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Abstract—Blockchains can guarantee fairness during the ex-
change of digital goods such that in a two-party exchange no
one is defrauded by a malicious opponent. While several notions
of fairness have been discussed in the literature, they all ignore
that damage cannot only be incurred by the malicious failure
of the exchange, but also by an unfair allocation of transaction
costs. To address this issue we: 1. define the novel concept of cost
fairness, which 2. builds on the notion of maximum cost matrices
that formalize transaction costs in different combinations of
benevolent and malicious behavior. 3. We show how limited
notions of cost fairness can be achieved by modifying an existing
exchange protocol or using a container protocol. In particular, we
also provide 4. a tool that let us predict the maximum cost matrix
for a specific protocol execution and, thus, gives trade exchange
parties the possibility to weigh not only the value of transaction
of exchanged goods but also the associated transaction costs.

Index Terms—blockchain, fairness, cost fairness, fair exchange
protocols

I. INTRODUCTION

When talking about the term fairness in electronic com-
merce [3], it usually refers to the property of a protocol that
no party can take advantage over the other party by behaving
maliciously. In the context of data exchange, fairness deals
with the whereabouts of the data to be transferred before and
after the exchange and the funds paid for it. It was shown,
e. g., by Pagnia and Gärtner, that a trusted third party is
required in order to achieve fairness [16], [19]. In real-world
applications, trusted third parties can be public institutions,
notaries, company consortiums, etc. With the emergence of
blockchains, several approaches have been presented how
such a system can be used to improve on existing protocols
used in distributed systems [11], [13], [4], [7]. In particular,
blockchains can be used to play the role of a distributed trusted
third party in case of two or more parties involved in the
protocol do not trust each other [8], [9], [10], [17].

Using the services of a trusted third party incurs costs
regardless of whether a centralized trusted third party is
employed or whether a blockchain plays this role. Classic
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trusted third parties are usually paid with a fixed, e.g., monthly,
rate, or per transaction. In both cases, it is known before the
exchange which participant has to bear which cost. In the
Ethereum blockchain, the transaction fees to be paid stem
from the operations carried out by the smart contract that
implements the trusted third party functionalities [18]. The
fees have to be paid by the person invoking the smart contract
and may vary depending on various system parameters as well
as the smart contract implementation. In particular, the costs
depend on both the invocation of smart contract methods and
the size of transferred method parameters.

If an exchange protocol is realized via blockchains, the
smart contract of the protocol can offer multiple methods,
which have to be called in a defined order by the respective
seller or buyer to conduct a fair exchange. The execution cost
of these methods can differ depending on parameters. Different
sizes and complexities among the smart contract methods can
result in transaction fees to be paid by the seller that are
different than the fees to be paid by the buyer.

Since the concept of fairness as defined by Asokan [3] does
not cover the distribution of the cost to be paid, situations
may arise which contradict to the intuitive understanding
of fairness, as it might be possible to create situations in
which an honest participant has to bear significantly more
cost than a cheating adversary, although formally fulfilling the
characteristic of fairness.

Until now, formal specifications of fairness in digital ex-
change protocols may enforce that either the two goods are
exchanged or no exchange takes place at all, but they ignore
who bears incurred transaction costs of a failed exchange. The
assignment of transaction costs is already a non-negligible
matter when the exchange succeeds. When one of the two
parties causes the exchange to fail and the other party has to
bear significant transaction costs, the overall functioning of
the exchange platform is at stake as parties may be deterred
from using such a platform in the first place. Therefore, our
main contribution is the introduction of cost fairness as an
additional criterion that an exchange protocol on a blockchain
should fulfill.



In order to enable the examination and evaluation of fair
protocols with regard to cost fairness, we discuss and answer
the following research questions:
RQ1 How can cost fairness be defined?
RQ2 How can exchange protocols be optimized regarding

execution cost?
RQ3 How can exchange protocols be optimized regarding cost

imbalances between participating parties?
To support the definition of cost fairness, we introduce the

concept of a maximum cost matrix, which informs about the
cost that can be imposed on the two trading parties in different
configurations of cooperative or non-cooperative behaviour.
Furthermore, as our second contribution, we present BDTsim,
a framework for simulating the behavior of the parties of two-
party exchange protocols in order to determine the maximal
costs under different combinations of cooperative and non-
cooperative behavior of the two parties, which provides input
for a plausible and enforceable allocation of transaction costs
on the two parties.

