
Financially Backed Covert Security

Sebastian Faust1, Carmit Hazay2, David Kretzler1, and Benjamin Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. The security notion of covert security introduced by Au-
mann and Lindell (TCC’07) allows the adversary to successfully cheat
and break security with a fixed probability 1 − ε, while with probabil-
ity ε, honest parties detect the cheating attempt. Asharov and Orlandi
(ASIACRYPT’12) extend covert security to enable parties to create pub-
licly verifiable evidence about misbehavior that can be transferred to any
third party. This notion is called publicly verifiable covert security (PVC)
and has been investigated by multiple works. While these two notions
work well in settings with known identities in which parties care about
their reputation, they fall short in Internet-like settings where there are
only digital identities that can provide some form of anonymity.
In this work, we propose the notion of financially backed covert secu-
rity (FBC), which ensures that the adversary is financially punished if
cheating is detected. Next, we present three transformations that turn
PVC protocols into FBC protocols. Our protocols provide highly efficient
judging, thereby enabling practical judge implementations via smart con-
tracts deployed on a blockchain. In particular, the judge only needs to
non-interactively validate a single protocol message while previous PVC
protocols required the judge to emulate the whole protocol. Further-
more, by allowing an interactive punishment procedure, we can reduce
the amount of validation to a single program instruction, e.g., a gate in
a circuit. An interactive punishment, additionally, enables us to create
financially backed covert secure protocols without any form of common
public transcript, a property that has not been achieved by prior PVC
protocols.

Keywords: Covert Security · Multi-Party Computation (MPC) · Public
Verifiability · Financial Punishment

1 Introduction

Secure multi-party computation (MPC) protocols allow a set of parties to jointly
compute an arbitrary function f on private inputs. These protocols guarantee
privacy of inputs and correctness of outputs even if some of the parties are
corrupted by an adversary. The two standard adversarial models of MPC are
semi-honest and malicious security. While semi-honest adversaries follow the
protocol description but try to derive information beyond the output from the

interaction, malicious adversaries can behave in an arbitrary way. MPC proto-
cols in the malicious adversary model provide stronger security guarantees at
the cost of significantly less efficiency. As a middle ground between good effi-
ciency and high security Aumann and Lindell introduced the notion of security
against covert adversaries [AL07]. As in the malicious adversary model, cor-
rupted parties may deviate arbitrarily from the protocol specification but the
protocol ensures that cheating is detected with a fixed probability, called deter-
rence factor ε. The idea of covert security is that adversaries fear to be detected,
e.g., due to reputation issues, and thus refrain from cheating.

Although cheating can be detected in covert security, a party of the proto-
col cannot transfer the knowledge about malicious behavior to other (external)
parties. This shortcoming was addressed by Asharov and Orlandi [AO12] with
the notion of covert security with public verifiability (PVC). Informally, PVC en-
ables honest parties to create a publicly verifiable certificate about the detected
malicious behavior. This certificate can subsequently be checked by any other
party (often called judge), even if this party did not contribute to the protocol
execution. The idea behind this notion is to increase the deterrent effect by dam-
aging the reputation of corrupted parties publicly. PVC secure protocols for the
two-party case were presented by [AO12, KM15, ZDH19, HKK+19]. Recently,
Damg̊ard et al. [DOS20] showed a generic compiler from semi-honest to publicly
verifiable covert security for the two-party setting and gave an intuition on how
to extend their compiler to the multi-party case. Full specifications of generic
compilers from semi-honest to publicly verifiable covert security for multi-party
protocols were presented by Faust et al. [FHKS21] and Scholl et al. [SSS21].

Although PVC seems to solve the shortcoming of covert security at first
glance, in many settings PVC is not sufficient; especially, if only a digital iden-
tity of the parties is known, e.g., in the Internet. In such a setting, a real party
can create a new identity without suffering from a damaged reputation in the
sequel. Hence, malicious behavior needs to be punished in a different way. A
promising approach is to use existing cryptocurrencies to directly link cheat-
ing detection to financial punishment without involving trusted third parties;
in particular, cryptocurrencies that support so-called smart contracts, i.e., pro-
grams that enable the transfer of assets based on predefined rules. Similar to
PVC, where an external judge verifies cheating by checking a certificate of mis-
behavior, we envision a smart contract that decides whether a party behaved
maliciously or not. In this setting, the task of judging is executed over a dis-
tributed blockchain network keeping it incorruptible and verifiable at the same
time. Since every instruction executed by a smart contract costs fees, it is highly
important to keep the amount of computation performed by a contract small.
This aspect is not solely important for execution of smart contracts but in all
settings where an external judge charges by the size of the task it gets. Due
to this constraint, we cannot straightforward adapt PVC protocols to work in
this setting, since detection of malicious behavior in existing PVC protocols is
performed in a naive way that requires the judge to recompute a whole protocol
execution.

2

Related work. While combining MPC with blockchain technologies is an ac-
tive research area (e.g., [KB14, BK14, ADMM14]) none of these works deal
with realizing the judging process of PVC protocols over a blockchain. The only
work connecting covert security with financial punishment thus far is by Zhu
et al. [ZDH19], which we describe in a bit more detail below. They combine a
two-party garbling protocol with an efficient judge that can be realized via a
smart contract. Their construction leverages strong security primitives, like a
malicious secure oblivious transfer for the transmission of input wires, to ensure
that cheating can only occur during the transmission of the garbled circuit and
not in any other part of the two-party protocol. By using a binary search over
the transmitted circuit, the parties narrow down the computation step under
dispute to a single circuit gate. This process requires O(log(|C|)) interactions,
where |C| denotes the circuit size, and enables the judge to resolve the dispute
by recomputing only a single circuit gate.

While the approach of Zhu et al. [ZDH19] provides an elegant way to reduce
the computational complexity of the judge in case cheating is restricted to a sin-
gle message, it falls short if multiple messages or even a whole protocol execution
is under dispute. As a consequence, their construction is limited in scalability
and generality, since it is only applicable to two-party garbling protocols, i.e.,
neither other semi-honest two-party protocols nor more parties are supported.

Generalizing the ideas of [ZDH19] to work for other protocol types and the
multi-party case requires us to address several challenges. First, in [ZDH19]
the transmitted garbled circuit under dispute is the result of the completely
non-interactive garbling process. In contrast, many semi-honest MPC protocols
(e.g., [GMW87, BMR90]) consist of several rounds of interactions that need
to be all considered during the verification. Interactivity poses the challenge
that multiple messages may be under dispute and the computation of messages
performed by parties may depend on data received in previous rounds. Hence,
verifications of messages need to consider local computations and internal states
of the parties that depend on all previous communication rounds. This task is far
more complex than verifying a single public message. Second, supporting more
than two parties poses the challenge of resolving a dispute about a protocol
execution during which parties might not know the messages sent between a
subset of other parties. Third, the transmitted garbled circuit in [ZDH19] is
independent of the parties private inputs. Considering protocols where parties
provide secret inputs or messages that depend on these inputs, requires a privacy-
preserving verification mechanism to protect parties’ sensitive data.

1.1 Contribution

Our first contribution is to introduce a new security notion called financially
backed covert security (FBC). This notion combines a covertly secure proto-
col with a mechanism to financially punish a corrupted party if cheating was
detected. We formalize financial security by adding two properties to covert
security, i.e., financial accountability and financial defamation freeness. Our no-
tion is similar to the one of PVC; in fact, PVC adds reputational punishment

3

to covert security via accountability and defamation freeness. In order to lift
these properties to the financial context, FBC requires deposits from all parties
and allows for an interactive judge. We present two security games to formal-
ize our introduced properties. While the properties are close to accountability
and defamation freeness of PVC, our work for the first time explicitly presents
formal security games for these security properties, thereby enabling us to rig-
orously reason about financial properties in PVC protocols. We briefly compare
our new notion to the security definition of Zhu et al. [ZDH19], which is called
financially secure computation. Zhu et al. follow the approach of simulation-
based security by presenting an ideal functionality for two parties that extends
the ideal functionality of covert security. In contrast, we present a game-based
security definition that is not restricted to the two-party case. While simulation-
based definitions have the advantage of providing security under composition,
proving a protocol secure under their notion requires to create a full simula-
tion proof which is an expensive task. Instead, our game-based notion allows to
re-use simulation proofs of all existing covert and PVC protocols, including fu-
ture constructions, and to focus on proving financial accountability and financial
defamation freeness in a standalone way.

We present transformations from different classes of PVC protocols to FBC
protocols. While we could base our transformations on covert protocols, FBC
protocols require a property called prevention of detection dependent abort, which
is not always guaranteed by a covert protocol. The property ensures that a
corrupted party cannot abort after learning that her cheating will be detected
without leaving publicly verifiable evidence. PVC protocols always satisfy pre-
vention of detection dependent abort. So, by basing our transformation on PVC
protocols, we inherit this property.

While the mechanism utilized by [ZDH19] to validate misbehavior is highly
efficient, it has only been used for non-interactive algorithms so far, i.e, to vali-
date correctness of the garbling process. We face the challenge of extending this
mechanism over an interactive protocol execution while still allowing for effi-
cient dispute resolution such that the judge can be realized via a smart contract.
In order to tackle these challenges, we present a novel technique that enables
efficient validation of arbitrary complex and interactive protocols given the ran-
domness and inputs of all parties. What’s more, we can allow for private inputs if
a public transcript of all protocol messages is available. We utilize only standard
cryptographic primitives, in particular, commitments and signatures.

We differentiate existing PVC protocols according to whether the parties pro-
vide private inputs or not. The former protocols are called input-dependent and
the latter ones input-independent. Input-independent protocols are typically used
to generate correlated randomness. Further, all existing PVC protocols incorpo-
rate some form of common public transcript. Input-dependent protocols require
a common public transcript of messages. In contrast, for input-independent pro-
tocols, it is enough to agree on the hashes of all sent messages. While it is not
clear, if it is possible to construct PVC protocols without any form of public
transcript, we construct FBC protocols providing this property. We achieve this

4

by exploiting the interactivity of the judge, which is non-interactive in PVC.
Based on the above observations, we define the following three classes of FBC
protocols, for which we present transformations from PVC protocols.

Class 1: The first class contains input-independent protocols during which par-
ties learn hashes of all protocol messages such that they agree on a common
transcript of message hashes.

Class 2: The second class contains input-dependent protocols with a public
transcript of messages. In contrast to class 1, parties may provide secret
inputs and share a common view on all messages instead of a common view
on hashes only.

Class 3: The third class contains input-independent protocols where parties do
not learn any information about messages exchanged between a subset of
other parties (cf. class 1). As there are no PVC protocol fitting into this
class, we first convert PVC protocols matching the requirements of class
1 into protocols without public transcripts and second leverage an interac-
tive punishment procedure to transform the resulting protocols into FBC
protocols without public transcripts. Our FBC protocols benefit from this
property since parties have to send all messages only to the receiver and
not to all other parties. This effectively reduces the concrete communication
complexity by a factor depending on the number of parties. In the optimistic
case, if there is no cheating, we get this benefit without any overhead in the
round complexity.

For each of our constructions, we provide a formal specification and a rigorous
security analysis; the ones of the second class can be found in the supplementary
materials F. This is in contrast to the work of [ZDH19] which lacks a formal
security analysis for financially secure computation. We stress that all existing
PVC multi-party protocols can be categorized into class 1 and 2. Additionally,
by combining any of the transformations from [DOS20, FHKS21, SSS21], which
compile semi-honest protocols into PVC protocols, our constructions can be used
to transform these protocol into FBC protocols.

The resulting FBC protocols for class 1 and 2 allow parties to non-interactively
send evidence about malicious behavior to the judge. As the judge entity in these
two classes is non-interactive, techniques from our transformations are of inde-
pendent interest to make PVC protocols more efficient. Since, in contrast to
class 1 and 2, there is no public transcript present in protocols of class 3, we
design an interactive process involving the judge entity to generate evidence
about malicious behavior. For all protocols, once the evidence is interactively or
non-interactively created, the judge can efficiently resolve the dispute by recom-
puting only a single protocol message regardless of the overall computation size.
We can further reduce the amount of validation to a single program instruction,
e.g., a gate in a circuit, by prepending an interactive search procedure. This
extension is presented in the supplementary materials G.

Finally, we provide a smart contract implementation of the judging party in
Ethereum and evaluate its gas costs (cf. Section 8). The evaluation shows the

5

practicability, e.g., in the three party setting, with optimistic execution costs of
533 k gas. Moreover, we show that the dispute resolution of our solution is highly
scalable in regard to the number of parties, the number of protocol rounds and
the protocol complexity.

1.2 Technical Overview

In this section, we outline the main techniques used in our work and present the
high-level ideas incorporated into our constructions. We start with on overview
of the new notion of financially backed covert security. Then, we present a first
attempt of a construction over a blockchain and outline the major challenges.
Next, we describe the main techniques used in our constructions for PVC proto-
cols of classes 1 and 2 and finally elaborate on the bisection procedure required
for the more challenging class 3.

Financially backed covert security. We recall that, a publicly verifiable covertly
secure (PVC) protocol (πcov,Blame, Judge) consists of a covertly secure protocol
πcov, a blaming algorithm Blame and a judging algorithm Judge. The blam-
ing algorithm produces a certificate cert in case cheating was detected and the
judging algorithm, upon receiving a valid certificate, outputs the identity of the
corrupted party. The algorithm Judge of a PVC protocol is explicitly defined as
non-interactive. Therefore, cert can be transferred at any point in time to any
third party that executes Judge and can be convinced about malicious behavior
if the algorithm outputs the identity of a corrupted party.

In contrast to PVC, financially backed covert security (FBC) works in a
model where parties own assets which can be transferred to other parties. This
is modelled via a ledger entity L. Moreover, the model contains a trusted judging
party J which receives deposits before the start of the protocol and adjudicates
in case of detected cheating. We emphasize that the entity J , which is a single
trusted entity interacting with all parties, is not the same as the algorithm Judge
of a PVC protocol, which can be executed non-interactively by any party. An
FBC protocol (π′cov,Blame′,Punish) consists of a covertly secure protocol π′cov, a
blaming algorithm Blame′ and an interactive punishment protocol Punish. Simi-
lar to PVC, the blaming algorithm Blame′ produces a certificate cert′ that is used
as an input to the interactive punishment protocol. Punish is executed between
the parties and the judge J . If all parties behave honestly during the execution
of π′cov, J sends the deposited coins back to all parties after the execution of
Punish. In case cheating is detected during π′cov, the judge J burns the coins of
the cheating party.

First attempt of an instantiation over a blockchain. Blockchain technologies pro-
vide a convenient way of handling monetary assets. In particular, in combination
with the execution of smart contracts, e.g., offered by Ethereum [W+14], we en-
vision to realize the judging party J as a smart contract. A first attempt of
designing the punishment protocol is to implement J in a way, that the judge
just gets the certificate generated by the PVC protocol’s blame algorithm and

6

executes the PVC protocol’s Judge-algorithm. However, the Judge-algorithm of
all existing PVC protocols recomputes a whole protocol instance and compares
the output with a common transcript on which all parties agree beforehand.
As computation of a smart contract costs money in form of transaction fees,
recomputing a whole protocol is prohibitively expensive. Therefore, instead of
recomputing the whole protocol, we aim for a punishment protocol that facili-
tates a judging party J which needs to recompute just a single protocol step or
even a single program instruction, e.g., a gate in a circuit. The resulting judge
becomes efficient in a way that it can be practically realized via a smart contract.

