
SoK: Blockchain Light Clients

Panagiotis Chatzigiannis1, Foteini Baldimtsi1, and Konstantinos Chalkias2

1 George Mason University
{pchatzig,foteini}@gmu.edu

2 Novi Financial / Facebook Research
kostascrypto@fb.com

Abstract. Blockchain systems, as append-only ledgers, are typically
associated with linearly growing participation costs. Therefore, for a
blockchain client to interact with the system (query or submit a transac-
tion), it can either pay these costs by downloading, storing and verifying
the blockchain history, or forfeit blockchain security guarantees and place
its trust on third party intermediary servers.
With this problem becoming apparent from early works in the blockchain
space, the concept of a light client has been proposed, where a resource-
constrained client such as a browser or mobile device can participate in
the system by querying and/or submitting transactions without hold-
ing the full blockchain but while still inheriting the blockchain’s security
guarantees. A plethora of blockchain systems with different light client
frameworks and implementations have been proposed, each with differ-
ent functionalities, assumptions and efficiencies. In this work we provide
a systematization of such light client designs. We unify the space by
providing a set of definitions on their properties in terms of provided
functionality, efficiency and security, and provide future research direc-
tions based on our findings.

Keywords: blockchain, light clients, consensus, long range attacks

1 Introduction

Blockchain-based, systems such as Bitcoin and Ethereum, typically include three
types of participants: consensus nodes (also known as miners or validators), who
run a consensus protocol to reach a common agreement on the current blockchain
state, full nodes who store and communicate blockchain data, and clients which
submit queries or transactions. Full nodes are considered to have relatively suf-
ficient resources to perform their tasks, which involve communicating with each
other through a gossip protocol in a peer-to-peer fashion, storing and communi-
cating unconfirmed transactions, maintaining the entire blockchain history and
replying to queries. To perform transactions (e.g. in cryptocurrencies such as Bit-
coin and Ethereum), clients first need to verify that the underlying blockchain

2 Panagiotis Chatzigiannis did part of this work during an internship at Novi Fi-
nancial/Facebook Research. Foteini Baldimtsi and Panagiotis Chatzigiannis were
supported by NSF #1717067, NSA #204761 and a Facebook research Award.

is valid. Naively, this implies downloading and verifying all blocks, an operation
that could take hours or days, and require gigabytes of bandwidth and storage.
Therefore, the only remaining option for resource-constrained clients (such as
mobile devices or browsers) is to place their trust on full nodes which will serve
as intermediary servers, provide clients a view of the blockchain based on client
queries, and forward submitted transactions on the client’s behalf.

Nevertheless, in the early days of Bitcoin, the three roles mentioned were not
necessarily distinct. For example, the Bitcoin core software [3] served as a com-
mon frontend to solve the Proof of Work puzzle as part of the consensus protocol,
run a full node and submit queries and transactions. However, it quickly became
necessary to decouple the client functionality to ensure less powerful clients can
interact with the system while preserving as many security guarantees possible,
which was mainly done through the Simplified Payment Verification (SPV) pro-
tocol [84]. Interestingly, while SPV required much less resources compared to
a full node, it was still not lightweight enough to support resource-constrained
environments with very low computational, storage and communication capa-
bilities such as a mobile or browser-based client, while the introduction of more
complex blockchain systems such as Ethereum made this gap even wider. In ad-
dition, SPV introduced additional trust assumptions and attack vectors, as all
communication and queries are executed through a single server.

More recently, several implementations and academic works were proposed
as “light clients” or “light-client friendly”, either tailored to specific blockchain
systems, or even as entirely new systems. However, every proposal provides dif-
ferent properties, definitions and goals for a light client, either implicitly or
explicitly, while there are still many different interpretations for a “light client”
in the blockchain space, even after a decade of evolution of cryptocurrencies.
As a result, existing implementations approach the problem from a different an-
gle, and no complete solution exists that makes a mobile client possible while
maintaining all of the strong security guarantees of the underlying blockchain
system.

Our contributions. In this paper, we unify the diverse conception of light
clients in the blockchain world by providing definitions for light client properties
in terms of functionalities, efficiency and security, and provide a common list of
assumptions for such clients. Then, we provide a systematization of prominent
existing works based on our defined properties. Finally, through our systematiza-
tion, we provide a series of insights and gaps serving as exciting future research
directions, including considerations regarding long range attacks due to validator
re-configurations, and light clients for privacy preserving blockchains or as smart
contracts to allow for native interoperability between independent ledgers.

1.1 What is a Light Client?

We begin by providing an informal definition of a standard (non-light) client,
which is the generic protocol that directly interacts with the blockchain system.
This interaction includes at least one of the following functionalities:

2

– Perform queries (e.g. the balance of an account or the state of a transaction,
with a specific time or block number as optional parameters). Such queries
are typically accompanied by proofs verifiable by the client protocol (created
by other entities in the system such as consensus participants or full nodes),
in order to preserve security and prevent the client from being manipulated
by malicious actors.

– Hold secret information (e.g. account private keys) and submit transactions
to the blockchain system. This functionality is often referred to as a wallet.

Note that the terms clients and wallets are often considered equivalent and
used interchangeably in the blockchain space, with the term “wallet” typically
associated with a specific software implementation. However, based on the above
informal definition, we make an explicit distinction between these terms: In a
nutshell, a wallet is the software implementation of the client protocol that holds
secret information used to submit transactions to the blockchain. As an example,
Bitcoin Core [3] is Bitcoin’s standard client which includes both wallet and full
node functionalities, as discussed previously.

Starting again from the cryptocurrency community, a “light client” mostly
refers to the wallet software running a “more” lightweight client implementation
in its back-end compared to the standard client. This software usually interacts
with the blockchain through a fully synchronized node, which in turn submits
the transactions on the client’s behalf (e.g. by placing them on a “mempool” and
broadcasting them to other nodes and miners through a gossip protocol). The
goal of such a client is to be more compatible with resource-constrained environ-
ments such as mobile devices or browsers, where the system’s fully-fledged client
might be prohibitive to work. Also, another goal of the light client might be to
reduce the costs of the initial joining process, without requiring to download the
full blockchain history (which for a standard client is typically in the order of
gigabytes). The trade-off however for the efficiency of such clients is usually secu-
rity; for instance they might need to trust the full node they are interacting with,
they do not verify the consensus process, do not store and communicate ledger
information themselves, and therefore do not contribute to decentralization, one
of the blockchain’s main goals.

However, in some implementations (e.g. Ethereum or Polkadot), a “light
client” refers to a “lighter” version of a full node (i.e. with faster setup and syn-
chronization time and lower computational/storage requirements), which only
stores block headers but still directly interacts with the blockchain network in
a peer-to-peer fashion, and therefore does not need to introduce all of the trust
assumptions discussed above [27]. However this type of client is still not suitable
to run in very constrained environments such as mobile devices, and is still above
the bar in terms of such requirements.

Towards the “light client” goal, some systems have adopted additional cryp-
tographic primitives or techniques, for instance succinct proofs to maintain a
“compact” representation of the blockchain with fast verification [38].

Based on the above, we can envision an “ideal” light client as a client having
very low computation, storage, communication and initial setup requirements

3

(making such a client feasible even in mobile devices or browsers). However, the
light client should retain the security guarantees without introducing additional
trust assumptions. Therefore, it still needs to act as the verifier of efficient cryp-
tographic proofs, which will convince the client on the received query replies
(e.g. on an account’s balance or the state of a transaction). These proofs would
be created by entities in the blockchain in the prover role (e.g. miners or full
nodes), ideally without introducing a significant overhead. In Section 3.1, we
provide informal definitions of the above desired properties that we consider in
our work.

1.2 Light Client Implementations in Major Blockchain Systems

We now overview how a light client is perceived and implemented in prominent
blockchain systems.

Bitcoin: As discussed previously, the earliest and most well known concept of
light client is the Simplified Payment Verification (SPV) client in Bitcoin [84].
An SPV light client only verifies the chain of Proof of Work solutions through the
block headers, and requests Merkle proofs on-demand from a full node to verify
if a specific transaction is valid (e.g. for transactions that are associated with
a wallet address). This approach, while popular even by today’s wallets, is not
consistent with “decentralization”, and introduces additional security assump-
tions as well as privacy concerns. Satoshi’s whitepaper proposed “pruning” as
a method to downsize the blockchain (and therefore make it practical for light
clients) by discarding spent transaction outputs in each block. However, this
method a) requires clients to make a full synchronization even before perform-
ing pruning, and b) as of today, it has not been implemented because of security
concerns. [4,5,20,26]. We also note some early proposals to store Bitcoin’s UTXO
set in a Merkle tree for fast bootstrapping [24].

Ethereum: Being an account-based system, Ethereum has the following three
types of nodes: a) full nodes (most common), which cryptographically verify
all account states at all times, but can prune account state tries older than
1024 blocks to save space [12], b) archival nodes, which always keep the full
blockchain history without pruning, and c) light nodes which only store block
headers to reduce resource requirements. Note that pruning can potentially hurt
past transaction or account state querying (and therefore auditability) if there
are no archival nodes available to provide a query reply along with a proof
(e.g. a Merkle path). Also, Ethereum node software implementations include
client and wallet functionalities, therefore the terms clients and nodes are used
interchangeably [13].