In Section II we survey related work describing properties
of trading protocols and various notions of fairness found in
the literature. In Section III we present our definition of cost
fairness and Section IV presents how cost fairness can be
determined. We discuss general aspects of cost fairness regard-
ing blockchain-based fair exchange protocols using examples
from existing exchange protocols in Section IV-C - IV-E. We
conclude our work in Section V and provide our ideas for
future work.

II. RELATED WORK ON EXCHANGE PROTOCOLS

A. Fairness of Exchange Protocols

Informally, a protocol is said to be fair if no party can take
advantage over an honestly behaving counterpart. According
to Asokan [3], the formal definition of strong fairness means
that at the point of protocol termination either the exchange
proceeded successfully, i. e., both parties received what they
aimed for, or the exchange failed, i. e., no party received what
it wanted.

A relaxation of this notion is the flavor of weak fairness [3].
According to this property, it is not required that the exchange
either completely succeeded or completely failed at the time
of protocol termination. Instead, it is only guaranteed that if
strong fairness is not given, an honest party can prove to a third
party that the other party received the expected item while
itself did not. Note, it is not required that the third party can
resolve the dispute in the sense that the exchange successfully
happened at the end. Instead, it just needs to be able to verify
that the exchange was unfair.

B. FairSwap

The FairSwap protocol by Dziembowski et al. [9] provides
strong fairness for both parties. It requires a trusted third party
in case of a dispute which is realized by a smart contract.
The implementation provided by the authors works over the
Ethereum blockchain.

The protocol is applicable for any exchange of data which
can be represented as a binary string against money (e. g.,
online purchases of movies or music files). An important
requirement on the data is that it can be identified by its hash
value. In the given example, the Merkle hash of the file is
used as an identifier. This identifier is known to both parties
at the start of the protocol.

An exchange that uses the FairSwap protocol is started by
initializing a smart contract with an offer. The offer contains
the identifier of the digital good, the demanded price, and some
metadata about the digital good that is to be exchanged, e.g.,
the hash of the encrypted data which is transferred to the buyer
at the same time as the contract gets initialized. After receiving
the encrypted good and seeing the initialized smart contract,
the buyer can decide to accept the offer by depositing the
required amount of money in the smart contract. Afterward,
the seller reveals the encryption key by sending it to the smart
contract. Upon receiving the key via the smart contract, the
buyer decrypts the data received at the beginning and compares
it with the expected good. If he obtains the correct data, he
finalizes the exchange by sending a final message to the smart
contract. This triggers the payout for the seller and terminates
the protocol. Otherwise, if the obtained data is not equal to the
file corresponding to the identifier agreed-upon and stored in
the smart contract, the buyer uses the information obtained
by the encrypted data to create a public certificate of the
other party’s malicious behavior. In FairSwap, this certificate
is called proof of misbehavior. Using this proof provided by
the buyer, the smart contract is able to detect the seller’s
behavior and will refund the money deposited by the buyer
when accepting the transfer. After execution, the protocol
terminates resulting in a failed exchange. It is important that
the buyer is only able to create a valid proof of misbehavior
if the seller did not send the correct data. Therefore, the buyer
is not able to falsely request a refund. This property is called
defamation free.

It is easy to see that the execution of FairSwap requires
both parties to pay transaction fees when interacting with the
smart contract. Moreover, even if the buyer behaves honestly,
he needs to increase his financial expenses when sending the
proof of misbehavior to the judge smart contract. This situation
can be considered unfair since the honest party is punished.