FBC protocols with efficient judging from PVC protocols. In this work, we
present three transformations from PVC protocols to FBC protocols. Our trans-
formations start with PVC protocols providing different properties which we use
to categorize these protocols into three classes. We model the protocol execution
in a way such that every party’s behavior is deterministically defined by her in-
put, her randomness and incoming messages. More precisely, we define the initial
state of a party as her input and some randomness and compute the next state
according to the state of the previous round and the incoming messages of the
current round. Our first two transformations build on PVC protocols where the
parties share a public transcript of the exchanged messages resp. message hashes.
Additionally, parties send signed commitments on their intermediate states to
all parties. The opening procedure ensures that correctly created commitments
can be opened – falsely created commitments open to an invalid state that is
interpreted as an invalid message. By sending the internal state of some party
Pm for a single round together with the messages received by Pm in the same
round to the judging party, the latter can efficiently verify malicious behavior
by recomputing just a single protocol step. The resulting punishment protocol
is efficient and can be executed without contribution of the cheating party.

Interactive punishment protocol to support private transcripts. Our third trans-
formation compiles input-independent PVC protocols with a public transcript
into protocols where no public transcript is known to the parties. The lack
of a public transcript makes the punishment protocol more complicated. In-
tuitively, since an honest party has no signed information about the message
transcript, she cannot provide verifiable data about the incoming message used
to calculate a protocol step. Therefore, we use the technique of an interac-
tive bisection protocol which was first used in the context of verifiable com-
puting by Canetti et al. [CRR11] and subsequently by many further construc-
tions [KGC+18, TR19, ZDH19, EFS20]. While the bisection technique is very
efficient to narrow down disagreement, it was only used for non-interactive al-
gorithms so far. Hence, we extend this technique to support also interactive
protocols. In particular, in our work, we use a bisection protocol to allow two
parties to efficiently agree on a common message history. To this end, both par-
ties, the accusing and the accused one, create a Merkle tree of their emulated
message history up to the disputed message and submit the corresponding root.
If they agree on the message history, the accusation can be validated by ref-

7

erence to this history. If they disagree, they perform a bisection search over
the proposed history that determines the first message in the message history,
they disagree on, while automatically ensuring that they agree on all previous
messages. Hence, the judge can verify the message that the parties disagree on
based on the previous messages they agree on. At the end of both interactions,
the judge can efficiently resolve the dispute by recomputing just a single step.

2 Preliminaries

We start by introducing notation and cryptographic primitives used in our con-
struction. Moreover, we provide the definition of covert security and publicly
verifiable covert security in the supplementary materials A and B.

We denote the computational security parameter by κ. Let n be some integer,
then [n] = {1, . . . , n}. Let i ∈ [n], then we use the notation j 6= i for j ∈ [n]\{i}.
A function negl(n) : N→ R is negligible in n if for every positive integer c there
exists an integer n0 such that ∀n > n0 it hols that negl(n) < 1

nc . We use the
notation negl(n) to denote a negligible function.

We define REALπ,A(z),I(x̄, 1κ) to be the output of the execution of an n-party
protocol π executed between parties {Pi}i∈[n] on input x̄ = {xi}i∈[n] and security
parameter κ, where A on auxiliary input z corrupts parties I ⊂ {Pi}i∈[n]. We
further specify OUTPUTj(REALπ,A(z),I(x̄, 1κ)) to be the output of party Pj for
j ∈ [n].

Our protocol utilizes a signature scheme (Generate,Sign,Verify) that is exis-
tentially unforgeable under chosen-message attacks. We assume that each party
executes the Generate-algorithm to obtain a key pair (pk, sk) before the protocol
execution. Further, we assume that all public keys are published and known to
all parties while the secret keys are kept private. To simplify the protocol descrip-
tion we denote signed messages with

〈
x
〉
i

instead of (x, σ := Signski(x)). The

verification is therefore written as Verify(
〈
x
〉
i
) instead of Verifypki(x, σ). Further,

we make use of a hash function H(·) : {0, 1}∗ → {0, 1}κ that is collision resistant.

We assume a synchronous communication model, where communication hap-
pens in rounds and all parties are aware of the current round. Messages that are
sent in some round k arrive at the receiver in round k + 1. Since we consider a
rushing adversary, the adversary learns the messages sent by honest parties in
round k in the same round and hence can adapt her own messages accordingly.
We denote a message sent from party Pi to party Pj in round k of some protocol

instance denoted with ` as msg
(i,j)
(`,k). The hash of this message is denoted with

hash
(i,j)
(`,k) := H(msg

(i,j)
(`,k)).

A Merkle tree over an ordered set of elements {xi}i∈[N] is a labeled binary
hash tree, where the i-th leaf is labeled by xi. We assume N to be an integer
power of two. In case the number of elements is not a power of two, the set can
be padded until N is a power of two. For construction of Merkle trees, we make
use of the collision-resistant hash function H(·) : {0, 1}∗ → {0, 1}κ.

8

Formally, we define a Merkle tree as a tuple of algorithms (MTree,MRoot,
MProof,MVerify). Algorithm MTree takes as input a computational security pa-
rameter κ as well as a set of elements {xi}i∈[N] and creates a Merkle tree mTree.
To ease the notation, we will omit the security parameter and implicitly assume
it to be provided. Algorithm MRoot takes as input a Merkle tree mTree and
returns the root element root of tree mTree. Algorithm MProof takes as input a
leaf xj and Merkle tree mTree and creates a Merkle proof σ showing that xj is
the j-th leaf in mTree. Algorithm MVerify takes as input a proof σ, an index i,
a root root and a leaf x∗ and returns true iff x∗ is the i-the leaf of a Merkle tree
with root root.

A Merkle Tree satisfies the following two requirements. First, for each Merkle
tree mTree created over an arbitrary set of elements {xi}i∈[N], it holds that
for each j ∈ [N] MVerify(MProof(xj ,mTree), j,MRoot(mTree), xj) = true. We
call this property correctness. Second, for each Merkle tree mTree with root
root := MRoot(mTree) created over an arbitrary set of elements {xi}i∈[N] with
security parameter κ it holds that for each polynomial time algorithm adver-
sary A outputting an index j∗, leaf x∗ 6= xj∗ and proof σ∗ the probability that
MVerify(σ∗, j∗,MRoot(mTree), x∗) = true is negl(κ). We call this property bind-
ing.

3 Financially Backed Covert Security

In the following, we specify the new notion of financially backed covert security.
This notion extends covert security by a mechanism of financial punishment.
More precisely, once an honest party detects cheating of the adversary during
the execution of the covertly secure protocol, there is some corrupted party
that is financial punished afterwards. The financial punishment is realized by
an interactive protocol Punish that is executed directly after the covertly secure
protocol. In order to deal with monetary assets, financially backed covertly secure
protocols depend on a public ledger L and a trusted judge J . The former can be
realized by distributed ledger technologies, such as blockchains, and the latter
by a smart contract executed on the said ledger. In the following, we describe
the role of the ledger and the judging party, formally define financially backed
covert security and outline techniques to prove financially backed covert security.

3.1 The Ledger and Judge

An inherent property of our model is the handling of assets and asset transfers
based on predefined conditions. Nowadays, distributed ledger technologies like
blockchains provide convenient means to realize this functionality. We model
the handling of assets resp. coins via a ledger entity denoted by L. The entity
stores a balance of coins for each party and transfers coins between parties upon

request. More precisely, L stores a balance b
(t)
i for each party Pi at time t. For

the security definition presented in Section 3.2, we are in particular interested

in the balances before the execution of the protocol π, i.e., b
(pre)
i , and after the

9

execution of the protocol Punish, i.e., b
(post)
i . The balances are public such that

every party can query the amount of coins for any party at the current time.
In order to send coins to another party, a party interacts with L to trigger the
transfer.

While we consider the ledger as a pure storage of balances, we realize the
conditional transfer of coins based on some predefined rules specified by the
protocol Punish via a judge J . In particular, J constitutes a trusted third party
that interacts with the parties of the covertly secure protocol. More precisely,
we require that each party sends some fixed amount of coins as deposit to J
before the covertly secure protocol starts. During the covertly secure protocol
execution, the judge keeps the deposited coins but does not need to be part of
any interaction. After the execution of the covertly secure protocol, the judge
plays an important role in the punishment protocol Punish. In case any party
detects cheating during the execution of the covertly secure protocol, J acts
as an adjudicator. If there is verifiable evidence about malicious behavior of
some party, the judge financially punishes the corrupted party by withholding
her deposit. Eventually, J will reimburse all parties with their deposits except
those parties that have been proven to be malicious. The rules according to
which parties are considered malicious and hence according to which the coins
are reimbursed or withhold need to be specified by the protocol Punish.

Finally, we emphasize that both entities the ledger L and the judge J are
considered trusted. This means, the correct functionality of these entities cannot
be distorted by the adversary.

3.2 Formal Definition

We work in a model in which a ledger L and a judge J as explained above exist.
Let π′ be an n-party protocol that is covertly secure with deterrence factor ε.
Let the number of corrupted parties that is tolerated by π′ be m < n and the set
of corrupted parties be denoted by I. We define π as an extension of π′, in which
all involved parties transfer a fixed amount of coins, d, to J before executing
π′. Additionally, after the execution of π′, all parties execute algorithm Blame
which on input the view of the honest party outputs a certificate and broadcasts
the generated certificate – still as part of π. The certificate is used for both
proving malicious behavior, if detected, and defending against being accused for
malicious behavior.

After the execution of π, all parties participate in the protocol Punish. In case
honest parties detected misbehavior, they prove said misbehavior to J such that
J can punish the malicious party. In case a malicious party blames an honest
one, the honest parties participate to prove their correct behavior. Either way,
even if there is no blame at all, all honest parties wait to receive their deposits
back, which are reimbursed by J at the end of the punishment protocol Punish.

Definition 1 (Financially backed covert security). We call a triple
(π,Blame,Punish) an n-party financially backed covertly secure protocol with

10

deterrence factor ε computing some function f in the L and J model, if the
following security properties are satisfied:

1. Simulatability with ε-deterrent: The protocol π (as described above) is
secure against a covert adversary according to the strong explicit cheat formu-
lation with ε-deterrent (see Definition 2) and non-halting detection accurate
(see Definition 3).

2. Financial Accountability: For every PPT adversary A corrupting parties
Pi for i ∈ I ⊂ [n], there exists a negligible function µ(·) such that for all
(x̄, z) ∈ ({0, 1})n+1 the following holds:
If for any honest party Ph ∈ [n] \ I it holds that
OUTPUTh(REALπ,A(z),I(x̄, 1κ)) = corrupted∗

3, then ∃m ∈ I such that:

Pr[b(post)m = b(pre)m − d] > 1− µ(κ),

where d denotes the amount of deposited coins per party.
3. Financial Defamation Freeness: For every PPT adversary A corrupting

parties Pi for i ∈ I ⊂ [n], there exists a negligible function µ(·) such that for
all (x̄, z) ∈ ({0, 1})n+1 and all j ∈ [n] \ I the following holds:

Pr[b
(post)
j < b

(pre)
j] < µ(κ).

Remark 1: For simplicity, we assume that the adversary does not transfer coins
after sending the deposit to J . This assumption can be circumvented by restating
financial accountability such that the sum of the balances of all corrupted parties
(not just the ones involved in the protocol) is reduced by d.

Remark 2: Similar to the sanity check of [AO12], we note that any maliciously
secure protocol can be augmented with a simple J that only works as a tempo-
rary escrow to achieve FBC with deterrence factor ε = 1− negl(κ). This is easy
to see since cheating in a maliciously secure protocol is successful only with neg-
ligible probability. Hence, a simple Punish protocol that just transfer back the
deposits is enough to satisfy financial accountability and financial defamation
freeness.

3.3 Proving Security of Financially Backed Covert Security

Our notion of financially backed covert security (FBC) consists of three prop-
erties. The simulatability property requires the protocol π, which augments the
covertly secure protocol π′, to be covertly secure as well. This does not au-
tomatically follows from the security of π′, in particular since π includes the
broadcast of certificates in case of detected cheating. Showing simulatability of
π guarantees that the adversary does not learn sensitive information from the

3 We use the notation corrupted∗ to denote that the output of Ph is corruptedi for some
i ∈ I. We stress that i does not need to be equal to m of the financial accountability
property.

11

certificates. Showing that a protocol π satisfies the simulatability property is
proven via a simulation proof. In contrast, we follow a game-based approach to
formally prove financial accountability and financial defamation freeness. To this
end, we introduce two novel security games, ExpFA and ExpFDF, in the following.
Although these two properties are similar to the accountability and defamation
freeness properties of PVC, we are the first to introduce formal security games
for any of these properties. While we focus on financial accountability and finan-
cial defamation freeness, we note that our approach and our security games can
be adapted to suit for the security properties of PVC as well.

Both security games are played between a challenger C and an adversary
A. We define the games in a way that allows us to abstract away most of the
details of π. In particular, we parameterize the games by two inputs, one for
the challenger and one for the adversary. The challenger’s input contains the
certificates {certi}i∈[n]\I of all honest parties generated by the Blame-algorithm
after the execution of π while the adversary’s input consists of all malicious par-
ties’ views {viewi}i∈I . By introducing the certificates as inputs to the game, we
can prove financial accountability and financial defamation freeness independent
from proving simulatability of protocol π.

Throughout the execution of the security games, the adversary executes one
instance of the punishment protocol Punish with the challenger that takes over
the roles of all honest and trusted parties, i.e., the honest protocol parties Ph
for h /∈ I, the judge J , and the ledger L. To avoid an overly complex challenger
description, we define those parties as separated entities that can be addressed
by the adversary separately and are all executed by the challenger: {Ph}h∈[n]\I ,
J, and L. In case any entity is supposed to act pro-actively and does not only
wait to react to malicious behavior, the entity is invoked by the challenger. Com-
munication between said entities is simulated by the challenger. The adversary
acts on behalf of the corrupted parties.

Financial accountability game. Intuitively, financial accountability states that
whenever any honest party detects cheating, there is some corrupted party that
loses her deposit. Therefore, we require that the output of all honest parties
was corruptedm for m ∈ I in the execution of π. If this holds, the security game
executes Punish as specified by the FBC protocol. Before the execution of Punish,
the challenger asks the ledger for the balances of all parties and stores them as

{b(prePunish)
i }i∈[n]. Note that prePunish denotes the time before Punish but after

the whole protocol already started. This means, relating to Definition 1, the
security deposits are already transferred to J , i.e., bprePunishi = bprei − d. After the
execution, the challenger C again reads the balances of all parties storing them as

{b(post)i }i∈[n] . If b
(post)
m = b

(prePunish)
m +d for all m ∈ I, i.e., all corrupted parties get

their deposits back, the adversary wins and the challenger outputs 1, otherwise
C outputs 0. A protocol satisfies the financial accountability property as stated
in Definition 1 if for each adversary A running in time polynomial in κ the
probability that A wins game ExpFA is at most negligible, i.e., if Pr[ExpFA(A, κ) =
1] ≤ negl(κ).

12

We provide a graphical description of the game ExpFA in Figure 1 of the
supplementary materials H.

Financial defamation freeness game. Intuitively, financial defamation freeness
states that an honest party can never lose her deposit as a result of executing
the Punish protocol. The security game is executed in the same way as the
financial accountability game. It only differs in the winning conditions for the
adversary. After the execution C checks the balances of the honest parties. If

b
(post)
h < b

(prePunish)
h + d for at least one h ∈ [n] \ I, the adversary wins and the

challenger outputs 1, otherwise C outputs 0. A protocol satisfies the financial
defamation freeness property as stated in Definition 1 if for each adversary A
running in time polynomial in κ the probability that A wins game ExpFDF is at
most negligible, i.e. if Pr[ExpFDF(A, κ) = 1] ≤ negl(κ).

