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Abstract

Pseudorandom states, introduced by Ji, Liu and Song (Crypto’18), are efficiently-computable
quantum states that are computationally indistinguishable from Haar-random states. One-way
functions imply the existence of pseudorandom states, but Kretschmer (TQC’20) recently con-
structed an oracle relative to which there are no one-way functions but pseudorandom states still
exist. Motivated by this, we study the intriguing possibility of basing interesting cryptographic
tasks on pseudorandom states.

We construct, assuming the existence of pseudorandom state generators that map a 𝜆-bit
seed to a 𝜔(log 𝜆)-qubit state, (a) statistically binding and computationally hiding commitments
and (b) pseudo one-time encryption schemes. A consequence of (a) is that pseudorandom states
are sufficient to construct maliciously secure multiparty computation protocols in the dishonest
majority setting.

Our constructions are derived via a new notion called pseudorandom function-like states
(PRFS), a generalization of pseudorandom states that parallels the classical notion of pseudo-
random functions. Beyond the above two applications, we believe our notion can effectively
replace pseudorandom functions in many other cryptographic applications.
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1 Introduction

Assumptions are the bedrock of designing provably secure cryptographic constructions. Over the
years, theoretical cryptographers have pondered over the precise assumptions needed to achieve
cryptographic tasks, often losing sleep over this [Kil88]. The celebrated work of Goldreich [Gol90]
shows that most interesting cryptographic tasks (encryption, commitments, pseudorandom genera-
tors, etc.) imply the existence of one-way functions – i.e., functions that can be efficiently computed
in the forward direction but cannot be efficiently inverted. Thus it appears that the existence of
one-way functions is a minimal assumption in cryptography.

Quantum information processing presents new opportunities for cryptography. Specifically, in
many contexts, the assumptions necessary for cryptographic tasks can be weakened with the help
of quantum resources. To illustrate, the seminal work of Bennett and Brassard [BB84] showed
that key-exchange can be achieved unconditionally — i.e., without any computational assumptions
— using quantum communication. In contrast, key-exchange is known to require computational
assumptions if one can only use classical communication. More recently, the works of Grilo, Lin,
Song and Vaikuntanathan [GLSV21] and Bartusek, Coladangelo, Khurana, and Ma [BCKM21b]
demonstrate that quantum protocols for secure multiparty computation can be constructed from
post-quantum one-way functions. On the other hand classical protocols for secure computation
cannot be based (in a black-box way) on one-way functions alone [IR89].

These examples suggest that we revisit our belief about the necessity of cryptographic assump-
tions for quantum cryptographic tasks; that is, tasks that make use of quantum resources (computing
ability and communication channels). Specifically, it is not even clear whether one-way functions is
a necessary assumption for quantum cryptographic tasks — Goldreich’s result [Gol90] only applies
to cryptographic primitives and protocols with classical communication.

Our work continues the research agenda carried out by our predecessors [Wie83, BB84, BBCS91,
GLSV21, BCKM21b]: can we achieve cryptographic tasks using quantum communication in a world
without one-way functions1?

Pseudorandom States, Revisited. Towards understanding the above question, we revisit the
notion of pseudorandom quantum states (abbreviated PRS) introduced by Ji, Liu and Song [JLS18].
A PRS generator 𝐺 is a quantum polynomial-time (QPT) algorithm that, given input a key 𝑘 ∈
{0, 1}𝜆, outputs a 𝑛-qubit quantum state |𝜓𝑘⟩ satisfying the following guarantee: any polynomial
number (in 𝜆) of copies of |𝜓𝑘⟩ is computationally indistinguishable from a polynomial number of
copies of a state |𝜗⟩ that is sampled from the 𝑛-qubit Haar distribution (i.e. the uniform distribution
over 𝑛-qubit pure states). Ji, Liu and Song [JLS18] (and subsequently improved by Brakerski and
Shmueli [BS19, BS20]) show the existence of PRS assuming post-quantum one-way functions.

This notion is analogous to the pseudorandom generators (PRGs) from classical cryptography
which take as input a short seed, say of length 𝜆, and deterministically outputs a larger string of
length 𝑛 > 𝜆 that is computationally indistinguishable from a string sampled from the uniform dis-
tribution. Despite the analogy, it has not been obvious whether pseudorandom quantum states have
much cryptographic utility (unlike PRGs, which are ubiquitous in cryptography). Understanding
the consequences of pseudorandom quantum states is particularly important in light of a recent re-
sult by Kretschmer [Kre21], who showed that there is a relativized world where 𝐵𝑄𝑃 = 𝑄𝑀𝐴 (and

1Both the works [GLSV21, BCKM21b] explicitly raised the question of basing secure computation on assumptions
weaker than one-way functions.
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thus post-quantum one-way functions do not exist) while pseudorandom states exist. Kretschmer’s
result motivates us to focus the aforementioned research agenda on the following question: what
cryptographic tasks can be based solely on pseudorandom quantum states?

1.1 Our Results

Our contributions in a nutshell are as follows:

• We propose a new notion called pseudorandom function-like quantum states (PRFS).

• Using PRFS, we show how to build (a) statistically binding commitments and (b) pseudo one-
time encryption schemes. As a consequence of (a), we obtain maliciously secure computation
in the dishonest majority setting.

• Finally, we show that for a certain range of parameters – same as what is needed for the above
applications – we can construct PRFS from a PRS.

Before we present the definition of PRFS, we first highlight the need for defining a new notion by
describing the challenges for constructing primitives directly from PRS.

1.1.1 Challenges For Basing Primitives On PRS

Although the closest classical analogue of a PRS generator is a PRG, the analogy breaks down in
several critical ways. This makes it challenging to use PRS generators in the same way that PRGs
are used throughout cryptography.

Specifically, PRS generators appear very rigid, meaning that it seems challenging to take an
existing PRS generator and generically increase or decrease its output length. Moreover, it is
difficult to use output qubits of a PRS generator independently.

Inability to Stretch the Output. A fundamental result about PRGs is that their stretch (the
output length as a function of the key length) can be amplified arbitrarily. In other words, given a
PRG 𝐺 that maps 𝜆 random bits to at least 𝜆+1 pseudorandom bits, one can construct a PRG 𝐺′

with 𝜆𝑐 output bits for arbitrarily large 𝑐. This fact is implicitly used everywhere in cryptography;
specifically, it gives us the flexibility to choose the appropriate stretch of PRG relevant for the
application without having to worry about the underlying hardness assumptions.

If PRS generators are analogous to PRGs, then one would expect that a similar amplification
result to hold: the existence of PRS with nontrivial output length would (hopefully) imply the
existence of PRS with arbitrarily large output length. The natural approach to amplify the stretch
of a PRG by iteratively composing it with itself does not immediately work with PRS for a number
of reasons; for one, a PRS generator takes as input a classical key while its output is a quantum
state!

Inability to Shrink the Output. To add insult to injury, it is not even obvious how to shrink
the output length of a PRS generator; this was also observed by Brakerski and Shmueli [BB21].
Classically, one can always discard bits from the output of a PRG, and the result is still obviously a
PRG. However, discarding a single qubit of an 𝑛-qubit pseudorandom state |𝜓𝑘⟩ will leave a mixed
state that is efficiently distinguishable from a (𝑛− 1)-qubit Haar-random state.
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Inability to Separate the Output. Since the PRS output is highly entangled, it seems difficult
to use the individual output qubits. As an example, suppose we want to encrypt a message of
length ℓ. In the classical setting, an ℓ-bit output PRG can be used to encrypt a message of length
ℓ by xor-ing the 𝑖𝑡𝑕 PRG output bit with the 𝑖𝑡𝑕 bit of the message. Implicitly, we are using the
fact that the output of a PRG can be viewed a tensor product of bits and this feature of classical
PRGs is mirrored by our notion of PRFS (explained next). On the other hand, if we have a single
(entangled) PRS state (irrespective of the number of qubits it represents), it is unclear how to use
each qubit to encode a bit; any operations performed on a single qubit could affect the other qubits
that are entangled with this qubit.

1.1.2 New Notion: Pseudorandom Function-Like States

Pseudorandom function-like states (abbreviated PRFS) is a generalization of PRS, where the same
key 𝑘 is used to generate many pseudorandom states. In more details, a (𝑑, 𝑛)-PRFS generator 𝐺 is
a QPT algorithm that, given as input a key 𝑘 ∈ {0, 1}𝜆 and an input 𝑥 ∈ {0, 1}𝑑, outputs a 𝑛-qubit
quantum state |𝜓𝑘,𝑥⟩, satisfying the following pseudorandomness property: no QPT adversary can
distinguish between multiple copies of the output states

(︀
|𝜓𝑘,𝑥1⟩

⊗𝑡 , . . . , |𝜓𝑘,𝑥𝑠⟩
⊗𝑡)︀ from a collection

of states
(︀
|𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡

)︀
where each |𝜗𝑖⟩ is sampled independently from the Haar distribution;

furthermore the indistinguishability holds even if the adversary knows the inputs 𝑥1, . . . , 𝑥𝑠. (See
Section 3 for a formal definition of PRFS generators).

An Alternate Perspective: Tensor Product PRS generators. If PRS generators are analo-
gous to classical pseudorandom generators, then PRFS generators are analogous to classical pseudo-
random functions (hence the name pseudorandom function-like). A PRS generator outputs a single
state per key 𝑘. On the other hand, we can think of PRFS as a relaxed notion of PRS generator
that on input 𝑘 outputs a tensor product of states |𝜓0⟩ ⊗ |𝜓1⟩ ⊗ · · · ⊗ |𝜓2𝑑−1⟩ where each |𝜓𝑖⟩, is
indistinguishable from a Haar-random state.

The tensor product feature is quite useful in applications. Let us revisit our earlier example:
suppose we want to encrypt a message of length ℓ. If we have a tensor product of ℓ PRS states then
we can use each state to encode one bit of the message: if the 𝑖𝑡𝑕 bit is 0 then send the 𝑖𝑡𝑕 PRFS
state, otherwise send a random state. The decryptor, using the PRFS key, can decode the message
by distinguishing between a PRFS state and a random state.

Additional Observations. Some additional observations of PRFS are in order:

• Assuming one-way functions, we can generically construct (𝑑, 𝑛)-PRFS from any 𝑛-qubit PRS
for any polynomial 𝑑, 𝑛. To compute PRFS on key 𝑘 and input 𝑥, first compute a classical
PRF on (𝑘, 𝑥) and use the resulting output as a key for the 𝑛-qubit PRS. Since 𝑛-qubit PRS
can be based on (post-quantum) one-way functions [JLS18, BS20], this shows that even PRFS
can be based on (post-quantum) one-way functions.

• In the other direction, we can construct 𝑛-qubit PRS from any (𝑑, 𝑛)-qubit PRFS. On input
𝑘, the PRS simply outputs the result of PRFS on input (𝑘, 0).

• Another interesting aspect about PRFS is that it too, like PRS, is separated from (post-
quantum) one-way functions. This can be obtained by a generalization of Kretschmer’s re-
sult [AQY21].
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1.1.3 Implications

We show that PRFS can effectively replace the usage of pseudorandom generators and pseudoran-
dom functions in many primitives one learns about in “Cryptography 101”.

Specifically, we focus on two applications.

Implication 1. One-time Encryption with Short Keys and Long Messages. As a starter
illustration of the usefulness of PRFS, we construct from a PRFS generator 𝐺 a one-time encryption
scheme for classical messages. The important feature of this construction is the fact that the message
length is much larger than the key length. This is impossible to achieve information-theoretically,
even in the quantum setting. This type of one-time encryption schemes, also referred to as pseudo
one-time pad, is already quite useful, as it implies garbling schemes for P/poly [BMR90] and even
garbling for quantum circuits [BY20].

Theorem 1.1 (Informal; Pseudo One-time Pad). Assuming the existence of (𝑑, 𝑛)-PRFS with2

𝑑 = 𝑂(log 𝜆) and 𝑛 = 𝜔(log 𝜆), there exists a one-time encryption scheme for messages of length
ℓ = 2𝑑.

We emphasize that in the implication to one-time encryption, we only require PRFS with
logarithmic-length inputs.

The construction is simple and a direct adaptation of the construction of one-time encryp-
tion from pseudorandom generators. To encrypt a message 𝑥 of length ℓ ≫ 𝜆, output the state
𝐺(𝑘, (1, 𝑥𝑖)) ⊗ · · · ⊗ 𝐺(𝑘, (ℓ, 𝑥ℓ)), where 𝑘 ∈ {0, 1}𝜆 is the symmetric key shared by the encryptor
and the decryptor. The decryptor using the secret key 𝑘 can decode3 the message 𝑥. The security
of the encryption scheme follows from the pseudorandomness of PRFS.

Implication 2. Statistically binding commitment schemes. We focus on designing commit-
ment schemes with statistical binding and computational hiding properties. In the classical setting,
this notion of commitment schemes can be constructed from any length-tripling PRG [Nao91]. Re-
cently, two independent works [GLSV21, BCKM21b] showed that commitment schemes with afore-
mentioned properties imply maliciously secure multiparty computation protocols with quantum
communication in the dishonest majority setting. Of particular interest is the work of [BCKM21b]
who show that the transformation is robust even if the underlying commitment scheme has quantum
communication. They instantiate the underlying commitment scheme from one-way functions.

We design commitment schemes based on PRFS. We present a new definition of statistically
binding commitments with quantum communication (see Definition 6.1 for the formal definition).
Our definition generalizes all the current known definitions of statistically binding quantum com-
mitments [YWLQ15, Unr16, FUYZ20, BCKM21b, BB21].

Theorem 1.2 (Informal). Assuming the existence of (𝑑, 𝑛)-PRFS4 where 2𝑑(𝜆) · 𝑛(𝜆) ≥ 7𝜆, there
exists a statistically binding and computationally hiding commitment scheme.

2Recall that 𝜆 is the key length.
3In the technical sections, we define a QPT algorithm 𝖳𝖾𝗌𝗍 that given a state 𝜌 along with 𝑘, 𝑥, determines if 𝜌 is

equal to the output 𝐺(𝑘, 𝑥). We show the existence of such a test algorithm for any PRFS.
4To simplify the analysis, there is an additional technical property of the PRFS not mentioned here that is required

by our construction, called recognizable abort (Definition 3.5). All known constructions of PRFS and PRS including
ours have the recognizable abort property.
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By plugging our commitment scheme into the framework of [BCKM21b], we obtain the following
corollary.

Corollary 1.3 (Informal). Assumuing the existence of (𝑑, 𝑛)-PRFS with 2𝑑 · 𝑛 ≥ 7𝜆, there exists a
maliciously secure multiparty computation protocol in the dishonest majority setting.