C. Financial Fairness

Financial fairness guarantees that an adversary is monetar-
ily penalized, if he aborts upon receiving the output of the
exchange before the honest party gets to know the output.
Financial fairness is often provided by blockchain-based proto-
cols with an inherent cryptocurrency (e. g., Bitcoin, Ethereum)
[5], [12], [2], [1], [14], [15]. This notion does not ensure that
the exchange either succeeds or fails as in strong fairness
and neither guarantees that the honest party has evidence
about the status of the transfer. Financial fairness targets to
compensate the honest party in the case that the honest party
reveals or releases its goods towards the cheating party, but
the cheating party then, after learning about or receiving the



goods, leaves the protocol without giving money or the goods
to be exchanged in return. In this case, a previously deposited
amount of money (also called security deposit or penalty) is
paid as compensation for the missing goods or money as well
as the cost the honest party has to pay for.

However, this notion does not cover protocol abortions prior
to the release or revelation of the goods to be exchanged. Since
cost may also be incurred for, e.g., initialization, which must
also be paid if one of the parties leaves the protocol, it is
desirable for the honest party to be secured, e. g., financially, to
prevent cost without corresponding compensation. Since this
relates to the entire execution of the protocol and not just to a
certain phase as in financial fairness, we need a concept that
includes the cost of the entire protocol execution. In this work,
we define our notion of cost fairness which covers the costs of
the complete execution of the protocol and not, as in financial
fairness, limited to a single phase.

It is necessary to mention that a protocol can also be
designed to achieve none of the aforementioned notions. In
this case, the protocol is said to guarantee no fairness at all.
It might seem not intuitive to aim for a protocol that achieves
no fairness, but such protocol might be cheaper with regard
to transaction costs. Depending on the protocol, achieving
stronger notions of fairness requires additional mechanisms
or interaction rounds, which might be expensive. Moreover,
depending on the value of the exchanged items, a party might
be willing to take some additional risk in order to use a cheaper
protocol.

III. COST FAIRNESS

In this section, we define the concept of cost fairness. We
relate cost fairness to blockchain-based exchange protocols in
Section IV.

When conducting a two-party exchange which requires a
trusted third party, the following costs may be encountered by
seller and/or buyer:

• Payment: the items/money used to pay for a traded good.
• Fees: the money used to pay for trusted third party

operations.
• Fines: cost a buyer or seller must bear bear in case of

protocol violation. The protocol defines the recipient of
the fines, usually the trading partner as compensation or
even to a third party (e. g., an infrastructure operator, or
a charitable organization).

In the remainder of our work the term transaction costs refers
to the sum of costs that do not include payment, i. e., fees plus
fines spent minus fines received.

A. Modeling Cost Fairness as Non-cooperative Game

Game theory models behavior by two (or more) parties
that individually pursue strategies that maximize their payoffs.
In our setting, the available strategies are to complete the
exchange of goods by conforming to the exchange protocol
or not.

For each valid combination of strategies, we model the costs
for the two involved parties. The core idea of our proposal

is that we use a blockchain as a trusted third party that
enforces payoffs and limits costs in such a way that parties
are motivated to conform to the fair and cost-fair exchange
protocol.

When talking about two-party protocols, we have four
possible combinations of strategies on how the parties S and
B can behave:

• S and B both follow the protocol
• S follows the protocol while B does not
• S does not follow the protocol while B does
• neither S nor B follow the protocol

For the remainder of the paper, we call S and B to be honest
if they follow the protocol and malicious if they do not.

Depending on the protocol, the seller and buyer can act
maliciously in different variants (e. g., in FairSwap, the seller
by sending wrong data or the wrong key). Since different
variants can result in different costs, and we are interested
in an upper bound costs estimation of exchange protocols
for each of these cases, we consider the maximum costs for
each party for each of the combinations of strategies listed
above. By summarizing the costs of all operations during a
protocol execution and computing the maximum costs for all
possible sequences of operations, we can calculate the costs
for seller and buyer for the cases that both parties are honest
(Shh and Bhh), honest seller with malicious buyer (Shm and
Bhm), malicious seller with honest buyer (Smh and Bmh),
and both parties malicious (Smm and Bmm). We write down
these results of upper bound costs in a maximum cost matrix
(see Table I).

