
Information Security in the Quantum Era
Threats to modern cryptography: Grover’s algorithm

Mihai-Zicu Mina1 and Emil Simion2

1Faculty of Automatic Control and Computers
2Faculty of Applied Sciences

University POLITEHNICA of Bucharest, 060042 Bucharest, Romania

mihai zicu.mina@stud.acs.upb.ro emil.simion@upb.ro

Abstract

Information security plays a major role in the dynamics of today’s interconnected
world. Despite the successful implementation and effectiveness of modern cryptographic
techniques, their inherent limitations can be exploited by quantum computers. In this
article we discuss Grover’s quantum searching algorithm and its impact on the security of
modern symmetric ciphers. More specifically, we present its formal description and give
an implementation of the algorithm using IBM’s Qiskit framework, which allows us to
simulate and run the program on a real device.

Keywords: symmetric cipher, quantum computer, Grover’s algorithm

1 Context and motivation

The entire global security infrastructure essentially relies on a combination of the public-
key cryptography model envisioned in late 1970s to perform key distribution and the use of
fast symmetric ciphers to perform encryption [1–4]. RSA is ubiquitous in such context, but
its effectiveness and security only rely on a computational hardness assumption. In other
words, powerful enough computational devices could pose a threat. As it turns out, quantum
computers started to receive much attention in part due to this particular aspect. Shor’s
algorithm [5] could break RSA in a timely manner, which is something we can definitely not say
about even the most powerful supercomputer we have today. For now though, existing quantum
computers are not advanced enough to run Shor’s algorithm for those large parameters used
by RSA, however the threat is real, inevitable and hence must be addressed.

Symmetric ciphers such as AES suffer from being vulnerable to some degree to Grover’s
algorithm [6], a fundamental result in the quantum information field that can speed up brute-
force attacks, reducing the security of the key to half its length, meaning 256-bit keys offer the
security of 128-bit keys against a quantum computer running Grover’s algorithm [7–9]. Here
we focus on providing a detailed description of how Grover’s algorithm operates and we analyze
some results for an implementation of it on IBM’s Quantum Experience platform, with source
code given in Listing 1.

1

mailto:mihai_zicu.mina@stud.acs.upb.ro
mailto:emil.simion@upb.ro

2 Grover’s algorithm

2.1 General description

In 1996, Lov Grover devised an algorithmic procedure that uses the principles of quantum
computation to search for an element in an unstructured database [6]. The algorithm bears his
name and it offers a quadratic speedup over classical methods for the same task. Thus, a direct
application of the algorithm is searching for symmetric keys in key spaces, which are essentially
unstructured databases. Since AES is pretty much vulnerable to brute-force attacks only, this
is exactly how Grover’s algorithm threatens it. Considering an n-bit AES key, the size of the
key space is N = 2n. Classically, we need N/2 iterations on average to find the desired key,
but we only need roughly

√
N = 2n/2 iterations using Grover’s algorithm, effectively reducing

the security of the key to n/2 bits in a quantum scenario. Grover’s algorithm makes the entry
we are looking for more likely to be found than any other one from the entire search space. An
oracle is used to “mark” the desired solution, followed by several iterative transformations that
aim to amplify the probability associated with the correct answer.

Before proceeding to the detailed analysis of the algorithm, let’s have a closer look at what
we are trying to achieve, from a non-quantum perspective [10]. We consider a binary function
that takes an n-bit string as input and outputs either 0 or 1. Assuming we are given the
function as a oracle and the output is always 0 except for one value, we are asked to find the
solution for which the output is non-zero.

f : {0, 1}n → {0, 1}, f(x) = 0, ∀ x 6= x∗

Given this context, all we can do is randomly choose a value from the set of bit strings and
query the oracle for the output. There are N = 2n elements, making our guess correct with a
probability of 1/N . For simplicity, the domain of the function is labeled X and our first guess
is element x1. When f(x1) = 1, we got really lucky and the problem is solved with one query.
Most likely, though, we are not done so fast and we must take another guess x2. After this first
query, the probability of having found the solution is

Pr(x1 = x∗) + Pr(x2 = x∗) ≡ p1 =
2

N
, x1 ∈ X, x2 ∈ X \ {x1}.