Our construction is an adaptation of Naor’s commitment scheme [Nao91]. We replace the use of
the PRG in Naor’s construction with a PRFS generator and the first message (which is a random
string in Naor’s construction) specifies a random Pauli operator (also known as a quantum one-time
pad).

Other Implications. Besides the above applications, we observe that PRFS can also be used to
construct other fundamental primitives such as symmetric-key encryption and message authenti-
cation codes. Both primitives guarantee security in the setting when the secret key can be reused
multiple times. We sketch both these applications and since they are simple, we omit their formal
descriptions in the technical sections.

To design a symmetric-key encryption scheme from a PRFS, denoted by 𝐺, we start with the
classical construction of symmetric-key encryption from a PRF: to encrypt a single bit 𝑚 with
respect to key 𝑘, output (𝑟, 𝑃𝑅𝐹 (𝑘, 𝑟)⊕𝑚), where 𝑟 is a 𝜆-bit string chosen uniformly at random
and 𝑘 is the symmetric key. We modify this construction by replacing the PRF with a PRFS. The
result is a ciphertext of the form (𝑟,𝐺(𝑘, (𝑟,𝑚))). The decryptor decodes the message to be 𝑚 by
checking if the output is of the form (𝑟,𝐺(𝑘, (𝑟, 0))) or (𝑟,𝐺(𝑘, (𝑟, 1))).

The reusable message authentication code (MAC) from PRFS is even simpler: on input a
message 𝑚, output the MAC signature 𝐺(𝑘,𝑚), where 𝑘 is the MAC secret key. To check if the
MAC signature is valid, it suffices to check whether the signature is of the form 𝐺(𝑘,𝑚).

Unlike the earlier implications, both (reusable) encryption and MACs require PRFS with input
length to be as long as the message being encrypted/authenticated.

1.1.4 Construction of PRFS

Given the interesting implications of PRFS, the next natural step is to focus on constructing PRFS
generators. We show that for some interesting range of parameters, we can achieve PRFS from any
PRS.

In particular, we show the following.

Theorem 1.4 (Informal). For any 𝑑 = 𝑂(log 𝜆) and 𝑛 = 𝑑 + 𝜔(log log 𝜆), assuming the existence
of a (𝑑+ 𝑛)-qubit PRS generator, there exists a (𝑑, 𝑛)-PRFS generator.

A surprising aspect about the above result is that the starting PRS’s output length 𝑑 + 𝑛 =
𝜔(log log 𝜆) could even be much smaller than the key length 𝜆. On the other hand, classical pseu-
dorandom generators with output length less than the input length can be trivially constructed.

We remark that if 𝑑 ≪ log 𝜆 then it is easy to build PRFS from PRS; chop up the key 𝑘 into
2𝑑 blocks; to compute the PRFS generator with key 𝑘 and input 𝑥, compute the PRS generator on
the 𝑥𝑡𝑕 block of the key. Unfortunately, PRFS with this range of parameters is not useful for appli-
cations. On the other hand, the above theorem allows for 2𝑑 to be (an arbitrarily large) polynomial
in the key length; specifically, these are same parameters stated in Theorem 1.1 and Corollary 1.3.
We obtain the following corollary.
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Corollary 1.5. Assuming (2 log 𝜆 + 𝜔(log log 𝜆))-qubit PRS, there exist statistically binding com-
mitment schemes and therefore secure computations. Assuming 𝜔(log 𝜆)-PRS, there exist pseudo
one-time pad schemes for polynomial (in 𝜆) length messages.

We complement this result by observing that a recent result by Brakerski and Shmueli [BS20]
demonstrates the existence of statistically secure 𝑂(log 𝜆)-qubit PRS. Although it can be shown
that statistical log(𝜆)-qubit PRS cannot exist and (1 + 𝜀) log(𝜆)-qubit PRS implies 𝐵𝑄𝑃 ̸= 𝑃𝑃
[AQY21], when viewed optimistically, this suggests a potential way to construct secure computation
unconditionally by further improving the output length of PRS if we only aim for computational
security.

Main Insight. The construction of (𝑑, 𝑛)-PRFS proceeds as follows: on input key 𝑘 and 𝑥 ∈
{0, 1}𝑑, first generate a (𝑑 + 𝑛)-PRS state by treating 𝑘 as the key. Denote the state to be |𝜓⟩ =∑︀

𝑥∈{0,1}𝑑 𝛼𝑥 |𝑥⟩ ⊗ |𝜓𝑥⟩, where |𝜓𝑥⟩ is a 𝑛-qubit state. Suppose we can post-select on the first 𝑑
qubits being |𝑥⟩ then we can denote |𝜓𝑥⟩ to be the output of PRFS on input (𝑘, 𝑥).

There are two main points that need to be mentioned.

• Post-selection, in general, cannot be performed in polynomial time [Aar05]. However, if the
event on which we are post-selecting has an inverse polynomial (where the polynomial is known
ahead of time) probability of occurring, then we can efficiently perform post-selection.

• Now, we not only need to argue that |𝛼𝑥|2 is roughly 2−𝑑 (an inverse polynomial quantity), but
we also need to argue that |𝜓𝑥⟩ is also pseudorandom. Since, a PRS state is indistinguishable
from a Haar random state, it suffices to prove these two properties for Haar random states.
Luckily, Haar random states have both the two nice properties we desire. Denote |𝜗⟩ =∑︀

𝑥∈{0,1}𝑑 𝛽𝑥 |𝑥⟩ ⊗ |𝜗𝑥⟩ to be a (𝑛 + 𝑑)-qubit Haar-random state. Then, the following holds:
(i) with overwhelming probability, |𝛽𝑥|2 is close to 2−𝑑 which in turn is inverse polynomial
since 𝑑 is logarithmic and, (ii) |𝜗𝑥⟩ is distributed according to the Haar measure.

Concurrent Work

The recent preprint of Morimae and Yamakawa [MY21] also construct statistically binding and
computationally hiding commitment schemes from PRS, adapting Naor’s commitment scheme in a
manner similar to ours. We note several differences between their work and ours:

1. They show a weaker notion of binding known as sum-binding, which roughly says that the sum
of the probabilities that an adversarial committer can successfully decommit to the bit 0 and
the bit 1 is at most a quantity negligibly close to 1. This notion of binding is not known to be
sufficient to conclude that PRS implies protocols for secure computation. However our notion
of statistical binding (Definition 6.1) is sufficient for leveraging the machinery of [BCKM21b]
to obtain quantum protocols for secure computation. Moreover, our definition of statistical
binding implies their definition of sum-binding5.

5The sum of probabilities that an adversarial decommitter can decommit to 0 and to 1 in the ideal world of our
definition (Definition 6.1) and therefore they sum up to at most negligibly larger than 1 in the real world by our
statistical binding guarantee.
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2. For the same level of statistical binding security, that is 𝑂(2−𝜆), they require the existence of
a PRS that stretches 𝜆 random bits to 3𝜆 qubits of Haar-randomness (i.e., they require the
PRS generator to have stretch), whereas our result assumes the existence of a PRS that maps
𝜆 bits to 2 log 𝜆+ 𝜔(log log 𝜆) qubits.

3. The state generation guarantee required from the underlying PRS is much stricter in their
setting. In our work, we require the underlying PRS to only satisfy recognizable abort (Def-
inition 3.5) whereas in their work, the underlying PRS needs to satisfy a guarantee that is
even stronger than perfect state generation (Definition 3.4). In particular, they assume the
existence of a unitary that outputs the state without producing any auxiliary.

Finally, the notion of PRFS, its implications and its construction from PRS is unique to our work.

2 Preliminaries

We refer the reader to [NC10] for a comprehensive reference on the basics of quantum information
and quantum computation. We use 𝐼 to denote the identity operator. We use 𝒟(ℋ) to denote
the set of density matrices on a Hilbert space ℋ. Let 𝜌, 𝜎 ∈ 𝒟(ℋ) be density matrices. We write
TD(𝜌, 𝜎) to denote the trace distance between them, i.e.,

TD(𝜌, 𝜎) =
1

2
‖𝜌− 𝜎‖1

where ‖𝑋‖1 = Tr(
√
𝑋†𝑋) denotes the trace norm.

General Measurements. A general measurement on a Hilbert space ℋ is a set 𝑀 = {𝑀𝑎}𝑎∈𝐴 of
operators acting on ℋ indexed by some finite set 𝐴 of outcomes satisfying the completeness relation∑︁

𝑎∈𝐴
𝑀 †𝑎𝑀𝑎 = 𝐼 .

Applying the measurement 𝑀 to a density matrix 𝜌 ∈ 𝒟(ℋ) corresponds to the following operation:
outcome 𝑎 is obtained with probability Tr(𝑀 †𝑎𝑀𝑎𝜌), and the post-measurement state is defined to

𝜌 ↦→ 𝑀𝑎𝜌𝑀
†
𝑎

Tr(𝑀 †𝑎𝑀𝑎𝜌)
.

The Haar Measure. The Haar measure over ℂ𝑑, denoted by H (ℂ𝑑) is the uniform measure over
all 𝑑-dimensional unit vectors. One useful property of the Haar measure is that for all 𝑑-dimensional
unitary matrices 𝑈 , if a random vector |𝜓⟩ is distributed according to the Haar measure H (ℂ𝑑),
then the state 𝑈 |𝜓⟩ is also distributed according to the Haar measure. For notational convenience
we write H𝑚 to denote the Haar measure over 𝑚-qubit space, or H ((ℂ2)⊗𝑚).

Fact 2.1. We have
𝔼

|𝜓⟩←H (ℂ𝑑)
|𝜓⟩⟨𝜓| = 𝐼

𝑑
.

The following result, known as Lévy’s Lemma, expresses strong concentration of measure for the
Haar measure.
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Fact 2.2 (Lévy’s Lemma [HLW06]). Let 𝑓 : ℂ𝑑 → ℝ be a function such that for all unit vectors
|𝜓⟩ , |𝜑⟩ we have

|𝑓(|𝜓⟩)− 𝑓(|𝜑⟩)| ≤ 𝐾 · ‖ |𝜓⟩ − |𝜑⟩ ‖

for some number 𝐾 > 0. Then there exists a universal constant 𝐶 > 0 such that

Pr
|𝜓⟩←H (ℂ𝑑)

[|𝑓(|𝜓⟩)− 𝔼 𝑓 | ≥ 𝛿] ≤ exp
(︁
− 𝐶𝑑𝛿2

𝐾2

)︁
where 𝔼 𝑓 denotes the average of 𝑓 over the Haar distribution H (ℂ𝑑).

2.1 Quantum Algorithms

A quantum algorithm 𝐴 is a family of generalized quantum circuits {𝐴𝜆}𝜆∈ℕ over a discrete universal
gate set (such as {𝐶𝑁𝑂𝑇,𝐻, 𝑇}). By generalized, we mean that such circuits can have a subset of
input qubits that are designated to be initialized in the zero state, and a subset of output qubits that
are designated to be traced out at the end of the computation. Thus a generalized quantum circuit
𝐴𝜆 corresponds to a quantum channel, which is a is a completely positive trace-preserving (CPTP)
map. When we write 𝐴𝜆(𝜌) for some density matrix 𝜌, we mean the output of the generalized circuit
𝐴𝜆 on input 𝜌. If we only take the quantum gates of 𝐴𝜆 and ignore the subset of input/output qubits
that are initialized to zeroes/traced out, then we get the unitary part of 𝐴𝜆, which corresponds to a
unitary operator which we denote by 𝐴𝜆. The size of a generalized quantum circuit is the number
of gates in it, plus the number of input and output qubits.

We say that 𝐴 = {𝐴𝜆}𝜆 is a quantum polynomial-time (QPT) algorithm if there exists a polyno-
mial 𝑝 such that the size of each circuit 𝐴𝜆 is at most 𝑝(𝜆). We furthermore say that 𝐴 is uniform
if there exists a deterministic polynomial-time Turing machine 𝑀 that on input 1𝑛 outputs the
description of 𝐴𝜆.

We also define the notion of a non-uniform QPT algorithm𝐴 that consists of a family {(𝐴𝜆, 𝜌𝜆)}𝜆
where {𝐴𝜆}𝜆 is a polynomial-size family of circuits (not necessarily uniformly generated), and for
each 𝜆 there is additionally a subset of input qubits of 𝐴𝜆 that are designated to be initialized
with the density matrix 𝜌𝜆 of polynomial length. This is intended to model nonuniform quantum
adversaries who may receive quantum states as advice.

The notation we use to describe the inputs/outputs of quantum algorithms will largely mimick
what is used in the classical cryptography literature. For example, for a state generator algorithm
𝐺, we write 𝐺𝜆(𝑘) to denote running the generalized quantum circuit 𝐺𝜆 on input |𝑘⟩⟨𝑘|, which
outputs a state 𝜌𝑘.

Ultimately, all inputs to a quantum circuit are density matrices. However, we mix-and-match
between classical, pure state, and density matrix notation; for example, we may write 𝐴𝜆(𝑘, |𝜃⟩ , 𝜌)
to denote running the circuit 𝐴𝜆 on input |𝑘⟩⟨𝑘| ⊗ |𝜃⟩⟨𝜃| ⊗ 𝜌. In general, we will not explain all the
input and output sizes of every quantum circuit in excruciating detail; we will implicitly assume that
a quantum circuit in question has the appropriate number of input and output qubits as required
by context.

3 Pseudorandom States

The notion of pseudorandom states were first introduced by Ji, Liu, and Song in [JLS18]. We
reproduce their definition here:
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Definition 3.1 (PRS Generator [JLS18]). We say that a QPT algorithm 𝐺 is a pseudorandom
state (PRS) generator if the following holds.

1. State Generation. There is a negligible function 𝜀(·) such that for all 𝜆 and for all 𝑘 ∈
{0, 1}𝜆, the algorithm 𝐺 behaves as

𝐺𝜆(𝑘) = |𝜓𝑘⟩⟨𝜓𝑘| .

for some 𝑛(𝜆)-qubit pure state |𝜓𝑘⟩.

2. Pseudorandomness. For all polynomials 𝑡(·) and QPT (nonuniform) distinguisher 𝐴 there
exists a negligible function 𝜀(𝜆) such that for all 𝜆, we have⃒⃒⃒⃒

⃒ Pr
𝑘←{0,1}𝜆

[︁
𝐴𝜆(𝐺𝜆(𝑘)

⊗𝑡(𝜆)) = 1
]︁
− Pr
|𝜗⟩←H𝑛(𝜆)

[︁
𝐴𝜆(|𝜗⟩⊗𝑡(𝜆)) = 1

]︁⃒⃒⃒⃒⃒ ≤ 𝜀(𝜆) .
We also say that 𝐺 is a 𝑛(𝜆)-PRS generator to succinctly indicate that the output length of 𝐺 is
𝑛(𝜆).