We provide a graphical description of the game ExpFDF in Figure 2 of the
supplementary materials H.

4 Features of PVC Protocols

We present transformations from different classes of publicly verifiable covertly
secure multi-party protocols (PVC) to financially backed covertly secure proto-
cols (FBC). As our transformations make use of concrete features of the PVC
protocol (e.g., the exchanged messages), we cannot use the PVC protocol in a
block-box way. Instead, we model the PVC protocol in an abstract way, stating
features that are required by our constructions. In the remainder of this section,
we present these features in detail and describe how we model them. We note
that all existing PVC multi-party protocols [DOS20, FHKS21, SSS21] provide
the features specified in this section.

4.1 Cut-and-Choose

Although not required per definition of PVC, a fundamental technique used by
all existing PVC protocols is the cut-and-choose approach that leverages a semi-
honest protocol by executing t instances of the semi-honest protocol in parallel.
Afterwards, the views (i.e., input and randomness) of the parties is revealed in
s instances. This enables parties to detect misbehavior with probability ε = s

t .
PVC protocols can be split into protocols where parties provide private inputs
and those where parties do not have secret data. While cut-and-choose for input-
independent protocols, i.e., those where parties do not have private inputs, work
as explained on a high level before, the approach must be utilized in such a
way that input privacy is guaranteed for input-dependent protocols. However,
for both classes of protocols, a cheat detection probability of ε = s

t can be
achieved. We elaborate more the two variants and provide details about them in
the supplementary materials C.

13

4.2 Verification of Protocol Executions

An important feature of PVC protocols based on cut-and-choose is to enable
parties to verify the execution of the opened protocol instances. This requires
parties to emulate the protocol messages and compare them with the messages
exchanged during the real execution. In order to emulate honest behavior, we
need the protocol to be derandomized.

Derandomization of the protocol execution. In general, the behavior of each party
during some protocol execution depends on the party’s private input, its random
tape and all incoming messages. In order to enable parties to check the behavior
of other parties in retrospect, the actions of all parties need to be made deter-
ministic. To this end, we require the feature of a PVC protocol that all random
choices of a party Pi in a protocol instance are derived from some random seed
seedi using a pseudorandom generator (PRG). The seed seedi is fixed before
the beginning of the execution. It follows that the generated outgoing messages
are computed deterministically given the seed seedi, the secret input and all
incoming messages.

State evolution. Corresponding to our communication model (cf. Section 2),
the internal states of the parties in a semi-honest protocol instance evolve in
rounds. For each party Pi, for i ∈ [n], and each round k > 0 the protocol
defines a state transition computeRoundik that on input the previous internal

state state
(i)
(k−1) and the set of incoming messages {msg

(j,i)
(k−1)}j 6=i computes the

new internal state state
(i)
(k) and the set of outgoing messages {msg

(i,j)
(k) }j 6=i. Based

on the derandomization feature, the state transition is deterministic, i.e., all
random choices are derived from a random seed included in the internal state of
a party. Each party starts with an initial internal state that equals its random
seed seedi and its secret input xi. In case no secret input is present (i.e., in the
input-independent setting) or no message is sent, the value is considered to be
a dummy symbol (⊥). We denote the set of all messages sent during a protocol
instance by protocol transcript. Summarizing, we formally define

state
(i)
(0) ← (seedi, xi)

{msg
(j,i)
(0) }j∈[n]\{i} ← {⊥}j∈[n]\{i}

(state
(i)
(k), {msg

(i,j)
(k) }j∈[n]\{i})← computeRoundik(state

(i)
(k−1), {msg

(j,i)
(k−1)}j∈[n]\{i}).

Protocol emulation. In order to check for malicious behavior, parties locally
emulate the protocol execution of the opened instances and compare the set of
computed messages with the received ones. In case some involved parties are not
checked (e.g., in the input-dependent setting), the emulation gets their messages
as input and assumes them to be correct. In this case, in order to ensure that
each party can run the emulation, it is necessary that each party has access to
all messages sent in the opened instance (cf. Section 4.4).

14

To formalize the protocol emulation, we define for each n-party protocol π
with R rounds two emulation algorithms. The first algorithm emulatefullπ emulates
all parties while the second algorithm emulatepartπ emulates only a partial subset
of the parties and considers the messages of all other parties as correct. We
formally define them as

({msg
(i,j)
(k) }k,i,j 6=i, {state

(i)
(k)}k,i)← emulatefullπ ({state(i)

(0)}i) and

({msg
(i,j)
(k) }k,i,j 6=i, {state

(̂i)
(k)}k,̂i)← emulatepartπ (O, {state(̂i)

(0)}î, {msg
(i∗,j)
(k) }k,i∗,j 6=i∗)

where k ∈ [R], i, j ∈ [n], î ∈ O and i∗ ∈ [n] \ O. O denotes the set of opened
parties.

4.3 Deriving the Initial States

As a third feature, we require a mechanism for the parties of a PVC protocol to
learn the initial states of all opened parties in order to perform the protocol em-
ulation (cf. Section 4.2). Since PVC prevents detection dependent abort, parties
learn the initial state even if the adversary aborts after having learned the cut-
and-choose selection. Existing multi-party PVC protocols provide this feature
by either making use of oblivious transfer or time-lock puzzles as in [DOS20]
resp. [FHKS21, SSS21]. We elaborate on these protocols in the supplementary
materials C.

To model this behavior formally, we define the abstract tuples initDatacore and
initDataaux as well as the algorithm deriveInit. initDatacore(i) represents data each
party holds that should be signed by Pi and can be used to derive the initial
state of party Pi in a single protocol instance (e.g., a signed time-lock puzzle).
initDataaux(i) represents the additional data all parties receive during the PVC
protocol that can be used to interpret initDatacore(i) (e.g., the verifiable solution of
the time-lock puzzle). Finally, deriveInit is an algorithm that on input initDatacore(i)

and initDataaux(i) derives the initial state of party Pi (e.g., verifying the solution
of the puzzle). Instead of outputting an initial state, the algorithm deriveInit
can also output bad or ⊥. The former states that party Pi misbehaved during
the PVC protocol by providing inconsistent data. The symbol ⊥ states that
the input to deriveInit has been invalid which can only occur if initDatacore(i) or
initDataaux(i) have been manipulated.

Similar to commitment schemes, our abstraction satisfies a binding and hiding
requirement, i.e., it is computationally binding and computationally hiding. The
binding property requires that the probability of any polynomial time adversary
finding a tuple (x, y1, y2) such that deriveInit(x, y1) 6= ⊥, deriveInit(x, y2) 6= ⊥,
and deriveInit(x, y1) 6= deriveInit(x, y2) is negligible. The hiding property requires
that the probability of a polynomial time adversary finding for a given initDatacore

a initDataaux such that deriveInit(initDatacore, initDataaux) 6= ⊥ is negligible.

15

4.4 Public Transcript

A final feature required by PVC protocols of class 1 and 2 is the availability of a
common public transcript. We define three levels of transcript availability. First,
a common public transcript of messages ensures that all parties hold a common
transcript containing all messages that have been sent during the execution of
a protocol instance. Every protocol can be transformed to provide this feature
by requiring all parties to send all messages to all other parties and defining
a fixed ordering on the sent messages – we consider an ordering of messages
by the round they are sent, the index of the sender, and the receiver’s index
in this sequence. If messages should be secret, each pair of parties executes a
secure key exchange as part of the protocol instance and then encrypts messages
with the established keys. Agreement is achieved by broadcasting signatures
on the transcript, e.g., via signing the root of a Merkle tree over all message
hashes as discussed in [FHKS21] and required in our transformations. Second,
a common public transcript of hashes ensures that all parties hold a common
transcript containing the hashes of all messages sent during the execution of a
protocol instance. This feature is achieved similar to the transcript of messages
but parties only send message hashes to all parties that are not the intended
receiver. Finally, the private transcript does not require any agreement on the
transcript of a protocol instance.

Currently, all existing multi-party PVC protocols either provide a common
public transcript of messages [DOS20, FHKS21] or a common public transcript
of hashes [SSS21]. However, [DOS20] and [FHKS21] can be trivially adapted to
provide just a common public transcript of hashes.

5 Building Blocks

In this section, we describe the building blocks for our financially backed covertly
secure protocols. In the supplementary materials D, we show security of the
building blocks and that incorporating the building blocks into the PVC protocol
does not affect the protocol’s security.

5.1 Internal State Commitments

To realize the judge in an efficient way, we want it to validate just a single pro-
tocol step instead of validating a whole instance. Existing PVC protocols prove
misbehavior in a naive way by allowing parties to show that some other party

Pj had an initial state state
(j)
(0). Based on the initial state, the judge recomputes

the whole protocol instance. In contrast to this, we incorporate a mechanism

that allows parties to prove that Pj has been in state state
(j)
(k) in a specific round

k where misbehavior was detected. Then, the judge just needs to recompute a
single step. To this end, we require that parties commit to each intermediate
internal state during the execution of each semi-honest instance in a publicly
verifiable way. In particular, in each round k of each semi-honest instance `,

16

each party Pi sends a hash of its internal state to all other parties using a

collision-resistant hash function H(·), i.e., H(state
(i)
(`,k)). At the end of a pro-

tocol instance each party Ph creates a Merkle tree over all state hashes, i.e.,

sTree` := MTree({hash(i)
(`,k)}k∈[R],i∈[n]), and broadcasts a signature on the root

of this tree, i.e.,
〈
MRoot(sTree`)

〉
h
.

5.2 Signature Encoding

Our protocol incorporates signatures in order to provide evidence to the judge
J about the behavior of the parties. Without further countermeasures, an ad-
versary can make use of signed data across multiple instances or rounds, e.g.,
she could claim that some message msg sent in round k has been sent in round
k′ using the signature received in round k. To prevent such an attack, we encode
signed data by prefixing it with the corresponding indices before being signed.
Merkle tree roots are prefixed with the instance index `. Message hashes are
prefixed with `, the round index k, the sender index i and the receiver index j.
Initial state commitments (initDatacore(`,i)) are prefixed with ` and the index i of
the party who’s initial state the commitment refers to. The signature verifica-
tion algorithm automatically checks for correct prefixing. The indices are derived
from the super- and subscripts. If one index is not explicitly provided, e.g., in
case only one instance is executed, the index is assumed to be 1.

5.3 Bisection of Trees

Our constructions make heavily use of Merkle trees to represent sets of data.
This enables parties to efficiently prove that chunk of data is part of a set by
providing a Merkle proof showing that the chunk is a leaf of the corresponding
Merkle tree. In case two parties disagree about the data of a Merkle tree which
should be identical, we use a bisection protocol ΠBS to narrow down the dispute
to the first leaf of the tree on which they disagree. This helps a judging party
to determine the lying party by just verifying a single data chunk in contrast to
checking the whole data. The technique of bisecting was first used by Canetti
et al. [CRR11] in the context of verifiable computing. Later, the technique was
used in [KGC+18, TR19, EFS20].

The protocol is executed between a party Pb with input a tree mTreeb, a
party Pm with input a tree mTreem and a trusted judge J announcing three
public inputs: rootj , the root of mTreej as claimed by Pj for j ∈ {b,m}, and
width, the width of the trees, i.e., the number of leaves. The protocol returns the
index z of the first leaf at which mTreeb and mTreem differentiate, the leaf hashmz
at position z of mTreem, and the common leaf hash(z−1) at position z − 1. The
latter is ⊥ if z = 1. Let node(mTree, x, y) be the node of a tree mTree at position
x of layer y – positions start with 1. The protocol is executed as follows:

17

Protocol Bisection ΠBS

1. J initializes layer variable y := 1, position variable x := 1, last agreed hash
hasha := ⊥, and depth := dlog2(width)e+ 1

2. All parties repeat this step while y ≤ depth:
(a) Both Pj (for j ∈ {b,m}) send hashj := node(mTreej , x, y) and σj :=

MProof(hashj ,mTreej) to J .
(b) If MVerify(hashj , x, rootj , σj) = false (for j ∈ {b,m}), J discards the mes-

sage from Pj .
(c) If y = depth, J keeps hashb and hashm and sets y = y + 1.
(d) If y < depth and hashb = hashm, J sets x = (2 · x) + 1 and y = y + 1.
(e) If y < depth and hashb 6= hashm, J sets x = (2 · x)− 1 and y = y + 1.

3. If hashb = hashm

– J sets z := x+ 1 and hash(z−1) := hashb.
– Pm sends hashmz := node(mTreem, z, depth) and σ :=

MProof(hashmz ,mTreem) to J .
– If MVerify(hashmz , z, root, σ) = false, J discards. Otherwise J stores hashmz .

4. If hashb 6= hashm

– J sets z := x and hashmz := hashm. If z = 1, J sets hash(z−1) := ⊥, and the
protocol jumps to step 5.

– Pm sends hash(z−1) := node(mTreem, z − 1, depth) and σ :=
MProof(hash(z−1),mTreem) to J .

– If MVerify(hash(z−1), z − 1,mTreem, σ) = false, J discards. Otherwise, J
keeps hash(z−1).

5. J announces public outputs z, hashmz and hash(z−1).

6 Class 1: Input-Independent with Public Transcript

Our first transformation builds on input-independent PVC protocols where all
parties possess a common public transcript of hashes (cf. Section 4.4) for each
checked instance. Since the parties provide no input in these protocols, all parties
can be opened. The set of input-independent protocols includes the important
class of preprocessing protocols. In order to speed up MPC protocols, a common
approach is to split the computation in an offline and an online phase. Dur-
ing the offline phase, precomputations are carried out to set up some correlated
randomness. This phase does not require the actual inputs and can be executed
continuously. In contrast, the online phase requires the private inputs of the par-
ties and consumes the correlated randomness generated during the offline phase
to speed up the execution. As the online performance is more time critical, the
goal is to put as much work as possible into the offline phase. Prominent examples
following this approach are the protocols of Damg̊ard et al. [DPSZ12, DKL+13]
and Wang et al. [WRK17a, WRK17b, YWZ20]. Input-independent PVC pro-
tocols with a public transcript can be obtained from semi-honest protocols us-
ing the input-independent compilers of Damg̊ard et al.[DOS20] and Faust et
al. [FHKS21].

In order to apply our construction to an input-independent PVC protocol,
πpp, we require πpp to provide some features presented in Section 4 and to have

18

incorporated some of the building blocks described in Section 5. First, we require
the PVC protocol to be based on the cut-and-choose approach (cf. Section 4.1).
Second, we require the actions of each party Pi in a protocol execution to be de-
terministically determined by a random seed (cf. Section 4.2). Third, we require
that all parties learn the initial states of all other parties in the opened protocol
instances (cf. Section 4.3). To this end, the parties receive signed data (e.g., a
commitment and decommitment value) to derive the initial states of the other
parties. Fourth, parties need to commit to their intermediate internal states dur-
ing the protocol executions in a publicly verifiable way (cf. Section 5.1). Finally,
all signed data match the encoded form specified in Section 5.2.