Next, we query again for x2 and in case it is still not the solution, we choose x3. After this
step, the probability associated with the solution is

p2 = p1 +
1

N
=

3

N
, x3 ∈ X \ {x1,x2}.

Following this line of reasoning and taking into consideration the worst case scenario, the
solution is found after we have swept through all the other values. Generally, we notice that
the probability of our guess being the solution increases after each query. Indeed, after k = N−1
queries, the probability becomes 1.

pk =
k + 1

N
, xk+1 ∈ X \ {x1, . . . ,xk}

Grover’s algorithm operates on a somewhat similar principle, but requiring a significantly
lower number of queries to the oracle in order to find the solution with high probability. The
implementation of the oracle is given by a multi-qubit gate of the following form:

Uf : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 , x ∈ X, y ∈ {0, 1}.

2

We can set the n-qubit first register to an equally weighted superposition of all states in the
computational basis, while keeping the second register initialized in |0〉.

Uf |+〉⊗n |0〉 = Uf

(
1√
N

∑
x∈X

|x〉

)
|0〉 =

1√
N

∑
x∈X

|x〉 |f(x)〉 ≡ |Ψ〉

Given how the function is defined, we can split the expression to emphasize the solution:

|Ψ〉 =
1√
N
|x∗〉 |1〉+

N − 1√
N

∑
x 6=x∗

|x〉 |0〉 .

A straightforward measurement at this point will return the solution with a probability of 1/2n,
which is no better than the classical approach. The trick is to find a way to manipulate the
state of the quantum register in order to have a higher probability associated with the solution
state. One first step is to use the phase kickback idea and notice that we can exclude the target
qubit from our discussion, as the transformation leaves it intact.

Uf |x〉 |−〉 = (−1)f(x) |x〉 |−〉 =⇒ Uf : |x〉 7→ (−1)f(x) |x〉

The oracle has been redefined to operate on the data register only. We notice that the element
for which we are searching is now identified by having its state get a phase shift.

Setting aside the initialization and measurement phases, the algorithm basically consists
of a successive application of a transformation, which boosts the probability amplitude of the
solution state and diminishes those of the other states in the superposition. The iteration
first queries the oracle, marking the solution with a global phase. This makes the probability
amplitude become negative, which is then “reflected” about the mean value of all probability
amplitudes, making it positive again, but more importantly, larger. We need to define another
transformation before being able to describe how this “reflection” happens. For this, let’s first
label the uniform superposition of the n-qubit data register,

|Ψ〉 ≡ |+〉⊗n = H⊗n |0〉⊗n .

Now, we consider the transformation that induces a global phase of π radians on all states of
the register orthogonal to |00 . . . 0〉,

U0 : |0〉⊗n 7→ |0〉⊗n , |x〉 7→ − |x〉 , |x〉 6= |0〉⊗n .

The following transformations are known as Grover diffusion and Grover iteration, respectively:

UΨ ≡ H⊗nU0H
⊗n, G ≡ UΨUf .

The complete quantum circuit is depicted in Figure 1. Each pair of gates enclosed in dashed
lines is the Grover iteration, which is applied O(

√
N) times. Finally, a measurement on the

first n qubits will return the solution with a probability close to unity. The last qubit is the
ancillary state, such that a query to the oracle will mark the solution by inverting the sign of
the probability amplitude. A simplified and more compact version of the circuit is shown in
Figure 2, where the last qubit is omitted and the overall Grover iteration is represented as a
single gate.

3

|0〉

H⊗(n+1) Uf

UΨ

Uf

UΨ

· · ·

Uf

UΨ

|0〉 · · ·

...
· · · ...

|0〉 · · ·

|1〉 · · · H |1〉

Figure 1: Quantum circuit for Grover’s algorithm

|0〉

H⊗n G G

· · ·

G
|0〉 · · ·

... · · · ...

|0〉 · · ·

Figure 2: Compact quantum circuit for Grover’s algorithm

We already saw that an application of the oracle gate will shift the phase of the searched
state. For any given superposition state of n qubits, we would like to know how the effect of the
Grover diffusion operator is a reflection about the mean value of the probability amplitudes.
Let’s consider such a state and adopt the convention of writing the computational basis elements
as their integer equivalents, e.g. for n = 3, we have |101〉 ≡ |5〉.

|Φ〉 =
N−1∑
i=0

φi |i〉

It turns out we have the following relation we can use for simplicity:

UΨ = H⊗nU0H
⊗n ⇐⇒ UΨ = 2 |Ψ〉〈Ψ| − I

Applying the transformation on the previous state yields

UΨ |Φ〉 = 2 |Ψ〉 〈Ψ|Φ〉 − |Φ〉 .