Ji, Liu, and Song showed that post-quantum one-way functions can be used to construct PRS
generators.

Theorem 3.2 ([JLS18]). If post-quantum one-way functions exist, then there exist PRS generators
for all polynomial output lengths.

3.1 Pseudorandom Function-Like State (PRFS) Generators

In this section, we present our definition of pseudorandom function-like state (PRFS) generators.
PRFS generators generalize PRS generators in two ways: first, in addition to the secret key 𝑘, the
PRFS generator additionally takes in a (classical) input 𝑥. The security guarantee of a PRFS implies
that, even after revealing 𝑥 (but not the key 𝑘), the output state of the generator is indistinguishable
from Haar-random. The second way in which this definition generalizes the definition of PRS
generators is that the output of the generator need not be a pure state.

Definition 3.3 (PRFS generator). We say that a QPT algorithm 𝐺 is a (selectively secure) pseu-
dorandom function-like state (PRFS) generator if for all polynomials 𝑠(·), 𝑡(·) and QPT (nonuni-
form) distinguishers 𝐴 there exists a negligible function 𝜀(·) such that for all 𝜆, for all disjoint
𝑥1, . . . , 𝑥𝑠(𝜆) ∈ {0, 1}𝑑(𝜆) we have⃒⃒⃒

Pr
𝑘←{0,1}𝜆

[︁
𝐴𝜆(𝑥1, . . . , 𝑥𝑠(𝜆), 𝐺𝜆(𝑘, 𝑥1)

⊗𝑡(𝜆), . . . , 𝐺𝜆(𝑘, 𝑥𝑠(𝜆))
⊗𝑡(𝜆)) = 1

]︁
− Pr
|𝜗1⟩,...,|𝜗𝑠(𝜆)⟩←H𝑛(𝜆)

[︁
𝐴𝜆(𝑥1, . . . , 𝑥𝑠(𝜆), |𝜗1⟩⊗𝑡(𝜆) , . . . , |𝜗𝑠(𝜆)⟩⊗𝑡(𝜆)) = 1

]︁ ⃒⃒⃒
≤ 𝜀(𝜆) .

We also say that 𝐺 is a (𝑑(𝜆), 𝑛(𝜆))-PRFS generator to succinctly indicate that its input length is
𝑑(𝜆) and its output length is 𝑛(𝜆).

Our notion of security here can be seen as a version of (classical) selective security, where the
queries to the PRFS generator are fixed before the key is sampled. One could consider stronger
notions of security where the indistinguishability property holds even when the adversary is allowed
to query the PRFS generator adaptively, or even in superposition. We leave exploring this notion
for future work.
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State Generation Guarantees. As mentioned above, our definition of PRFS generator does
not require that the output of the generator is always a pure state. However, we will see later that
a consequence of the PRFS security guarantee is that the output of the generator is close to a pure
state for an overwhelming fraction of keys 𝑘 (see Lemma 3.6).

Nevertheless, for applications it is sometimes more useful to also consider a stronger guarantee
on the state generation of a PRFS generator.

Definition 3.4 (Perfect state generation). A (𝑑(𝜆), 𝑛(𝜆))-PRFS generator 𝐺 satisfies perfect state
generation, if for every 𝑘 ∈ {0, 1}𝜆 and 𝑥 ∈ {0, 1}𝑑(𝜆), there exists an 𝑛(𝜆)-qubit pure state |𝜓⟩ such
that 𝐺𝜆(𝑘, 𝑥) = |𝜓⟩⟨𝜓|.

We observe that an 𝑛(𝜆)-PRS generator defined in Definition 3.1 is by definition equivalent to
an (0, 𝑛(𝜆))-PRFS generator with perfect state generation.

In general, it may be difficult to construct PR(F)S with perfect state generation as the state
generation could occasionally fail; for example, the generator may perform a (quantum) rejection
sampling procedure in order to output the state. The scalable PRS generators of Brakerski and
Shmueli [BS20] is an example of this. To capture a very natural class of PRFS generators (including
the one constructed in this paper), we define the notion of a PRFS generator where 𝐺(𝑘, 𝑥) outputs
a convex combination of a fixed pure state |𝜓𝑘,𝑥⟩ or a known abort state |⊥⟩.

Definition 3.5 (Recognizable abort). A (𝑑(𝜆), 𝑛(𝜆))-PRFS generator 𝐺 has the recognizable abort
property if for every 𝑘 ∈ {0, 1}𝜆 and 𝑥 ∈ {0, 1}𝑑(𝜆) there exists an 𝑛(𝜆)-qubit pure state |𝜓⟩ and
0 ≤ 𝜂 ≤ 1 such that 𝐺𝜆(𝑘, 𝑥) = 𝜂 |𝜓⟩⟨𝜓|+ (1− 𝜂) |⊥⟩⟨⊥|, where ⊥ is a special symbol6.

Note that this definition alone does not have any constraint on 𝜂 being close to 1. However, the
security guarantee of a PRFS generator implies that 𝜂 will be negligibly close to 1 with overwhelming
probability over the choice of 𝑘.7

We note that the PRS construction of Brakerski and Shmueli [BS20] also satisfies this recogniz-
able abort guarantee instead of the perfect state generation guarantee. We also note that a PRFS
generator with perfect state generation trivially has the recognizable abort property with 𝜂 = 1 for
all 𝑘, 𝑥.

3.2 Basic Properties of PRS and PRFS Generators

In this section we present some basic results about PRS and PRFS generators.
The following Lemma establishes some orthogonality and purity properties of the output of

PRFS generators, on average over the key.

Lemma 3.6 (Properties of PRFS generator outputs). Let 𝐺 be a (𝑑, 𝑛)-PRFS generator. Then
there exists a negligible function 𝜀(𝜆) such that for all 𝜆, for all 𝑥, 𝑦 ∈ {0, 1}𝑑(𝜆) where 𝑥 ̸= 𝑦, we
have

1. 𝔼𝑘←{0,1}𝜆 Tr(𝐺𝜆(𝑘, 𝑥)𝐺𝜆(𝑘, 𝑦)) ≤ 2−𝑛(𝜆) + 𝜀(𝜆);

6One can think of |⊥⟩ as the (𝑛 + 1)-qubit state |100 · · · 0⟩ with the first qubit indicating whether the generator
aborted or not. If the generator doesn’t abort, then it outputs |0⟩ ⊗ |𝜓⟩ for some pure state |𝜓⟩ (called the correct
output state of 𝐺 on input (𝑘, 𝑥)). The distinguisher in the definition of PRFS generator would then ignore the first
indicator qubit.

7The argument is as follows: if 𝜂 were on average noticeably far from 1, then a purity test using SWAP tests
would distinguish the outputs from Haar random states which are pure. This is formalized in Lemma 3.6.
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2.
⃒⃒⃒
𝔼𝑘←{0,1}𝜆 Tr(𝐺𝜆(𝑘, 𝑥)

2)− 1
⃒⃒⃒
≤ 𝜀(𝜆).

Proof. Consider the following QPT algorithm 𝐴: on input (𝑥, 𝑦, |𝜑1⟩ , |𝜑2⟩), it performs the SWAP
test on |𝜑1⟩ and |𝜑2⟩ and accepts if the SWAP test accepts. If |𝜑1⟩ , |𝜑2⟩ are independently sampled
according to the Haar measure on 𝑛(𝜆) qubits, the acceptance probability is on average

1

2
+

1

2
𝔼

|𝜑1⟩,|𝜑2⟩←H𝑛

|⟨𝜑1|𝜑2⟩|2 =
1

2
+

1

2
2−𝑛(𝜆) (1)

where we used Fact 2.1. On the other hand, if the algorithm𝐴 is run on input (𝑥, 𝑦,𝐺𝜆(𝑘, 𝑥), 𝐺𝜆(𝑘, 𝑦))
for randomly chosen 𝑘 the acceptance probability is on average

1

2
+

1

2
𝔼

𝑘←{0,1}𝜆
Tr(𝐺𝜆(𝑘, 𝑥)𝐺𝜆(𝑘, 𝑦)) . (2)

Since 𝐴 is a QPT algorithm, by the pseudorandomness property of the PRFS generator, Equa-
tions (1) and (2) are negligibly different. Specifically, their difference is 𝜀(𝜆), where 𝜀(𝜆) is the
negligible function guaranteed by the pseudorandomness property. This implies the first item of the
Lemma.

For the second item of the Lemma, if |𝜑1⟩ = |𝜑2⟩, then the algorithm 𝐴 accepts (𝑥, 𝑥, |𝜑1⟩ , |𝜑1⟩)
with probability 1.

On the other hand, if the algorithm 𝐴 is run on input (𝑥, 𝑥,𝐺𝜆(𝑘, 𝑥), 𝐺𝜆(𝑘, 𝑥)), then the accep-
tance probability is on average

1

2
+

1

2
𝔼

𝑘←{0,1}𝜆
Tr(𝐺𝜆(𝑘, 𝑥)

2) .

Since the algorithm is efficient and only uses the output of the generator instead of the key, this
implies that 𝔼𝑘←{0,1}𝜆 Tr(𝐺𝜆(𝑘, 𝑥)2) is negligibly (specifically, 𝜀(𝜆)) different from 1, as desired.

3.3 Testing Pseudorandom States

Given a state 𝜌, it is useful to know whether it is the output of a PRFS generator with key 𝑘 and
input 𝑥. One approach would be to invoke the generator to get some number of copies and perform
SWAP tests. Unfortunately, this approach would only achieve polynomially small error, which is
undesirable for cryptographic applications where we want negligible security. Another approach is
to “uncompute” the state generation. The issue with this approach is that it is not clear how to do
it when the state generation is not perfect, or if it outputs some additional auxiliary states that we
do not know how to uncompute.

In the following, we will show how to use the generator in a semi-black-box way to test any
PRFS states. We first state a general Lemma that shows how to convert any circuit that generates
a state 𝜌 into a tester (of sorts) for the state 𝜌.

Lemma 3.7 (Circuit output tester). Let 𝐺 denote a (generalized) quantum circuit that takes no
input and outputs an 𝑛-qubit mixed state 𝜌. Then there exists a circuit 𝖳𝖾𝗌𝗍 with boolean output
such that:

13



1. For all density matrices 𝜎𝖤𝖰 where 𝖰 is an 𝑛-qubit register, applying the circuit 𝖳𝖾𝗌𝗍 on register
𝖰 yields the following state on registers 𝖤𝖥 where 𝖥 stores the decision bit:

(𝐼𝖤 ⊗ 𝖳𝖾𝗌𝗍𝖰)(𝜎𝖤𝖰) =
∑︁
𝑏

Tr𝖰

(︁
(𝐼𝖤 ⊗𝑀𝑏)𝜎𝖤𝖰

)︁
⊗ |𝑏⟩⟨𝑏|𝖥

where 𝑀1 = 𝜌2 and 𝑀0 = 𝐼 −𝑀1.

2. Furthermore, 𝖳𝖾𝗌𝗍 runs the unitary part8 of 𝐺 as a black box, and if the complexity of 𝐺 is 𝑇 ,
the complexity of 𝖳𝖾𝗌𝗍 is 𝑂(𝑇 + 𝑛).

Proof. Consider the unitary part 𝐺̂ of 𝐺, which takes as input a register 𝖠 and outputs registers
𝖱𝖡 where 𝖱 has 𝑛-qubits and 𝖠 and 𝖡 have the appropriate number of qubits.

The circuit 𝖳𝖾𝗌𝗍 takes as input an 𝑛-qubit register 𝖰 and outputs registers 𝖥𝖰 where 𝖥 is a
single-qubit accept/reject register. It behaves as follows:

1. Initialize an ancilla register 𝖠 in the state |0 · · · 0⟩, and initialize a single-qubit register 𝖥 in
the state |0⟩.

2. Run the unitary part 𝐺̂ on register 𝖠 to obtain registers 𝖱𝖡;

3. Swap the registers 𝖰 and 𝖱;

4. Apply the inverse 𝐺̂† on registers 𝖱𝖡 to get register 𝖠;

5. Measure the register 𝖠 in the computational basis; if the outcome is |0 · · · 0⟩, then flip the
qubit in 𝖥 to |1⟩.

6. Trace out the register 𝖰.

This concludes the description of 𝖳𝖾𝗌𝗍. Item 2 of the Lemma statement follows from inspection.

𝜎
𝑆

× 𝖰

|0 · · · 0⟩ 𝐺̂ 𝐺̂† 𝖠

|0⟩ 𝖥

Figure 1: 𝖳𝖾𝗌𝗍 circuit. The 𝑆 gate denotes SWAP between registers 𝖰 and 𝖱. The 𝖥 register is set
to |1⟩ if and only if the 𝖠 register measures to all zeroes. The 𝖰 and 𝖠 registers are traced out at
the end.

We now prove Item 1 of the Lemma statement. Fix a density matrix 𝜎𝖤𝖰. Without loss of
generality we can assume that 𝜎 is a pure state |𝜃⟩𝖤𝖰 (because we can let 𝖤 contain the purification).
We analyze running the circuit 𝖳𝖾𝗌𝗍 on 𝖰 of |𝜃⟩.

Let |𝜃⟩𝖤𝖰 =
∑︀

𝑖 𝛼𝑖 |𝑢𝑖⟩𝖤 ⊗ |𝑣𝑖⟩𝖰 denote the Schmidt decomposition of |𝜃⟩ for some orthonormal
bases {|𝑢𝑖⟩}, {|𝑣𝑖⟩}. After Step 2 of the 𝖳𝖾𝗌𝗍 circuit, the global state is

|𝜃⟩𝖤𝖰 ⊗ 𝐺̂ |0 · · · 0⟩𝖠 .

8See Section 2.1 for a definition of the unitary part of a generalized quantum circuit.
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Let 𝐺̂ |0⟩𝖠 =
∑︀

𝑗 𝛽𝑗 |𝜓𝑗⟩𝖱⊗|𝜑𝑗⟩𝖡 denote the Schmidt decomposition of 𝐺̂ |0 · · · 0⟩ for some orthonor-
mal bases {|𝜓𝑗⟩}, {|𝜑𝑗⟩}. After Step 3 the global state can be written as∑︁

𝑖𝑗

𝛼𝑖𝛽𝑗 |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗ |𝑣𝑖⟩𝖱 ⊗ |𝜑𝑗⟩𝖡 .

