32imc core for ntru cryptosystem. In: 2020 European Conference on Circuit
Theory and Design (ECCTD). pp. 1-5. IEEE (2020)

6. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
benchmarking nist pgc on arm cortex-m4. Cryptology ePrint Archive, Report
2019/844 (2019), https://ia.cr/2019/844

7. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: International Conference on Cryptology and
Network Security. pp. 124-139. Springer (2016)

8. lowRISC: Ibex documentation. https://ibex-core.readthedocs.io/en/latest/
01_overview/index.html| (2021)

9. Morris, L.: Analysis of partially and fully homomorphic encryption. Rochester
Institute of Technology pp. 1-5 (2013)

https://ia.cr/2019/844
https://ibex-core.readthedocs.io/en/latest/01_overview/index.html
https://ibex-core.readthedocs.io/en/latest/01_overview/index.html

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

NIST: Nist post quantum cryptography standardization. https://en.wikipedia.
org/wiki/NIST_Post-Quantum_Cryptography_Standardization (2016)

Patsidis, K., Nicopoulos, C., Sirakoulis, G.C., Dimitrakopoulos, G.: Risc-v 2: A
scalable risc-v vector processor. In: 2020 IEEE International Symposium on Cir-
cuits and Systems (ISCAS). pp. 1-5. IEEE (2020)

Perlner, R.A., Cooper, D.A.: Quantum resistant public key cryptography: a survey.
In: Proceedings of the 8th Symposium on Identity and Trust on the Internet. pp.
85-93 (2009)

Pircher, S., Geier, J., Zeh, A., Mueller-Gritschneder, D.: Exploring the risc-v vector
extension for the classic mceliece post-quantum cryptosystem. In: 2021 22nd Inter-
national Symposium on Quality Electronic Design (ISQED). pp. 401-407. IEEE
(2021)

Poppelmann, T., Giineysu, T.: Towards efficient arithmetic for lattice-based cryp-
tography on reconfigurable hardware. In: International conference on cryptology
and information security in Latin America. pp. 139-158. Springer (2012)
RISCVteam: riscv-v-spec-1.0. https://github.com/riscv/riscv-v-spec/
releases/download/v1.0/riscv-v-spec-1.0.pdf (2021)

Xin, G., Han, J., Yin, T., Zhou, Y., Yang, J., Cheng, X., Zeng, X.: Vpqc: A
domain-specific vector processor for post-quantum cryptography based on risc-v
architecture. IEEE Transactions on Circuits and Systems I: Regular Papers 67(8),
2672-2684 (2020)

Yarman, F., Mert, A.C., Oztiirk, E., Savas, E.: A hardware accelerator for poly-
nomial multiplication operation of crystals-kyber pqc scheme. In: 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE). pp. 1020-1025.
IEEE (2021)

Yu, J., Lemieux, G., Eagleston, C.: Vector processing as a soft-core cpu accelera-
tor. In: Proceedings of the 16th international ACM/SIGDA symposium on Field
programmable gate arrays. pp. 222-232 (2008)

Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., Liu, L.: Highly efficient architec-
ture of newhope-nist on fpga using low-complexity ntt/intt. IACR Transactions on
Cryptographic Hardware and Embedded Systems pp. 49-72 (2020)

Zhang, X., Tang, Y., Wang, H., Xu, C., Miao, Y., Cheng, H.: Lattice-based proxy-
oriented identity-based encryption with keyword search for cloud storage. Infor-
mation Sciences 494, 193-207 (2019)

https://en.wikipedia.org/wiki/NIST_Post-Quantum_Cryptography_Standardization
https://en.wikipedia.org/wiki/NIST_Post-Quantum_Cryptography_Standardization
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf

	A Scalable SIMD RISC-V based Processor with Customized Vector Extensions for CRYSTALS-Kyber
	Introduction
	Notation and background information
	CRYSTALS-Kyber
	Number-theoretic Transform

	System Design
	SIMD Processor Design
	NTT Design

	Experimental Results
	Conclusions and Future Work