The inner product expands to

〈Ψ|Φ〉 =

(
1√
N

∑
i

〈i|

)(∑
i

φi |i〉

)
=

1√
N

∑
i

φi 〈i|i〉 =
1√
N

∑
i

φi.

The multiplication of |Ψ〉 by twice this value results in

2 〈Ψ|Φ〉 |Ψ〉 =
2

N

∑
i

φi
∑
i

|i〉 = 2µ
∑
i

|i〉 .

4

Finally, we arrive at

UΨ |Φ〉 = 2µ
∑
i

|i〉 −
∑
i

φi |i〉 =
∑
i

(2µ− φi) |i〉 =
∑
i

(µ+ µ− φi) |i〉 .

Therefore, the transformation will adjust each probability amplitude by an amount equal to
the difference between the mean and itself. When the probability amplitude associated with
the solution is first made negative by Uf , the mean will decrease, thus making the difference
positive only in this case and negative for all other amplitudes.

Since we do not possess any information about the structure of the database that can help us
restrict the search, we can only prepare a uniform superposition as input to the algorithm. Dur-
ing the execution, the element we are looking for will have its probability amplitude increased.
Having introduced the necessary concepts, we can now analyze the circuit.

2.1.1 An inductive approach

In the initial superposition state, the coefficient for the solution is labeled ψ0∗, while the
coefficient of all the other states is ψ0.

|Ψ0〉 =
1√
N

∑
x

|x〉 =⇒ Uf |Ψ0〉 = − 1√
N︸︷︷︸

ψ0∗

|x∗〉+ (N − 1)
1√
N︸︷︷︸
ψ0

∑
x 6=x∗

|x〉

After passing through Uf , the sign of ψ0∗ is inverted and the mean decreases from the initial
µ0 = 1/

√
N to

µ1 =
1

N

[
(N − 1)ψ0 − ψ0∗

]
.

The diffusion operator then reflects the coefficients about the new mean value:

ψ1∗ = 2µ1 − (−ψ0∗) =
1√
N

(
2N − 4

N
+ 1

)
≈ 3√

N
= 3ψ0∗,

ψ1 = 2µ1 − ψ0 =
1√
N

(
2N − 4

N
− 1

)
≈ 1√

N
= ψ0,

approximations that hold when N is large enough. We notice that after the first iteration,
the probability amplitude of the solution is almost three times higher, while the remaining
amplitudes decrease. Following the same procedure,

µ2 =
1√
N

(
N2 − 8N + 5

N

)
=⇒

ψ2∗ = 2µ2 − (−ψ1∗) =
1√
N

(
5N2 − 20N + 10

N2

)
≈ 5ψ0∗,

ψ2 = 2µ2 − ψ1 =
1√
N

(
N2 − 12N + 10

N2

)
From this pattern, we observe that

ψk∗ ≈ (2k + 1)ψ0∗ =
2k + 1√

N
,

although it clearly cannot increase boundlessly, as the norm of the state vector is preserved
throughout the circuit. In fact, since after each iteration the gain corresponding to the solution
surpasses how much the other states are diminished, the mean will continuously decrease,
which in turn affects the next iteration. In this manner, when the mean becomes negative, the

5

algorithm performs worse and it is moving away from finding the solution. Thus, the execution
should stop when the mean is very close to zero, which indicates a maximum value for the
probability of getting the solution after measurement.

|µk| ≈ 0 =⇒ ψk∗ ≈ 1 =⇒ |ψk∗|2 ≡ pk∗ ≈ 1

By disregarding the gradual decrease of the mean and we consider the above relation between
the amplitude after iteration k and the initial amplitude, we directly obtain

ψk∗ ≈
2k + 1√

N
= 1 =⇒ k ≈

√
N − 1

2
≈
√
N

2
,

which is a good number once rounded off, but it does not get the probability sufficiently close
to unity, because the increase in amplitude slows down, making the actual number of required
iterations higher.