After Step 4 the global state can be written as∑︁
𝑖𝑗

𝛼𝑖𝛽𝑗 |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗ 𝐺̂
†
(︁
|𝑣𝑖⟩𝖱 ⊗ |𝜑𝑗⟩𝖡

)︁
.

In Step 5, the 𝖠 register is measured. If the outcome is all zeroes, then the post-measurement state
can be written as (up to normalization)∑︁

𝑖𝑗

𝛼𝑖𝛽𝑗 |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗ |0⟩⟨0|𝖠 𝐺̂
†
(︁
|𝑣𝑖⟩𝖱 ⊗ |𝜑𝑗⟩𝖡

)︁
=
∑︁
𝑖𝑗

𝛼𝑖𝛽𝑗 |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗
(︁∑︁

𝑘

𝛽𝑘 ⟨𝜓𝑘|𝖱 ⊗ ⟨𝜑𝑘|𝖡
)︁(︁
|𝑣𝑖⟩𝖱 ⊗ |𝜑𝑗⟩𝖡

)︁
|0⟩𝖠

=
∑︁
𝑖𝑗

𝛼𝑖 𝛽
2
𝑗 ⟨𝜓𝑗 |𝑣𝑖⟩ |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗ |0⟩𝖠

= (𝐼𝖤 ⊗ 𝜌𝖰) |𝜃⟩𝖤𝖰 ⊗ |0⟩𝖠

where in the second line we used our Schmidt decomposition for 𝐺̂ |0 · · · 0⟩ and in the third line we
used the orthonormality of the basis {|𝜑𝑗⟩}. The fourth line follows since by definition of 𝐺 we have
𝜌 =

∑︀
𝑗 𝛽

2
𝑗 |𝜓𝑗⟩⟨𝜓𝑗 |.

If the measurement outcome is all zeroes, the register 𝖥 is set to |1⟩. Otherwise it remains |0⟩.
In Step 6, the registers 𝖰 and 𝖠 are traced out. Thus conditioned on getting the all zeroes

outcome, the state on register 𝖤 is

Tr𝖰

(︁
𝜌𝖰 |𝜃⟩⟨𝜃|𝖤𝖰 𝜌𝖰

)︁
= Tr𝖰

(︁
𝜌2𝖰 |𝜃⟩⟨𝜃|𝖤𝖰

)︁
where we used the cyclicity of the partial trace with respect to operators acting on register 𝖰 only.
Conditioned on not getting the all zeroes outcome, it must be that the state on register 𝖤 is

Tr𝖰

(︁
(𝐼 − 𝜌2) |𝜃⟩⟨𝜃|𝖤𝖰

)︁
.

This establishes that the output of the 𝖳𝖾𝗌𝗍 algorithm is as described in the Lemma statement.

We note that if a PRFS satisfies perfect state generation, then the 𝖳𝖾𝗌𝗍 algorithm corresponding
to the circuit 𝐺𝜆(𝑘, 𝑥) implements a projection onto the state |𝜓𝑘,𝑥⟩ = 𝐺𝜆(𝑘, 𝑥) in the case that the
𝖳𝖾𝗌𝗍 accepts (i.e. outputs 1). If the PRFS satisfies the weaker recognizable abort property, we get
that the 𝖳𝖾𝗌𝗍 algorithm implements a scaled projection onto the correct state |𝜓𝑘,𝑥⟩.

Corollary 3.8 (PRFS tester with recognizable abort). Let 𝐺 be a (𝑑, 𝑛)-PRFS generator with
the recognizable abort property. Then there exists a QPT algorithm 𝖳𝖾𝗌𝗍 such that for all 𝜆, 𝑘 ∈
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{0, 1}𝜆 and 𝑥 ∈ {0, 1}𝑑(𝜆), for all density matrices 𝜎𝖤𝖰 where 𝖰 is an 𝑛(𝜆)-qubit register, applying
𝖳𝖾𝗌𝗍(𝑘, 𝑥, ·) to register 𝖰 yields the following state on registers 𝖤𝖥 where 𝖥 stores the decision bit:

(𝐼𝖤 ⊗ 𝖳𝖾𝗌𝗍𝖰)(𝑘, 𝑥, 𝜎𝖤𝖰) =
∑︁
𝑏

Tr𝖰

(︁
(𝐼𝖤 ⊗𝑀𝑏)𝜎𝖤𝖰

)︁
⊗ |𝑏⟩⟨𝑏|𝖥

where 𝑀1 = 𝜂2 |𝜓⟩⟨𝜓| and 𝑀0 = 𝐼 −𝑀1 with 𝜂, |𝜓⟩ (which generally depend on 𝑘, 𝑥) are those
guaranteed by the recognizable abort property.

Proof. Fix 𝜆 and 𝑘 ∈ {0, 1}𝜆, 𝑥 ∈ {0, 1}𝑑(𝜆). By the recognizable abort property, we know that
𝐺𝜆(𝑘, 𝑥) = 𝜂 |𝜓⟩⟨𝜓| + (1 − 𝜂) |⊥⟩⟨⊥|. We implement the circuit 𝖳𝖾𝗌𝗍 by first testing whether the
input state is |⊥⟩ (which we can do since it is a fixed known state), rejecting if so, and otherwise
applying the test circuit from Lemma 3.7 with the circuit 𝐺𝑘,𝑥 that takes no input and outputs
𝜌 = 𝐺𝜆(𝑘, 𝑥). Since we projected the input state to have no overlap with |⊥⟩, we get that

𝜌 𝜎 𝜌 = 𝜂2 |𝜓⟩⟨𝜓| 𝜎 |𝜓⟩⟨𝜓|

as desired.

Next we analyze a product of 𝖳𝖾𝗌𝗍 algorithms run in parallel on different qubits of a (possibly
entangled) state.

Corollary 3.9 (Product of PRFS testers with recognizable abort). Let 𝐺 be a (𝑑, 𝑛)-PRFS genera-
tor with the recognizable abort property and let 𝖳𝖾𝗌𝗍 denote the corresponding tester algorithm given
by Corollary 3.8. Fix 𝜆, 𝑡 ∈ ℕ. For all 𝑘1, . . . , 𝑘𝑡 ∈ {0, 1}𝜆 and for all 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}𝑑(𝜆), define
the QPT algorithm 𝖳𝖾𝗌𝗍⊗𝑡 that given an 𝑡 · 𝑛(𝜆)-qubit density matrix 𝜎 behaves as follows: for all
𝑖 = 1, . . . , 𝑡, on the 𝑖’th block of 𝑛(𝜆) qubits of 𝜎, run the algorithm 𝖳𝖾𝗌𝗍𝜆(𝑘𝑖, 𝑥𝑖, ·). Output 1 if and
only if all 𝑡 invocations of 𝖳𝖾𝗌𝗍 output 1.

Then 𝖳𝖾𝗌𝗍⊗𝑡 satisfies the following. For all density matrices 𝜎𝖤𝖰 where 𝖰 is an 𝑡 · 𝑛(𝜆)-qubit
register, applying 𝖳𝖾𝗌𝗍⊗𝑡 to register 𝖰 yields the following state on registers 𝖤𝖰𝖥 where 𝖥 stores the
decision bit:

(𝐼𝖤 ⊗ 𝖳𝖾𝗌𝗍⊗𝑡)(𝜎𝖤𝖰) =
∑︁
𝑏

Tr𝖰

(︁
(𝐼𝖤 ⊗𝑀𝑏)𝜎𝖤𝖰

)︁
⊗ |𝑏⟩⟨𝑏|𝖥

where 𝑀1 = 𝜂2 |𝜓⟩⟨𝜓| and 𝑀0 = 𝐼 −𝑀1 with |𝜓⟩ = |𝜓𝑘1,𝑥1⟩ ⊗ · · · ⊗ |𝜓𝑘𝑡,𝑥𝑡⟩, and 𝜂 = 𝜂𝑘1,𝑥1 · · · 𝜂𝑘𝑡,𝑥𝑡
where |𝜓𝑘𝑖,𝑥𝑖⟩ , 𝜂𝑘𝑖,𝑥𝑖 for 𝑖 = 1, ..., 𝑡 are the values guaranteed by the recognizable abort property.

Proof. This follows from the fact that each invocation of 𝖳𝖾𝗌𝗍(𝑘𝑖, 𝑥𝑖, ·), conditioned on accepting,
implements a (scaled) projection 𝜂𝑘𝑖,𝑥𝑖 |𝜓𝑘𝑖,𝑥𝑖⟩⟨𝜓𝑘𝑖,𝑥𝑖 | on a disjoint register of 𝜎.

Recall that for a randomly chosen key, by pseudorandomness we know that 𝜂 is negligibly close
to 1 with overwhelming probability. Therefore, the corollaries show that we can estimate the overlap
between any state and the correct state up to a negligible error with overwhelming probability when
𝑘 is honestly sampled.

The next Lemma shows that Lemma 3.7 implies the ability to test the outputs of any PRFS
generator (even ones without recognizable abort), on average over a uniformly random key 𝑘.
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Lemma 3.10 (Self-testing PRFS). Let 𝐺 be a (𝑑, 𝑛)-PRFS generator and 𝖳𝖾𝗌𝗍(𝑘, 𝑥, ·) denote the
tester algorithm for channel 𝐺(𝑘, 𝑥) given by Lemma 3.7. There exists a negligible function 𝜈(·)
such that for all 𝜆, for all 𝑥 ̸= 𝑦,

Pr
𝑘
[𝖳𝖾𝗌𝗍(𝑘, 𝑥,𝐺(𝑘, 𝑥)) = 1] ≥ 1− 𝜈(𝜆),

and
Pr
𝑘
[𝖳𝖾𝗌𝗍(𝑘, 𝑥,𝐺(𝑘, 𝑦)) = 1] ≤ 2−𝑛(𝜆) + 𝜈(𝜆).

Proof. By Lemma 3.7,

Pr
𝑘
[𝖳𝖾𝗌𝗍(𝑘, 𝑥,𝐺(𝑘, 𝑥)) = 1] = 𝔼

𝑘

[︀
Tr(𝐺(𝑘, 𝑥)3)

]︀
≥ 𝔼

𝑘

[︂
Tr(𝐺(𝑘, 𝑥)2)2

Tr(𝐺(𝑘, 𝑥))

]︂
= 𝔼

𝑘

[︀
Tr(𝐺(𝑘, 𝑥)2)2

]︀
,

which is negligibly close to 1 by Item 1 of Lemma 3.6 and Markov’s inequality, and the inequality
is due to the following fact. For any finite-dimensional vector 𝑥 with non-negative coefficients, by
Cauchy–Schwarz we have

‖𝑥‖1‖𝑥‖
3
3 =

(︃∑︁
𝑖

𝑥𝑖

)︃(︃∑︁
𝑖

𝑥3𝑖

)︃
≥

(︃∑︁
𝑖

√
𝑥𝑖

√︁
𝑥3𝑖

)︃2

= ‖𝑥‖42.

Similarly,

Pr
𝑘
[𝖳𝖾𝗌𝗍(𝑘, 𝑥,𝐺(𝑘, 𝑦)) = 1] = 𝔼

𝑘

[︀
Tr(𝐺(𝑘, 𝑥)2𝐺(𝑘, 𝑦))

]︀
≤ 𝔼

𝑘
[Tr(𝐺(𝑘, 𝑥)𝐺(𝑘, 𝑦))] ,

which is at most negligibly larger than 2−𝑛(𝜆) by Item 2 of Lemma 3.6, and the inequality is due to
the fact that 0 ≼ 𝐺(𝑘, 𝑥) ≼ 𝐼.

4 Constructing PRFS from PRS

In this section we present our construction of PRFS generators using PRS generators, which are
seemingly weaker objects. As mentioned in the introduction, there is a trivial construction of
PRFS from PRS. Let 𝐺 be a PRS generator. Define the PRFS generator 𝐺′ with input length
𝑑(𝜆) = 𝑂(log 𝜆), where 𝐺′𝜆′(𝑘, 𝑥) = 𝐺𝜆(𝑘𝑥) with 𝜆′ = 2𝑑(𝜆)𝜆 and 𝑘𝑥 denoting the 𝑥’block of 𝜆 bits
in 𝑘 ∈ {0, 1}𝜆′ .

However, this simple construction is such that the input length is always at most logarithmic in
the seed length. This, as far as we can tell, is not very useful for applications.

The construction we present in this section is less trivial: we can build a PRFS generator with
input length 𝑑(𝜆) that is any constant times log 𝜆, as long as the the output length of the starting
PRS generator is at least 2𝑑(𝜆)+𝜔(log log 𝜆). Although the input length may appear modest, such
PRFS generators are sufficient for most of the applications we consider in this paper. We find it an
intriguing question of whether it is possible to construct PRFS generators with longer input lengths
from PRS generators in a black box way, without increasing the seed length by too much.

Theorem 4.1. Let 𝑑(𝜆), 𝑛(𝜆) be functions such that 𝑑(𝜆) = 𝑂(log 𝜆) and 𝑛(𝜆) = 𝑑(𝜆)+𝜔(log log 𝜆).
Let 𝐺 denote a (𝑛(𝜆) + 𝑑(𝜆))-PRS generator. Then there exists a (𝑑(𝜆), 𝑛(𝜆))-PRFS generator 𝐹
with the recognizable abort property, such that for all 𝜆 the circuit 𝐹𝜆 invokes the 𝐺𝜆 as a black box.
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For notational clarity we use the abbreviations 𝑑 = 𝑑(𝜆) and 𝑛 = 𝑛(𝜆).
Define the following circuit 𝐹𝜆(𝑘, 𝑥): On input key 𝑘 ∈ {0, 1}𝜆, input 𝑥 ∈ {0, 1}𝑑, repeat the

following 2𝑑 · 𝜆 times:

• Compute the (𝑑+ 𝑛)-qubit state 𝜌𝑘 ← 𝐺𝜆(𝑘).

• Measure the first 𝑑 qubits of 𝜌𝑘 in the computational basis to obtain a string 𝑦 ∈ {0, 1}𝑑. If
𝑦 = 𝑥, then output the remaining 𝑛 qubits. Otherwise, continue.

If the measurement outcomes was different from 𝑥 in all the 2𝑑𝜆 iterations, set 𝜎𝑘,𝑥 = |⊥⟩⟨⊥|. Let
the output be 𝜎𝑘,𝑥.