In order to achieve the public transcript of hashes and the commitments to
the intermediate internal states, parties exchange additional data in each round.
Formally, whenever some party Ph in round k of protocol instance ` transitions to

a state state
(h)
(`,k) with the outgoing messages {msg

(h,i)
(`,k)}i∈[n]\{h} , then it actually

sends the following to Pi:

(msg
(h,i)
(`,k), {hash

(h,j)
(`,k) := H(msg

(h,j)
(`,k))}j∈[n]\{h,i}, hash

(h)
(`,k) := H(state

(h)
(`,k)))

Let O denote the set of opened instances. We summarize the aforementioned
requirements by specifying the data that the view of any honest party Ph in-
cludes. It contains signed data to derive the initial state of all parties for the
opened instances, i.e.,

{(
〈
initDatacore(i,`)

〉
i
, initDataaux(i,`))}`∈O,i∈[n], (1a)

a Merkle tree over the hashes of all messages exchanged within a single instance
for all instances, i.e.,

{mTree`}`∈[t] := {MTree({hash(i,j)
(`,k)}k∈[R],i∈[n],j 6=i)}`∈[t], (1b)

a Merkle tree over the hashes of all intermediate internal states of a single in-
stance for all instances, i.e,

{sTree`}`∈[t] := {MTree({hash(i)
(`,k)}k∈[R],i∈[n])}`∈[t] (1c)

and signatures from each party over the roots of the message and state trees, i.e,

{
〈
MRoot(mTree`)

〉
i
}i∈[n],`∈[t] (1d)

and
{
〈
MRoot(sTree`)

〉
i
}i∈[n],`∈[t]. (1e)

We next define the blame algorithm that takes the specified view as input and
continue with the description of the punishment protocol afterwards.

The blame algorithm. At the end of protocol πpp, all parties execute the blame
algorithm Blamepp to generate a certificate cert. The resulting certificate is broad-
casted and the honest party finishes the execution of πpp by outputting cert. The
certificate is generated as follows:

19

Algorithm Blamepp

1. Ph runs state
(i)

(`,0) = deriveInit(initDatacore(i,`), initData
aux
(i,`)) for each i ∈ [n], ` ∈ O.

Let B be the set of all tuples (`, 0,m, 0) such that state
(m)

(`,0) = bad. If B 6= ∅,
goto step 4.

2. Ph emulates for each ` ∈ O the protocol executions on input the initial
states from all parties to obtain the expected messages and the expected in-
termediate states of all parties, i.e., ({msg

(i,j)

(`,k)}k∈[R],i∈[n],j 6=i, {state(i)(`,k)}k,i,j) :=

emulatefull({state(i)(`,0)}i∈[n]).
3. Let B be the set of all tuples (`, k,m, i) such that H(msg

(m,i)

(`,k)) 6= hash
(m,i)

(`,k)

or H(state
(m)

(`,k)) 6= hash
(m)

(`,k) – where hash
(m,i)

(`,k) and hash
(m)

(`,k) are extracted from
mTree` or sTree` respectively. In case of an incorrect state hash, set i = 0.

4. If B = ∅ Ph outputs cert := ⊥. Otherwise, Ph picks the tuple (`, k,m, i) from
B with the smallest `, k, m, i in this sequence, sets k′ := k − 1 and defines
variables as follows – variables that are not explicitly defined are set to ⊥.

(Always): ids := (`, k,m, i)

initData := (
〈
initDatacore(`,m)

〉
m
, initDataaux(`,m))

rootstate :=
〈
MRoot(sTree`)

〉
m

rootmsg :=
〈
MRoot(mTree`)

〉
m

(If k > 0): stateout := (hash
(m)

(`,k),MProof(hash
(m)

(`,k), sTree`))

msgout := (hash
(m,i)

(`,k) ,MProof(hash
(m,i)

(`,k) ,mTree`))

(If k > 1): statein := (state
(m)

(`,k′),MProof(H(state
(m)

(`,k′)), sTree`))

Min := {(msg
(j,m)

(`,k′),MProof(H(msg
(j,m)

(`,k′)),mTree`))}j∈[n]

5. Output cert := (ids, initData, rootstate, rootmsg, statein,Min, stateout,msgout).

The punishment protocol. Each party Pi (for i ∈ [n]) checks if cert 6= ⊥. If
this is the case, Pi sends cert to J pp 4. Otherwise, Pi waits till time T to re-
ceive her deposit back. Timeout T is set such that the parties have sufficient
time to submit a certificate after the execution of πpp and Blamepp. The judge
J pp is described in the following. For the sake of compactness, we extracted
the description of the validation algorithms wrongMsg and wrongState and the
algorithm getIndex into Section J of the supplementary material. We stress that
the validation algorithms wrongMsg and wrongState don’t need to recompute a
whole protocol execution but only a single step. Therefore, J pp is very efficient
and can, for instance, be realized via a smart contract. To be more precise, the
judge is execution without any interaction and runs in computation complexity
linear in the protocol complexity. By allowing logarithmic interactions between
the judge and the parties, we can further reduce the computation complexity

4 A practical implementation would incorporate a mechanism that avoids duplicated
submissions.

20

to logarithmic in the protocol complexity. This can be achieved by applying the
efficiency improvement described in supplementary materials G.

Judge J pp

Initialization: The judge has access to public variables n, t, T and the set of parties
{Pi}i∈[n]. Further, it maintains a set cheaters initially set to ∅. Prior to the execution
of πpp, J pp has received d coins from each party Pi.

Proof verification: Wait until time T1 to receive ((`, k,m, i), initData,
〈
rootstate(`)

〉
m
,〈

rootmsg
(`)

〉
m
, statein,Min, stateout, (hash, σ)) and do:

1. If Pm ∈ cheaters, abort.
2. Parse initData to (

〈
initDatacore(`,m)

〉
m
, initDataaux(`,m)) and set state0 =

deriveInit(initDatacore(`,m), initData
aux
(`,m)). If Verify(

〈
initDatacore(`,m)

〉
m

) = false or
state0 = ⊥, abort. If state0 = bad, add Pm to cheaters and stop.

3. If Verify(
〈
rootstate(`)

〉
m

) = false or Verify(
〈
rootmsg

(`)

〉
m

) = false, abort.

4. If i = 0 and wrongState(state0, statein, stateout,Min, root
state
(`) , root

msg
(`) , `, k,m) =

true, add Pm to cheaters.
5. If i > 0, MVerify(hash, getIndex(k,m, i), rootmsg

(`) , σ) = true and

wrongMsg(state0, statein, hash,Min, , root
state
(`) , root

msg
(`) , `,m, k, i) = true, add

Pm to cheaters.

Timeout: At time T1, send d coins to each party Pi /∈ cheaters.

6.1 Security

Theorem 1. Let (πpp, ·, ·) be an n-party publicly verifiable covert protocol com-
puting function f with deterrence factor ε satisfying the view requirements stated
in Eq. (1a)-(1e). Further, let the signature scheme (Generate,Sign,Verify) be ex-
istentially unforgeable under chosen-message attacks, the Merkle tree satisfies
the binding property and the hash function H be collision resistant. Then the
protocol πpp together with algorithm Blamepp, protocol Punishpp and judge J pp

satisfies financially backed covert security with deterrence factor ε according to
Definition 1.

We formally prove Theorem 1 in the supplementary materials E.

7 Class 3: Input-Independent with Private Transcript

At the time of writing, there exists no PVC protocol without public transcript
that could be directly transformed into an FBC protocol. Moreover, it is not
clear, if it is possible to construct a PVC protocol without a public transcript.
Instead, we present a transformation from an input-independent PVC protocol
with public transcript into an FBC protocol without any form of common public
transcript. As in our first transformation, we start with an input-independent
PVC protocol πpvc

3 that is based on cut-and-choose where parties share a com-
mon public transcript. Due to the input-independence, all parties of the checked

21

instances can be opened. However, unlike our first transformation, which uti-
lizes the public transcript, we remove this feature from the PVC protocol as
part of the transformation. We denote the protocol that results by removing the
public transcript feature from πpvc

3 by π3. Without having a public transcript,
the punishment protocol becomes interactive and more complicated. Intuitively,
without a public transcript it is impossible to immediately decide if a message
that deviates from the emulation is maliciously generated or is invalid because
of a received invalid messages. Note that we still have a common public tree
of internal state hashes in our exposition. However, the necessity of this tree
can also be removed by applying the techniques presented here that allow us to
remove the common transcript.

In order to apply our construction to a protocol π3, we require almost the
same features of π3 as demanded in our first transformation (cf. Section 6). For
the sake of exposition, we outline the required features here again and point out
the differences. First, we require π3 to be based on the cut-and-choose approach
(cf. Section 4.1). Second, we require the actions of each party Pi in a semi-
honest instance execution to be deterministically determined by a random seed
(cf. Section 4.2). Third, we require that all parties learn the initial states of all
other parties in the opened protocol instances (cf. Section 4.3). To this end, the
parties receive signed data (e.g., a commitment and decommitment value) to
derive the initial states of the other parties. Fourth, parties need to commit to
their intermediate internal states during the protocol executions in a publicly
verifiable way (cf. Section 5.1). Finally, all signed data match the encoded form
specified in Section 5.2.

In contrast to the transformation in Section 6 we no longer require from
protocol π3 that the parties send all messages or message hashes to all other
parties. Formally, whenever some party Ph in round k of protocol instance `

transitions to a state state
(h)
(`,k) with the outgoing messages {msg

(h,i)
(`,k)}i∈[n]\{h},

then it actually sends the following to Pi:

(
〈
msg

(h,i)
(`,k)

〉
h
, hash

(h)
(`,k) := H(state

(h)
(`,k)))

Let O be the set of opened instances. We summarize the aforementioned
requirements by specifying the data that the view of any honest party Ph after
the execution of π3 includes. The view contains data to derive the initial state
of all parties which is signed by each party for each party and every opened
instance, i.e.,

{(
〈
initDatacore(i,`)

〉
j
, initDataaux(i,`))}`∈O,i∈[n],j∈[n], (2a)

a Merkle tree over the hashes of all intermediate internal states of a single in-
stance for all instances, i.e.,

{sTree`}`∈[t] := {MTree({hash(i)
(`,k)}k∈[R],i∈[n])}`∈[t], (2b)

signatures from each party over the roots of the state trees, i.e.,

{
〈
MRoot(sTree`)

〉
i
}i∈[n],`∈[t] (2c)

22

and the signed incoming message, i.e.,

M := {
〈
msg

(i,h)
(`,k)

〉
i
}`∈[t],k∈[R],i∈[n]\{h}. (2d)

The blame algorithm. At the end of protocol π3, all parties first execute an evi-
dence algorithm Evidence to generate partial certificates cert′. The partial certifi-
cate is a candidate to be used for the punishment protocol and is broadcasted to
all other parties as part of π3. In case the honest party detects cheating in several
occurrences, the party picks the occurrence with the smallest indices (`, k,m, i)
(in this sequence). The algorithm to generate partial certificates Evidence is for-
mally described as follows:

Algorithm Evidence

1. Ph runs state
(i)

(`,0) = deriveInit(initDatacore(i,`), initData
aux
(i,`)) for each i ∈ [n], ` ∈ O.

Let B be the set of all tuples (`, 0,m, 0) such that state
(m)

(`,0) = bad. If B 6= ∅,
goto step 4.

2. Ph emulates for each ` ∈ O the protocol executions on input the initial
states from all parties to obtain the expected messages and the expected in-
termediate states of all parties, i.e., ({m̃sg

(i,j)

(`,k)}k∈[R],i∈[n],j 6=i, {state(i)(`,k)}k,i,j) :=

emulatefull({state(i)(`,0)}i∈[n]).
3. Let B be the set of all tuples (`, k,m, h) such that msg

(m,h)

(`,k) 6= m̃sg
(m,h)

(`,k) or

H(state
(m)

(`,k)) 6= hash
(m)

(`,k) – where msg
(m,h)

(`,k) and hash
(m)

(`,k) are taken from M or
sTree` respectively. In case of an invalid state, set h = 0.

4. Pick the tuple (`, k,m, i) from B with the smallest `, k, m, i in this sequence. If

k > 0 set msgout :=
〈
msg

(m,i)

(`,k)

〉
m

. Otherwise, set msgout := ⊥.

5. Output partial certificate (ids,msgout).

Since π3 does not contain a public transcript of messages, parties can only
validate their own incoming message instead of all messages as done in previ-
ous approaches. Hence, it can happen that different honest parties generate and
broadcast different partial certificates. Therefore, all parties validate the incom-
ing certificates, discard invalid ones and pick the partial certificate cert′ with the
smallest indices (`, k,m, i) (in this sequence) as their own. If no partial certificate
has been received or created, parties set cert′ := ⊥.

Finally, each honest party executes the blame algorithm Blamesp to create
the full certificate that is used for both, blaming a malicious party and defend-
ing against incorrect accusations. As in this scenario the punishment protocol
requires input of accused honest parties, the blame algorithm returns a certifi-
cate even if no malicious behavior has been detected, i.e., if cert′ = ⊥. The final
certificate is generated by appending following data from the view to the certifi-
cate: {(

〈
initDatacore(i,`)

〉
j
, initDataaux(i,`))}`∈O,i∈[n],j∈[n] (cf. Eq 2a), {sTree`}`∈[t] (cf.

Eq 2b), and {
〈
MRoot(sTree`)

〉
i
}i∈[n],`∈[t] (cf. Eq 2c). All the appended data is

public and does not really need to be broadcasted. However, in order to match
the formal specification, all parties broadcast their whole certificate. If cert′ 6= ⊥,
the honest party outputs in addition to the certificate corruptedm.

23

To ease the specification of the punishment protocol in which parties derive
further data from the certificates, we define an additional algorithm mesHistory
that uses the messages obtained during the emulation (m̃sg)5 to compute the
message history up to a specific round k′ (inclusively) of instance `. We structure
the message history in two layers. For each round k∗ < k′, parties create a Merkle
tree of all messages emulated in this round. These trees constitute the bottom
layer. On the top layer, parties create a Merkle tree over the roots of the bottom
layer trees. This enables parties to agree on all messages of one round making
it easier to submit Merkle proofs for messages sent in this round. The message
history is composed of the following variables:

{mTreeroundk∗ }k∗∈[k′] := {MTree({H(m̃sg
(i,j)
(`,k∗))}i∈[n],j 6=i)}k∗∈[k′]

mTreek′ := MTree({MRoot(mTreeroundk∗ }k∗∈[k′])

rootmsg
k′ := MRoot(mTree)

Additionally, if cert′ 6= ⊥, parties compute the following:

(Always): initData := (
〈
initDatacore(`,m)

〉
m
, initDataaux(`,m))

rootstate :=
〈
MRoot(sTree`)

〉
m

(If k > 0): stateout := (hash
(m)
(`,k),MProof(hash

(m)
(`,k), sTree`))

(If k > 1): statein := (state
(m)
(`,k′),MProof(H(state

(m)
(`,k′)), sTree`))

({mTreeroundk∗ }k∗∈[k′],mTreek′ , root
msg
k′) := mesHistory(k′, `)

σk′ := MProof(MRoot(mTreeroundk′),mTreek′))

Min := {(m̃sg
(j,m)
(`,k′),MProof(H(m̃sg

(j,m)
(`,k′)),mTreeroundk′))}j∈[n]

The punishment protocol. The main difficulty of constructing a punishment pro-
tocol Punishsp for this scenario is that there is no publicly verifiable evidence
about messages like a common transcript used in the previous transformations.
Hence, incoming messages required for the computation of a particular protocol
step cannot be validated directly. Instead, the actions of all parties need to be
validated against the emulated actions based on the initial states. This leads
to the problem that deviations from the protocol can cause later messages of
other honest parties to deviate from the emulated ones as well. Therefore, it is
important that the judge disputes the earliest occurrence of misbehavior.