In contrast with Bitcoin, there is no single node/client software implemen-
tation but several different open-source clients written in different programming
languages. Geth, written in Go, is the most commonly used [15], and recently in-
troduced a new “snapshot” functionality for full node synchronization in order to

4

improve read disk access speeds, by including a “flattened” version of all account
states as well. However, no Ethereum node/client is light-client friendly even in
light mode [1,10]. In practice, considering a Raspberry Pi 4 as a “light client”
platform (which is still more powerful compared to mobile devices, especially in
terms of energy resources), a geth full node with the new snapshot features can
barely run on in, as it still needs a great amount of fast read-write disk storage
(i.e at least 1TB SSD). A geth light node comes without that storage require-
ment but it still requires a slow, communication-intensive setup phase, which is
also required when the node desynchronizes (e.g. in periods of power-off, sleep
or disconnections) and is prone to database corruptions.

All Ethereum node types rely on an initial peer discovery algorithm based on
the Kademlia Distributed Hash Table (DHT) protocol to connect to other nodes.
This is in contrast with Bitcoin core software (the official standard node/client
for Bitcoin), which relies on a hardcoded DNS list feed. Lastly, Ethereum plans
to implement light clients in its Proof of Stake version (Ethereum 2.0) by intro-
ducing “sync committees” to help minimize bootstrapping costs [11], however at
the time of writing, details for these committees have not yet been released.

Algorand: Implementing an SPV client in a Proof of Stake blockchain such
as Algorand is not straightforward, since block headers are not enough to se-
curely verify the chain [25] (i.e. the client also needs the voters’ balances for
each block, also discussed in Section 4.1). Vault [78], a recent work approach
based on Algorand’s Proof of Stake protocol, “skips” blocks in each verification
step, essentially compressing the block history, while also compressing the voter
certificates themselves by using a smaller committee size, but requires a larger
percentage of the committee members to vote in order to preserve the validity
of the certificate. Vault is discussed in detail in the next section.

Diem: Clients in Diem interact with the blockchain through a full node’s JSON-
RPC endpoint [8,21], however the client API at the time of writing simply pro-
vides answers to queries, without accompanying proofs to provide the client veri-
fication capabilities. A client with full verifying functionalities is work in progress
[9], and a recent work includes a framework to make client implementations in
Diem lightweight [49].

Mina - Coda: Mina inherently supports light clients (full-nodes) through recur-
sive SNARK compositions, which enable maintaining a constant-sized (20KB)
blockchain that can be efficiently verified by a client with limited resources.
It utilizes a variant of Ouroboros proof-of-stake algorithm to preserve consen-
sus security properties. However Mina, while being light-client oriented, still
requires a heavy amount of work for the Block producers, who are in the prover
role [38,18,19] (its testnet has a 8-core processor and 16 GB of RAM as minimum
requirements).

5

ZCash: ZIP 221 [14,17] implements Flyclient [43], an efficient block header
verification method for light clients. Based on Non-Interactive Proofs of Proof-
of-Work (NIPoPoWs) [73], it compresses blockchain transaction histories for light
clients by only needing to download a small subset of all block headers, which
correspond to blocks with higher difficulty target. We discuss both NIPoPoWs
and Flyclient in the next section and consider them in our systematization.

Cardano: Although Cardano currently has naive light client implementations
that need to place their trust on a full node, it plans to utilize recent work
(Mithril) [46] to enable secure and fast boostrapping of light clients in Proof of
Stake using a novel primitive, “stake-based threshold multisignatures”.

Cosmos - InterBlockchain Communication (IBC): Using the Tendermint
BFT Proof of Stake consensus [42], Cosmos’ InterBlockchain Communication
(IBC) [60] proposes a decentralized protocol for making blockchains commu-
nicate with each other, even when these ledgers have fundamentally different
underlying architectures. IBC has explicit light client support tailored to its
consensus algorithm [40], which only requires to download block headers after a
trusted period, which contain sufficient validator signatures proving correctness
of validator evolution up to that period. State proofs are then provided to light
clients through a full node.

Binance: A light client in Binance chain [22], which uses a Proof of Stake
consensus variant (Proof of Authority) [7], is simply implemented by querying a
full node, seemingly with a trust model that resembles SPV.

1.3 Related Systematization of Knowledge Works

A recent work [69] provides a taxonomy for cryptocurrency wallets, however
its scope is more narrow, focusing on existing wallet implementations (recall
the distiction we provided in Section 1.1). Still, this work provides some brief
insights on (super-)light clients, as well as definitions for the “light” property
and its security compared to a full client.

[65] provided a survey on existing blockchain scalability solutions. These in-
clude sharding approaches such as OmniLedger [76], layer-2 blockchain protocols
[64] or other direct modifications to the blockchain protocol such as increasing
block size or replacing the chain structure entirely. At first glance, such scalabil-
ity solutions might seem related to the light client problem. However, their end
goal is different, which is to increase the blockchain’s transaction throughput
and latency, and not necessary to better support light clients.

2 Cryptographic Building Blocks

In this section we briefly discuss common cryptographic building blocks used by
light clients.

6

2.1 Succinct Set Representation and Proofs

Cryptographic Accumulators enable a succinct and binding representation
of a set of elements S and support constant-size proofs of membership (or non-
membership) on S. An accumulator typically consists of algorithms to add an
element x to it, create a membership proof π that x is contained in the accumu-
lator, verify π, and later update a proof to π′ after an element x′ has been added
to the accumulator. Sub-categories of accumulators are defined if an accumulator
manager is needed, if trapdoor information exists and if it supports additional op-
erations like removing elements or creating proofs of non-membership. We point
the reader to [33] for formal accumulator definitions and properties. Merkle
Trees [83] are a specific construction of accumulators, where each element x is
represented in a tree of hashes.

Vector commitments [45] enable committing to a vector of elements [xi]
n
i=1,

and later open the commitment at any position i of the vector. While a VC might
not be necessarily hiding as a standard commitment, it needs to be position
binding instead of just binding.

SNARKs (succinct non-interactive arguments of knowledge) are proof systems
that are succinct (i.e. have very small proof size compared to that of the state-
ment or the witness) and do not require interaction between the prover and the
verifier. zk-SNARKs are a special type of SNARKS augmented with the zero-
knowledge property, i.e. constructing a verifiable proof without revealing any
information about the witness [86]. In addition, zk-SNARK verification typi-
cally requires much less computation than constructing the proof itself. We refer
the reader to [86,63] for relevant definitions and sample constructions.

2.2 Hash Functions and Signatures

Aggregate signatures are a special type of digital signatures, where from a
set of users U with each user having a signing keypair (pku, sku) and a subset
of signatures [σu] and corresponding messages [mu], an aggregator can combine
them into a single aggregate signature σ [36,37,72].

Threshold signatures [89,46] enable a subset of k out of n valid signers to
generate a signature, but does not allow to create a valid signature with fewer
than k of those signers.

Chameleon hashes [77] are collision-resistant hash functions, that have addi-
tional properties associated with public-private key pairs compared to standard
hash functions. While anyone can compute the output of the chameleon hash
function using the public key, the private key serves as trapdoor information to
easily find collisions for a specific input.

3 Definitions

3.1 Light Client Properties

Given the plethora of light-client definitions and implementations that exist in
the blockchain space, there is a need to unify and standardize their functional,

7

efficiency and security properties. We informally discuss these properties below,
assuming a blockchain B which contains transactions tx and accounts acc, with
participating light clients C, consensus participants CN and full nodes N. By B1

we define the genesis block which we assume that holds all the system parameters
and will be used for verifiable bootstrapping.

Functional properties. As discussed in Section 1.1, the system needs to support
the following protocols which all run between a client C and a set of full nodes
N who always keep B as an input and serve as intermediaries:

– Init(B1)→ (st, π): The client on input the genesis block B1, bootstraps/initializes
its state st by running an interactive protocol with a full node and receives
a proof π of correct initialization.

– Upd(st) → (st′, π): The client updates its state from st to st′ to reflect the
newest view of B via an interactive protocol with a full node.

– VrfySt(st, st′, π)→ b: The client verifies π that st′ is a correct transition from
st (or B1) and outputs b ∈ {0, 1}.

– Q(st, data) → (r, π): The client makes a query for data where data = tx
(e.g. timestamp or block height) or data = acc (e.g. an account’s address).
We also assume that data includes the type of query, i.e. current balance of
an account, sender/receiver/value of a transaction, etc. The client receives
a reply r and a proof π. If data 6∈ B, Q typically returns error ⊥, however
optionally, it can still provide a proof of non-existence as (⊥, π).

– Vrfy(st, r, π)→ b Client verifies π for r and outputs b ∈ {0, 1}.
– S(st, tx, acc, sk)→ (st′) (optional wallet functionality): Submit a transaction

tx to B on behalf of acc with secret information sk.

Security properties. We list the required security properties that correspond to
threats relevant to the operation of the light client.

– Secure bootstrapping and synchronizing: This property implies that given a
publicly known genesis block B1, an adversarial full node A should not be
able to convince an honest client C to accept a forged blockchain state B∗

(for any B∗) and therefore accept queries on it.