Maximum Cost Matrix B honest B malicious
S honest (Shh, Bhh) (Shm, Bhm)

S malicious (Smh, Bmh) (Smm, Bmm)

TABLE I: Maximum cost matrix providing information about
upper bound transaction costs for seller S and buyer B.

A maximum cost matrix can also be used to determine
whether the risk in terms of financial loss in case of cheating
is distributed evenly between both parties, i. e., Shm ≈ Bmh.

We provide an example of how a maximum cost matrix can
be calculated for a given blockchain-based protocol in Section
IV-C.

B. Full Cost Fairness

Definition 1. Given a maximum cost matrix M with entries
Shh, Bhh, Shm, Bhm, Smh, Bmh, Smm and Bmm, an
exchange protocol P achieves full cost fairness, if all of the
following criteria are met:

CF1 In case of both parties are honest, the maximum costs
for protocol execution (Shh, Bhh) have to be known to
the parties before the actual protocol starts.

CF2 In case of one party stays honest while the other party
acts maliciously, the honest party must get compensated
for any transaction costs it has incurred, i. e., Shm =
0 ∧Bmh = 0.



Note that property CF1 allows both parties to decide if they
are willing to accept the required costs. Moreover, property
CF2 does not upper bound the costs for malicious behavior
since a malicious party can deviate arbitrarily from the proto-
col specification.

The requirements CF1 and CF2 result in the maximum cost
matrix to be achieved by an exchange protocol as depicted
in Table II in order to call a protocol to be full cost fair. As
long as all values from the maximum cost matrix of a given
exchange protocol are lower or equal compared to the values
in the maximum cost matrix required to achieve for full cost
fairness, a protocol achieves full cost fairness.

Full Cost Fairness B honest B malicious
S honest (Shh, Bhh) (0, ∞)

S malicious (∞, 0) (∞, ∞)

TABLE II: Maximum cost matrix to be achieved for full cost
fairness.

C. Partial Cost Fairness

Depending on the environment, it might be non-trivial to
achieve full cost fairness. In the literature, deposits are fore-
seen for the case that the buyer (seller) abandons the protocol.
The deposited funds can be paid out to the other party as a
compensation.1 One might consider to require deposits before
the execution of a transaction. If the depositing itself, however,
also incurs transaction costs, it implies a recursive requirement
to put forward deposits for protecting upcoming operations. It
follows that if the first operation of the protocol is charged with
fees, it is not possible to secure the first transaction using a
deposit for compensation in case of one party abandoning the
protocol after the first operation. As full cost fairness seems
impossible to be achieved in the aforementioned scenario, we
have developed a weaker notion of cost fairness:

Definition 2. Given a maximum cost matrix M with entries
Shh, Bhh, Shm, Bhm, Smh, Bmh, Smm and Bmm, an
exchange protocol P is partial cost fairness for the S (B),
if all of the following criteria are met:

PCF1 In case of both parties are honest, the maximum costs
for protocol execution (Shh, Bhh) have to be known to
the parties before the actual protocol starts.

PCF2 In case of S (B) is honest while B (S) is malicious,
S (B) should get compensated for any transaction cost
incurred (Shm = 0 ∨ Bmh = 0).

PCF1 and PCF2 result in a maximum cost matrix as
depicted in Table III.

Partial Cost Fairness B honest B malicious
S honest (Shh, Bhh) (Shm, ∞)

S malicious (∞, Bmh) (∞, ∞)

TABLE III: Maximum cost matrix to be achieved for partial
cost fairness with the condition Shm = 0 ∨ Bmh = 0.

1In the literature, depositing funds for this purpose is also referred to as
security deposit or penalty.

D. Container Protocol for (Re-)Distribution of Transaction
Cost

Using a container protocol as described below, the seller
and buyer can agree on different cost distributions than given
by the protocol itself. The container protocol consists of a
deposit phase, where one or both parties deposit funds into
the container protocol’s smart contract. Then, the contained
protocol is executed. In the end, the container protocol will
do a payout as agreed at the beginning of the protocol.