We divide the punishment protocol Punishsp into three phases. First, the
judge determines the earliest accusation of misbehavior. To this end, if cert 6= ⊥
all parties start by sending tuple ids from cert to J sp and the judge selects the
tuple with the smallest indices (`, k,m, i). This mechanism ensures that either
the first malicious message or malicious state hash received by an honest party is

5 Formally, parties need to re-execute the emulation, as we do not allow them to use
any data not included in the certificate.

24

disputed or the adversary blames some party at an earlier point. To look ahead,
if the adversary blames an honest party at an earlier point, the punishment will
not be successful and the malicious blamer will be punished for submitting an
invalid accusation. If the adversary blames another malicious party, either one of
them will be punished. This mechanism ensures that if an honest party submits
an accusation, a malicious party will be punished, even if it is not the honest
party’s accusation that is disputed.

If there has not been any accusation submitted in the first phase, J sp re-
imburses all parties. Otherwise, J sp defines a blamer Pb, the party that has
submitted the earliest accusation, and an accused party Pm. Pb either accuses
misbehavior in the initial state, the first round, or in some later round. For the
former two, misbehavior can be proven in a straightforward way, similar to our
first construction. For the latter, Pb is supposed to submit a proof containing
the hash of a tree of the message history up to the disputed round k. Pm can
accept or decline the message history depending on whether the tree corresponds
to the one emulated by Pm or not. If the tree is accepted, the certificate can be
validated as in previous scenarios, with the only difference that incoming mes-
sages are validated with respect to the submitted message history tree instead
of the common public transcript. In case any party does not respond in time,
this party is considered maliciously and is financially punished.

If the message history is declined, the protocol transitions to the third phase.
Parties Pb and Pm together with J sp execute a bisection search in the message
history tree to find the first message they disagree on (cf. Section 5.3). By defini-
tion they agree on all messages before the disputed one – we call these messages
the agreed sub-tree. At this step, J sp can validate the disputed message of the
history tree (not the one disputed in the beginning) the same way as done in
previous constructions with the only difference that incoming messages are val-
idated with respect to the agreed sub-tree.

The number of interactions is logarithmic while the computation complexity
of the judge is linear in the protocol complexity. We can further reduce the
computation complexity to be logarithmic in the protocol complexity while still
having logarithmic interactions using the efficiency improvements described in
supplementary materials G. The judge is defined as follows:

Protocol Punishsp

Phase 1: Determine earliest accusation

1. If cert 6= ⊥, Ph sends ids := (`, k,m, i) taken from cert to J sp which stores
(`, k,m, i, h).

2. J sp waits till time T to receive message (`, k,m, i) from parties Pb for b ∈ [n]. If
no accusations have been received, J sp sends d coins to each party at time T .
Otherwise, J sp picks the smallest tuple (`, k,m, i, b) (ordered in this sequence),
sets k′ := k − 1 and continues with Phase 2.

Timeout: If its Pj ’s turn for j ∈ {b,m} and Pj does not respond with a valid
message, i.e., one that is not discarded, in time, Pj is considered malicious and J sp

terminates by sending d coins to all parties but Pj .

25

Phase 2: First evidence

3. If k < 2, Pb sends (initData, rootstate, stateout,
〈
msg

(m,i)

(`,k)

〉
m

) taken from cert to
J sp

(a) J sp parses initData to (
〈
initDatacore(`,m)

〉
m
, initDataaux(`,m)) and sets state0 =

deriveInit(initDatacore(`,m), initData
aux
(`,m)). If Verify(

〈
initDatacore(`,m)

〉
m

) = false or
state0 = ⊥, J sp discards. If state0 = bad, J sp terminates by sending d coins
to all parties but Pm.

(b) If Verify(
〈
rootstate(`)

〉
m

) = false, J sp discards.
(c) If i = 0 and wrongState(state0,⊥, stateout, ∅, rootstate(`) ,⊥, `, k,m) = false, J sp

discards.
(d) If i > 0, Verify(

〈
msg

(m,i)

(`,k)

〉
m

) = false or

wrongMsg(state0,⊥, H(msg
(m,i)

(`,k)), ∅, rootstate(`) ,⊥, `,m, k, i) = false, J sp

discards.
(e) J sp terminates by sending d coins to all parties but Pm.

4. Otherwise, Pb sends (rootstate, statein, stateout,
〈
rootstate(`)

〉
m
, rootmsg, rootroundk′ ,

σk′ ,Min,msgout) taken from cert to J sp.

(a) Pm executes mesHistory(k − 1, `). Let r̃oot
msg

be the root of the emulated
message history tree. If rootmsg 6= r̃oot

msg
Pm sends r̃oot

msg
to J sp. Otherwise,

Pm sends (⊥).
(b) If r̃oot

msg
received by Pm does not equal ⊥, J sp jumps to phase 3.

(c) J sp checks that Verify(
〈
rootstate(`)

〉
m

) = true and

MVerify(rootroundk′ , k′, rootmsg, σk′) = true and discards otherwise.
(d) If i = 0 and wrongState(⊥, statein, stateout,Min, root

state
(`) , root

round
k′ , `, k,

m) = false, J sp discards.

(e) If i > 0, Verify(
〈
msg

(m,i)

(`,k)

〉
m

) = false or

wrongMsg(state0, statein, H(msg
(m,i)

(`,k)),Min, , root
state
(`) , root

round
k′ , `,m, k

, i) = false, J sp discards.
(f) J sp terminates by sending d coins to all parties but Pm.

Phase 3: Dispute the message tree

5. Parties Pb, Pm and J sp run bisection sub-protocol ΠBS on the top-level tree.
Pb’s input is the tree with root rootmsg; Pm’s the one with root r̃oot

msg
. J sp

announces public inputs rootmsg and width of rootmsg, width := k′. The output
is the first round they disagree on k2, the agreed hash rootroundk′2

of leaf with index

k′2 := k2 − 1 and the hash rootround(b,k2)
of leaf with index k2 as claimed by Pm.

6. Parties Pm, Pb and J sp run bisection sub-protocol ΠBS on the low-level tree.
Both, Pm and Pb take as input mTreeroundk2

from their certificate. J sp announces

public inputs rootround(b,k2)
and the width of the low level tree width′n × (n − 1).

The output is the index x of the first message they disagree on and the hash of
this message hashx as claimed by Pm. The index of the sender of the disputed
message is m2 := d x

n−1
e and the index of the receiver i2 = x mod (n − 1) if

m2 > (x mod (n− 1)) and i2 := (x mod (n− 1)) + 1 otherwise.

26

7. Party Pb define variables as follows – variables that are not explicitly defined
are set to ⊥.

(Always): initData2 := (
〈
initDatacore(`,m2)

〉
m
, initDataaux(`,m2))

rootstate :=
〈
MRoot(sTree`)

〉
m

(If k2 > 1): state2in := (state
(m2)

(`,k′2)
,MProof(H(state

(m2)

(`,k′2)
), sTree`))

M2
in := {(msg

(j,m2)

(`,k′2)
,MProof(H(msg

(j,m2)

(`,k′2)
),mTreeroundk′2

))}j∈[n]

and sends (initData2,
〈
MRoot(sTree`)

〉
m
, state2in,M2

in) to J sp.

8. J sp parses initData2 to (
〈
initDatacore(`,m2)

〉
m
, initDataaux(`,m2)

) and sets state
(m2)

(0) :=

deriveInit(initDatacore(`,m2)
, initDataaux(`,m2)

). If Verify(
〈
rootstate(`)

〉
m

) = false,

Verify(
〈
initDatacore(`,m2)

〉
m

) = false or state
(m2)

(0) ∈ {⊥, bad}, J sp discards.

9. If wrongMsg(state
(m2)

(0) , state2in, hashx,M2
in, root

state
(`) , root

round
k′2

, `,m2, k2, i2) =

false, J sp discards.
10. J sp terminates by sending d coins to all parties but Pm.

7.1 Security

Theorem 2. Let (πpvc
3 ,Blamepvc, Judgepvc) be an n-party publicly verifiable covert

protocol computing function f with deterrence factor ε satisfying the view require-
ments stated in Eq. (2). Further, πpvc

3 generates a common public transcript of
hashes that is only used for Blamepvc and Judgepvc. Let π3 be a protocol that is
equal to πpvc

3 but does not generate a common transcript and instead of calling
Blamepvc executes the blame procedure explained above (including execution of
Evidence and Punishsp). Further, let the signature scheme (Generate,Sign,Verify)
be existentially unforgeable under chosen-message attacks, the Merkle tree sat-
isfies the binding property, the hash function H be collision resistant and the
bisection protocol ΠBS be correct. Then, the protocol π3, together with algorithm
Blamesp, protocol Punishsp and judge J sp satisfies financially backed covert secu-
rity with deterrence factor ε according to Definition 1.

We formally prove Theorem 2 in the supplementary materials I.

8 Evaluation

In order to evaluate the practicability of our protocols, i.e., to show that the
judging party can be realized efficiently via a smart contract, we implemented
the judge of our third transformation (cf. Section 7) for the Ethereum blockchain
and measured the associated execution costs. We focus on the third setting, the
verification of protocols with a private transcript, since we expect this scenario to
be the most expensive one due to the interactive punishment procedure. Further,
we have extended the transformation such that the protocol does not require a
public transcript of state hashes.

27

Our implementation includes the efficiency features described in supplemen-
tary materials G. In particular, we model the calculation of each round’s and
party’s computeRound function as an arithmetic circuit and compress disputed
calculations and messages using Merkle trees. The latter are divided into 32-byte
chunks which constitute the leave of the Merkle tree. The judge only needs to
validate either the computation of a single arithmetic gate or the correctness of a
single message chunk of a sent or received message together with the correspond-
ing Merkle tree proofs. The proofs are logarithmic in the size of the computation
resp. the size of a message. Messages are validated by defining a mapping from
each chunk to a gate in the corresponding computeRound function.

In order to avoid redundant deployment costs, we apply a pattern that allows
us to deploy the contract code just once and for all and create new independent
instances of our FBC protocol without deploying further code. When starting
a new protocol instance, parties register the instance at the existing contract
which occupies the storage for the variables required by the new instance, e.g.,
the set of involved parties. Further, we implement the judge to be agnostic to the
particular semi-honest protocol executed by the parties – recall that our FBC
protocol wraps around a semi-honest protocol that is subject to the cut-and-
choose technique. Every instance registered at the judge can involve a different
number of parties and define its own semi-honest protocol. This means that the
same judge contract can be used for whatever semi-honest protocol our FBC
protocol instance is based on, e.g., for both the generation of Beaver triples and
garbled circuits. Parties simply define for each involved party and each round
the computeRound function as a set of gates, aggregate all gates into a Merkle
tree and submit the tree’s root upon instance registration.

Table 1: Costs for deployment, in-
stance registration and optimistic
execution.

Protocol steps n
Cost

Gas USD

Deployment 4 775 k 639.91

New instance 2 287 k 38.41
New instance 3 308 k 41.30
New instance 5 351 k 47.05
New instance 10 458 k 61.43

Honest execution 2 178 k 23.92
Honest execution 3 224 k 30.07
Honest execution 5 316 k 42.38
Honest execution 10 546 k 73.14

Gates: Number of gates in the circuit of each
computeRound function.
Chunks: Number of chunks in each message.
R: Number of communication rounds.
n: Number of parties.

Table 2: Worst-case execution costs.

Gates Chunks R n
Cost

Gas USD

10 10 10 3 1 780 k 238.58
1 000 10 10 3 2 412 k 323.25

1 M 10 10 3 3 512 k 470.55
1 B 10 10 3 4 782 k 640.75
1 T 10 10 3 6 182 k 828.35

10 10 10 3 1 785 k 239.14
100 100 10 3 2 086 k 279.61

1 000 1 000 10 3 2 422 k 324.55

100 10 10 3 2 081 k 278.91
100 10 10 4 2 223 k 297.86
100 10 10 7 2 442 k 327.29
100 10 10 10 2 659 k 356.34
100 10 10 50 4 764 k 638.35

100 10 3 3 1 878 k 251.65
100 10 10 3 2 074 k 277.88
100 10 100 3 2 403 k 322.04
100 10 1 000 3 2 834 k 379.79

We perform all measurements on a local test environment. We setup the local
Ethereum blockchain with Ganache (core version 2.13.2) on the latest supported
hard fork, Muir Glacier. The contract is compiled to EVM byte code with solc

28

(version 0.8.1, optimized on 20 runs). As common, we measure the efficiency of
the smart contracts via its gas consumption – this metric directly translates to
execution costs. Further, we estimate USD costs based on the prices (gas to ETH
and ETH to USD) on Aug. 20, 2021 [Eth21, Coi21]. For comparison, a simple
Ether transfer costs 21,000 gas resp. 2,81 USD.

In Table 1, we display the costs of the deployment, the registration of a
new instance and the optimistic execution without any disputes. The costs of
these steps only depend on the number of parties. In Table 2, we display the
worst-case costs of a protocol execution for different protocol parameters, i.e.,
complexity of the computeRound functions, message size, communication rounds
and number of parties. In order to determine the worst-case costs, we measured
different dispute patterns, e.g., disputing sent messages or disputing gates of
the computeRound functions, and picked the pattern with the highest costs. The
execution costs, both optimistic and worst case, incorporate all protocol steps,
incl. the secure funding of the instance. We exclude the derivation of the initial
seeds as this step strongly depends on the underlying PVC protocol.

In the optimistic case, the costs of executing our protocol are similar to
the ones of [ZDH19]. The authors report a gas consumption of 482 k gas while
our protocol consumes between 465 k and 1 M gas, depending on the number
of parties – recall that the protocol of [ZDH19] is restricted to the two-party
setting. This overhead in our protocol when considering more than two parties
is mainly introduced by the fact that [ZDH19] does assume a single deposit while
our implementation requires each party to perform a deposit.

Unfortunately, we cannot compare worst-case costs directly, as the protocol
of [ZDH19] validates the consistency of a fixed data structure, i.e., a garbled
circuit, while our implementation validates the correctness of the whole protocol
execution. In particular, [ZDH19] performs a bisection over the garbled circuit
while we perform two bisections, first over the message history and then over
the computation generating the outgoing messages; such a message might for
example be a garbled circuit. Further, [ZDH19] focuses on a boolean circuit,
while we model the computeRound function as an arithmetic circuit – as the EVM
always stores data in 32-byte words, it does not make sense to model the function
as a boolean circuit. Although not directly comparable, we believe the protocol
of [ZDH19] to be more efficient for the special case of a two-party garbling
protocol, as the protocol can exploit the fact that a dispute is restricted to a
single message, i.e., the garbled circuit, and the data structure of this message
is fixed such that the dispute resolution can be optimized to said data structure.

Our measurements indicate that the worst-case costs of each scenario are
always defined by a dispute pattern that does not dispute a message chunk but
a gate of the computeRound functions. This is why the message chunks have no
influence on the worst-case execution costs. Of course, this observation might
be violated if we set the number of chunks much higher than the number of
gates. However, it does not make sense to have more message chunks than gates
because each message chunk needs to be mapped to a gate of the computeRound
function defining the value of said chunk.

29

Both, the number of rounds and the number of parties increase the maximal
size of the disputed message history and, hence, the depth of the bisected history
tree. As the depth of the bisected tree grows logarithmic in the tree size, our
protocol is highly scalable in the number of parties and rounds.