Pr

B1;
A(B∗) and C run Init(B1),Upd(st) :
(B∗ 6= B) ∧ VrfySt(B1, st, π)→ 1

 ≤ negl(λ)

– Secure querying: After bootstrapping, a malicious adversary A should not
be able to convince a light client C to accept a forged transaction or account
state. For instance, the adversary should not be able to convince the client
that an unverified or forged transaction exists in the blockchain or accept
an incorrect account balance. Secure querying also includes the case where
A falsely convinces C the that an accepted transaction or existing account is
not part of the blockchain history (i.e. forged proof of non-existence), which

8

is omitted for brevity from our definition.

Pr

B1;
A, Init(),Upd(),Q(),S() :
∃data /∈ B ∧ Q(data, st)→ (r, π) ∧ Vrfy(r, π)→ 1

 ≤ negl(λ)

Efficiency properties. We identify the following efficiency properties in terms of
storage, computation and communication costs (|B| denotes blockchain size, or
number of blocks). We focus on the operations that happen on the light client
side.

– Efficient bootstrapping and synchronizing: Init() and Upd() computation and
communication are sublinear to |B|.

– Efficient storage: storage costs (i.e. state size) for light clients, is sublinear
to |B|.

– Efficient communication: Q() and S() (if applicable) require communication
costs sublinear to |B|, where communication happens between C and N.

– Efficient client computation: Q() and S() (if applicable) require client com-
putation costs sublinear to |B|.

– Vrfy() requires computational costs sublinear to |B|.

Overall, the overhead for B, CN and N in order to support light clients should be
minimal compared to the equivalent system that does not provide such support.
That said, the full nodes supporting the light clients, might already perform
work linear to B.

3.2 Underlying Assumptions

While the variety of light clients operate under different threat models and as-
sumptions depending on the underlying system properties (i.e. PoW or PoS
based consensus), we identify a set of common assumptions that we list below.

Basic light client assumptions. To the best of our knowledge, all light client
designs implicitly make the following assumptions:

– Trusted genesis block (note that [57] discusses the presence of adversarial
pre-computed genesis blocks).

– Reliable consensus (i.e. safety and liveness).
– Secure underlying cryptographic primitives.
– Weak synchrony, i.e. no long network partitions. We do not consider Eclipse

network level attacks.

Additional assumptions. Depending on their design, some systems impose addi-
tional assumptions.

– Trusted setup phase for the underlying cryptographic primitives (i.e. zk-
SNARKs setup).

9

– Network-level assumptions: we assume that a client receives and relays in-
formation in a peer-to-peer fashion (i.e. distributed networking). This is gen-
erally preferred over communicating with a single full node which could act
maliciously by relaying a forged view of B to C or prevent it from completing
Init() or Upd() (i.e. DoS attack).

– Game-theoretic assumptions, i.e. that participants behave in a rational model.
– Special assumptions e.g. fixed Proof of Work difficulty or certain blockchain

participants performing specific operations (e.g. accounts needing to restore
other accounts not included in the bootstrapped state).

4 Generic Techniques to Build Light Clients

In this section we provide an overview of several generic techniques and protocols
that can be used towards designing blockchain light clients and list examples of
light client implementations that are based on each technique.

4.1 Header Verification and Consensus Evolution

A common approach when designing bootstrapping and synchronizing for light
clients is to only have them verify the block headers and skip verification of
transactions or account states (as opposed to standard clients who verify the full
blockchain history). This popular technique is adopted by SPV [84], Ethereum
[15] and many others.

In Proof of Work consensus, block header verification is straightforward, as
the client only needs to verify the proofs of work based on block hashes and
nonces. However, additional considerations must be made in Proof of Stake or
BFT consensus blockchains to preserve security. For instance, in Proof of Stake,
normally the client also needs to verify account states and balances in the whole
blockchain history, or consider the risk of long range attacks [6]. In short, the
client needs to be convinced that the blockchain consensus has evolved correctly
and honestly throughout the history, and no malicious majority was ever present.
For BFT-consensus, there is an additional challenge: BFT validators can join and
leave, and a client needs to verify the consensus evolution through all validator
signatures. A common technique to shorten the client’s work is by storing in-
termediate checkpoints [28] so that clients are not referring to the genesis block
each time they verify the current validator set. On the other hand, validator set
re-configurations, known as “epochs”, present additional considerations as we
discuss later in our paper.

4.2 Compressing the State

Being append-only immutable ledgers, the issue of ever-growing storage require-
ments in blockchains was implied even in the original Bitcoin whitepaper [84],
which considered pruning old, spent transaction information (although never

10

adopted from the community due to security concerns). However, securely prun-
ing “obsolete” data from a blockchain is a direct step towards client efficient
bootstrapping and synchronizing as previously discussed in Section 3.1. As an
example, Ethanos [75] uses a form of “temporary” pruning in the account-based
model.

We note that redacting is a relevant but stronger notion, with the main goal
being to make the blockchain conditionally mutable rather than just reclaim-
ing storage [30,59,29]. This “mutable” blockchain approach mainly relies on the
chameleon hash primitive discussed in Section 2.

As another method of compressing the state, aggregate signatures, such as
Schnorr and pairing-based BLS signatures [36,37], can compress many signa-
tures (even under different keys) into a single signature, which in case of BLS, is
constant-sized. However in the blockchain setting, aggregate signatures are vul-
nerable to “rogue key” attacks, where an adversary can produce an aggregated
signature for arbitrary public keys, and typically requires a zero-knowledge proof
(ZKP) of correct public key computation. Non-interactive EdDSA half aggrega-
tion [47] provides ways of compressing multiple Schnorr/EdDSA signatures to
a single signature with half the size of the original signatures. One could also
consider aggregating signatures using zero knowledge proofs [72]. Overall, aggre-
gate signatures, already used by Plumo [56], is a promising primitive towards
light client implementations, as it is estimated to save a significant portion of
the needed bandwidth and storage. Another potential option is for the valida-
tors to engage into some interactive protocol in advance as part of the consensus
committee protocol, using threshold signatures [44,58].

In Appendix A we briefly mention some additional proposals and works whose
main goal is to compress the blockchain state. Although these works are not
standalone light client implementations, they can serve as examples towards
implementing light clients. However, we do not explicitly consider them in our
systematization in the later Sections.

4.3 Removing the State

Taking it one step further, stateless blockchains aim to only keep a succinct and
verifiable representation of the entire state at all times. Compacting a blockchain
in this manner is light-client friendly3, as the bootstrapping and syncing costs
would be minimal, and the “stateless” blockchain approach used by Coda-Mina
[38], Edrax [52] and others, is also becoming popular. However this can po-
tentially hurt security guarantees, for example the consensus algorithm should
be able to securely handle forks, which can happen at any point; there is ei-
ther a significant share of malicious consensus participants, or simply a network
partition. Some works [39] claim that stateless Proof of Stake blockchains are
impossible, while others [32,50] introduce special consensus considerations to
maintain security.

3 This approach is sometimes referenced in the literature as “extremely light clients”.

11

Several works point towards the stateless blockchain direction. For instance,
Vector Commitments and Subvector Commitments [91] (a special category of
Vector commitments), can be used to build a stateless cryptocurrency by com-
mitting to key-value maps. Pointproofs [61] further improved this idea by en-
abling aggregation of individual subvector commitment proofs into a single proof
by anyone, as well as cross-commitment proof aggregation (i.e from multiple
subvector commitments) while also ensuring the hiding property (which vec-
tor commitments do not necessarily guarantee). Hyperproofs [90] are tree-based
data structures that are aggregateable and homomorphic, which are very useful
properties for implementing stateless blockchains, and have polynomial commit-
ments [70] as their underlying primitive. Although efficient in their aggregation
and update operations, hyperproofs require a trusted setup and have a pub-
lic parameter size linear to the number of the proofs (i.e. the tree leaves). Fi-
nally, SNARKs seem to be a natural tool for implementing stateless or succinct
blockchains, while also requiring very low computation for verification; however
to be practical, ZKP friendly cryptographic primitives are recommended.

4.4 Leveraging Game-theoretic Assumptions

In a unique approach as shown by [79], light clients can be built on top of a
smart contract interacting with the client and a set of full nodes, thus offloading
all blockchain queries and replies to those nodes, with the client themselves
performing minimal computational work. In this setting, all participants (i.e.
client and full nodes) need to lock funds in an “arbiter” contract as collateral
to discourage dishonest behavior. Therefore, rational full nodes are incentivized
to provide correct replies to the client’s queries or risk being penalized. Such an
approach naturally requires a blockchain that is augmented with smart-contract
capabilities, but is otherwise agnostic to its other properties.

5 Systematization Methodology

The design of light clients has always been a vibrant topic of discussion in the
community. A number of proposals have been given ranging from simple forum
or blog posts to rigorous theoretical works and actual deployed systems. In our
systematization, we only consider works that represent a distinct light client
proposal (i.e. not generic techniques as discussed in Section 4), and include at
least some form of security discussion. Our systematization is performed over
the axes corresponding to the light client properties provided in Section 3.1.

In particular, we first consider the functional and basic operation axis,
where we categorize light client proposals based on their functional properties.
These include their compatibility on existing systems (which is preferred), if they
require modifications or if they propose a new standalone system. We also note
if they are designed for a specific consensus algorithm, and the cryptographic
primitives they use. Table 1 shows our findings. We observe that verifiable queries
of non-existence are neglected by light client protocols and therefore omitted

12

from the table. Also note that while clients should always be able to make
verifiable queries, wallet functionality is not always included in each one of them.
However, we omit a reference to this functionality from our table, as adding it
to an existing client protocol or implementation is usually trivial.