2.1.2 A more accurate approach

Superposition |Ψ0〉 can be expressed in terms of the solution state |Ψs〉 and a superposition
of the remaining, non-solution states, |Ψr〉. Considering the normalization constraint the state
obeys, the probability amplitudes can be redefined [10].

|Ψ0〉 =
1√
N
|Ψs〉+

√
N − 1

N
|Ψr〉 = sin θ |Ψs〉+ cos θ |Ψr〉 , θ = arcsin

1√
N

After the first Grover iteration is applied and some trigonometric identities are exploited,

|Ψ1〉 = G |Ψ0〉 =
(

2 |Ψ0〉〈Ψ0| − I
)(
− sin θ |Ψs〉+ cos θ |Ψr〉

)
= sin 3θ |Ψs〉+ cos 3θ |Ψr〉 .

The state after k Grover iterations then becomes

|Ψk〉 = Gk |Ψ0〉 = sin
(
(2k + 1)θ

)
|Ψs〉+ cos

(
(2k + 1)θ

)
|Ψr〉 .

In order to make sure that the measurement is very likely to return |Ψs〉 = |x∗〉, it follows that

sin
(
(2k + 1)θ

)
≈ 1 ⇐⇒ (2k + 1)θ ≈ π

2
=⇒ k ≈ π

4θ
− 1

2
≈ π

4

√
N,

making the ideal number of Grover iterations

k =
⌊π

4

√
N
⌋
.

2.2 Examples and analysis

We now present an implementation of Grover’s algorithm using IBM’s Qiskit framework [11].
This example considers a variable n-qubit register, with source code given in Listing 1. Since the
algorithm itself relies on repeated applications of the same transformation, the implementation
takes into account this modular feature and is contains subcircuits, which are then attached
together to build the larger circuit.

The program allows us to specify the solution state explicitly or it can be chosen randomly.
Either way, the function that defines the effect of the oracle has a general implementation that
will properly mark the selected state. Furthermore, the oracle and the diffusion transformation
are subcircuits that adapt with the chosen number of qubits n. The algorithm can be either
simulated using Qiskit’s internal simulator or it can be executed remotely on IBM’s available
backends, including real devices. Both simulation and real execution results are discussed. The
output of the program gives information about the backend that is being used, the searched
state, the ideal number of iterations and the associative array corresponding to measurement.

Note: Qiskit’s convention associates the last qubit of a register to the topmost qubit of the circuit.

6

2.2.1 Simulation

Figure 3: p vs. N graph

The most simple case when n = 2 actually indicates an
impressive start. After just one iteration, the probability of
the solution state is boosted to exactly 1, as Figure 4a de-
picts below. In this case, state |10〉 was selected at random
and out of all 2000 preparations of the qubit register and
runs of the algorithm, the desired state came out every time
after measurement. For n = 3, the calculated probability
of finding the solution after k = 2 iterations is about 0.945.
One experiment reveals that state |010〉 is found with prob-
ability 0.946, while the others are negligible (Figure 4b).

As n increases, the probability p associated with the
marked state approaches 1, for the same number of itera-
tions k, as displayed by the graph in Figure 3. This is apparent when running the simulation
for larger values, for example n = 5. The histogram shows that the measurement returned
|01100〉 almost every time (1998 instances), with only two other states observed very rarely
(one instance each). For an even larger n = 16, some executions can actually return the
marked state with probability 1, which justifies the efficiency of the algorithm. Both cases are
displayed in Figure 5.

(a) (b)

Figure 4: Simulation of Grover’s algorithm for n = 2 and n = 3

(a) (b)

Figure 5: Simulation of Grover’s algorithm for n = 5 and n = 16

7

2.2.2 Execution on real devices

Running Grover’s algorithm on a real quantum computer comes with reasonable limitations.
First of all, the size of the quantum register can be no greater than the actual number of
qubits of the physical computer. Besides this, the experiments are no longer noise-free and the
performance of the algorithm strongly depends on other factors, such as the partial connectivity
of the architecture, qubit quality and gate errors. Each backend has a queue where jobs are
pending for execution. In order to manage this aspect more easily, IBM’s framework can select
the least busy backend when someone decides to run a program. For n = 2, this time the
algorithm ran on ibmq london, a 5-qubit processor. The results in Figure 6 are visibly different
from the ideal case we previously discussed. Now, marked state |11〉 returns from the 2000
measurements only 1781 times, thus having a probability of about 0.89 instead of exactly 1.
The other states have non-zero amplitudes because of the processor’s intrinsic computation
errors. For n = 3, the probability of the state is increased to merely 0.256 after the iterations
are finished. The distribution is still unimodal, although the performance degrades once n
increases and the solution is no longer distinguishable.