Finally, we note that we understand our implementation as a research proto-
type showing the practicability of our protocol. We are confident that additional
engineering effort can further reduce the gas consumption of our contract.

Acknowledgments

The first, third, and fourth authors were supported by the German Federal
Ministry of Education and Research (BMBF) iBlockchain project (grant nr.
16KIS0902), by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) SFB 1119 – 236615297 (CROSSING Project S7), by the BMBF and
the Hessian Ministry of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Applied Cybersecurity
ATHENE, and by Robert Bosch GmbH, by the Economy of Things Project.
The second author was supported by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office, and by ISF grant No. 1316/18.

References

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and
Lukasz Mazurek. Secure multiparty computations on bitcoin. In IEEE
SP, 2014.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. In TCC, 2007.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security
with public verifiability. In ASIACRYPT, 2012.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair
protocols. In CRYPTO, 2014.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In STOC, 1990.

[Coi21] CoinMarketCap. Ethereum (ETH) price.
https://coinmarketcap.com/currencies/ethereum/, 2021.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of
computation using multiple servers. In CCS, 2011.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In ESORICS, 2013.

[DOS20] Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Black-box transforma-
tions from passive to covert security with public verifiability. In CRYPTO,
2020.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
2012.

30

[EFS20] Lisa Eckey, Sebastian Faust, and Benjamin Schlosser. Optiswap: Fast op-
timistic fair exchange. In ASIA CCS, 2020.

[Eth21] Etherscan. Ethereum Average Gas Price Chart.
https://etherscan.io/chart/gasprice, 2021.

[FHKS21] Sebastian Faust, Carmit Hazay, David Kretzler, and Benjamin Schlosser.
Generic compiler for publicly verifiable covert multi-party computation. In
EUROCRYPT, 2021.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
STOC, 1987.

[HKK+19] Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-jie Lu, and Xiao
Wang. Covert security with public verifiability: Faster, leaner, and simpler.
In EUROCRYPT, 2019.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize
correct computations. In CCS, 2014.

[KGC+18] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg,
and Edward W. Felten. Arbitrum: Scalable, private smart contracts. In
USENIX Security, 2018.

[KM15] Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the
covert model (almost) for free. In ASIACRYPT, 2015.

[SSS21] Peter Scholl, Mark Simkin, and Luisa Siniscalchi. Multiparty computation
with covert security and public verifiability. IACR Cryptol. ePrint Arch.,
2021.

[TR19] Jason Teutsch and Christian Reitwießner. A scalable verification solution
for blockchains. CoRR, abs/1908.04756, 2019.

[W+14] Gavin Wood et al. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper, 2014.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In CCS, 2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In CCS, 2017.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from im-
proved triple generation and authenticated garbling. In CCS, 2020.

[ZDH19] Ruiyu Zhu, Changchang Ding, and Yan Huang. Efficient publicly verifiable
2pc over a blockchain with applications to financially-secure computations.
In CCS, 2019.

31

Supplementary Materials:

Financially Backed Covert Security

A Covert Security

The notion of covert security with ε-deterrent was introduced by Aumann and
Lindell [AL07]. We focus on the strong explicit cheat formulation as this is the
strongest given formulation. For the sake of completeness, we take the formal
definition almost verbatim from [AL07]. As in the standalone model, the notion
is defined in the real world/ideal world paradigm. This means, the security of
a protocol is shown by comparing the real world execution with an ideal world
execution. In the real world, the parties jointly compute the desired function f
using a protocol π. Let n be the number of parties and let f : ({0, 1}∗)n →
({0, 1}∗)n, where f = (f1, . . . , fn), be the function realized by π. We define for
every input vector x̄ = (x1, . . . , xn) the output vector ȳ = (f1(x̄), . . . , f1(x̄))
where party Pi with input xi obtains the output fi(x̄). During the execution
of π, the adversary A can corrupt a subset I ⊂ [n] of all parties. We define
REALπ,A(z),I(x̄, 1κ) to be the output of the protocol execution π on input x̄ =
(x1, . . . , xn) and security parameter κ, where A on auxiliary input z corrupts
parties I. We further specify OUTPUTi(REALπ,A(z),I(x̄, 1κ)) to be the output
of party Pi for i ∈ [n].

In contrast, in the ideal world, the parties send their inputs to a trusted party
F which computes function f and returns the result. Hence, the computation
in the ideal world is correct by definition. The security of π is analyzed by
comparing the ideal-world execution with the real-world execution. The ideal
world in covert security is slightly adapted in comparison to the standard secure
computation model. In covert security, the ideal world allows the adversary to
cheat and cheating is detected with some fixed probability ε which is called the
deterrence factor. Let ε : N → [0, 1] be a function, the execution in the ideal
world is defined as follows.

Inputs: Each party obtains an input; the ith party’s input is denoted by xi.
We assume that all inputs are of the same length. The adversary receives an
auxiliary input z.

Send inputs to trusted party: Any honest party Pj sends its received
input xj to the trusted party. The corrupted parties, controlled by S, may either
send their received input, or send some other input of the same length to the
trusted party. This decision is made by S and may depend on the values xi for
i ∈ I and auxiliary input z. Denote the vector of inputs sent to the trusted party
by w̄.

Abort options: If a corrupted party sends wi = aborti to the trusted party
as its input, then the trusted party sends aborti to all of the honest parties and
halts. If a corrupted party sends wi = corruptedi to the trusted party as its input,
then the trusted party sends corruptedi to all of the honest parties and halts.
If multiple parties send aborti (resp., corruptedi), then the trusted party relates

32

only to one of them (say, the one with the smallest i). If both corruptedi and
abortj messages are sent, then the trusted party ignores the corruptedi message.

Attempted cheat option: If a corrupted party sends wi = cheati to the
trusted party as its input , then the trusted party works as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and
all of the honest parties.

2. With probability 1− ε, the trusted party sends undetected to the adversary
along with the honest parties’ inputs {xj}j /∈I . Following this, the adversary
sends the trusted party output values {yj}j /∈I of its choice for the honest
parties. Then, for every j /∈ I, the trusted party sends yj to Pj .

The ideal execution then ends at this point. If no wi equals aborti, corruptedi or
cheati, the ideal execution continues below.

Trusted party answers adversary: The trusted party computes
(y1, . . . , yn) = f(w̄) and sends yi to S for all i ∈ I.

Trusted party answers honest parties: After receiving its outputs, the
adversary sends either aborti for some i ∈ I, or continue to the trusted party.
If the trusted party receives continue then it sends yj to all honest parties Pj
(j /∈ I). Otherwise, if it receives aborti for some i ∈ I, it sends aborti to all
honest parties.

Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties outputs nothing. The adversary S outputs
any arbitrary (probabilistic polynomial-time computable) function of the initial
inputs {xi}i∈I , the auxiliary input z, and the messages obtained from the trusted
party.

We denote by IDEALCεf,S(z),I(x̄, 1κ) the output of the honest parties and the
adversary in the execution of the ideal model as defined above, where x̄ is the
input vector and the adversary S runs on auxiliary input z.

Definition 2 (Covert security with ε-deterrent). Let f,Π, and ε be as
above. Protocol Π is said to securely compute f in the presence of covert adver-
saries with ε-deterrent if for every non-uniform probabilistic polynomial-time ad-
versary A for the real model, there exists a non-uniform probabilistic polynomial-
time adversary S for the ideal model such that for every I ⊆ [n], every balanced
vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input z ∈ {0, 1}∗:

{IDEALCεf,S(z),I(x̄, 1
κ)}κ∈N

c≡ {REALΠ,A(z),I(x̄, 1
κ)}κ∈N

We stated the original definition of covert security from [AL07]. For the
input-independent settings, where parties have no secret input, the definition
needs to be slightly adapted. Furthermore, the original definition requires that
the honest parties agree on the aborting party if any corrupted party sends aborti.
This notion of identifiable abort can be considered as an independent research
area. We refer the reader to [FHKS21] for more details on the adaptations of the
covert security definitions.

In order to prevent detecting parties that behave honest except that they
might abort as corrupted, the definition of non-halting detection accurate was

33

introduced in [AL07]. The definition uses the notion of a fail-stop party which
acts semi-honestly, except that it may halt early.

Definition 3. A protocol π is non-halting detection accurate if for every honest
party Pj and every honest or fail-stop party Pk the probability that Pj outputs
corruptedk is negligible.

B Publicly Verifiable Covert Security

For the sake of completeness, we state the definition of publicly verifiable covert
security introduced by Asharov and Orlandi [AO12].

While the original notion in [AO12] was presented for two parties, [FHKS21]
and [SSS21] extended their definition to the multi-party case. We present the
definition almost verbatim from [FHKS21].

In addition to the covert secure protocol π computing some function f , two
algorithms Blame and Judge are defined. Blame takes as input the view of an
honest party Pi after Pi outputs corruptedj in the protocol execution for j ∈ I
and returns a certificate cert, i.e., cert := Blame(viewi). The Judge-algorithm
takes as input a certificate cert and outputs the identity idj if the certificate is
valid that states that party Pj behaved maliciously; otherwise, it returns none
to indicate that the certificate was invalid.

Moreover, the protocol π is slightly adapted such that an honest party Pi
computes cert = Blame(viewi) and broadcasts it after cheating has been detected.
The modified protocol is denoted by π′.

Definition 4 (Covert security with ε-deterrent and public verifiabil-
ity). Let f, π′,Blame, and Judge be as above. The triple (π′,Blame, Judge) se-
curely computes f in the presence of covert adversaries with ε-deterrent and
public verifiability if the following conditions hold:

1. (Simulatability) The protocol π′ securely computes f in the presence of
covert adversaries with ε-deterrent according to the strong explicit cheat for-
mulation (see Definition 2) and non-halting detection accurate (see Defini-
tion 3).

2. (Accountability) For every PPT adversary A corrupting parties Pi for i ∈
I ⊂ [n], there exists a negligible function µ(·) such that for all (x̄, z) ∈
({0, 1}∗)n+1 the following holds:
If OUTPUTj(REALπ′,A(z),I(x̄, 1κ)) = corruptedi for j ∈ [n] \ I and i ∈ I
then:

Pr[Judge(cert) = idi] > 1− µ(n),

where cert is the output certificate of the honest party Pj in the execution.
3. (Defamation Freeness) For every PPT adversary A corrupting parties

Pi for i ∈ I ⊂ [n], there exists a negligible function µ(·) such that for all
(x̄, z) ∈ ({0, 1}∗)n+1 and all j ∈ [n] \ I:

Pr[Cert∗ ← A; Judge(cert∗) = idj] < µ(n).

34

C Details about PVC Features

In this section, we provide details about the PVC features described in Section 4.

Cut-and-choose. Although not required per definition of PVC, a fundamental
technique used by all existing PVC protocols is the cut-and-choose approach
that leverages a semi-honest protocol and which comes in two variants. On the
one hand, in case of semi-honest protocols where parties do not provide secret
inputs (e.g., to set up correlated randomness in preprocessing protocols), all
parties execute t instances of the semi-honest protocol. Afterwards, the views
(i.e., input and randomness) of all parties are revealed in a subset O of the
protocol instances, where t > |O| ≥ s. This step, which we call opening a protocol
instance, allows all parties to emulate the execution of the opened instances and
compare the computed messages with the messages that have been exchanged
during the real execution. Since the behavior of all parties in at least s instances
can be checked, the deterrence factor of the resulting PVC protocol is ε = s

t . The
output of one unopened instance is then used as output of the PVC protocol.

On the other hand, if parties have secret inputs to a semi-honest protocol,
input privacy is guaranteed by splitting each input into several shares. More
precisely, let n parties, where each party Pi has a secret input xi jointly compute
a semi-honest protocol. Instead of executing t instances of this protocol, just a
single instance with t · n parties is executed. Each real party Pi emulates t
virtual parties and secret shares its input xi to these virtual parties. The protocol
executed between the virtual parties first reconstructs the private inputs xi and
then computes the desired function f on the reconstructed inputs. In this setting,
only a subset O′ of each real party’s virtual parties is opened. Since the subset
O′ also satisfies t > |O′| ≥ s, the resulting deterrence factor in this setting equals
ε = s

t as well. Input privacy against passive attacks is guaranteed by ensuring
that at least one virtual party per real party is not opened.

While the first setting, where parties do not have private input, is called
input-independent and is used for preprocessing in many state-of-the-art actively
secure protocols [DPSZ12, DKL+13, YWZ20], we call protocols with private
inputs input-dependent.

Techniques to derive the initial states. The feature of deriving the initial state
is explain in Section 4.3. Existing PVC protocol realize this features in one of
two ways. On the one hand, parties create signed commitments on their initial
states and provide openings after the subset of opened instances are determined.
In order to prevent aborting if cheating will be detected, [FHKS21] and [SSS21]
utilizes time-lock puzzles that are jointly generated before the subset is revealed
to the parties. Even if a party aborts after learning the opened instances, she
cannot prevent the other parties from learning the openings on these instances.
[FHKS21] adds a verifiability property to the time-lock puzzle that enables par-
ties to generate a proof along with the solution of a puzzle. This proof is utilized
to enable efficient verification of the puzzle solution. In case a party puts in-
correct opening values into the time-lock puzzles, other parties can show this

35

inconsistency to a third party. On the other hand, there exists protocols that
use oblivious transfer (OT) for this purpose. Introduced by [AO12] and used
by [ZDH19, HKK+19, DOS20] in the two-party setting. [DOS20] additionally
sketches a multi-party version of a PVC protocol based on OT. The main idea
of using a s-out-of-t OT is to reveal the initial state of s instances without re-
vealing the chosen subset to the sender. By letting the sender sign the transcript
of the OT, the receiver can reveal his own randomness used during the OT and
provide this data as evidence to a third party. The case of inconsistent values as
in the first approach cannot happen since the value is directly taken from the
output of the OT.

D Building Block Security

In this section, we show security of the building blocks presented in Section 5
and show that incorporating the building blocks into the PVC protocol does not
affect the protocol’s security.

Internal state commitments. In the described context it is sufficient to create
commitments by hashing the internal states. Intuitively, the collision resistance
of the hash function ensures that the state hash is binding and the random seeds
that are part of the intermediate states ensure that there is sufficient entropy
for the hash to be hiding. As the state commitments do not leak information
(to computationally bounded adversaries) about the internal states, this modifi-
cation does neither harm the security of the semi-honest protocol instances nor
the security of the PVC protocol. The benefit of this construction is that the
commitments do not need to be opened explicitly. Instead, it is sufficient that
the validator of the commitments can emulate the protocol execution and com-
pare the resulting intermediate internal states with the received commitments
to verify correctness of the commitments. Due to the signatures on the state
tree, the validator can prove to a third party that another party has been in a
particular state by providing the signature and a Merkle tree proof.

The internal state commitments are not a modification of the PVC protocol
but to the underlying semi-honest protocol instances. Hence, it cannot affect the
security of the PVC protocol. We show that it does not affect the security of the
underlying semi-honest protocol, as well. Concretely, the simulator that is used
to prove security of the underlying semi-honest protocol instance would simply
forge an arbitrary random state and would provide a hash of this state to the
adversary. As the real state incorporates a pseudorandom seed and the forged
state is random, the hash of those two are computationally indistinguishable (if
the hash function is modelled as a random oracle). This fact allows to proof
indistinguishability between two hybrid experiments, one in which the simulator
uses forged states and one in which the simulator uses the real state to generate
the state hashes. Note that the PVC simulator uses the semi-honest simulator
only in the protocol instances that are not opened preventing the PVC simulation
to be distinguished from a real world execution based on the opened states.