The efficiency axis, includes several aspects of light client efficiency charac-
teristics, in line with the properties discussed in Section 3.1. Note that our sys-
tematization is not meant to be used as a direct asymptotic comparison between
different light client proposals and protocols. Such a comparison is impossible as
the clients operate on top of different underlying schemes. In Table 2, we provide
a coarse categorization based on their performance in each efficiency category,
indicated with a “good” or “bad” practice icon (thumbs up and down icons re-
spectively). In general, a sublinear cost with respect to the number of blocks is
treated as good practice, however, in some cases we deviate from this rule to
take concrete costs into account - we mark those with a “*” in the Table. For
storage efficiency, we consider both the prover and verifier, where a thumbs up
icon denotes good practice for both. Communication efficiency denotes the re-
quirements for proof size, while bootstrapping efficiency denotes the initial cost
of client joining the system as well as the syncing maintenance cost.

Finally we consider security as the third systematization axis and present
our findings in Table 3. We start by listing any required assumptions (i.e. beyond
the Basic Assumptions listed in Section 3.2) that each light client proposal needs,
“-” means that no additional assumptions are made. Then, for each required
security property (secure bootstrapping and querying), we indicate whether the
light client scheme satisfies the property (4) or a known vulnerability exists (5)4.
In cases where a security guarantee of a light client has not been proven via a
security (or sketch) of proof, we denote this by the exclamation mark symbol “!”.
In Table 3, we also consider the network-level assumption separately, as it is more
secure for the light client to communicate with the blockchain in a distributed
fashion. Therefore we mark schemes with 4 that communicate independently
(e.g. peer-to-peer) with the blockchain system, while schemes marked with 5 rely
on a centralized server or full node.

In all of our Tables, we group the schemes into two main categories based
on their design. The first group follows the “stateless blockchain” approach for
constructing efficient light clients, while the second group follows the “efficient
bootstrapping - synchronization” approach. We keep the game theoretic-based
work as a third separate category.

6 Existing Light Client Constructions: Insights and Gaps

In this section we discuss the works listed in our Tables in more detail, and
present a series of interesting insights and gaps. We organize our discussion in
a similar way to our scheme grouping for each table, by first analyzing schemes

4 To mark that a system satisfies a property, we do not necessarily require a formal
security proof, but we do require at least some relevant informal discussion.

13

System - client Consensus Compatibility Crypto Primitives

Mina [38] PoS New system SNARKs

Plumo [56] BFT Modification SNARKs, BLS signatures

PoNW [71] PoW
New system or
Modification

SNARKs

Chen et al. [50] Not specified Modification
SNARKs (trusted or

universal)

Batched
accumulators [35]

Not specified
New system or
Modification

Batched RSA Accumulator

Edrax [52] Not specified New system
Sparse MT, Distributed

VC, zkSNARKs

SPV [84] Any Yes

Geth light mode [15] PoW Yes

Vault [78] PoS New system Stamping certificates

Ethanos [75] PoW Modification

NiPoPoW [73] PoW Modification NiPoPoWs [73]

Flyclient [43] PoW Modification MMR commitments

Diem [9] BFT Yes

Cosmos IBC [60] BFT - PoS New system

Binance [22] PoS variant New system

Cardano [46] PoS Modification
Stake-based Threshold

Multisignatures

Lu et al. [79] Any Yes
Table 1. Light client functional properties overview.

System - client
Bootstrap-

ping
Storage

Communica-
tion

Prover
Computa-

tion*

Client Com-
putation

Mina [38] - - - , -

Plumo [56] -* , (prover) -
, (long
intervals)

-

PoNW [71] - , (prover) -
- (embedded

in PoW
puzzle)

-

Chen et al. [50] - - - , -

Batched
accumulators [35]

, - - , ,

Edrax [52] , - - , -

SPV [84] -? - - - -

Geth light mode [15] , ,* ,* - -

Vault [78] - , , , ,*

Ethanos [75] -* , , - -*

NiPoPoW [73] - - - - -

Flyclient [43] - - - , -

Diem (verifying) [9] - - - - -

Cosmos IBC [60] - - - , -

Binance [22] - - ,* - -

Cardano [46] - - - - -

Lu et al. [79] - - - - -

Table 2. Light client efficiency overview.

14

System - client Assumptions
Bootstrap-

ping
Querying

Distributed
networking

Mina [38] Trusted setup 4 4 4

Plumo [56] Trusted setup 4 4 5

PoNW [71] Trusted setup ! ! 5

Chen et al. [50] - ! ! 5

Batched
accumulators [35]

Trusted setup
or class groups

4 4 !

Edrax [52] - 4 4 !

SPV [84] - 5 5 5

Geth [15] - 4 4 4

Vault [78]
Weak

synchrony
4 4 4

Ethanos [75]
Active account

availability
4 4 4

NiPoPoW [73] Fixed difficulty 4 4 5

Flyclient [43] - 4 4 5

Diem [9] - 4 4 5

Cosmos IBC [60] - ! ! 5

Binance [22] - ! ! 5

Cardano [46] - 4 ! 5

Lu et al. [79]
Rational
behavior

! 4 !

Table 3. Light client schemes security properties.

15

that follow the stateless blockchain approach, then schemes which have efficient
bootstrapping and synchronization as their main goal.

6.1 Stateless Blockchains for Light Clients

Here we consider schemes that enable a stateless blockchain design, namely a
blockchain with a succinct and verifiable representation of its entire state, as
previously discussed in Section 4.3.

SNARKs are an effective tool for implementing a stateless blockchain, with
Coda-Mina [38] using them in an recursive fashion, chaining them together,
eventually having a single SNARK to verify the whole blockchain state. As
discussed in Section 1.2, it utilizes a variant of the Ouroboros Genesis Proof
of Stake algorithm [32] to preserve consensus properties in a stateless setting.
Essentially, SNARKS are used as a tool to implement “incremental” verifica-
tion of recursively-composed proofs, and follow-up works [50,71] improved this
paradigm. However, SNARKs typically imply a significant burden on the prover.
Plumo [56] uses SNARKs for proving transitions in the consensus committee,
enabling fast synchronization of light clients through “checkpoints”, thus only
needing to fetch data after the most recent checkpoint. These checkpoints also
include periodic proofs of BFT consensus evolution to preserve consensus prop-
erties, efficiently verifiable by light clients such as resource-constrained mobile
phones. [71] also uses SNARKs and incremental verification, in addition to a
Proof-or-Work variant (Proof of Necessary Work) to take advantage of the com-
putation performed by the consensus layer, while Chen et al. [50] in a more
extensive study of incremental verification in blockchains, provide a framework
to make an existing system incrementally verifiable using a “compatible” consen-
sus algorithm. This work is also the first to provide directions for implementing
this paradigm in the context of privacy-preserving blockchains like Zcash [34]
by applying incremental verification combined with ZKPs on the public state of
the system (which for the case of Zcash is the set of serial numbers and coin
commitments). Still, it leaves many questions open, such as which entities will
be responsible for providing the proofs, or the overhead on the system which is
already not among the most efficient ones.

Gap 1 Is a complete and efficient light-client scheme possible that is compatible
with privacy-preserving systems?

We should also mention that zk-SNARKs were used in zk-rollups [16]: a layer-
2 scalability solution to move data and computation off-chain. However, except
for [50], none of the SNARK-based approaches seem to consider the prover’s
substantial overhead, which in a blockchain system would be the consensus par-
ticipants or the full nodes. Beyond the prover costs, most SNARK approaches
come with additional assumptions such as a trusted setup phase. That leads us
to the following Gap:

16

Gap 2 Can we design a light-client scheme that satisfies all the security prop-
erties while being efficient and practical for the client with a minimal overhead
to the consensus participants or full nodes?

As an intermediate solution, additional financial incentives for entities pro-
ducing such proofs could alleviate the extra computational requirements, how-
ever this is only applicable to blockchains that implement or contain a cryp-
tocurrency.

Improving on the Vector Commitment approach discussed in Section 4.3,
Boneh et al. [35] introduced techniques for efficiently batching various operations
in RSA accumulators (e.g. additions, deletions and witness creation), all of which
can potentially utilized for implementing stateless blockchains (e.g. committing
to the UTXO set as an accumulator state). RSA accumulators are used by
MiniLedger [48] as an alternative model to Merkle trees discussed above. Since
RSA Accumulators involve a trusted setup (or novel but more expensive class
groups), hash-based accumulators were proposed by [55], however with a different
goal, to reduces storage for a fully validating node. An additional concern in the
RSA accumulator approach is the extra overhead of maintaining the accumulator
(which depending on the implementation, would be paid either by consensus
participants or full nodes).

Edrax [52] proposed a cryptocurrency where validators only need to verify
a commitment of the most recent state. Edrax implemented this approach in
the UTXO model by utilizing sparse Merkle trees to represent the UTXO set,
and also in account model by utilizing distributed vector commitments. In the
UTXO-based case, validators first verify if a transaction’s input belongs in the
set, and then simply remove that input and add the output in the set. In the
account-based case, they utilize distributed vector commitments to still make
transcations possible without requiring interaction between the sender and re-
ceiver. However, clients need to constantly synchronize their local proofs with
respect to those commitments, and will have to pay a significant synchronization
cost after an offline period. Although Edrax proposes an additional untrusted
entity to provide synchronization proofs on behalf of the client, this nevertheless
introduces a significant overhead overall in the system.