The algorithm 𝐹 = {𝐹𝜆}𝜆 is uniform QPT because for each 𝜆, the running time of the circuit 𝐹𝜆
is going to be 𝑂(2𝑑 · 𝜆) times the complexity of running 𝐺𝜆, which is QPT since 𝑑 = 𝑂(log 𝜆) and
𝐺 is QPT. It is easy to see that if 𝐺 satisfies recognizable abort, then 𝐹 also satisfies recognizable
abort by construction.

We now argue that the outputs of 𝐹 satisfy the pseudorandomness property of a PRFS. Let
𝐴 be a non-uniform QPT algorithm such that there exists 𝑥1 < . . . < 𝑥𝑠 ∈ {0, 1}𝑑 such that the
following holds:⃒⃒⃒

Pr
𝑘←{0,1}𝜆

[︀
𝐴𝜆(𝑥1, . . . , 𝑥𝑠, 𝐹𝜆(𝑘, 𝑥1)

⊗𝑡, . . . , 𝐹𝜆(𝑘, 𝑥𝑠)
⊗𝑡) = 1

]︀
(3)

− Pr
|𝜗1⟩,...,|𝜗𝑠⟩←H𝑛

[︀
𝐴𝜆(𝑥1, . . . , 𝑥𝑠, |𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡) = 1

]︀ ⃒⃒⃒
= 𝜀(𝜆) .

Assume for contradiction that 𝜀(𝜆) is not negligible in 𝜆.
Let 𝑀 = 𝜆𝑠𝑡2𝑑 = 𝜆𝑂(1). We construct a QPT algorithm 𝐵𝜆 that takes as input 𝜌⊗𝑀 where

𝜌 is a (𝑑+ 𝑛)-qubit state and does the following:

• For 𝑗 = 1, . . . , 𝑠, repeat the following 𝑡 times:

– Repeat the following 𝜆2𝑑 times: Measure the first 𝑑 qubits of a new copy of 𝜌 in the
computational basis to obtain a string 𝑦 ∈ {0, 1}𝑑. If 𝑦 = 𝑥𝑗 , then save the remaining 𝑛
qubits of 𝜌 (which we denote as the state 𝜎𝑥𝑗 ). Otherwise, continue.

– If the outcome 𝑥𝑗 was never measured, 𝐵𝜆 aborts.

• Execute 𝑏← 𝐴𝜆
(︀
𝑥1, . . . , 𝑥𝑠, 𝜎

⊗𝑡
𝑥1 , . . . , 𝜎

⊗𝑡
𝑥𝑠

)︀
.

• Output 𝑏.

We show the following:⃒⃒⃒
Pr

𝑘←{0,1}𝜆

[︀
𝐵𝜆(𝐺𝜆(𝑘)

⊗𝑀 ) = 1
]︀
− Pr
|𝜗⟩←H𝑑+𝑛

[︁
𝐵𝜆(|𝜗⟩⊗𝑀 ) = 1

]︁ ⃒⃒⃒
≥ 𝜀(𝜆)− 𝜈(𝜆) (4)

for some negligible function 𝜈(𝜆). This in turn shows that the algorithm 𝐵 = {𝐵𝜆}𝜆 violates the
pseudorandomness assumption on the PRS generator 𝐺, which is a contradiction. Thus 𝜀(𝜆) must
be negligible.

We prove (4) as follows. Consider an intermediate QPT algorithm ̃︀𝐵𝜆 that takes as input
(|𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡), where |𝜗𝑖⟩ ←H𝑛 and output the outcome of 𝐴𝜆

(︀
𝑥1, . . . , 𝑥𝑠, |𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡

)︀
.

Consider the following two claims.
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Lemma 4.2.⃒⃒⃒⃒
Pr

𝑘←{0,1}𝜆

[︀
𝐵𝜆(𝐺𝜆(𝑘)

⊗𝑀 ) = 1
]︀
− Pr
|𝜗𝑖⟩←H𝑛

[︁ ̃︀𝐵𝜆 (︀|𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡)︀ = 1
]︁⃒⃒⃒⃒

= 𝜀(𝜆) .

Proof. This follows from (3): (i) the output distribution, over the randomness of 𝑘, of output
of 𝐵𝜆

(︀
𝐺𝜆(𝑘)

⊗𝑀)︀ is precisely the output distribution, over the of 𝐴𝜆(𝑥1, . . . , 𝑥𝑠, 𝐹𝜆(𝑘, 𝑥1)⊗𝑡, . . . ,
𝐹𝜆(𝑘, 𝑥𝑠)

⊗𝑡) and, (ii) the output distribution of ̃︀𝐵𝜆 (︀|𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡)︀ is precisely the output dis-
tribution of 𝐴𝜆(𝑥1, . . . , 𝑥𝑠, |𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡), where |𝜗𝑖⟩ is a 𝑛-qubit Haar random state.

Lemma 4.3. There exists a negligible function 𝜈(𝜆) such that⃒⃒⃒⃒
Pr

|𝜗⟩←H𝑑+𝑛

[︁
𝐵𝜆(|𝜗⟩⊗𝑀 ) = 1

]︁
− Pr
|𝜗𝑖⟩←H𝑛

[︁ ̃︀𝐵𝜆 (︀|𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡)︀ = 1
]︁⃒⃒⃒⃒
≤ 𝜈(𝜆) .

Proof. Consider the behavior of the algorithm 𝐵𝜆 on input |𝜗⟩⊗𝑀 for |𝜗⟩ sampled from the Haar
distribution H𝑑+𝑛. Define the distribution R over (𝑑+ 𝑛)-qubit unitary operators

𝑅 =
∑︁

𝑥∈{0,1}𝑑
|𝑥⟩⟨𝑥| ⊗𝑅𝑥

where (𝑅𝑥)𝑥∈{0,1}𝑑 is a sequence of i.i.d. Haar-random 𝑛-qubit unitaries.
Observe that, by the unitary invariance of the Haar measure, 𝑅 |𝜗⟩ is also distributed according

to H𝑑+𝑛. Therefore the algorithm 𝐵𝜆 behaves identically on input (𝑅 |𝜗⟩)⊗𝑀 .
Define the event 𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅 to be the event that the algorithm 𝐵𝜆 aborts on input (𝑅 |𝜗⟩)⊗𝑀 ;

this happens only if there exists a 𝑗 ∈ [𝑠] such that, even after measuring the first 𝑑 qubits of 𝜆𝑡2𝑑

copies of 𝑅 |𝜗⟩, the string 𝑥𝑗 occured fewer than 𝑡 times as a measurement outcome.
Notice that the event 𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅 (and its negation) is independent of the choice of randomizing

unitaries (𝑅𝑥)𝑥; that is because applying 𝑅 to |𝜗⟩ does not change the distribution of measurement
outcomes on the first 𝑑 qubits. Thus, for all |𝜗⟩ =

∑︀
𝑥 𝛼𝑥 |𝑥⟩ ⊗ |𝜗𝑥⟩, conditioning on the event

¬𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅 (the negation of 𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅) still leaves the unitary 𝑅 distributed according to R.
Therefore for all |𝜗⟩ we have

Pr
[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅

]︀
= Pr

[︁ ̃︀𝐵𝜆((𝑅𝑥1 |𝜗𝑥1⟩)⊗𝑡, . . . , (𝑅𝑥𝑠 |𝜗𝑥𝑠⟩)⊗𝑡) = 1
]︁

(5)

where the probabilities are over the randomness of the measurements and also the randomness of
sampling 𝑅← R. Since the 𝑅𝑥𝑗 ’s are i.i.d. Haar-random unitaries and the 𝑥𝑖’s are distinct, this is
equal to

Pr
[︁ ̃︀𝐵𝜆(|𝜑1⟩⊗𝑡 , . . . , |𝜑𝑠⟩⊗𝑡) = 1

]︁
where the probability is over the measurement outcomes and |𝜑𝑖⟩’s are i.i.d. Haar-random 𝑛-qubit
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states. Thus

Pr
[︁
𝐵𝜆(|𝜗⟩⊗𝑀 ) = 1

]︁
= Pr

[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

]︀
= Pr [¬𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅] · Pr

[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅

]︀
+ Pr [𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅] · Pr

[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅

]︀
= Pr

[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅

]︀
+ Pr [𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅] ·

(︁
Pr
[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅

]︀
− Pr

[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅

]︀ )︁
where we used Pr [¬𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅] = 1− Pr [𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅]. Thus⃒⃒⃒

Pr
[︁
𝐵𝜆(|𝜗⟩⊗𝑀 ) = 1

]︁
− Pr

[︁ ̃︀𝐵𝜆 (︀|𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡)︀ = 1
]︁⃒⃒⃒

≤ Pr [𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅] ·
⃒⃒⃒
Pr
[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅

]︀
− Pr

[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅

]︀ ⃒⃒⃒
≤ Pr [𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅] .

We now estimate the probability of the event 𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅. Fix a state |𝜗⟩ and let 𝑝𝑥𝑗 denote
the probability of obtaining 𝑥𝑗 when measuring the first 𝑑 qubits of |𝜗⟩, or equivalently since 𝑅
commutes with the measurement, 𝑅 |𝜗⟩. Fix a 𝑗 ∈ [𝑠]. The probability that measuring 𝜆2𝑑 copies
of 𝑅 |𝜗⟩ fails to yield the outcome 𝑥𝑗 is equal to(︁

1− 𝑝𝑥𝑗
)︁𝜆2𝑑

The algorithm aborts if this happens in any of the 𝑠𝑡 iterations of the “main loop” of 𝐵𝜆; thus
the probability of 𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅 is, by union bound, at most

𝑠∑︁
𝑗=1

𝑡
(︁
1− 𝑝𝑥𝑗

)︁𝜆2𝑑
The following Lemma establishes deviation bounds on the probabilities 𝑝𝑥:

Lemma 4.4. Let |𝜓⟩ be sampled from the Haar distribution H𝑑+𝑛. For all 𝑥 ∈ {0, 1}𝑑, let 𝑝𝑥
denote the probability of measuring the first 𝑑 qubits of |𝜓⟩ in the computational basis and obtaining
outcome 𝑥. Then for all 𝛿 > 0 with probability at least 1− 2𝑑+1 · exp(−𝐶2𝑛+𝑑𝛿2) over |𝜓⟩ for some
universal constant 𝐶 > 0, we have that

|𝑝𝑥 − 2−𝑑| ≤ 𝛿

for all 𝑥 ∈ {0, 1}𝑑.

By Lemma 4.4 (setting 𝛿 = 2−𝑑/2), with all but negligible probability over the choice of |𝜗⟩,
each of the 𝑝𝑥𝑗 ’s are at least 2−𝑑/2 and therefore the probability of 𝖬𝖾𝖺𝗌𝗎𝗋𝖾𝖥𝖺𝗂𝗅, when averaged over
the choice of |𝜗⟩, is at most

𝑠𝑡(1− 2−𝑑/2)𝜆2
𝑑
+ 2 exp(−(𝐶2𝑛−𝑑 − 𝑑)) ≤ 𝑠𝑡 exp(−Ω(𝜆)) + 2 exp(−(𝐶2𝑛−𝑑 − 𝑑))

which for our choice of 𝑠, 𝑡, 𝑛, 𝑑 is negligible in 𝜆.
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Applying triangle inequality to Lemmas 4.2 and 4.3, we establish Equation (4), as desired. We
conclude this section by proving Lemma 4.4.

Proof of Lemma 4.4. We first show that, with high probability over |𝜓⟩, the probability obtaining
any fixed prefix 𝑥 ∈ {0, 1}𝑑 is going to be exponentially small in 2𝑛. We then apply a union bound
over all 𝑥 ∈ {0, 1}𝑑 to obtain the Lemma statement.

Let Π𝑥 denote the projector onto the first 𝑑 qubits being in the state |𝑥⟩. Define 𝑝𝑥 =
Tr(Π |𝜓⟩⟨𝜓|). On average over the choice of |𝜓⟩, this quantity is equal to

𝔼
|𝜓⟩←H𝑑+𝑛

𝑝𝑥 = Tr

(︃
Π𝑥 𝔼

|𝜓⟩←H𝑑+𝑛

|𝜓⟩⟨𝜓|

)︃
= 2−(𝑑+𝑛)Tr(Π𝑥) = 2−𝑑

where we used the fact that the average of a Haar-random state is the maximally mixed state.
We now appeal to Lévy’s Lemma (Fact 2.2), which shows that 𝑝𝑥 concentrates tightly around

its expectation. Define 𝑓(|𝜓⟩) = Tr(Π𝑥 |𝜓⟩⟨𝜓|). One can calculate that the Lipschitz constant of 𝑓
is at most 2;

|𝑓(|𝜓⟩)− 𝑓(|𝜑⟩)|
‖ |𝜓⟩ − |𝜑⟩ ‖

≤ 2

for all |𝜓⟩ , |𝜑⟩. By Fact 2.2, we have

Pr
[︁⃒⃒⃒
𝑝𝑥 − 2−𝑑

⃒⃒⃒
≥ 𝛿
]︁
≤ 2 exp

(︁
− 𝐶2𝑑+𝑛𝛿2

)︁
for some universal constant 𝐶 > 0, where the probability is over |𝜓⟩ ←H𝑑+𝑛.

5 Quantum Pseudo One-Time Pad from PRFS

The first application of PRFS we present is the Quantum Pseudo One-Time Pad (QP-OTP). In
classical cryptography, a pseudo one-time pad is like the one-time pad except the key length is shorter
than the length of the plaintext message. This is often presented in introductory cryptography
courses as a basic example of using pseudorandomness to achieve a cryptographic task that is
impossible in the information-theoretic setting. Here, we use a PRFS in place of a PRG to encrypt
(classical) messages.

We point out that without knowing about the notion of PRFS, it appears difficult and challenging
to construct secure quantum one-time pad schemes directly from PRS generators alone.

Definition 5.1 (Quantum Pseudo One-Time Pad). We say that a pair of QPT algorithms (𝖤𝗇𝖼,𝖣𝖾𝖼)
is a quantum pseudo one-time pad (QP-OTP) if the following properties are satisfied: there exist a
polynomial ℓ(𝜆) such that

• Correctness: There exists a negligible function 𝜀(·) such that for every 𝜆, every 𝑥 ∈ {0, 1}ℓ,

Pr
𝑘←{0,1}𝜆,
𝜎←𝖤𝗇𝖼𝜆(𝑘,𝑥)

[𝖣𝖾𝖼𝜆(𝑘, 𝜎) = 𝑥] ≥ 1− 𝜀(𝜆).
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• Security: For every polynomial 𝑡(𝜆), for every nonuniform QPT adversary 𝐴, there exists a
negligible function 𝜀(·) where for every 𝜆 and 𝑥 ∈ {0, 1}ℓ,⃒⃒⃒⃒

⃒⃒⃒ Pr
𝑘←{0,1}𝜆,
𝜎←𝖤𝗇𝖼𝜆(𝑘,𝑥)

[︀
𝐴𝜆(𝜎

⊗𝑡) = 1
]︀
− Pr
|𝜗1⟩,...,|𝜗ℓ⟩←H𝑛

[︀
𝐴𝜆((|𝜗1⟩ ⊗ · · · ⊗ |𝜗ℓ⟩)⊗𝑡) = 1

]︀⃒⃒⃒⃒⃒⃒⃒ ≤ 𝜀(𝜆),
where we have abbreviated 𝑛 = 𝑛(𝜆), ℓ = ℓ(𝜆), and 𝑡 = 𝑡(𝜆).