36

Signature encoding. The specific signature encoding does not affect security of
the PVC protocol because the modification prepends data tuples with public
information before being signed – the indices are public and known to every
party. Hence, the simulator utilized when proving simulatability of the PVC
protocol can apply the encoding itself without having to extract any additional
knowledge.

Bisection of trees. We briefly provide an intuition for the correctness of the
Bisection protocol, i.e., why the Bisection protocol ΠBS indeed outputs the
index of the first leaf at which the two trees mTreeb and mTreem differ. To this
end, we make two observations. First, note that the protocol is only executed in
case the roots of the trees differ, i.e., MRoot(mTreeb) 6= MRoot(mTreem). Second,
the values of a node only differ in case the values of at least one child node differ.
Based on these observations, in each round, the value of the left child node is
request. In case the parties provide different values, the step is repeated for the
subtree that has the left child as root. In case the parties provide the same
value, this node and the whole subtree including all the leaves must be identical.
Furthermore, based on the observation, we know that the values of the right
child node must differ. The process is repeated until the lowest layer, i.e., the
leaves, are reached. Since always the values of the left child node are checked,
this process guarantees that the output is the index of the first leaf at which the
two trees differ. It remains to mention that the parties have to provide Merkle
proofs under the tree mTreej for j ∈ {b,m} along with the node value in each
round. This ensures that the parties always provide the correct values from their
trees and no maliciously chosen values.

E Proof of Theorem 1

Here, we present the security proof of Therorem 1 presented in Section 6.1. The
theorem states the security of our transformation from PVC protocols of the first
class (i.e., input-independent protocols with public transcript) to FBC protocols.

Proof. Since πpp is a PVC protocol, it already satisfies the simulatability prop-
erty. In case one starts with a PVC protocol that provides the required features
as stated above but has not already the building blocks from Section 5.1 and 5.2
built in, these two building blocks can easily be incorporated (cf. Sections 5.1
and 5.2).

Financial accountability. Note that the punishment protocol Punishpp in this con-
struction is non-interactive. Thus, parties submit proofs to J pp who punishes a
malicious party if the proof is valid and the blamed party has not already been
punished. Since the adversary cannot prevent the punishment of a malicious
party by trying to punish either an honest party or a malicious party, it follows
that we only have to show correctness of the punishment, i.e., that J pp inter-
prets the submitted certificate of honest parties correctly except with negligible
probability.

37

Upon detecting cheating and based on the prerequisites stated in Eq. (1a)-
(1e), the views of the honest parties either contain inconsistent data for the
initial state (initDatacore) of some corrupted party or the honest parties have
received an invalid message (i.e., one with a wrong state hash, a wrong message
hash, or a wrong message).

First, note that all signatures originating from the blamed party provided by
the honest party to J pp are valid according to the view definitions in Eq. (1a)-
(1e). Further, the Merkle Tree proofs are created by the honest party correctly
and hence are accepted by J pp. It follows that J pp does not discard any request
of honest party due to invalid inputs. In all case where the honest party detects
misbehavior during the blame algorithm Blamepp (i.e., inconsistent initial state
data, wrong state computation, wrong message computations), the smart con-
tract repeats the computation the same way the honest party has executed it
locally. Hence, the judge detects cheating the same way the honest party did.
This ensures that there is one malicious party Pm losing its security deposit of
d coins in case the honest parties detect cheating.

Financial defamation freeness. We first provide an intuition about the proof for
financial defamation freeness and then the formal security proof.

Intuitively, the financial defamation freeness property states that the ad-
versary cannot trigger the judge to punish an honest party. Formally, we show
financial defamation freeness via a sequence of games. We start with the security
game as defined in Section 3 using the punishment protocol Punishpp and the
judge J pp. Assume the adversary A blames honest party Ph in the punishment
protocol. A needs to provide a certificate cert to the judge J pp as defined by
Blamepp. Next, we change step-by-step the information used by J pp to check
for malicious behavior. Concretely, we replace in each game a value provided by
the adversary to J pp with a value that is given by the challenger. We replace
the stated values after being validated but before being used for behavior ver-
ification. Each of the values in cert is validated via a cryptographic primitive,
i.e., a signature scheme, a Merkle tree or a collision-resistant hash function. This
way, we can show that the exchanged values in two adjacent games are identical
except with negligible probability via a reduction to the utilized cryptographic
primitive. It follows that the success probabilities of adjacent games are negligi-
ble close to each other. We end up with a game where the judge J pp uses only
values provided by the challenger which emulates the honest parties. Since in
the final game, J pp uses only values from an honest party for verification, it is
easy to analyze that the success probability in the final game is zero. Due to the
fact that we use a constant number of games, we are able to conclude that the
success probability in the original security game is negligible.

For the following formal security proof recall, that A needs to provide a
certificate cert to the judge J pp as defined by Blamepp that includes the following:

38

(
〈
initDatacore(`,h)

〉
h
, initDataaux(`,h)),〈

rootstate(`)

〉
h

and
〈
rootmsg

(`)

〉
h
,

statein := (statek−1, σin),

Min := {(msgj , σj)}j∈[n]\{h},

stateout := (hashout, σout) and

msgout := (hash, σ).

Additionally, J pp makes use of the initial internal state derived from initData,
i.e.,

state0 = deriveInit(initDatacore(`,h), initData
aux
(`,h)).

Without loss of generality, assume the adversary blames honest party Ph.
We replace in a sequence of games value provided by the adversary to J pp with
values that are given by the challenger. We show that the success probabilities of
adjacent games are negligible close to each other via reductions to the underlying
primitives, i.e., hash functions, Merkle trees and signatures. We end up with a
game where the judge J pp uses only values provided by the challenger which
emulates the honest parties. We state the games in the following.

– Game0: The original game in which the challenger executes the honest par-
ties and J pp as defined by the protocol.

– Game1: In this game, if Verify(
〈
initDatacore(`,h)

〉
h
) = true in step 2, we replace

initDatacore(`,h) provided by the adversary by ˜initData
core

(`,h) as signed by Ph during
the protocol execution. As the only correctly encoded initial state data for

the disputed instance that is signed by party Ph is ˜initData
core

(`,h), it holds that

initDatacore(`,h) either equals ˜initData
core

(`,h) or the adversary can forge signatures.
Hence, it can be proven that the success probability in Game1 and Game0 is
negligible close via a reduction to the unforgeability property of the signature
scheme.

– Similar to Game1, we replace further signed data provided by the adversary
by the correct data taken from the honest parties’ views. Negligible close
success probability is shown analogous to Game1.

• Game2: If Verify(
〈
rootstate(`)

〉
h
) = true in step 3, we replace rootstate(`) pro-

vided by the adversary by r̃oot
state

(`) as signed by Ph during the protocol
execution.

• Game3: If Verify(
〈
rootmsg

(`)

〉
h
) = true in step 3, we replace rootmsg

(`) pro-

vided by the adversary by m̃sg
state
(`) as signed by Ph during the protocol

execution.

39

– Game4: In this game, if deriveInit(initDatacore(`,h), initData
aux
(`,h)) 6= ⊥, we replace

state0 calculated as deriveInit(initDatacore(`,h), initData
aux
(`,h)) by s̃tate

h

0 extracted
from Ph. By definition (cf. Section 4.3), the adversary cannot find any x such
that deriveInit(initDatacore, x) /∈ {⊥, stateh0} expect with negligible probabil-
ity. Hence, the success probability in Game3 and Game4 is negligible close.

– Game5: In this game, if MVerify(hash, getIndex(k, h, i), rootmsg
(`) , σ) = true in

step 5, we replace hash provided by the adversary by h̃ash, the hash of the
message actually sent by Ph to Pi in round k of instance `. It holds that
either msg = m̃sg or the adversary can break the binding property of the
Merkle tree. Hence, it can be proven that the success probability in Game4

and Game5 is negligible close via reduction to the security guarantees of the
Merkle tree.

– Game6: In this game, if MVerify(hashout, getIndex(k, h), rootstate, σout) = true
in step 1 of function wrongState, we replace hashout provided by the adver-

sary by h̃ash, the intermediate state hash actually sent by Ph in round k of
instance `. Negligible close success probability is shown analogous to Game5

– Game7, Game8 and Game9: We replace further messages provided by the
adversary that are verified via a Merkle tree proof by messages taken from the
view of the honest parties. In particular, if
MVerify(H(msgj), getIndex(k, j, h), σj , rootmsg) = true in step 3b of shared

functions wrongState and wrongMsg, we replace msgj by m̃sg
j
, the message

actually sent by Pj to Ph in round k of instance `. Negligible close success
probabiliy is shown in three steps.

• In Game7, we directly let the adversary win if H(msgj) 6= H(m̃sg
j
). Note

that this action is only performed if
MVerify(H(msgj), getIndex(k, j, h), σj , rootmsg) = true. Hence, it holds

that H(msgj) = H(m̃sg
j
) or the adversary can break the binding prop-

erty of the Merkle tree. Therefore, it can be proven that the success
probability in Game6 and Game7 is negligible close via reduction to the
security guarantees of the Merkle tree.

• In Game8, if H(msgj) = H(m̃sg
j
), we replace msgj by m̃sg

j
. It holds

that either msgj = m̃sg
j

or the adversary has found a collision to the
hash function. Hence, it can be proven that the success probability in
Game7 and Game8 is negligible close via a reduction to the collision
resistance of the hash function.

• In Game9, we remove the modification from Game7. Negligible close
success probability is shown analogously.

– Game10, Game11 and Game12: We replace the state for round k−1 provided
by the adversary that is verified via a Merkle tree proof by the state taken
from the view of the honest party. In particular, if
MVerify(H(statein), getIndex(k, j), σin, root

state) = true in step 3a of shared

functions wrongState and wrongMsg, we replace statej by s̃tate
j
, the state

of Ph in round k of instance `. Negligible close success probability is shown
analogous to Game7, Game8 and Game9.

40

Finally, Game12 is a security game in which J pp does not use any inputs
of the adversary for behavior verification. Instead, all inputs are just used to
verify validity (e.g., correct signatures or Merkle tree proofs). If any input is not
validated correctly, the request is declined and the honest party is not punished.
If the inputs are validated correctly, they are all replaced by the correct ones
from the view of the honest parties. Based on these inputs, the smart contract
checks the behavior of the honest party, i.e., that stateh0 is consistent and that the
disputed message or state has been computed by Ph correctly. For the former,

the smart contract judge uses s̃tate
h

0 extracted from Ph which cannot be bad.
As for the latter, J pp takes the values from the view of the blamed and honest
party and exactly repeats the honest party’s computation, the disputed message
respectively state needs to be correct as well. Hence, the judge never punishes
an honest party in Game12 and hence punishes an honest party in Game0 with
negligible probability, which proves financial defamation freeness.

F Class 2: Input-Dependent with Public Transcript

In contrast to the first class, the second class contains input-dependent PVC
protocols where all parties possess a common public transcript of messages (cf.
Section 4.4). To guarantee input privacy of parties, the cut-and-choose approach
for input-dependent protocols is applied (cf. Section 4.1 and supplementary ma-
terials C). This means that only a strict subset of each parties’ virtual parties
is opened. The public transcript of messages means, parties exchange messages
instead of message hashes. Input-dependent PVC protocols of this class can
be obtained from semi-honest protocols using the input-dependent compilers of
Damg̊ard et al.[DOS20] and Faust et al. [FHKS21].

The transformation for protocols of the second class is only slightly different
to the transformation of the first class. Intuitively, there are some virtual parties
in this class that are not opened, and hence cannot be recomputed during pro-
tocol emulation. However, since all parties know about all messages exchanged
during the protocol execution, messages originated from unopened virtual par-
ties are just considered correct. This allows the parties to perform the protocol
emulation and still detect malicious behavior from opened parties.

In the described PVC protocols, the n′ real parties execute a single instance
of a n′ · t-party protocol in which each real party emulates t virtual parties
each holding a share of the real party’s input (cf. Section 4.1). The encoding of
messages and state hashes (cf. Section 5.2) is still applied as before, where the
single instance has index 1. Enabling multiple instances based on the techniques
of the first class is a trivial extension. To keep the description simple, we interpret
all n virtual parties as real parties in the following 6.

In order to apply our construction to a PVC protocol of the second class,
πps, we require for πps that the actions of each party Pi per protocol instance

6 It is a straight-forward improvement for practical implementations to reduce the
communication overhead by removing redundant data that is sent to several virtual
parties belonging to the same real party.

41

are deterministically determined by a random seed (cf. Section 4.2), all parties
receive signed information (e.g., a commitment and decommitment value) to
derive initial states of the other parties in some of the protocol instances (cf.
Section 4.3), and parties commit to their intermediate internal states during the
instance executions in a publicly verifiable way (cf. Section 5.1).

In the follwing, we denote the set of opened parties as O. Formally, when-

ever some party Ph in round k transitions to a state state
(h)
(k) with the outgoing

messages {msg
(h,i)
(k) }i∈[n]\{h} , then it actually sends the following to Pi:

(msg
(h,i)
(k) , {msg

(h,j)
(k) }j∈[n]\{h,i}, hash

(h)
(k) := H(state

(h)
(k))

Hence, he view of any honest party Ph includes:

{(
〈
initDatacore(i)

〉
i
, initDataaux(i))}i∈O

sTree := MTree({hash(i)
(k)}k∈[R],i∈[n])

{
〈
MRoot(sTree)

〉
i
}i∈[n]

trans := {msg
(i,j)
(k) }k∈[R],i∈[n],j∈[n]\{i}

mTree := MTree({hash(h,j)
(k) := H(msg

(i,j))
(k) }k∈[R],i∈[n],j∈[n]\{i})

{
〈
MRoot(mTree)

〉
i
}i∈[n]

(3)

where (initDatacore(i) , initDataaux(i)) denotes information all parties hold that can
be used to derive the initial state of party Pi (cf. Section 4.3).

The blame algorithm. At the end of protocol πps, all parties execute the blame
algorithm Blameps to generate a certificate cert. The resulting certificate is broad-
casted and the honest party finishes the execution of πps by outputting cert. The
certificate is generated as follows:

Algorithm Blameps

Determine first cheating

1. Ph runs state
(i)

(0) = deriveInit(initDatacore(i) , initData
aux
(i)), i) for each i ∈ O. Let B be

the set of all tuples (0,m, 0) such that state
(m)

(0) = bad. If B 6= ∅, goto step 4.
2. Otherwise Ph emulates the protocol execution on input the initial states from all

opened parties (Pi : i ∈ O) and all messages from the unchecked parties (Pj : j ∈
[n] \ O) to obtain the expected messages and the expected intermediate states

of all opened parties, i.e., ({m̃sg
(i,j)

(k) }k∈[R],i∈Oi,j∈[n]\{i}, {state
(i)

(k)}k∈[R],i∈Oi
) :=

emulatepsπ ({state(i)(0)}i∈O, {msg
(i,j)

(k) }i∈[n]\Oi,j∈[n]\{i}).

3. Let B be the set of all tuples (k,m, i) such that m̃sg
(m,j)

(k) 6= msg
(m,j)

(k) or

H(state
(m)

(k)) 6= hash
(m)

(k)) – where msg
(m,j)

(k) and hash
(m)

(k) are extracted from trans
or sTree respectively. In case of an invalid state, set i = 0.

4. If B = ∅ Ph outputs cert := ⊥. Otherwise, Ph picks the tuple (k,m, i) from B
with the smallest k, m, i in this sequence, sets k′ := k− 1 and defines variables

42

as follows – variables that are not explicitly defined are set to ⊥.