1) Uninformed Container Protocol: When the contained
protocol is used without modifications, the container protocol
cannot distinguish between the strategies used by the seller or
buyer. Therefore, there cannot be a strategy-dependent payoff
in the payout phase of the container protocol. Therefore, the
seller and buyer can only agree on one amount ∆, which has
to be deposited at the beginning of the protocol and will be
paid off at the end (see Table IV). The uninformed container
protocol can be used to achieve partial cost fairness.

Uninf. C. P. B honest B malicious
S honest (Shh + ∆, Bhh −∆) (Shm + ∆, Bhm −∆)

S malicious (Smh + ∆, Bmh −∆) (Smm + ∆, Bmm −∆)

TABLE IV: Maximum cost matrix for the uninformed con-
tainer protocol.

2) Informed Container Protocol: With minimum protocol
modifications, it is possible to inform the container protocol
about the strategies used by the seller or buyer as deter-
mined by the smart contract in order to ensure e. g. strong
fairness. Using this information, the container protocol can
do a strategy-dependent payout at the end of the protocol.
Therefore, it is possible that the seller and buyer agree on
different amounts ∆xy which will be paid off depending on the
protocol outcome (see Table V). Note: as long as the deposit
phase of the container protocol is charged with fees, it is still
not possible to use the container protocol to achieve full cost
fairness.

Inf. C. P. B honest B malicious
S honest (Shh + ∆hh,

Bhh −∆hh)
(Shm + ∆hm,
Bhm −∆hm)

S malicious (Smh + ∆mh,
Bmh −∆mh)

(Smm + ∆mm,
Bmm −∆mm)

TABLE V: Maximum cost matrix for the informed container
protocol.

IV. COST FAIRNESS IN BLOCKCHAIN-BASED EXCHANGE
PROTOCOLS

We will relate our definitions of cost fairness to blockchain-
based exchange protocols. To this end, we first elaborate on
the costs incurred by blockchain-based protocols and present
a way to estimate these costs by our simulation tool BDTsim.
Next, we analyze the FairSwap protocol in regard to cost
fairness and discuss methods to influence transaction costs.



A. Calculation of Protocol Execution Cost

When all costs are well defined, we can calculate the
costs for an exchange protocol analytically as well as in an
evaluative manner. Since we focus our work on blockchain-
based exchange protocols, we need a cost definition for
blockchain interactions, which is provided in [18, p. 25]
for the Ethereum blockchain. We assume that the costs for
additional infrastructure required for using an Ethereum based
fair exchange protocol (e. g., internet connection, computa-
tional resources) are negligibly low compared to the costs
arising from Ethereum transactions in terms of transaction
fees. Therefore, we only consider the Ethereum transaction
fees in the following.

Note that the Ethereum blockchain has a special character-
istic regarding the costs to be paid not only for the number of
bytes sent to the smart contract, but also the value of the bytes.
Ethereum charges more transaction fees for bytes with values
unequal to zero than for bytes equal zero. Since blockchains
make extensive use of cryptographic hashes whose values are
deemed to be unpredictable regarding the input parameters,
even a slight change of a transaction (e. g., different execution
time) will result in a different hash. These differences may
alter the number of byte-wise zeros and may therefore require
different transaction fees. This can even happen for multiple
protocol executions with an identical set of parameters. Nev-
ertheless, these differences are negligibly small and do not
tackle the concept of cost fairness in general. However, when
applying the definitions of cost fairness to an Ethereum-based
protocol, the limits presented by the maximum cost matrix
should be compared with a certain tolerance.