(a) (b)

Figure 6: Real execution of Grover’s algorithm for n = 2 and n = 3

2.3 Qiskit implementation

Listing 1: Grover’s algorithm

1 # GROVER'S ALGORITHM

2

3 from qiskit import *

4 from qiskit.compiler import transpile, assemble

5 from qiskit.providers.ibmq import least_busy

6 from qiskit.tools.monitor import job_monitor

7 from qiskit.visualization import plot_histogram

8

9 from math import *

10 from random import randrange

11 import matplotlib.pyplot as plt

12 import numpy as np

13

14 #==

15 #=== FUNCTION DEFINITIONS #====================================

16

17

8

18 # n-bit binary representation of integer

19 def bst(n,s):

20 return str(bin(s)[2:].rjust(n,'0'))

21

22

23 # subcircuit applying gates given as arguments to every qubit

24 def gn(n,*args):

25 qc = QuantumCircuit(n,n)

26 for i in range(n):

27 for gate in args:

28 getattr(qc, gate)(i)

29 return qc

30

31 # subcircuit implementing the oracle

32 def oracle(n,s):

33 # adds phase shift only to state corresponding to "s"

34 qc = QuantumCircuit(n,n)

35 for i in range(n):

36 if s[n-1-i] == "0":

37 qc.x(i)

38

39 # applies CZ gate with controls 0:n-2 and target n-1

40 qc.h(n-1)

41 qc.mcx(list(range(n-1)),n-1)

42 qc.h(n-1)

43

44 for i in range(n):

45 if s[n-1-i] == "0":

46 qc.x(i)

47

48 qc.barrier()

49 return qc

50

51

52 # subcircuit implementing the diffusion transformation

53 def diffusion(n):

54 # amplifies the probability amplitude of the solution state

55 qc = QuantumCircuit(n,n)

56 qc += gn(n,"h","x")

57

58 qc.h(n-1)

59 qc.mcx(list(range(n-1)),n-1)

60 qc.h(n-1)

61

62 qc += gn(n,"x","h")

63

64 qc.barrier()

65 return qc

66

67 # subcircuit implementing a single Grover iteration

68 def grover_iteration(n,s):

69 qc = QuantumCircuit(n,n)

70 qc += oracle(n,s)

71 qc += diffusion(n)

72 return qc

73

74 # custom histogram plot

75 def show_results(counts,shots,iterations,comment):

76 states = list(counts.keys())

77 outcomes = list(counts.values())

9

78 prob = [round(i/shots,3) for i in outcomes]

79

80 d = dict(zip(states,prob))

81 d = dict(sorted(d.items()))

82 states = list(d.keys())

83 prob = list(d.values())

84

85 bp = plt.bar(states,prob,color='deepskyblue',zorder=2)

86

87 for i in bp:

88 h = i.get_height()

89 if h > 0.001:

90 plt.text(i.get_x(), h + 0.025, h)

91

92 plt.ylim(0,1.1)

93 plt.yticks(np.arange(0,1.25,0.25))

94 plt.ylabel("Probabilities")

95 plt.grid(axis='y',linestyle='dashed',zorder=0)

96 plt.title("Results after " + str(iterations) + " iteration(s), " + comment)

97 plt.show()

98

99 #==

100 #=== INITIAL PARAMETERS #======================================

101

102 # size of quantum and classical registers

103 n = 3

104

105 # size of the search space

106 N = 2**n

107

108 # ideal number of iterations

109 k = floor(pi/4*sqrt(N))

110

111 #=== EXPERIMENT TYPE #===

112

113 # local simulation, remote simulation, execution on real device

114 exp_type = "real"

115

116 if exp_type == "local":

117 backend = Aer.get_backend('qasm_simulator')

118

119 else:

120 provider = IBMQ.load_account()

121 if exp_type == "real":

122 backend = least_busy(provider.backends(filters=lambda x:

x.configuration().n_qubits >= n and↪→

123 not x.configuration().simulator and

x.status().operational==True))↪→

124 elif exp_type == "hpc":