(Always): ids := (1, k,m, i)

initData := (
〈
initDatacore(m)

〉
m
, initDataaux(m))

rootstate :=
〈
MRoot(sTree)

〉
m

rootmsg :=
〈
MRoot(mTree)

〉
m

(If k > 0): stateout := (hash
(m)

(k) ,MProof(hash
(m)

(k) , sTree))

msgout := (hash
(m,i)

(k) ,MProof(hash
(m,i)

(k) ,mTree))

(If k > 1): statein := (state
(m)

(k′),MProof(H(state
(m)

(k′)), sTree))

Min := {(msg
(j,m)

(k′) ,MProof(H(msg
(j,m)

(k′)),mTree))}j∈[n]

5. Output cert := (ids, initData, rootstate, rootmsg, statein,Min, stateout,msgout).

The punishment protocol. The punishment algorithm Punishps and the judge
J ps are equal to the one of class 1. Variable t describing the number of instances
equals 1.

Security. As Punishps is the same protocol than in class 1, Theorem 3 can be
proven to be correct the same way as Theorem 1.

Theorem 3. Let (πps, ·, ·) be an n-party publicly verifiable covert protocol com-
puting function f with deterrence factor ε satisfying the view requirements stated
in Eq. (3). Further, let the signature scheme (Generate,Sign,Verify) be existen-
tially unforgeable under chosen-message attacks, the Merkle tree satisfies the
binding property and the hash function H be collision resistant. Then the proto-
col πps together with algorithm Blameps, protocol Punishps and judge J ps satisfies
financially backed covert security with deterrence factor ε according to Defini-
tion 1.

G Single Gate Validation

We presented three constructions of FBC protocols based on PVC protocols with
different features. While we incorporated the major techniques required for these
transformations in our protocol specifications, we excluded important efficiency
improvements for the sake of presentation.

In the worst case, the specified protocols require the judge to receive an
internal state of a party, a set of incoming messages and to compute a full pro-
tocol step, i.e. the computeRound function. Depending on the complexity of the
computed step, the amount of data received and the amount of computation ex-
ecuted by the judge can still be massive. To this end, we present an improvement
that enables the judge to eventually (i) compute just a single instruction of the
computeRound function (e.g., a simple addition) and (ii) receive only the data
required for this particular instruction. Although the technique is applicable to

43

any kind of program description, we describe it based on an arithmetic circuit.
We make use of the bi-section technique (cf. Section 5.3).

First, parties divide both states and messages into individual data units – in
our case integers. Instead of hashing states or messages, parties create Merkle
trees over the state resp. message chunks and use the roots of these trees as they
used the hashes of states resp. messages before. In the following we will refer
with the term message to both state and messages. We call the trees generated
over the message chunks message trees.

Second, we interpret the program computing the computeRound function as
an arithmetic circuit. In order to define these circuits, parties derive a program
description from the definition of the executed semi-honest protocol, which de-
fines for each round and each party the gates of the corresponding computeRound
function. These gates state for each wire of the circuit how the wire is computed,
e.g., wire z is the addition of wire x and wire y. Further, for each input and out-
put wire, the program description specifies two indices i and j stating that the
particular wire needs to equal the i-th message chunk of the message received by
Pj respectively the message that is to be send to Pj . The message that a party
sends to itself is its intermediate state. Prior to executing the FBC protocol,
parties aggregate the protocol description into a Merkle tree and register the
root of this tree at the smart contract. We call the generated tree program tree.

Once there is a dispute about the result of a computeRound function, par-
ties aggregate the values of all wires of their computation of the computeRound
function into another Merkle tree, the computation tree. The wires are ordered
such that for each gate, the gate’s inputs have smaller indices than the gate’s
output. Next, the disputing parties execute a bi-section search over the compu-
tation tree to determine the first wire they disagree on while directly agreeing
on all previous wires. Next, the blamer can send the gate corresponding to the
disputed wire as well as the inputs to the gate to the smart contract. The gate is
validated via a Merkle tree proof in the program tree. Depending on whether the
wire is an input wire or an intermediate wire, it is validated differently. In case
of input wires, the gate specifies the message chunk which should be written on
the disputed wire. Note that when disputing a computeRound function, parties
have already agreed on all prior messages. This means that the blamer can first
submit a message root together with a Merkle proof showing that the message is
at the correct position of the agreed message history and then submit a message
chunk together with a Merkle proof showing that the chunk is at the position
specified by the input-gate. In case of intermediate wires, the blamer submits
the values of the ingoing wires together with Merkle proofs showing that these
values are at the correct position in the list of agreed wire values. In case there
is no dispute in the calculation tree, the blamer can prove that one of the out-
going wires does not correspond to a sent message, the same way parties prove
correctness of input wires.

Finally, we want to note that the same technique can be applied to the
calculation of the deriveInit function.

44

H Security Games for Financially Backed Covert Security

In this section, we present graphical representations of the security games for
financial accountability ExpFA and financial defamation freeness ExpFDF. The
games are described in detail in Section 3.3. Figure 1 contains an illustration of
the security game ExpFA and Figure 2 illustrates the security game ExpFDF.

Challenger

Input: Certificate of Ph for h /∈ I;
each Ph outputted corruptedm.

Adversary

Input:
View of Pm for m ∈ I

{b(prePunish)i }i∈[n]

← L.getBalances({Pi}i∈[n])

Punish

Ph

J

L

Pm

{b(post)i }i∈[n]

← L.getBalances({Pi}i∈[n])

If ∀m ∈ I : b(post)m = b(prePunish)m + d,
output 1.

Else,
output 0.

Fig. 1: Security game for financial accountability

I Proof of Theorem 2

Here, we present the security proof of Therorem 2 presented in Section 7.1.

Proof. In order to prove security, we need to show simulatability, financial ac-
countability and financial defamation freeness.

45

Challenger

Input: Certificate of Ph for h /∈ I

Adversary

Input:
View of Pm for m ∈ I

{b(prePunish)i }i∈[n]

← L.getBalances({Pi}i∈[n])

Punish

Ph

J

L

Pm

{b(post)i }i∈[n]

← L.getBalances({Pi}i∈[n])

If ∃h ∈ [n] \ I : b
(post)
h < b

(prePunish)
h + d,

output 1.
Else,

output 0.

Fig. 2: Security game for financial defamation freeness

46

Simulatability. Again, simulatability follows from the simulatability of the PVC
protocol. Removing the public transcript does not affect simulatability as the
transcript is only used by Blamepvc and Judgepvc. However, the extension of the
blame procedure requires an extension of the simulation proof. Since the covert
functionality ensures that an honest party never outputs corruptedi for i denoting
another honest party, i.e., i ∈ [n]\I, π3 must ensure the same. In our extension,
a partial certificate forged by a malicious party could cause an honest party to
interpret another honest party to be corrupted. Intuitively, this is not possible
because the signed message included in the partial certificate is either the one
actually sent by the honest party that cannot be interpreted to be the first wrong
message or the adversary has forged a signature. Formally, the ideal world sim-
ulator would throw an event bad if the adversary sends a partial certificate cert′

that contains a valid signature on a message that has not been sent by the ac-
cused honest party. Hence, only partial certificates that can be computed based
on the views of the honest parties and partial certificates that are generated
by the adversary accusing a corrupted party are considered to derive the index
m of the corrupted party. In an hybrid experiment along the transition to the
real world execution, the simulator would derive the index m of the corrupted
party as in the real world, hence, considering all partial certificate of the ad-
versary containing valid signatures. Computational indistinguishability between
the two experiments is guaranteed if the event bad happens only with negligible
probability. This can be shown via a reduction to the security guarantees of the
signature scheme.

Financial accountability. We split the security proofs conditioned on the occur-
rence of certain events, e.g., Pm accepting the message history submitted by Pb
in step 4. For each resulting case, we individually prove that the adversary has a
negligible win chance in the financial accountability game defined in Section 3.
Further, we consider only adversaries that always send valid messages, those that
are not discarded, to the judge. As discarded messages do not have an influence
on the execution, every adversary can be translated into one that sends only
valid messages.

In phase one of the punishment protocol, the judge J sp determines the earli-
est accusation, i.e., the first round k of a particular instance in which any party
Pb claims that another party Pm has misbehaved. Note that if any party submits
an accusation, the judge will eventually punish Pb or Pm. This is due to the fact
that Punishsp terminates with a finite number of steps and punishes either Pb
or Pm when terminating. Each step can only last a fixed amount of time – if a
party does not respond in time the judge terminates with punishing that party.

We first split the analysis conditioned on Pb and Pm being malicious or
honest. It follows from simulatability that no honest party blames another hon-
est party, i.e., that Pb and Pm cannot both be honest. If both Pm and Pb are
malicious, either of them will be punished as explained above. It follows from
financial defamation freeness as shown below that if Pb is malicious and Pm is
honest then Pm will not be punished except with negligible probability. Hence,

47

Pb will be punished except with negligible probability. It remains to analyze the
case where Pb is honest and Pm is malicious.

We continue with considering the two events that k < 2 in step 3 and that
k ≥ 2 but Pm accepts the message history, i.e. r̃oot

msg
= ⊥ in step 4b. For both

cases, we can show similar to the proof in Scenario 1, that Pm is always punished.
This is due to the fact, that the inputs of the honest Pb are always accepted
(validated successfully) and the judge repeats the validation executed by the
honest party to detect the disputed misbehavior, hence, detecting misbehavior
of Pm itself.

Next, we continue with the event that k ≥ 2 but Pm declines the message
history. The first bisection protocol determines the disputed round k2 and en-
sures that the message tree of round k′2 := k2 − 1 (if any) is the one emulated
by Pb and used by Pb for behavior verification. The second bisection protocol
determines the concrete message that is disputed. Since both parties agreed on
the messages up until this message and the honest Pb correctly compute the
next message, the message of Pm must be incorrect. Again, we can show that
inputs of the honest Pb are always accepted (validated correctly) and that the
judge repeats the validation executed by the honest party to detect the disputed
misbehavior, hence, detecting misbehavior of Pm itself.

As the analyzed cases cover all possible cases and the adversary cannot win
the financial accountability game in any of the cases with probability higher
than negligible, the adversary wins the financial accountability game with at
most negligible probability.

Financial defamation freeness. Symmetrically to the financial accountability
proof, we split the security proof conditioned on the occurrence of certain events
and consider only adversaries that always sent valid messages, i.e., messages that
are not discarded.

Again, we split the game according to the event of Pb and Pm being honest
or malicious. It follows from simulatability that no honest party blames another
honest party, i.e., that Pb and Pm cannot both be honest. If both Pb and Pm are
malicious, the judge does not punish any honest party. As shown in the financial
accountability game, if Pb is honest and Pm is malicious, Pm is punished with
probability negligible close to one which ensures that Pb is not punished.

It remains to show the case of Pb being malicious and Pm being honest.
Again, we split this case in further sub-cases. First, we consider the two events
that k < 2 in step 3 and that k ≥ 2 but Pm accepts the message history, i.e.
r̃oot

msg
= ⊥ in step 4b. In this case, the punish protocol is analog to the one of

Scenario 1: The blamer submits data that is validated via signatures and Merkle
tree proofs and used to check the behavior of the blamed honest party. Hence,
security can be proven similar to Scenario 1 (cf. Section 6.1) via a sequence of
games gradually replacing the data used for behavior verification submitted by
the adversary by the data used by the honest party in the real protocol instance
to determine her own behavior. Negligible close success probabilities in adjacent
games is shown via reductions to the underlying primitives. For instance, if
Verify(

〈
initDatacore(`,m)

〉
m

) = true, then initDatacore(`,m) provided by the adversary is

48

either the same value as the one known and signed by Pm or the adversary can
forge signatures. In the final game, the judge repeats exactly the computation
executed by Pm in the real protocol instance to determine her own behavior.
Hence, it is easy to see in the final game that Pm is not punished. It follows that
in the original game, Pm is not punished expect with negligible probability. In
case k ≥ 2 but Pm accepts the message history, the messages provided by Pb are
exactly the ones received by Pm during the protocol execution. Otherwise, Pm
would have received in incorrect message and would have submitted an earlier
accusation.

We continue with the event that k ≥ 2 but Pm declines the message history.
It follows from the correctness of the bisection protocol that the message tree of
round k′2 := k2 − 1 (if any) correspond to the one emulated by Pm. Further, it
follows that the disputed message hash hashx received by the judge as a result
of the bisection protocol, is the one emulated by Pm. The next step, is again
symmetric to the one of Scenario 1: The blamer submits data that is validated
via signatures and Merkle tree proofs and used to check the behavior of the
disputed party Pm2

. Hence, we can again prove security via a sequence of games,
gradually replacing the data used to calculate the next message of Pm2

by the
one used by the honest Pm to emulate the next message of Pm2

. In the final
game, it is obvious that the judge does not punish Pm because the judge uses
the same data as Pm to emulate the disputed message of Pm2 which ensures that
the emulated message hash equals hashx. It follows that in the original game,
Pm is not punished expect with negligible probability.

As the analyzed cases cover all possible cases and the adversary cannot win
the financial defamation freeness game in neither of the cases with probability
higher than negligible, the adversary wins the financial defamation freeness game
with at most negligible probability.

J Shared Judge Logic

In this section, we present methods used across all of our judge specifications.
We extracted the common methods from the main body to keep the protocol de-
scription compact. For the sake of completeness, we give the formal specifications
of these methods in the following:

Judge Shared Logic

wrongState(state0, statein, stateoutMin, root
state, rootmsg, `, k,m):

1. Parse stateout to (hashout, σout). If MVerify(hashout, getIndex(k,m), σout, root
state) =

false, return false.
2. If k = 1, set state(k−1) = state0 and M(k−1) := {⊥}j∈[n]\{m}.
3. If k > 1, do:

(a) Parse statein to (statek−1, σin). If MVerify(H(statek−1), getIndex(k −
1,m), σin, root

state) = false, return false.
(b) Parse Min to {msgj , σj}j∈[n]\{m}. If

MVerify(H(msgj), getIndex(k, j,m), σj , rootmsg) = false for any j ∈ [n]\{m},
return false. Otherwise, set M(k−1) := {msgj}j∈[n]\{m}.

49

4. Calculate (state′, ·) := computeRoundmk (statek−1,M(k−1))). If H(state′) =
hashout, return false.

5. Return true

wrongMsg(state0, statein, hashout,Min, root
state, rootmsg, `, k,m, i):

1. If k = 1, set state(k−1) = state0 and M(k−1) := {⊥}j∈[n]\{m}.
2. If k > 1, do:

(a) Parse statein to (statek−1, σin). If MVerify(H(statek−1), getIndex(k −
1,m), σin, root

state) = false, return false.
(b) Parse Min to {msgj , σj}j∈[n]\{m}. If

MVerify(H(msgj), getIndex(k, j,m), σj , rootmsg) = false for any j ∈ [n]\{m},
return false. Otherwise, set M(k−1) := {msgj}.

3. Calculate (·, {msg(m,j)}j∈[n]\{m}) := computeRoundmk (statek−1,M(k−1))). If

H(msg(m,i)) = hashout, return false.
4. Return true

getIndex(k, i, j):

1. Set x := (i− 1) · (n− 1) + j.
2. In Scenario 1 and Scenario 2 (J pp / J ps), set x := x+ (k − 1) · n · (n− 1)
3. If (j > i), x := x− 1.
4. Return x.

getIndex(k, i): Return (k − 1) · n+ i

50