B. BDTsim: Framework for Blockchain-based Data Trading
Simulations

Since the costs in the form of transaction fees may depend
on a large number of parameters (see Section I), an analytical
analysis of protocol execution costs might be cumbersome to
conduct. For this reason, we developed BDTsim2, a simulation
tool for Ethereum-based exchange protocols. We have chosen
Ethereum as (first) platform to be supported, since Ethereum
is the most known blockchain platform with support for smart
contracts. This also allows us to run BDTsim on derivates of
the Ethereum blockchain like Quorum3. BDTsim is written in
Python and available as open-source software. In BDTsim,
protocol developers and users can model the behavior of
seller and buyer (i. e., by specifying the variants of operations
conducted by the parties, including operations not allowed
by the protocol to simulate a malicious party) and run a
simulation using the original, unmodified Ethereum smart
contract presented along with the concept of the protocol. As
a result, BDTsim returns the transaction fees to be paid and
possible incoming fund transfers in all honest/malicious cases

2Blockchain Data Trading Simulator
Sources: https://gitlab.com/MatthiasLohr/bdtsim/
Documentation: https://matthiaslohr.gitlab.io/bdtsim/

3Permissioned variant of the Ethereum blockchain –
https://consensys.net/quorum/

as listed in Section III-A. These values can be used to create
a maximum cost matrix for the simulated protocol (for the
set of used protocol parameters during protocol execution).
Furthermore, BDTsim has the ability to visualize possible
protocol paths and costs per-operation to help identifying
expensive parts of a protocol. This way, BDTsim can be used
during protocol development to show and reduce the cost to
be paid.

As an example of a protocol which can be used for conduct-
ing an exchange, we briefly describe a rudimentary exchange
protocol that achieves no fairness for the buyer. In the Simple
Payment Protocol the two parties agree off-chain about the
digital good and the amount of money to be exchanged. After
the agreement, the buyer transfers the demanded payment
to the seller. Upon receiving the money, the seller can send
the digital good to the buyer which completes the exchange
protocol. The advantages of this protocol are its simplicity and
the low cost. Since the protocol only contains a single on-
chain transaction which, additionally, is only a cheap payment
transaction, the overall transaction costs are low. However, this
protocol does not provide any fairness guarantee for the buyer.
After sending the money to the seller, the seller can freely
decide whether or not to send the agreed-upon digital good.
Moreover, there is no way for the buyer to show the dishonesty
of the seller and fairness cannot be recovered. Additionally,
although the transaction cost are rather low, the complete
financial expenses are paid by the buyer. This holds even if
the buyer is honest but the seller behaves maliciously.

BDTsim currently contains simulation support for the Sim-
plePayment protocol (used for demonstration and testing is-
sues) as well as FairSwap (more protocols will be added in
the future, support is planned for the protocol of Delgado-
Segura [8], OptiSwap [10] and SmartJudge [17]). In Section
IV-C we describe a simulation of FairSwap using BDTsim
and present the results. BDTsim is currently limited to smart
contracts running on the Ethereum blockchain and is only able
to monitor interactions, money transfers, and resulting costs
of on-chain transactions. As long as it is within these limits
and the number of possible sequences of operations allowed
by the protocol is within reasonable limits, a protocol can be
simulated by BDTsim.

For implementing support for a new protocol, the protocol
author has to model the behavior of seller and buyer (all
distinguishable variants) as code, which interacts with the
environment (blockchain) provided by BDTsim. Off-chain
interactions, such as direct data transfer, does not need to
be implemented, since BDTsim only monitors blockchain
interactions. However, since later steps in the protocol might
require to access results from previous off-chain interactions
between seller and buyer, sometimes off-chain interactions
have to be implemented partially (e. g., in FairSwap the buyer
has to use data encrypted by the seller in its last step of the
protocol, so it is required to implement the encryption).

Listing 1 shows the Python source code modeling the
behavior (honest and malicious) for seller and buyer for
the SimplePayment protocol: For the modeling, we focus on



rational and distinguishable behavior. E.g., the buyer could
send no money or an amount smaller than the price if acting
maliciously. However, since both would result in the same
situation that the goods are not (fully) paid and a rational
malicious buyer would try to optimize his transaction costs,
he would prefer the cheaper way of not sending any funds.

BDTsim internally monitors method calls to
protocol_path.decide(...), builds up a tree of
all possible protocol paths and runs a simulation for each
possible path. Correct functionality of BDTsim is ensured by
unit tests.

C. Cost Fairness Evaluation of FairSwap

FairSwap [9] allows to perform an exchange of digital good
against money over a blockchain like Ethereum. The authors
provide a full security proof showing that their protocol is fair
according to the strong fairness definition. We evaluate which
definitions of cost fairness FairSwap fulfills.