125 backend = provider.get_backend('ibmq_qasm_simulator')

126

127 #==

128 #=== SEARCHED ELEMENT #==

129 s = randrange(N)

130 s = bst(n,s)

131 #s = "001"

132 print("BACKEND: " + str(backend))

133 print("SEARCHING FOR |" + s + ">")

134 print("REQUIRED ITERATIONS: " + str(k))

135

10

136 #==

137

138 grc = QuantumCircuit(n,n)

139

140 # CREATE INITIAL SUPERPOSITION

141 grc += gn(n,"h")

142

143 # REPEAT UNTIL THE IDEAL NUMBER OF ITERATIONS IS REACHED

144 for iteration in range(k):

145 grc += grover_iteration(n,s)

146

147 # MEASURE AT THE END

148 grc.measure(list(range(n)),list(range(n)))

149

150 # number of circuit instances to be measured

151 shots = 2000

152

153 if exp_type == "local":

154 result = execute(grc,backend,shots=shots).result()

155 comment = "locally simulated"

156

157 elif exp_type == "real" or exp_type == "hpc":

158 job_grc = execute(grc, backend, shots=shots)

159 job_monitor(job_grc)

160 result = job_grc.result()

161 comment = "executed on '" + str(backend) + "'"

162

163 counts = result.get_counts(grc)

164 print("RESULTS: " + str(counts))

165

166 show_results(counts,shots,k,comment)

167 #plot_histogram(counts, title="Results after " + str(k) + " iteration(s), " + comment)

3 Conclusions

The robustness of the existing information security framework has been challenged ever since
the theoretical foundations of quantum computation were laid. With the promising advance-
ments in the realization of quantum computation devices, the threat to modern cryptographic
schemes becomes an issue of importance for the future. Even though Grover’s algorithm cannot
be fully exploited yet because of the practical limitations of the underlying device that runs
it, its theoretical efficiency makes it a highly valuable tool as a searching algorithm. From a
security perspective, it is even more captivating, as it significantly improves the primary and
most straightforward type of attack against symmetric ciphers.

11

References

[1] Whitfield Diffie and Martin Hellman. “New directions in cryptography”. In: IEEE trans-
actions on Information Theory 22.6 (1976), pp. 644–654.

[2] Ralph C Merkle. “Secure communications over insecure channels”. In: Communications
of the ACM 21.4 (1978), pp. 294–299.

[3] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtaining digital
signatures and public-key cryptosystems”. In: Communications of the ACM 21.2 (1978),
pp. 120–126.

[4] Joan Daemen and Vincent Rijmen. “The Block Cipher Rijndael”. In: Smart Card Research
and Applications. Ed. by Jean-Jacques Quisquater and Bruce Schneier. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 277–284. isbn: 978-3-540-44534-0.

[5] Peter W Shor. “Algorithms for quantum computation: discrete logarithms and factoring”.
In: Proceedings 35th annual symposium on foundations of computer science. Ieee. 1994,
pp. 124–134.

[6] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In: Proceed-
ings of the twenty-eighth annual ACM symposium on Theory of computing. 1996, pp. 212–
219.

[7] Daniel J Bernstein. “Grover vs. McEliece”. In: International Workshop on Post-Quantum
Cryptography. Springer. 2010, pp. 73–80.

[8] Daniel J Bernstein and Tanja Lange. “Post-quantum cryptography”. In: Nature 549.7671
(2017), pp. 188–194.

[9] Diana Maimuţ and Emil Simion. “Post-quantum Cryptography and a (Qu)Bit More”. In:
International Conference on Security for Information Technology and Communications.
Springer. 2018, pp. 22–28.

[10] Phillip Kaye, Raymond Laflamme, Michele Mosca, et al. An introduction to quantum
computing. Oxford university press, 2007.

[11] Héctor Abraham et al. Qiskit: An Open-source Framework for Quantum Computing. 2019.
doi: 10.5281/zenodo.2562110.

12

https://doi.org/10.5281/zenodo.2562110

	Context and motivation
	Grover's algorithm
	General description
	An inductive approach
	A more accurate approach

	Examples and analysis
	Simulation
	Execution on real devices

	Qiskit implementation

	Conclusions