Here we are saying the security holds even if the adversary could see multiple copies of the same
ciphertexts, which might be useful for certain applications. However, when 𝑡 = 1, we can see that
the security implies that the ciphertext is computationally indistinguishable to random bit strings
of length ℓ𝑛 (or a maximally mixed state) by Fact 2.1.

To construct such a quantum pseudo one-time pad, let 𝐺 be a (𝑑(𝜆), 𝑛(𝜆))-PRFS generator
where 𝑑(𝜆) ≥ ⌈log ℓ(𝜆)⌉+1 and 𝑛(𝜆) = 𝜔(log 𝜆). We interpret 𝐺𝜆(𝑘, ·) as taking inputs of the form
(𝑖, 𝑏) where 𝑖 ∈ [ℓ(𝜆)] and 𝑏 ∈ {0, 1}. Let 𝖳𝖾𝗌𝗍 denote the test algorithm from Lemma 3.10.

Fix 𝜆 and let ℓ = ℓ(𝜆), 𝑑 = 𝑑(𝜆), and 𝑛 = 𝑛(𝜆).

1. 𝖤𝗇𝖼𝜆(𝑘, 𝑥): on input 𝑘 ∈ {0, 1}𝜆 and a message 𝑥 ∈ {0, 1}ℓ, do the following:

• For every 𝑖 ∈ [ℓ], compute 𝜎𝑖 ← 𝐺𝜆(𝑘, (𝑖, 𝑥𝑖)).
• Set 𝜎 = 𝜎1 ⊗ · · · ⊗ 𝜎ℓ.

Output the ciphertext state 𝜎.

2. 𝖣𝖾𝖼𝜆(𝑘, 𝜎
′): on input 𝑘, ℓ𝑛-qubit ciphertext state 𝜎′, perform the following operations:

• Parse 𝜎′ as 𝜎′1 ⊗ · · · ⊗ 𝜎′ℓ.
• For 𝑖 ∈ [ℓ], execute 𝖳𝖾𝗌𝗍(𝑘, (𝑖, 0), 𝜎𝑖). If it accepts, set 𝑥𝑖 = 0. Otherwise, set 𝑥𝑖 = 1.
• Output 𝑥 = 𝑥1 · · ·𝑥ℓ.

Lemma 5.2. (𝖤𝗇𝖼,𝖣𝖾𝖼) satisfies the correctness property of a quantum pseudo one-time pad ac-
cording to Definition 5.1.

Proof. Fix 𝜆 and let ℓ = ℓ(𝜆). Fix a message 𝑥 ∈ {0, 1}ℓ. Let 𝜎𝑘,𝑖 = 𝐺𝜆(𝑘, (𝑖, 𝑥𝑖)) and let
𝜎𝑘 = 𝜎𝑘,1 ⊗ · · · ⊗ 𝜎𝑘,ℓ.

Consider the decryption process. Fix an index 𝑖 ∈ [ℓ]. By Lemma 3.10, the probability that
𝖳𝖾𝗌𝗍

(︁
𝑘, (𝑖, 0), 𝜎𝑘,𝑖

)︁
accepts (on average over 𝑘) is negligibly close to 1 if 𝑥𝑖 = 0, and it is negligibly

close to 0 if 𝑥𝑖 = 1, on average over the key 𝑘 (here we use the fact that the output length of
the PRFS generator is 𝜔(log 𝜆), so that 2−𝑛(𝜆) is negligible). Thus the probability that the correct
bit 𝑥𝑖 gets decoded is negligibly close to 1. Taking a union bound over all indices 𝑖, we get that
the probability of decoding 𝑥 is negligibly close to 1, over the randomness of the key 𝑘 and the
decryption algorithm.

Lemma 5.3. (𝖤𝗇𝖼,𝖣𝖾𝖼) satisfies the security property of quantum pseudo one-time pad according
to Definition 5.1.

Proof. We prove the security via a hybrid argument. Let 𝑛(𝜆) denote the output length of the
PRFS generator 𝐺. Fix 𝜆, and let ℓ = ℓ(𝜆), 𝑛 = 𝑛(𝜆), and 𝑡 = 𝑡(𝜆). Fix a message 𝑥 ∈ {0, 1}ℓ.
Consider a nonuniform QPT adversary 𝐴 such that 𝐴𝜆 takes as input 𝑡 copies of an ℓ𝑛-qubit density
matrix 𝜎.
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Hybrid 𝖧1. Sample 𝑘 ← {0, 1}𝜆. Compute 𝜎 ← 𝖤𝗇𝖼𝜆(𝑘, 𝑥). The output of the hybrid is the
output of the adversary 𝐴𝜆 on input 𝜎⊗𝑡.

Hybrid 𝖧2. Consider the following QPT algorithm 𝐵𝜆: it takes as input (𝑖1, 𝑏1), . . . , (𝑖ℓ, 𝑏ℓ) ∈
[ℓ]×{0, 1} and a 𝑡𝑛-qubit state 𝜎⊗𝑡1 ⊗· · ·⊗𝜎

⊗𝑡
ℓ . It runs the adversary 𝐴𝜆 on input (𝜎1⊗· · ·⊗𝜎ℓ)⊗𝑡.

Sample 𝑘 ← {0, 1}𝜆. Compute 𝑡 copies of 𝜎 ← 𝖤𝗇𝖼𝜆(𝑘, 𝑥). The output of this hybrid is the
output of 𝐵𝜆 on input ((1, 𝑥1), . . . , (ℓ, 𝑥ℓ)) and 𝜎⊗𝑡 = 𝜎⊗𝑡1 ⊗ · · · ⊗ 𝜎

⊗𝑡
ℓ .

Hybrid 𝖧3. Sample 𝑡 copies of Haar-random states |𝜗1⟩ , . . . , |𝜗ℓ⟩ ← H𝑛. The output of this
hybrid is the output of 𝐵𝜆 on input ((1, 𝑥1), . . . , (ℓ, 𝑥ℓ)) and |𝜗1⟩⊗𝑡 ⊗ · · · ⊗ |𝜗ℓ⟩⊗𝑡.

We now argue the indistinguishability of the hybrids. Clearly, hybrids 𝖧1 and 𝖧2 are identical
by construction (the adversary 𝐵𝜆 ignores its first input and runs 𝐴𝜆 on input 𝜎⊗𝑡). Hybrids 𝖧2

and 𝖧3 are indistinguishable because of the pseudorandomness property of the PRFS generator 𝐺.
Notice that, by construction, the output of hybrid 𝖧3 is 𝐴𝜆((|𝜗1⟩ ⊗ · · · ⊗ |𝜗ℓ⟩)⊗𝑡).

6 Quantum Bit Commitments from PRFS

6.1 Definition

We consider the notion of quantum commitment scheme with statistical binding and computational
hiding property. This is analogous to a classical commitment scheme where the messages are
allowed to be quantum states. We in particular focus on bit commitments where the the committed
message is a single bit. We can achieve commitments of long messages generically by composing
many instantiations of the bit-commitment scheme in parallel.

A (bit) commitment scheme is given by a pair of (uniform) QPT algorithms (𝐶,𝑅), where
𝐶 = {𝐶𝜆}𝜆∈ℕ is called the committer and 𝑅 = {𝑅𝜆}𝜆∈ℕ is called the receiver. There are two phases
in a commitment scheme: a commit phase and a reveal phase.

• In the (possibly interactive) commit phase between 𝐶𝜆 and 𝑅𝜆, 𝐶𝜆 commits to a bit, say 𝑏.
We denote the execution of the commit phase to be 𝜎𝐶𝑅 ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(𝑏), 𝑅𝜆⟩, where 𝜎𝐶𝑅 is
a joint state of 𝐶𝜆 and 𝑅𝜆 after the commit phase.

• In the reveal phase 𝐶𝜆 interacts with 𝑅𝜆 and the output is a trit 𝜇 ∈ {0, 1,⊥} indicating the
receiver’s output bit or a rejection flag. We denote an execution of the reveal phase where the
committer and receiver start with the joint state 𝜎𝐶𝑅 by 𝜇← 𝖱𝖾𝗏𝖾𝖺𝗅⟨𝐶𝜆, 𝑅𝜆, 𝜎𝐶𝑅⟩.

We define the properties satisfied by a commmitment scheme.

Statistical Binding. We start by discussing the statistical binding property. A natural quantum
analogue of classical statistical binding property would be to consider the following: for any adver-
sarial (possibly unbounded) committer 𝐶*𝜆, we require that at the end of the commit phase, over
the randomness of the receiver, there is a unique message that 𝐶*𝜆 can decommit to in the reveal
phase. Unfortunately, this idealistic notion is impossible to achieve: for example, 𝐶*𝜆 can send a
(uniform) superposition of commitments of 0 and 1 and later can open to either 0 or 1 with equal
probability. This attack was observed and taken into account in many works, including but not
limited to [YWLQ15, Unr16, FUYZ20, BB21].
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To account for this issue, we consider a notion where an extractor algorithm needs to be applied
on the state of the receiver after the commit phase. The output is the modified receiver’s state
along with a bit 𝑏. We revise the statistical binding property guarantee to be the following: the
probability that the extracted bit 𝑏 is different from the bit decommitted by 𝐶*𝜆 and the verifier
rejects is negligible in 𝜆. We present the definition below.

Definition 6.1 (Statistical Binding). We say that a quantum commitment scheme (𝐶,𝑅) satisfies
statistical binding if for any (non-uniform) adversarial committer 𝐶* = {𝐶*𝜆}𝜆∈ℕ, there exists a
(possibly inefficient) extractor algorithm ℰ such that the following holds:

TD
(︁
𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶

*
𝜆 , 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶

*,ℰ
𝜆

)︁
≤ 𝜈(𝜆),

for some negligible function 𝜈(𝜆), where the experiments 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*

𝜆 and 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*,ℰ

𝜆 are defined
as follows.

• 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*

𝜆 : Execute the commit phase to obtain the joint state 𝜎𝐶*𝑅 ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶*𝜆, 𝑅𝜆⟩.
Execute the reveal phase to obtain the trit 𝜇← 𝖱𝖾𝗏𝖾𝖺𝗅⟨𝐶*𝜆, 𝑅𝜆, 𝜎𝐶*𝑅⟩. Output the pair (𝜏𝐶* , 𝜇)
where 𝜏𝐶* is the final state of the committer.

• 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*,ℰ

𝜆 : Execute the commit phase to obtain the joint state 𝜎𝐶*𝑅 ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶*𝜆, 𝑅𝜆⟩.
Apply the extractor ℰ on the receiver’s part of 𝜎𝐶*𝑅 to obtain a new joint committer-receiver
state 𝜎′𝐶*𝑅 along with 𝑏′ ∈ {0, 1,⊥}. Execute the reveal phase to obtain the trit 𝜇← 𝖱𝖾𝗏𝖾𝖺𝗅⟨𝐶*𝜆,
𝑅𝜆, 𝜎

′
𝐶*𝑅⟩. Let 𝜏𝐶* denote the final state of the committer. If 𝜇 = 𝑏′, then output (𝜏𝐶* , 𝜇).

Otherwise output (𝜏𝐶* ,⊥).

Remark 6.2. Many prior works consider statistical binding for quantum commitments. We highlight
the main differences between our definition and the prior notions.

• Comparison with [YWLQ15, Unr16, FUYZ20]: the statistical binding property is formalized
by requiring the states of the (honest) committer when committing to bits 0 and 1 to be far
in trace distance. While their definition is cleaner (and probably equivalent to our notion),
in our opinion, it is unwieldy to use their definition for applications. Specifically, one has
to either implicitly or explicitly come up with an extractor in the security proofs [YWLQ15,
FUYZ20] and moreover, show that the indistinguishability of the real and the ideal world holds
against dishonest committers. On the other hand, we incorporate these technical difficulties
as requirements in our definition making it easier to use in applications.

Another downside of the statistical binding property there is that in order for the binding
property to hold, the opening phase must follow the “canonical” opening protocol, where the
committer sends the purification of the mixed state sent in the committing phase, and the
receiver performs a rank-1 projection to check the state. This implies that both parties must
keep their part of the state coherent between the two phases. However, our definition gives the
flexibility of the reveal phase having purely classical communication.

• Comparison with [BB21]: A related work by [BB21] considers statistical binding of quantum
commitments with the added feature that their opening is classical. The main difference is
the following. In their notion, the honest receiver applies an operation that collapses the
commitment into a quantum state and a classical string in such a way that the classical string
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information theoretically determines the message. They then use this feature to show that
in some applications, the opening of the commitment can be classical. Our definition is also
more general in the sense that the honest receiver does not apply any such operation and the
collapsing part happens implicitly in the execution of extractor.

Remark 6.3. One has to be careful when using quantum commitments in a larger system if the
receiver’s state is quantum after the commit phase. As an example, suppose we design a protocol
where the quantum commitment sent by the receiver is used inside another cryptographic protocol
then we might not be able to invoke binding if the state is destroyed, whereas classically the state
could always be copied. Nevertheless, this is a generic caveat of quantum commitments and is not
an artifact of any specific definition of binding.

Computational Hiding. We define the computational hiding property below. This is the natural
quantum analogue of the classical computational hiding property. In the literature, this property is
also sometimes referred to as quantum concealing.

Definition 6.4 (Computational Hiding). We say that a quantum commitment scheme (𝐶,𝑅) sat-
isfies computational hiding if for any malicious QPT receiver {𝑅*𝜆}𝜆∈ℕ, for any QPT distinguisher
{𝐷𝜆}𝜆∈ℕ, the following holds:⃒⃒⃒⃒

Pr [𝐷𝜆(𝜎𝑅*) = 1 : 𝜎𝐶𝑅* ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(0), 𝑅*𝜆⟩]

− Pr [𝐷𝜆(𝜎𝑅*) = 1 : 𝜎𝐶𝑅* ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(1), 𝑅*𝜆⟩]
⃒⃒⃒⃒
≤ 𝜈(𝜆),

for some negligible function 𝜈(·), where 𝜎𝑅* is obtained by tracing out the committer’s part of the
state 𝜎𝐶𝑅*.