Insight 1 Redactable blockchains have not been explored as a solution towards
implementing light clients.

Blockchain redaction, discussed in Section 4.2, has the potential to be utilized
in several ways, for instance, a series of blocks can be replaced by a single block
containing compressed information. An interesting direction might be to execute
redaction operations at the consensus layer.

6.2 Reducing Bootstrapping and Synchronization Costs

An important property of light clients is the requirement for an efficient way to
initialize itself and join the system; downloading gigabytes of data and perform-
ing heavy verification operations on millions of transactions is prohibitive for

17

a mobile or browser-based client. This is also important if the client is discon-
nected for some periods of time and needs to reconnect, or even just to maintain
a synchronization with the current state of the blockchain.

Gap 3 No light client approach or implementation explicitly considers frequent
offline phases, where the client needs to re-sync with the current system state.

As discussed in Section 1.2, SPV follows the Header verification approach,
which while generally efficient for a light client, suffers from potential security
issues (especially in Proof of Stake and BFT consnensus), and fully relies on
the availability and honesty of a single server, while also exposing its privacy
to that server. Ethereum’s native light client also follows this paradigm without
relying on a single server or full node, however its concrete bootstrapping, storage
and communication requirements are practically prohibitive for a light client
implementation.

Vault [78] is a prominent example of a standalone system designed for sig-
nificantly decreasing bootstrapping and participation costs. It is based on Al-
gorand’s proof of stake protocol, however it works in an account based model
using sparse Merkle trees similar to Ethereum. Vault introduces techniques such
as decoupling double-spend detection from account balances by making transac-
tions valid only for a parameterized block window, while also pruning accounts
with no balance, sharding the account state tree across participants, and using
additional “stamping” certificates to convince new joining clients on block valid-
ity, which have reduced size by trading off liveness while still preserving safety.
Although Vault (as a standalone cryptocurrency) was not designed with light
clients in mind (e.g. a client needs to constantly perform an update operation
while its transaction is pending), its techniques which seem to decrease boot-
strapping costs by one or two orders of magnitude, can serve as a guideline for
implementing light clients on top of existing systems.

In another approach, Ethanos [75] chooses to reduce the bootstrapping costs
on Ethereum by not downloading “inactive” accounts, and invoking a “restore”
transaction when such an account needs to reactivate itself. This special trans-
action type has the inherent limitation of needing to be submitted by another
“active” address, and is essentially a Merkle proof of the last known account
state (or checkpoint), along with void proofs that no more recent checkpoint
exists (paired with a Bloom filter for space efficiency). In this manner, Ethanos
reduces bootstrapping costs by a constant factor of 2.

Non-Interactive Proofs of Proof-of-Work (NIPoPoWs) [73] further improve
the notion of SPV client by introducing a new primitive under the same name.
This primitive, designed for Proof of Work blockchains, constructs a multi-layer
chain of blocks from the basic chain, where each layer is essentially a skip list of
blocks that satisfy a lower target (i.e. higher dfficulty) in the PoW puzzle. In this
way, a new client can avoid fetching the entire chain of block headers as in SPV,
which translates to logarithmic asymptotic costs (or a few hundred kilobytes
proof) making an even more efficient light client. While NIPoPoWs assumed
static difficulty across the chain, Flyclient [43] uses an efficiently-updatable

18

Merkle tree variant (Merkle Mountain Range commitments) as underlying prim-
itive for compatibility with variable-difficulty PoW chains.

We also mention some works further improving NIPoPoWs and FlyClient.
Kiayias et al. [74] discuss how to securely implement them on top of existing
systems through a “velvet” fork, i.e. without requiring a soft or hard fork but
only through a minority of the miners. TxChain [94] extends NIPoPoWs and Fly-
Client to efficiently handle a large number of transaction verifications distributed
across several blocks, by introducing a new transaction type (“contingent” trans-
action), serving as a single reference to other transactions and replacing the need
to provide transaction and block inclusion proofs for the skipped blocks (which
potentially can be more expensive even than a naive SPV client).

Diem’s verifying light client [9] (as discussed in Section 1.2) fully relies on a
full node to receive query replies and proofs (in contrast, Binance light client [22]
which also relies on a full node, does not explicitly verifies any proofs). As Diem
utilizes a BFT consensus, it also needs to receive “epoch proofs”, which prove to
the client correctness of evolution of validator signatures, which is the approach
discussed in Section 4.1. In addition, recent work [49] suggest to further compress
epoch proofs by an epoch skipping technique, without however addressing long
range attacks. Also as discussed in Section 1.2, Tendermint [40] (used in Cosmos
IBC) proposes a similar technique based on the latest block height which ensures
that at least one validator is honest based on validator intersection and the
byzantine threshold. Plumo’s proofs of BFT consensus evolution [56] also aim
to reduce client synchronization load as discussed previously.

Insight 2 Light clients in BFT-based consensus blockchains can be implemented
through full nodes, where clients make queries and full nodes provide verifiable
proofs alongside with epoch proofs.

Insight 3 In BFT-based consensus blockchains, aggregate signatures (e.g. BLS
signatures or ZK-friendly signatures) can be used to compress not only transac-
tions, but also validator signatures, leading to further reduced bootstrapping and
synchronization costs for light clients.

An alternative approach to Diem and Plumo is used by Dfinity’s Internet
computer [66], a blockchain-based protocol that creates a network of decentral-
ized data centers running smart contracts, inspired by Ethereum. Dfinity utilizes
key re-sharing within a threshold signature scheme to accommodate validators
joining or leaving, aiming at circumventing the need for tracking their key evo-
lution by a client [62]. However, it is unclear whether this approach guarantees
BFT security at all times, as it assumes that validators will delete their old
shares afterwards. For instance, suppose the consensus system has 7 honest val-
idators from a quorum of 10 validators, which guarantees the 2f + 1 consensus
security properties. Still, if 12 validators join afterwards, which now implies a
tolerance of 7 Byzantine validators, this can potentially compromise consensus,
as the previous 7 “honest” validators might not have deleted their key shares. In
addition, Aumasson and Shlomovits [31] highlighted the possibility of an adver-

19

sary corrupting the key re-sharing process in some threshold signature schemes,
which could potentially hurt consensus liveness.

Insight 4 For blockchains based on BFT consensus, frequent validator re-configurations
(e.g. joining, leaving or key rotations) usually imply additional work for clients.

While the insight above is not applicable to off-chain reconfiguration ap-
proaches such as Dfinity [62], such approaches are typically prone to long range
attacks as we discussed previously.

Gap 4 A light client of a BFT-based consensus blockchain normally needs to
verify the evolution of validator signatures using “epoch proofs” to prevent long
range attacks. Is it possible to design a secure protocol for BFT consensus that
either compress these proofs or circumvents this requirement entirely?

More recently, Chaidos and Kiayias [46] proposed a new primitive, called
stake-based threshold multisignatures. This primitive enables a client’s boot-
strapping through header verification in Proof of Stake systems like Cardano, in
a similar way to SPV, without however needing to verify the participant’s stake
history (as discussed in Section 4.1) and without the need of any modifications
to the Proof of Stake consensus as in Mina [38].

6.3 Smart-contract Based Approaches and Blockchain
Interoperability

We briefly discuss implementing light clients by querying full nodes though a
smart contract, and assuming “rational” behavior from the client and the full
nodes after the required collateral deposits to participate, similar to the work
by Lu et al. [79]. This approach can potentially address many of the previously
discussed gaps, as the rational behavior assumption can circumvent technical
difficulties or limitations which rise from complex cryptographic primitives. For
instance, as [79] showed, a light client can make a query of non-existence, and as-
suming full node rational behavior, will get a correct reply (i.e. inclusion proof if
queried data exists, or a negative reply in case such data does not exist, which can
be challenged if another node presents an inclusion proof thus penalizing a false
non-existence claim) . However there are several caveats to such an approach:
First it naturally requires a smart-contract, which implies a time delay until it
received the reply to its query, incompatibility with blockchains without a smart
contract, and additional monetary costs for the contract’s “gas” fees which can
be potentially very high. Also, the client might merely receive an answer to its
query (e.g. a simple “@” reply if answer to query does not exist) without a cryp-
tographic proof (as defined in Section 3.1 as an optional functional property),
which leaves this problem still open. Finally, the game-theoretic model might not
capture cases where the client is considered a “high value target”, where a full
node (or a coalition of them) might choose to actually behave “irrationally” and
intentionally risk being penalized in hope for other (not necessary monetary)
gains.

20

Gap 5 Can we design a light client protocol compatible with queries of transac-
tion or account state non-existence proofs?

From the above approach we observe however that it is trivial to implement
an efficient light client that makes and receives queries to a “trusted oracle”
(which in the above case were the rational full nodes following the protocol),
without needing to make verifications, even if such an oracle is decentralized.
This implies that such a client would be possible to exist even in extremely
resource-constrained environments such as a smart contract itself :

Insight 5 Interoperability: Ideally, light clients should be implemented as a smart
contract without the use of trusted oracles. This would allow for verifying trans-
actions of a blockchain A inside a contract of blockchain B.

Gap 6 Implementing reasonably efficient light clients inside smart contracts
might be impractical for many non zero-knowledge proof friendly blockchains
or ledgers without succinct fraud proof in optimistic settings [16].