We model all distinguishable variants of seller and buyer
behavior in BDTsim. For the simulation, we use the Ethereum
smart contract initially published by the authors of FairSwap
4, except for small bug fixes and fixes for compatibility issues
incurred by updates of the Solidity language specification. The
models as well as the smart contract used for simulation are
contained in the BDTsim project.

FairSwap supports two parameters for protocol execution.
The first one states the number of chunks into which the
complete data is split (in the practical implementation limited
to values of the power of 2) and is denoted by n. The second
parameter denotes the size of a single chunk in bytes (in the
implementation limited to a multiple of 32).

FairSwap (n = 2, s = 32) B honest B malicious
S honest (1,335,228, 51,363) (1,263,039, 0)

S malicious (1,320,350, 57,522) (1,320,350, 57,522)

(a) FairSwap simulation with n = 2, s = 32

FairSwap (n = 128, s = 32) B honest B malicious
S honest (1,336,840, 51,308) (1,264,695, 0)

S malicious (1,321,984, 65,355) (1,321,984, 65,355)

(b) FairSwap simulation with n = 128, s = 32

FairSwap (n = 128, s = 256) B honest B malicious
S honest (1,337,862, 51,330) (1,265,739, 0)

S malicious (1,322,994, 91,039) (1,322,994, 91,039)

(c) FairSwap simulation with n = 128, s = 256

TABLE VI: Maximum cost matrix of the FairSwap [9] proto-
col. Costs are given in Gas as used as operation cost unit in
Ethereum [18, p. 4].

As we can see when comparing Table VI to the requirements
for full cost fairness or partial cost fairness, FairSwap does not
achieve either, although it meets the criteria of strong fairness
(see the proof in [9]). This shows that when using FairSwap
in practice, both parties can use the protocol to mislead the
other party to pay transaction fees without any compensation
and thus cause financial damage. Conducting a more detailed

4https://github.com/lEthDev/FairSwap

analysis, we can see that a major part of the total costs is
caused by smart contract deployment (1, 263, 039 gas when
n = 2, s = 32, see Table VIa). When the buyer and the seller
agree on a trade using FairSwap (the initial agreement is done
off-chain) and the seller initializes the protocol by deploying
the smart contract, the buyer can leave the protocol without any
costs while the seller has to pay for a significant amount of gas.
In reverse, if the buyer is honest but the seller acts maliciously,
the buyer has to pay more gas compared to the situation where
the seller is honest to reclaim the money deposited for paying
for the data to be traded. The difference gets even higher with
an increasing number of chunks or data size (see Tables VIb
and VIc).

D. Cost Fairness in Public and Private Blockchains

As already discussed in Section III-B, it is not possible to
achieve full cost fairness as long as the first protocol operation
is charged with a fee. Since public blockchains like Bitcoin and
Ethereum charge for any transaction, it is not possible to create
a protocol that realizes full cost fairness by relying solely on
on-chain transactions. For now, we also do not know about
any mechanism using off-chain transactions for achieving full
cost fairness for a protocol running on a public blockchain.

Public blockchains use transaction fees as an incentive
for people to participate in extending the blockchain, the
situation is different for permissioned blockchains. Permis-
sioned blockchains are usually operated in a specific context,
e. g., by a company or a consortium of companies. There
are multiple possible reasons for operating a permissioned
blockchain instead of using a public instance, e. g., privacy,
well-known identities of participants (they have to authenticate
in order to access the permissioned instance), performance
and cost reduction. Since the operator can decide about the
conditions for accessing and interacting with the blockchain,
he can also decide about the transaction fees to be paid.
Hyperledger Fabric [6], a framework for realizing customized
private blockchains does not even have a concept for digital
currency at all, which implies that no transaction fees can
be charged. However, transaction fees can be realized when
creating a smart contract (“chaincode”) for a Hyperledger
Fabric network.