6.2 Construction

We now present the main theorem of this section, which shows that statistically binding quantum
commitment schemes can be constructed from PRFS.

Theorem 6.5. Assuming the existence of (𝑑(𝜆), 𝑛(𝜆))-PRFS satisfying recognizable abort (Defini-
tion 3.5) and 2𝑑 · 𝑛 ≥ 7𝜆, there exists a commitment scheme satisfying statistical completeness,
statistical binding (Definition 6.1) and computational hiding (Definition 6.4).

We note that, combined with Theorem 4.1 which constructs PRFS generators with Ω(log 𝜆) input
length and recognizable abort property from PRS generators, we can obtain quantum commitment
schemes from PRS generators. We present the construction, which is inspired by Naor’s commitment
scheme [Nao91].

Construction. The main building block is a (𝑑(𝜆), 𝑛(𝜆))-PRFS, denoted by 𝐺 = {𝐺𝜆(·, ·)}𝜆∈ℕ.
Since 𝑛 ≥ 1, we assume 𝑑(𝜆) = ⌈log 7𝜆

𝑛 ⌉ = 𝑂(log 𝜆) to ensure the efficiency of the algorithm.
This is without loss of generality since we can generically shrink the input length for a PRFS by
padding zeroes. Let 𝖳𝖾𝗌𝗍⊗2

𝑑(𝜆)

𝜆 be the product PRFS tester corresponding to 𝐺 as guaranteed by
Corollary 3.9.

We describe the commitment scheme, (𝐶,𝑅) as follows. For notational convenience, we abbre-
viate 𝑛 = 𝑛(𝜆), 𝑑 = 𝑑(𝜆).
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1. Commit Phase:

• The receiver 𝑅𝜆 samples a uniformly random 𝑚-qubit Pauli matrix 𝑃 , where 𝑚 = 2𝑑 ·𝑛.
We write 𝑃 as 𝑃0 ⊗ · · · ⊗ 𝑃2𝑑−1, where 𝑃𝑖 is an 𝑛-qubit Pauli operator.9 It sends 𝑃 to
the committer.

• The committer 𝐶𝜆 on input a bit 𝑏 ∈ {0, 1}, does the following:

– It samples 𝑘 $←− {0, 1}𝜆.
– For every 𝑥 ∈ {0, 1}𝑑, computes 𝜎𝑘,𝑥 ← 𝐺𝜆(𝑘, 𝑥).

It sends the commitment 𝐜 =
⨂︀

𝑥∈{0,1}𝑑 ̃︀𝜎𝑘,𝑥, where ̃︀𝜎𝑘,𝑥 = 𝑃 𝑏𝑥𝜎𝑘,𝑥𝑃
𝑏
𝑥, to the receiver.

2. Reveal Phase: The committer sends (𝑘, 𝑏) as the decommitment to the receiver. If 𝑏 /∈ {0, 1},
receiver outputs ⊥. The receiever outputs 𝑏 if and only if 𝖳𝖾𝗌𝗍⊗2

𝑑

𝜆

(︀
{𝑘, 𝑥}𝑥, 𝑃 𝑏𝐜𝑃 𝑏

)︀
= 1 where

𝑃 𝑏 =
⨂︀

𝑥∈{0,1}2𝑑 𝑃
𝑏
𝑥. Otherwise the receiver outputs ⊥.

Lemma 6.6. If 𝐺 is a PRFS, then there exists a negligible function 𝜈(·) such that the probability
that the honest receiver accepts the honest committer’s opening is at least 1− 𝜈(𝜆).

Proof. This follows immediately from Lemma 3.10 and union bound as 2𝑑 is polynomial in 𝜆.

Lemma 6.7. If 𝐺 is a PRFS, then (𝐶,𝑅) satisfies computational hiding as defined in Definition 6.4.

Proof. This follows from a standard hybrid argument. Let 𝑅* be a QPT receiver.

Hybrid 𝖧1. This corresponds to 𝐶 committing to the bit 𝑏 = 0. In more detail, let 𝑃 =⨂︀
𝑥∈{0,1}𝑑 𝑃𝑥. be the Pauli sent by 𝑅* to 𝐶. Then, 𝐶 computes 𝜎𝑘,𝑥 ← 𝐺𝜆(𝑘, 𝑥), for every

𝑥 ∈ {0, 1}𝑑. 𝐶 sends 𝐜 =
⨂︀

𝑥∈{0,1}𝑑(𝜆) ̃︀𝜎𝑘,𝑥, where ̃︀𝜎𝑘,𝑥 = 𝜎𝑘,𝑥 to 𝑅*.

Hybrid 𝖧2. This hybrid is the same as before, except that 𝜎𝑘,𝑥 = |𝜗𝑥⟩⟨𝜗𝑥|, where |𝜗1⟩ , . . . , |𝜗2𝑑⟩ ←
H𝑛.

The output distributions of 𝖧1 and 𝖧2 are computationally indistinguishable from the security
of PRFS {𝐺𝜆 (·, ·)}𝜆∈ℕ.

Hybrid 𝖧3. This hybrid is the same as before, except that ̃︀𝜎𝑘,𝑥 = 𝑃𝑥𝜎𝑘,𝑥𝑃𝑥. That is, the operator
𝑃 𝑏 is applied to 𝜎𝑘,𝑥.

The output distributions of 𝖧2 and 𝖧3 are identical.

Hybrid 𝖧4. This corresponds to 𝐶 committing to the bit 𝑏 = 1. In more detail, let 𝑃 be the
Pauli sent by 𝑅* to 𝐶. Then, 𝐶 computes 𝜎𝑘,𝑥 ← 𝐺𝜆(𝑘, 𝑥), for every 𝑥 ∈ {0, 1}𝑑. 𝐶 sends
𝐜 =

⨂︀
𝑥∈{0,1}𝑑(𝜆) ̃︀𝜎𝑘,𝑥, where ̃︀𝜎𝑘,𝑥 = 𝑃𝑥𝜎𝑘,𝑥𝑃𝑥 to 𝑅*.

The output distributions of 𝖧3 and 𝖧4 are computationally indistinguishable from the security
of PRFS 𝐺.

9To sample 𝑃 =
⨂︀

𝑖 𝑃𝑖, the receiver can sample uniformly random bits 𝛼1, 𝛽1, . . . , 𝛼𝑚, 𝛽𝑚, and let 𝑃𝑖 = 𝑋𝛼𝑖𝑍𝛽𝑖

where 𝑋 and 𝑍 are the single-qubit Pauli matrices.
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Statistical binding. The rest of the section will be devoted to proving statistical binding of the
construction. For this part, we assume recognizable abort to simplify the analysis. However, we
believe that with some more work, our construction would still satisfy binding even if a more generic
PRFS is used.

Lemma 6.8. (𝐶,𝑅) satisfies 𝑂(2−𝜆)-statistical binding if the (𝑑, 𝑛)-PRFS satisfies recognizable
abort property and 2𝑛 · 𝑑 ≥ 7𝜆.

Let 𝐶* = {𝐶*𝜆}𝜆∈ℕ be an malicious committer. Suppose 𝐶*𝜆 executes the commit phase with the
honest receiver 𝑅𝜆. Let 𝐜 denote the mixed state sent by 𝐶* to 𝑅.

We first describe the extractor.

Description of ℰ. On input the commitment 𝐜, the extractor ℰ obtains the description of the
Pauli matrix 𝑃 from the receiver’s state, and performs general measurement Λ whose operators are
{
√
Λ0,
√
Λ1,
√
Λ⊥}, where Λ0,Λ1,Λ⊥ are positive semi-definite operators defined as follows:

• Define 𝑇0 to be the subspace spanned by
{︁⨂︀

𝑥∈{0,1}2𝑑 |𝜓𝑘,𝑥⟩⟨𝜓𝑘,𝑥| : ∀𝑘 ∈ {0, 1}𝜆
}︁

, where the
states |𝜓𝑘,𝑥⟩ are pure states guaranteed by Definition 3.5. Let Π0 be a projection that projects
onto 𝑇0.

• Define 𝑇1 to be the subspace spanned by
{︁
𝑃
⨂︀

𝑥∈{0,1}2𝑑 |𝜓𝑘,𝑥⟩⟨𝜓𝑘,𝑥|𝑃 : ∀𝑘 ∈ {0, 1}𝜆
}︁

. Let
Π1 be a projection that projects onto 𝑇1. Note that Π1 = 𝑃Π0𝑃 by definition.

• Let 𝑝 = ‖Π0 +Π1‖ (i.e. the maximum eigenvalue of Π0+Π1), Λ0 = 𝑝−1 ·Π0, and Λ1 = 𝑝−1 ·Π1.
Define Λ⊥ = 𝐼 − (Λ0 +Λ1). Since Π0 and Π1 are projections,

√
Λ0 and

√
Λ1 are well defined.

By definition, Λ0 + Λ1 = 𝑝−1(Π0 + Π1) ≼ 𝐼 and therefore Λ⊥ is positive-semidefinite. Thus√
Λ⊥ is also well-defined.

Let the measurement outcome be 𝑏′ ∈ {0, 1,⊥} and let the post-measurement state be denoted
by 𝐜′ after applying the general measurement {

√
Λ0,
√
Λ1,
√
Λ⊥}. The extractor ℰ outputs (𝐜′, 𝑏′).

This completes the description of the extractor.

Fact 6.9. Let |𝜑⟩ and |𝜓⟩ be two arbitrary 𝑚-qubit states. Let 𝒫𝑚 be the 𝑚-qubit Pauli group.
Then,

𝔼
𝑃←𝒫𝑚

[︁
|⟨𝜓|𝑃 |𝜑⟩|2

]︁
= 2−𝑚.

Proof. We first observe that |⟨𝜓|𝑃 |𝜑⟩|2 = Tr (𝑃 |𝜓⟩⟨𝜓|𝑃 |𝜑⟩⟨𝜑|); this follows from the fact that the
trace of an outer product of two vectors is equivalent to the square of their inner product.

We also use the following fact from [MTW00]: for any 𝑚-qubit density matrix 𝜌,

𝔼𝑃←𝒫𝑚 [𝑃𝜌𝑃 ] =
𝐼

2𝑚
. (6)
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This implies that for all states |𝜓⟩ , |𝜑⟩,

𝔼𝑃←𝒫𝑚

[︁
|⟨𝜓|𝑃 |𝜑⟩|2

]︁
= 𝔼𝑃←𝒫𝑚 [Tr (𝑃 |𝜓⟩⟨𝜓|𝑃 |𝜑⟩⟨𝜑|)]

= Tr (𝔼𝑃←𝒫𝑚 [𝑃 |𝜓⟩⟨𝜓|𝑃 |𝜑⟩⟨𝜑|]) (from linearity of 𝔼)
= Tr (𝔼𝑃←𝒫𝑚 [𝑃 |𝜓⟩⟨𝜓|𝑃 ] · |𝜑⟩⟨𝜑|)

= Tr

(︂
𝐼

2𝑚
· |𝜑⟩⟨𝜑|

)︂
(from (6))

=
1

2𝑚
· Tr (|𝜑⟩⟨𝜑|)

=
1

2𝑚

as desired.

Lemma 6.10 (Almost orthogonality of Π0 and Π1).

Pr
𝑃←𝒫𝑚

[︁
𝑝 ≥ 1 + 3 · 2−(𝑚−4𝜆)/3

]︁
≤ 2−(𝑚−4𝜆)/3.

Proof. Let |𝜓⟩ be an arbitrary 𝑚-qubit pure state. Write |𝜓⟩ = |𝛼⟩+ |𝛽⟩, where |𝛼⟩ is the projection
of |𝜓⟩ onto the subspace 𝑇0, and |𝛽⟩ is the projection of |𝜓⟩ onto the orthogonal complement of 𝑇0.
We determine an upper bound for the following quantity:

⟨𝜓| (Π0 +Π1) |𝜓⟩ = (⟨𝛼|+ ⟨𝛽|) (Π0 +Π1) (|𝛼⟩+ |𝛽⟩)
= (⟨𝛼|+ ⟨𝛽|) (|𝛼⟩+Π1 |𝛼⟩+Π1 |𝛽⟩)
= ⟨𝛼|𝛼⟩+ ⟨𝛼|Π1 |𝛽⟩+ ⟨𝛽|Π1 |𝛼⟩+ ⟨𝛽|Π1 |𝛽⟩+ ⟨𝛼|Π1|𝛼⟩
≤ ⟨𝛼|𝛼⟩+ ⟨𝛽|𝛽⟩+ 2 |⟨𝛼|Π1 |𝛽⟩|+ ⟨𝛼|Π1|𝛼⟩
= 1 + 2 |⟨𝛼|Π1 |𝛽⟩|+ ⟨𝛼|Π1|𝛼⟩

= 1 + 2
√︀
⟨𝛼|Π1|𝛽⟩ ⟨𝛽|Π1|𝛼⟩+ ⟨𝛼|Π1|𝛼⟩

≤ 1 + 2
√︀
⟨𝛼|Π1|𝛼⟩+ ⟨𝛼|Π1|𝛼⟩

≤ 1 + 3
√︀
⟨𝛼|Π1|𝛼⟩

≤ 1 + 3
√︀
Tr(Π0Π1)

where we used the fact that since |𝛼⟩ is contained in the support of Π0, we have |𝛼⟩⟨𝛼| ⪯ Π0 and
thus Tr(|𝛼⟩⟨𝛼| Π1) ≤ Tr(Π0Π1).

We now estimate the quantity Tr(Π0Π1). Let {|𝑢1⟩ , . . . , |𝑢dim(𝑇0)⟩} be an orthonormal basis of
𝑇0, so that Π0 =

∑︀dim(𝑇0)
𝑖=1 |𝑢𝑖⟩⟨𝑢𝑖|. Using that Π1 = 𝑃Π0𝑃 , we have

Tr(Π0Π1) =

dim(𝑇0)∑︁
𝑖,𝑗=1

⟨𝑢𝑗 |𝑃 |𝑢𝑖⟩⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ ≤ 22𝜆 ·max
𝑖,𝑗
| ⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ |2

where we used that dim(𝑇0) ≤ 2𝜆.
Now, applying Fact 6.9 to | ⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ |2 and using Markov’s inequality we get that for each

𝑖, 𝑗 ∈ [dim(𝑇0)] we have for all 𝛿 > 0,

Pr
𝑃←𝒫𝑚

[︀
| ⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ |2 ≥ 𝛿

]︀
≤ 𝛿−12−𝑚.
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Using a union bound over all 𝑖, 𝑗,

Pr
𝑃←𝒫𝑚

[︀
∃ 𝑖, 𝑗 : | ⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ |2 ≥ 𝛿

]︀
≤ 𝛿−122𝜆−𝑚

which implies
Pr

𝑃←𝒫𝑚

[︁
Tr(Π0Π1) ≥ 𝛿 22𝜆

]︁
≤ 𝛿−1 22𝜆−𝑚 .