Although Cosmos makes a first step towards building a light client compatible
with several blockchain systems (including those with smart contracts), it is still
not known if we can also utilize previous techniques or primitives to implement
such clients in pure smart-contract based blockchains, e.g. Ethereum.

7 Conclusion

The blockchain community is witnessing a continuous effort towards imple-
menting efficient light clients, suitable for resource-constrained devices or en-
vironments like browsers or mobile phones, while maintaining the underlying
blockchain’s security guarantees, and without introducing additional trust as-
sumptions. As we observe different perceptions of light client properties across
blockchain systems, we first provide a categorization of the most important light
client properties. Then, we present a systematization of proposed light clients
across three axes derived from our property categorization. Our systemization
helps to identify a number of exciting open problems on implementing light
clients which we summarize below.

We first observe that light clients satisfying our properties, and compatible
with privacy preserving systems have not yet been implemented (Gap 1), with re-
cent works providing preliminary directions [50]. In addition, no current scheme
seems to satisfy all of our functional, efficiency and security properties together
(Gap 2). Also, existing works seem to neglect the case of frequent light client
offline phases, which might be inefficient even for clients with efficient bootstrap-
ping protocols (Gap 3). Distributing prover’s work among the main blockchain
participants (consensus layer or full nodes) along with providing incentives are
possible directions.

Furthermore, it is not yet known if light clients can be efficient enough, such
that they can be run from smart contracts across different blockchains (Gap

21

6). SNARKs seem to be a promising primitive towards this, although this still
need to be shown in practice. Also there seems to be room for improvement for
light clients implemented on BFT-consensus blockchains (Gap 4) by leveraging
primitives such as key re-sharing and threshold signatures in off-chain protocols,
while however considering Byzantine nodes in special cases. Finally, proofs of
non-existence, a desired property in blockchain systems, is still missing from all
current light client implementations (Gap 5). We hope our work will provide
research directions for the community towards usable and secure light clients for
blockchain systems.

Acknowledgements

Panagiotis Chatzigiannis did part of this work during an internship at Novi
Financial/Facebook Research. Foteini Baldimtsi and Panagiotis Chatzigiannis
were supported by NSF #1717067, NSA #204761 and a Facebook Research
Award.

References

1. Ask about geth: Snapshot acceleration, https://blog.ethereum.org/2020/07/

17/ask-about-geth-snapshot-acceleration/

2. Bitcoin blockchain data torrent, https://bitcointalk.org/index.php?topic=

145386.0

3. Bitcoin core client, https://bitcoin.org/en/bitcoin-core/

4. Bitcoin wiki - clients, https://en.bitcoin.it/wiki/Clients

5. Bitcoin wiki - scalability, https://en.bitcoin.it/wiki/Scalability#

Simplified_payment_verification

6. Blockchain light client, https://medium.com/codechain/blockchain-light-

client-1171dfa1269a

7. Consensus engine of binance smart chain, https://docs.binance.org/smart-

chain/guides/concepts/consensus.html

8. Diem client sdks, https://github.com/diem/client-sdks

9. Diem verifying client, https://github.com/diem/diem/blob/main/sdk/client/

src/verifying_client.rs

10. Dodging a bullet: Ethereum state problems, https://blog.ethereum.org/2021/
05/18/eth_state_problems/

11. Eth 2.0 specs - minimal light client, https://github.com/ethereum/eth2.0-

specs/blob/dev/specs/altair/sync-protocol.md

12. The ethereum-blockchain size will not exceed 1tb anytime soon., https:

//dev.to/5chdn/the-ethereum-blockchain-size-will-not-exceed-1tb-

anytime-soon-58a

13. Ethereum nodes and clients, https://ethereum.org/en/developers/docs/

nodes-and-clients/

14. Explaining flyclient, https://electriccoin.co/blog/explaining-flyclient/

15. How to run a light node with geth, https://ethereum.org/en/developers/

tutorials/run-light-node-geth/

22

https://blog.ethereum.org/2020/07/17/ask-about-geth-snapshot-acceleration/
https://blog.ethereum.org/2020/07/17/ask-about-geth-snapshot-acceleration/
https://bitcointalk.org/index.php?topic=145386.0
https://bitcointalk.org/index.php?topic=145386.0
https://bitcoin.org/en/bitcoin-core/
https://en.bitcoin.it/wiki/Clients
https://en.bitcoin.it/wiki/Scalability#Simplified_payment_verification
https://en.bitcoin.it/wiki/Scalability#Simplified_payment_verification
https://medium.com/codechain/blockchain-light-client-1171dfa1269a
https://medium.com/codechain/blockchain-light-client-1171dfa1269a
https://docs.binance.org/smart-chain/guides/concepts/consensus.html
https://docs.binance.org/smart-chain/guides/concepts/consensus.html
https://github.com/diem/client-sdks
https://github.com/diem/diem/blob/main/sdk/client/src/verifying_client.rs
https://github.com/diem/diem/blob/main/sdk/client/src/verifying_client.rs
https://blog.ethereum.org/2021/05/18/eth_state_problems/
https://blog.ethereum.org/2021/05/18/eth_state_problems/
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/altair/sync-protocol.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/altair/sync-protocol.md
https://dev.to/5chdn/the-ethereum-blockchain-size-will-not-exceed-1tb-anytime-soon-58a
https://dev.to/5chdn/the-ethereum-blockchain-size-will-not-exceed-1tb-anytime-soon-58a
https://dev.to/5chdn/the-ethereum-blockchain-size-will-not-exceed-1tb-anytime-soon-58a
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://electriccoin.co/blog/explaining-flyclient/
https://ethereum.org/en/developers/tutorials/run-light-node-geth/
https://ethereum.org/en/developers/tutorials/run-light-node-geth/

16. An incomplete guide to rollups, https://vitalik.ca/general/2021/01/05/

rollup.html
17. Introducing heartwood, https://electriccoin.co/blog/introducing-

heartwood/
18. Mina documentation, https://docs.minaprotocol.com/en
19. Mina protocol - a succinct blockchain, https://masked.medium.com/the-coda-

protocol-bbcb4b212b13
20. Nakamoto: a new bitcoin light-client, https://cloudhead.io/nakamoto/
21. The official diem client sdk for python, https://github.com/diem/client-sdk-

python
22. Run a light client to join binance chain, https://docs.binance.org/light-

client.html
23. The stateless client concept, https://ethresear.ch/t/the-stateless-client-

concept/172
24. Storing utxos in a balanced merkle tree, https://bitcointalk.org/index.php?

topic=101734.msg1117428
25. A suggestion for a light-client wallet (like the btc spv wallet with merkle tree),

https://forum.algorand.org/t/a-suggestion-for-a-light-client-wallet-

like-the-btc-spv-wallet-with-merkle-tree/1092/4
26. Ultimate blockchain compression w/ trust-free lite nodes, https://bitcointalk.

org/index.php?topic=88208.0/
27. What is a light client and why you should care?, https://www.parity.io/blog/

what-is-a-light-client/
28. Amsden, Z., Arora, R., Bano, S., Baudet, M., Blackshear, S., Bothra, A., Cabr-

era, G., Catalini, C., Chalkias, K., Cheng, E., et al.: The libra blockchain. URl:
https://developers. libra. org/docs/assets/papers/the-libra-blockchain. pdf (2019)

29. Ashritha, K., Sindhu, M., Lakshmy, K.: Redactable blockchain using en-
hanced chameleon hash function. In: 2019 5th International Conference on Ad-
vanced Computing Communication Systems (ICACCS). pp. 323–328 (2019).
https://doi.org/10.1109/ICACCS.2019.8728524

30. Ateniese, G., Magri, B., Venturi, D., Andrade, E.R.: Redactable blockchain -
or - rewriting history in bitcoin and friends. In: 2017 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2017, Paris, France, April 26-28,
2017. pp. 111–126. IEEE (2017). https://doi.org/10.1109/EuroSP.2017.37, https:
//doi.org/10.1109/EuroSP.2017.37

31. Aumasson, J.P., Shlomovits, O.: Attacking threshold wallets. Cryptology ePrint
Archive, Report 2020/1052 (2020), https://eprint.iacr.org/2020/1052

32. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 913–930. ACM Press
(Oct 2018). https://doi.org/10.1145/3243734.3243848

33. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L.,
Samelin, K., Yakoubov, S.: Accumulators with applications to anonymity-
preserving revocation. In: 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. pp. 301–
315. IEEE (2017). https://doi.org/10.1109/EuroSP.2017.13, https://doi.org/

10.1109/EuroSP.2017.13
34. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,

M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014). https://doi.org/10.1109/SP.2014.36

23

https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://electriccoin.co/blog/introducing-heartwood/
https://electriccoin.co/blog/introducing-heartwood/
https://docs.minaprotocol.com/en
https://masked.medium.com/the-coda-protocol-bbcb4b212b13
https://masked.medium.com/the-coda-protocol-bbcb4b212b13
https://cloudhead.io/nakamoto/
https://github.com/diem/client-sdk-python
https://github.com/diem/client-sdk-python
https://docs.binance.org/light-client.html
https://docs.binance.org/light-client.html
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://forum.algorand.org/t/a-suggestion-for-a-light-client-wallet-like-the-btc-spv-wallet-with-merkle-tree/1092/4
https://forum.algorand.org/t/a-suggestion-for-a-light-client-wallet-like-the-btc-spv-wallet-with-merkle-tree/1092/4
https://bitcointalk.org/index.php?topic=88208.0/
https://bitcointalk.org/index.php?topic=88208.0/
https://www.parity.io/blog/what-is-a-light-client/
https://www.parity.io/blog/what-is-a-light-client/
https://doi.org/10.1109/ICACCS.2019.8728524
https://doi.org/10.1109/EuroSP.2017.37
https://doi.org/10.1109/EuroSP.2017.37
https://doi.org/10.1109/EuroSP.2017.37
https://eprint.iacr.org/2020/1052
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1109/SP.2014.36

35. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Heidelberg (Aug
2019). https://doi.org/10.1007/978-3-030-26948-7 20

36. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifi-
ably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (May 2003).
https://doi.org/10.1007/3-540-39200-9 26

37. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) Advances in Cryptology - ASIACRYPT 2001, 7th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Gold
Coast, Australia, December 9-13, 2001, Proceedings. Lecture Notes in Computer
Science, vol. 2248, pp. 514–532. Springer (2001). https://doi.org/10.1007/3-540-
45682-1 30, https://doi.org/10.1007/3-540-45682-1_30

38. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency
at scale. Cryptology ePrint Archive, Report 2020/352 (2020), https://eprint.

iacr.org/2020/352

39. Bonnet, F., Bramas, Q., Défago, X.: Stateless distributed ledgers. In:
Georgiou, C., Majumdar, R. (eds.) Networked Systems - 8th Interna-
tional Conference, NETYS 2020, Marrakech, Morocco, June 3-5, 2020, Pro-
ceedings. Lecture Notes in Computer Science, vol. 12129, pp. 349–354.
Springer (2020). https://doi.org/10.1007/978-3-030-67087-0 22, https://doi.

org/10.1007/978-3-030-67087-0_22

40. Braithwaite, S., Buchman, E., Khoffi, I., Konnov, I., Milosevic, Z., Ruetschi, R.,
Widder, J.: A tendermint light client. CoRR abs/2010.07031 (2020), https:

//arxiv.org/abs/2010.07031

41. Bruce, J.: The mini-blockchain scheme (2017), http://cryptonite.info/files/
mbc-scheme-rev3.pdf

42. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. CoRR
abs/1807.04938 (2018), http://arxiv.org/abs/1807.04938

43. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: Super-light
clients for cryptocurrencies. In: 2020 IEEE Symposium on Security
and Privacy. pp. 928–946. IEEE Computer Society Press (May 2020).
https://doi.org/10.1109/SP40000.2020.00049

44. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: Uc non-
interactive, proactive, threshold ecdsa with identifiable aborts. In: Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security.
pp. 1769–1787 (2020)

45. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(Feb / Mar 2013). https://doi.org/10.1007/978-3-642-36362-7 5

46. Chaidos, P., Kiayias, A.: Mithril: Stake-based threshold multisignatures. Cryptol-
ogy ePrint Archive, Report 2021/916 (2021), https://ia.cr/2021/916

47. Chalkias, K., Garillot, F., Kondi, Y., Nikolaenko, V.: Non-interactive half-
aggregation of EdDSA and variants of Schnorr signatures. In: Paterson, K.G. (ed.)
CT-RSA 2021. LNCS, vol. 12704, pp. 577–608. Springer, Heidelberg (May 2021).
https://doi.org/10.1007/978-3-030-75539-3 24

48. Chatzigiannis, P., Baldimtsi, F.: Miniledger: Compact-sized anonymous and au-
ditable distributed payments. Cryptology ePrint Archive, Report 2021/869 (2021),
https://eprint.iacr.org/2021/869

24

https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://doi.org/10.1007/978-3-030-67087-0_22
https://doi.org/10.1007/978-3-030-67087-0_22
https://doi.org/10.1007/978-3-030-67087-0_22
https://arxiv.org/abs/2010.07031
https://arxiv.org/abs/2010.07031
http://cryptonite.info/files/mbc-scheme-rev3.pdf
http://cryptonite.info/files/mbc-scheme-rev3.pdf
http://arxiv.org/abs/1807.04938
https://doi.org/10.1109/SP40000.2020.00049
https://doi.org/10.1007/978-3-642-36362-7_5
https://ia.cr/2021/916
https://doi.org/10.1007/978-3-030-75539-3_24
https://eprint.iacr.org/2021/869

49. Chatzigiannis, P., Chalkias, K.: Proof of assets in the diem blockchain. Cryptology
ePrint Archive, Report 2021/598 (2021), https://eprint.iacr.org/2021/598

50. Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation costs
via incremental verification for ledger systems. Cryptology ePrint Archive, Report
2020/1522 (2020), https://ia.cr/2020/1522

51. Chepurnoy, A., Larangeira, M., Ojiganov, A.: Rollerchain, a blockchain with safely
pruneable full blocks (2016)

52. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: A cryptocurrency with state-
less transaction validation. Cryptology ePrint Archive, Report 2018/968 (2018),
https://eprint.iacr.org/2018/968

53. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-grained and controlled
rewriting in blockchains: Chameleon-hashing gone attribute-based. In: NDSS 2019.
The Internet Society (Feb 2019)

54. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable blockchain in the permis-
sionless setting. In: 2019 IEEE Symposium on Security and Privacy. pp. 124–138.
IEEE Computer Society Press (May 2019). https://doi.org/10.1109/SP.2019.00039

55. Dryja, T.: Utreexo: A dynamic hash-based accumulator optimized for the bitcoin
UTXO set. Cryptology ePrint Archive, Report 2019/611 (2019), https://eprint.
iacr.org/2019/611

56. Gabizon, A., Gurkan, K., Jovanovic, P., Konstantopoulos, G., Oines, A., Olszewski,
M., Straka, M., Tromer, E., Vesely, P.: Plumo: Towards scalable interoperable
blockchains using ultra light validation systems (2020)

57. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 465–495. Springer,
Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-76581-5 16

58. Garillot, F., Kondi, Y., Mohassel, P., Nikolaenko, V.: Threshold schnorr with state-
less deterministic signing from standard assumptions. In: Annual International
Cryptology Conference. pp. 127–156. Springer (2021)

59. Gligor, V.D., Woo, S.L.M.: Establishing software root of trust unconditionally. In:
NDSS 2019. The Internet Society (Feb 2019)

60. Goes, C.: The interblockchain communication protocol: An overview. CoRR
abs/2006.15918 (2020), https://arxiv.org/abs/2006.15918

61. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating
proofs for multiple vector commitments. In: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (eds.) ACM CCS 2020. pp. 2007–2023. ACM Press (Nov 2020).
https://doi.org/10.1145/3372297.3417244

62. Groth, J.: Introducing noninteractive distributed key generation, https:

//medium.com/dfinity/applied-crypto-one-public-key-for-the-internet-

computer-ni-dkg-4af800db869d

63. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5 11

64. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: Layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 201–226. Springer, Heidelberg (Feb 2020). https://doi.org/10.1007/978-
3-030-51280-4 12

65. Hafid, A., Hafid, A.S., Samih, M.: Scaling blockchains: A
comprehensive survey. IEEE Access 8, 125244–125262 (2020).
https://doi.org/10.1109/ACCESS.2020.3007251

25

https://eprint.iacr.org/2021/598
https://ia.cr/2020/1522
https://eprint.iacr.org/2018/968
https://doi.org/10.1109/SP.2019.00039
https://eprint.iacr.org/2019/611
https://eprint.iacr.org/2019/611
https://doi.org/10.1007/978-3-319-76581-5_16
https://arxiv.org/abs/2006.15918
https://doi.org/10.1145/3372297.3417244
https://medium.com/dfinity/applied-crypto-one-public-key-for-the-internet-computer-ni-dkg-4af800db869d
https://medium.com/dfinity/applied-crypto-one-public-key-for-the-internet-computer-ni-dkg-4af800db869d
https://medium.com/dfinity/applied-crypto-one-public-key-for-the-internet-computer-ni-dkg-4af800db869d
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1109/ACCESS.2020.3007251

66. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, con-
sensus system (2018)

67. Hearn, M., Brown, R.G.: Corda: A distributed ledger (2019), https://www.corda.
net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-

2019.pdf

68. Karakostas, D., Karayannidis, N., Kiayias, A.: Efficient state management in
distributed ledgers. Cryptology ePrint Archive, Report 2021/183 (2021), https:
//eprint.iacr.org/2021/183

69. Karantias, K.: SoK: A taxonomy of cryptocurrency wallets. Cryptology ePrint
Archive, Report 2020/868 (2020), https://eprint.iacr.org/2020/868

70. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (Dec 2010). https://doi.org/10.1007/978-3-642-
17373-8 11

71. Kattis, A., Bonneau, J.: Proof of necessary work: Succinct state verification with
fairness guarantees. Cryptology ePrint Archive, Report 2020/190 (2020), https:
//eprint.iacr.org/2020/190

72. Khaburzaniya, I., Chalkias, K., Lewi, K., Malvai, H.: Aggregating hash-based
signatures using starks. Cryptology ePrint Archive, Report 2021/1048 (2021),
https://ia.cr/2021/1048

73. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer,
Heidelberg (Feb 2020). https://doi.org/10.1007/978-3-030-51280-4 27