When working in a blockchain environment where no trans-
action fees are charged, full cost fairness regarding transaction
fees is provided for any protocol. However, there might
be other costs (e. g., monthly fees for participating in the
permissioned blockchain) which should be considered when
discussing cost fairness.

E. Minimizing Cost towards Cost Fairness

As mentioned in Sections III-C and IV-D, it is not possible
to achieve full cost fairness when only considering on-chain
transactions charged with transaction fees. However, for prac-
tical application, there is a general interest in reducing costs.
For blockchain-based protocols, this implicates the reduction
of transaction fees.



Listing 1: Python source code for modelling the behavior of seller and buyer for the SimplePayment (payment after goods
release, direct payment without smart contract) protocol for simulation in BDTsim.
class SimplePayment(Protocol):
def execute(self, protocol path: ProtocolPath , environment: Environment ,

data provider: DataProvider , seller: Account, buyer: Account, price: int):
release goods = protocol path.decide(seller, ’release goods?’, [’yes’, ’no’])
if release goods == ’yes’: # honest seller
# At this position, off−chain operations for releasing the goods could be implemented.
# Since BDTsim does not monitor off−chain operations , implementation is not required by BDTsim.
pay = protocol path.decide(buyer, ’pay?’, [’yes’, ’no’])
if pay == ’yes’: # honest buyer
environment.send direct transaction(buyer, seller, price) # payment

else: # malicious buyer
pass # buyer received the goods but leaves protocol without payment

else: # malicious seller
pass # seller leaves the protocol unexpectedly , no reaction from buyer

As we mentioned in III-C and IV-D, the obstacle for not
achieving full cost fairness are the costs to be paid for the first
transaction in the protocol. Partial cost fairness, which we can
achieve using a container protocol (see Section III-D), implies
an imbalance between costs for seller and buyer (see Sections
III-C and III-A). In order to reduce the imbalance of payments
for a protocol that already achieves partial cost fairness, the
first transaction has to be as cheap as possible. Simultaneously,
to have the initializing party deposited funds in order to
provide partial cost fairness, the first transaction must come
along with a funds transfer, as long as no off-chain concept is
used for depositing the money. In Ethereum, a simple money
transfer to an actual account (not a smart contract) requires
exactly 21,000 gas. Transferring money to a smart contract
requires at least 21,000 gas, increasing dependently on the
number of operations the smart contract method called for
the transfer. Therefore, to reduce the imbalance as much as
possible, the smart contract method used for initializing the
protocol and receiving the money deposit from the initializing
party should be as small as possible.

V. CONCLUSION

This work focuses on the cost in terms of transaction fees
which must be paid for executing two-party exchange proto-
cols. For a comparable notation of the costs, we introduced the
concept of a maximum cost matrix. For cost calculation, we
presented BDTsim, our simulation framework for blockchain-
based data trading. From the concept of a maximum cost
matrix, we derived the definition of cost fairness, answering
RQ1. We used BDTsim for simulation of the FairSwap pro-
tocol, showing that, even if it reaches formal fairness, cost
fairness can not be achieved. We presented a general container
protocol which can be used to reduce imbalances between the
costs of participating parties (answering RQ3) and presented
some ideas, how a blockchain-based exchange protocol can
be optimized in order to generally reduce protocol execution
cost, tackling RQ2.

We figured out smart contract deployment to be a major
cost driver. Depending on the protocol, it might be possible
to create reusable smart contracts for the protocol, which
may initially be more expensive to deploy due to increased

complexity. However, subsequent protocol executions do not
require to deploy the smart contract again, therefore, the
average costs for deploying the smart contract distributed
among all protocol executions decrease with an increasing
number of protocol executions. In future work, we want to
conduct a broader evaluation of existing exchange protocols
(e. g., using [10], [8] [17], etc.) for identifying the major cost
drivers such as smart contract deployment. Using the results of
the evaluation, we aim to reduce the overall cost of exchange
protocols as well as the imbalance between the cost to be paid
by participating parties.

Furthermore, we want to research if our definition of full
cost fairness can be achieved in public blockchains applying
approaches known from blockchain-based state channels.
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