74. Kiayias, A., Polydouri, A., Zindros, D.: The velvet path to superlight blockchain
clients. Cryptology ePrint Archive, Report 2020/1122 (2020), https://eprint.

iacr.org/2020/1122

75. Kim, J., Lee, J., Koo, Y., Park, S., Moon, S.: Ethanos: efficient bootstrap-
ping for full nodes on account-based blockchain. In: Barbalace, A., Bhatotia,
P., Alvisi, L., Cadar, C. (eds.) EuroSys ’21: Sixteenth European Conference on
Computer Systems, Online Event, United Kingdom, April 26-28, 2021. pp. 99–
113. ACM (2021). https://doi.org/10.1145/3447786.3456231, https://doi.org/

10.1145/3447786.3456231

76. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Om-
niLedger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy. pp. 583–598. IEEE Computer Society Press
(May 2018). https://doi.org/10.1109/SP.2018.000-5

77. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. Cryptology ePrint
Archive, Report 1998/010 (1998), https://eprint.iacr.org/1998/010

78. Leung, D., Suhl, A., Gilad, Y., Zeldovich, N.: Vault: Fast bootstrapping for the
algorand cryptocurrency. In: NDSS 2019. The Internet Society (Feb 2019)

79. Lu, Y., Tang, Q., Wang, G.: Generic superlight client for permissionless
blockchains. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.) ESORICS 2020,
Part II. LNCS, vol. 12309, pp. 713–733. Springer, Heidelberg (Sep 2020).
https://doi.org/10.1007/978-3-030-59013-0 35

80. Manevich, Y., Barger, A., Assa, G.: Redacting transactions from execute-order-
validate blockchains. In: IEEE International Conference on Blockchain and
Cryptocurrency, ICBC 2021, Sydney, Australia, May 3-6, 2021. pp. 1–9. IEEE
(2021). https://doi.org/10.1109/ICBC51069.2021.9461093, https://doi.org/10.
1109/ICBC51069.2021.9461093

26

https://www.corda.net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.corda.net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.corda.net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://eprint.iacr.org/2021/183
https://eprint.iacr.org/2021/183
https://eprint.iacr.org/2020/868
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2020/190
https://eprint.iacr.org/2020/190
https://ia.cr/2021/1048
https://doi.org/10.1007/978-3-030-51280-4_27
https://eprint.iacr.org/2020/1122
https://eprint.iacr.org/2020/1122
https://doi.org/10.1145/3447786.3456231
https://doi.org/10.1145/3447786.3456231
https://doi.org/10.1145/3447786.3456231
https://doi.org/10.1109/SP.2018.000-5
https://eprint.iacr.org/1998/010
https://doi.org/10.1007/978-3-030-59013-0_35
https://doi.org/10.1109/ICBC51069.2021.9461093
https://doi.org/10.1109/ICBC51069.2021.9461093
https://doi.org/10.1109/ICBC51069.2021.9461093

81. Marsalek, A., Zefferer, T., Fasllija, E., Ziegler, D.: Tackling data inef-
ficiency: Compressing the bitcoin blockchain. In: 2019 18th IEEE In-
ternational Conference On Trust, Security And Privacy In Computing
And Communications/13th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). pp. 626–633 (2019).
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00089

82. Matzutt, R., Kalde, B., Pennekamp, J., Drichel, A., Henze, M., Wehrle, K.: How
to securely prune bitcoin’s blockchain. In: 2020 IFIP Networking Conference,
Networking 2020, Paris, France, June 22-26, 2020. pp. 298–306. IEEE (2020),
https://ieeexplore.ieee.org/document/9142720

83. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Pomerance, C. (ed.) CRYPTO’87. LNCS, vol. 293, pp. 369–378. Springer, Heidel-
berg (Aug 1988). https://doi.org/10.1007/3-540-48184-2 32

84. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009), http://

bitcoin.org/bitcoin.pdf

85. Palm, E., Schelén, O., Bodin, U.: Selective blockchain transaction pruning
and state derivability. In: Crypto Valley Conference on Blockchain Technology,
CVCBT 2018, Zug, Switzerland, June 20-22, 2018. pp. 31–40. IEEE (2018).
https://doi.org/10.1109/CVCBT.2018.00009, https://doi.org/10.1109/CVCBT.

2018.00009

86. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press (May 2013). https://doi.org/10.1109/SP.2013.47

87. Reyzin, L., Meshkov, D., Chepurnoy, A., Ivanov, S.: Improving authenticated dy-
namic dictionaries, with applications to cryptocurrencies. In: Kiayias, A. (ed.) FC
2017. LNCS, vol. 10322, pp. 376–392. Springer, Heidelberg (Apr 2017)

88. Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI.
In: Zikas, V., De Prisco, R. (eds.) SCN 16. LNCS, vol. 9841, pp. 292–309. Springer,
Heidelberg (Aug / Sep 2016). https://doi.org/10.1007/978-3-319-44618-9 16

89. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (May 2000).
https://doi.org/10.1007/3-540-45539-6 15

90. Srinivasan, S., Chepurnoy, A., Papamanthou, C., Tomescu, A., Zhang, Y.: Hyper-
proofs: Aggregating and maintaining proofs in vector commitments. Cryptology
ePrint Archive, Report 2021/599 (2021), https://eprint.iacr.org/2021/599

91. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. In: Galdi, C.,
Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp. 45–64. Springer, Heidelberg
(Sep 2020). https://doi.org/10.1007/978-3-030-57990-6 3

92. White, B.: A theory for lightweight cryptocurrency ledgers (2015), https:

//raw.githubusercontent.com/input-output-hk/qeditas-ledgertheory/

master/lightcrypto.pdf

93. Wood, G.: Ethereum: A secure decentralized generalised transaction ledger (2021),
https://ethereum.github.io/yellowpaper/paper.pdf, accessed: 2021-02-14

94. Zamyatin, A., Avarikioti, Z., Perez, D., Knottenbelt, W.J.: TxChain: Efficient cryp-
tocurrency light clients via contingent transaction aggregation. Cryptology ePrint
Archive, Report 2020/580 (2020), https://eprint.iacr.org/2020/580

27

https://doi.org/10.1109/TrustCom/BigDataSE.2019.00089
https://ieeexplore.ieee.org/document/9142720
https://doi.org/10.1007/3-540-48184-2_32
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/CVCBT.2018.00009
https://doi.org/10.1109/CVCBT.2018.00009
https://doi.org/10.1109/CVCBT.2018.00009
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-319-44618-9_16
https://doi.org/10.1007/3-540-45539-6_15
https://eprint.iacr.org/2021/599
https://doi.org/10.1007/978-3-030-57990-6_3
https://raw.githubusercontent.com/input-output-hk/qeditas-ledgertheory/master/lightcrypto.pdf
https://raw.githubusercontent.com/input-output-hk/qeditas-ledgertheory/master/lightcrypto.pdf
https://raw.githubusercontent.com/input-output-hk/qeditas-ledgertheory/master/lightcrypto.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2020/580

A Towards the Light Client Goal

A number of works and proposals exist towards improving efficiency in state
representation. Merkle trees were initially proposed to store Bitcoin’s UTXO set
(which represents the blockchain state) for fast bootstrapping [24], with a O(lgn)
algorithm for updating and re-balancing the tree across blocks (i.e. updating
values, insertions and deletions of accounts). Then [87] further optimized the
re-balancing algorithm using AVL trees. MiniLedger [48] also used Merkle trees
to represent the history of transactions per participant. Meanwhile, Ethereum
used tries as a more efficient method to represent the account-balance state [93].

In addition, Karakostas et al. [68] proposed a modification of storing the
UTXO set which represents the blockchain state in UTXO-model cryptocurren-
cies by incentivizing constructing “state-friendly” transactions, while [92] pro-
poses a modification on Bitcoin to represent transactions with a trie-based au-
thenticated data structure to enable efficient membership and non-membership
proofs. Stateless clients have also been considered in Ethereum using asyn-
chronous accumulators [23,88]

Aiming exclusively for faster client bootstrapping, [2] suggested to distribute
the state through external file sharing protocols (e.g. Bittorrent). Then [51]
proposed a modification designed for Proof-of-Work blockchains that stores a
constant number of state snapshots, in a similar fashion to Ethereum. Similarly,
[81] proposes a state-based synchronization based on Bitcoin (i.e. snapshot-based
approach), forming a side-chain linked to the main chain, and claiming to reduce
blockchain size by 93%. which however required modifications to Bitcoin, since
blocks with invalid attached states should be rejected.

Works that include blockchain pruning include [41], which replaces a UTXO
set with an account tree that is cryptographically tied to each mined block, and
[85], which proposes a pruning algorithm for permissioned blockchains, executed
by each participant separately, using predicate functions to remove spent trans-
actions. Matzutt et al. [82] proposed a pruning scheme for Bitcoin that makes
snapshots of the Bitcoin state for efficient bootstrapping of new clients, and
also includes a qualitative comparison of related work to pruning and efficient
bootstrapping. In addition, Corda [67] can aggregate (and then prune) previous
transactions into a single new, reissued transaction.

In the context of blockchain redaction, in addition to preliminary works as
[30], we mention [80] designed for “execute-order-validate blockchains” such as
Hyperledger Fabric, however with a goal to improve privacy rather efficiency.
Also [54] and [53] consider “policy-based” blockchain redaction, which can also
serve as a useful tool towards light client implementations.

28

	SoK: Blockchain Light Clients