Putting everything together, since for all |𝜓⟩ the quantity ⟨𝜓| (Π0 +Π1) |𝜓⟩ is upper-bounded by a
quantity that only depends on Tr(Π0Π1) which only depends on 𝑃 , we get

Pr
𝑃←𝒫𝑚

[︂
max
|𝜓⟩
{⟨𝜓| (Π0 +Π1) |𝜓⟩} ≥ 1 + 3

√
𝛿 2𝜆

]︂
≤ 𝛿−1 22𝜆−𝑚 .

Setting 𝛿 = 22(𝜆−𝑚)/3 we get the desired lemma statement.

Indistinguishability of Real World and Ideal World. We need to show that the output
distributions of 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶

*
𝜆 and 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶

*,ℰ
𝜆 as defined in Definition 6.1 are statistically indistin-

guishable.

To argue this, we set up some notation.

• We assume that after the commit phase, the random Pauli 𝑃 sent by 𝑅 in the first message
and 𝐶*’s decommitment (𝑘, 𝑏) are obtained by measuring some registers of their joint state.
Let 𝜎𝖷𝖸 denote the joint state of 𝐶* and 𝑅 after the commit phase, conditioned on the Pauli
𝑃 and the decommitment (𝑘, 𝑏). The register 𝖷 denotes 𝐶*’s private register and 𝖸 denotes
𝑅’s private register.

• Let 𝜌𝗋𝖾𝖺𝗅 denote the output of 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*

𝜆 . If 𝑏 = ⊥, then 𝜌𝗋𝖾𝖺𝗅 = (𝜎𝖷, |⊥⟩⟨⊥|). Otherwise,
since the 𝖳𝖾𝗌𝗍⊗2

𝑑

𝜆 is being applied to register 𝖸 of 𝑃 𝑏𝜎𝖷𝖸𝑃 𝑏 (where 𝑃 𝑏 is applied to register
𝖷), we have

𝜌𝗋𝖾𝖺𝗅 = 𝔼
𝑃,𝑘,𝑏

Tr𝖸

(︁
𝖳𝖾𝗌𝗍⊗2

𝑑

𝜆 ({𝑘, 𝑥}𝑥, 𝑃 𝑏𝜎𝖷𝖸𝑃 𝑏)
)︁

= 𝔼
𝑃,𝑘,𝑏

Tr𝖸

(︁
𝑀0𝑃

𝑏𝜎𝑃 𝑏
)︁
⊗ |𝑏⟩⟨𝑏|+Tr𝖸

(︁
𝑀⊥𝑃

𝑏𝜎𝑃 𝑏
)︁
⊗ |⊥⟩⟨⊥|

where 𝑀0 = 𝜂2 |𝜓⟩⟨𝜓| and 𝑀⊥ = 𝐼−𝑀0 are positive semi-definite operators acting on register
𝖸 with 𝜂, |𝜓⟩ given by Corollary 3.9. The expectation is over the choice of random Pauli 𝑃
and decommitment (𝑘, 𝑏).

• Let 𝜌𝗂𝖽𝖾𝖺𝗅 denote the output of 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*,ℰ

𝜆 . If 𝑏 = ⊥, then by definition of the ideal exper-
iment, the output is (𝜎𝖷, |⊥⟩⟨⊥|). Otherwise, the general measurement {

√
Λ0,
√
Λ1,
√
Λ⊥} is

performed first on register 𝖸 of the state 𝜎𝖷𝖸 to yield outcome 𝑎 ∈ {0, 1,⊥}. Conditioned on
outcome 𝑎 the post-measurement state is

√
Λ𝑎𝜎
√
Λ𝑎

Tr(Λ𝑎𝜎)
.

The Pauli operator 𝑃 𝑏 and then the 𝖳𝖾𝗌𝗍⊗2
𝑑

𝜆 circuit is applied to register 𝖸 (corresponding to
the reveal phase); if the test accepts and the decommitted bit 𝑏 matches the output 𝑎 of the
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extractor, then the register 𝖷 and |𝜇⟩⟨𝜇| are output. Otherwise the register 𝖷 and |⊥⟩⟨⊥| are
output. Put together, we get

𝜌𝗂𝖽𝖾𝖺𝗅 = 𝔼
𝑃,𝑘,𝑏

Tr𝖸(𝑁𝑏𝜎)⊗ |𝑏⟩⟨𝑏|+Tr𝖸(𝑁⊥𝜎)⊗ |⊥⟩⟨⊥|

where 𝑁𝑏 =
√
Λ𝑏𝑃

𝑏𝑀0𝑃
𝑏
√
Λ𝑏 and 𝑁⊥ = 𝐼 − 𝑁𝑏. To see that this is correct in the case

that the ideal experiment does not output ⊥, consider that the post-measurement state of
the extractor measurement, conditioned on obtaining outcome 𝑏, is

√
Λ𝑏𝜎
√
Λ𝑏

Tr(Λ𝑏𝜎)
. Applying 𝑃 𝑏,

conditioning on 𝖳𝖾𝗌𝗍⊗2
𝑑

𝜆 accepting, and then tracing out the register 𝖸 yields the state

Tr𝖸

(︁
𝑀0

(︁
𝑃 𝑏
√︀
Λ𝑏𝜎

√︀
Λ𝑏𝑃

𝑏
)︁)︁
.

Note that all the operators 𝑀0, 𝑃
𝑏,
√
Λ𝑏 all act on the register 𝖸, and the partial trace over

𝖸 is cyclic with respect to such operators. Thus this is equal to Tr𝖸(𝑁𝑏𝜎).

We now prove Lemma 6.8.

Proof of Lemma 6.8. Write

𝜌𝗋𝖾𝖺𝗅 = 𝔼
𝑃,𝑘,𝑏

𝜏
(𝑏)
𝗋𝖾𝖺𝗅 ⊗ |𝑏⟩⟨𝑏|+ 𝜏

(⊥)
𝗋𝖾𝖺𝗅 ⊗ |⊥⟩⟨⊥|

𝜌𝗂𝖽𝖾𝖺𝗅 = 𝔼
𝑃,𝑘,𝑏

𝜏
(𝑏)
𝗂𝖽𝖾𝖺𝗅 ⊗ |𝑏⟩⟨𝑏|+ 𝜏

(⊥)
𝗂𝖽𝖾𝖺𝗅 ⊗ |⊥⟩⟨⊥|

for subnormalized density matrices 𝜏 (·)𝗋𝖾𝖺𝗅, 𝜏
(·)
𝗂𝖽𝖾𝖺𝗅 which implicitly depend on 𝑃, 𝑘, 𝑏. Since the trace

distance is jointly convex we have

TD(𝜌𝗋𝖾𝖺𝗅, 𝜌𝗂𝖽𝖾𝖺𝗅) ≤ 𝔼
𝑃,𝑘,𝑏

TD
(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅 ⊗ |𝑏⟩⟨𝑏|+ 𝜏

(⊥)
𝗋𝖾𝖺𝗅 ⊗ |⊥⟩⟨⊥| , 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅 ⊗ |𝑏⟩⟨𝑏|+ 𝜏

(⊥)
𝗂𝖽𝖾𝖺𝗅 ⊗ |⊥⟩⟨⊥|

)︁
= 𝔼

𝑃,𝑘,𝑏
TD

(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅, 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅

)︁
+TD

(︁
𝜏
(⊥)
𝗋𝖾𝖺𝗅 , 𝜏

(⊥)
𝗂𝖽𝖾𝖺𝗅

)︁
.

Using that 𝑀⊥ = 𝐼 −𝑀0 and 𝑁⊥ = 𝐼 − 𝑁𝑏 and that the partial trace is cyclic with respect to
operators acting on 𝖸 only, we have

TD
(︁
𝜏
(⊥)
𝗋𝖾𝖺𝗅 , 𝜏

(⊥)
𝗂𝖽𝖾𝖺𝗅

)︁
= TD

(︁
Tr𝖸

(︁
𝑀⊥𝑃

𝑏𝜎𝑃 𝑏
)︁
,Tr𝖸

(︁
𝑁⊥𝜎

)︁)︁
= TD

(︁
Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁
,Tr𝖸

(︁
𝑁𝑏𝜎

)︁)︁
= TD

(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅, 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅

)︁
.

Thus to prove the Lemma it suffices to prove that the following statement is true: for all 𝑘 ∈ {0, 1}𝜆
and 𝑏 ∈ {0, 1},

𝔼
𝑃←𝒫𝑚

TD
(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅, 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅

)︁
≤ 4

2𝜆
. (7)
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Fix a decommitment (𝑘, 𝑏). Recall that 𝑀0 = 𝜂2 |𝜓⟩⟨𝜓| where |𝜓⟩ =
⨂︀

𝑥 |𝜓𝑘,𝑥⟩, and that
Λ𝑏 = 𝑝−1 ·Π𝑏. Then

𝑁𝑏 =
√︀
Λ𝑏𝑃

𝑏𝑀0𝑃
𝑏
√︀

Λ𝑏

= 𝜂2 𝑝−1
√︀
Π𝑏𝑃

𝑏 |𝜓⟩⟨𝜓|𝑃 𝑏
√︀
Π𝑏

= 𝜂2 𝑝−1Π𝑏 𝑃
𝑏 |𝜓⟩⟨𝜓|𝑃 𝑏Π𝑏

where we use the fact that
√
Π𝑏 = Π𝑏 since it is a projector. Since Π𝑏 projects onto the span of

{𝑃 𝑏
⨂︀

𝑥 |𝜓𝑘,𝑥⟩ : 𝑘 ∈ {0, 1}
𝜆}, this means that Π𝑏𝑃

𝑏 |𝜓⟩ = 𝑃 𝑏 |𝜓⟩, so 𝑁𝑏 is equal to

𝜂2 𝑝−1 𝑃 𝑏 |𝜓⟩⟨𝜓|𝑃 𝑏 = 𝑝−1𝑃 𝑏𝑀0𝑃
𝑏 .

This means that

𝔼
𝑃←𝒫𝑚

TD
(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅, 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅

)︁
= 𝔼

𝑃←𝒫𝑚

TD
(︁
Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁
,Tr𝖸

(︁
𝑁𝑏𝜎

)︁)︁
= 𝔼

𝑃←𝒫𝑚

TD
(︁
Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁
, 𝑝−1Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁)︁

(8)

If 𝑝 (which is a function of 𝑃 ) is at most 1 + 3 · 2−(4𝜆−𝑚)/3 then we say 𝑝 is good, otherwise it is
bad. By Lemma 6.10 𝑝 is bad with probability at most 2−(𝑚−4𝜆)/3. When 𝑝 is good, we have

TD
(︁
Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁
, 𝑝−1Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁)︁
≤ 1− 𝑝−1 ≤ 3 · 2−(4𝜆−𝑚)/3

where we used that TD
(︀
𝜙, 𝑝−1𝜙

)︀
≤ 1 − 𝑝−1 ≤ 𝑝 − 1 for all subnormalized density matrices 𝜙.

Therefore (8) is at most

3 · 2−(𝑚−4𝜆)/3 + 2−(𝑚−4𝜆)/3 = 4 · 2−(𝑚−4𝜆)/3.

Averaging over 𝑘, 𝑏, we get that TD(𝜌𝗋𝖾𝖺𝗅, 𝜌𝗂𝖽𝖾𝖺𝗅) ≤ 8 ·2−(𝑚−4𝜆)/3, which is less than 8
2𝜆

when 𝑚 ≥ 7𝜆
as desired.

6.3 Application: Secure Computation

In this section, we show how to base secure computation solely on the existence of a PRS. We start
by recalling Bartusek, Coladangelo, Khurana, and Ma’s work [BCKM21b] showing the following.

Theorem 6.11 (Implicit from [BCKM21b]). Assuming the existence of quantum statistically bind-
ing bit commitments, maliciously secure computation protocols (in the dishonest majority setting)
for 𝑃/𝑝𝑜𝑙𝑦 exist.

Remark 6.12. While both [BCKM21b] and [GLSV21] show that post-quantum one-way functions
and quantum communication suffice to obtain protocols for secure computation, the construction
of [BCKM21b] has the advantage that it uses the starting commitment scheme as a black box.
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Comparison of the definitions of statistical binding. The application of Theorem 6.11 would
be straightforward except for one subtlety, which is that we are using a more general definition of
the statistical binding property than required by their paper. Their notion of statistical binding is
tailored to commitment schemes with classical messages as it suffices for their purposes. However,
their definition is not satisfied by our commitment scheme as explained shortly.

We do not provide the full proof of their theorem with our binding property but we justify below
why our notion of statistical binding still suffices for their proof.

We first recall their definition of statistical binding.

Definition 6.13 ([BCKM21a, Definition 3.2]). A bit commitment scheme is statistically binding if
for every unbounded-size committer 𝒞*, there exists a negligible function 𝜈(·) such that with proba-
bility at least 1 − 𝜈(𝜆) over the measurement randomness in the commitment phase, there exists a
bit 𝑏 ∈ {0, 1} such that the probability that the receiver accepts 𝑏 in the reveal phase is at most 𝜈(𝜆).

Our protocol cannot satisfy this property since the honest receiver does not measure the com-
mitter’s message in any way, and therefore in general it is possible for the committer to commit to
an equal superposition of 0 and 1, in which case this binding property is violated. Nonetheless, our
statistical binding property (Definition 6.1) is in essence saying the same thing, which is that there
is an implicit measurement that could be done to extract the committed bit in a way unnoticeable
to the malicious committer. On a high level, we can switch to the ideal world where the bit is
extracted, and then complete the proof using the extracted bit.

Compatibility of Theorem 6.11 with Definition 6.1. We claim that our definition of commit-
ments still suffices to recover the proof of Theorem 6.11 using the idea above. Instead of reproducing
the proof in full, we instead inform the reader the places where the proof changes if one were to
use our definition of commitments. We recommend the reader to first look at [BCKM21b] before
reading the details mentioned below.

The proof of Theorem 6.11 uses the statistical binding property in only two places.

1. A special case of [BCKM21b, Theorem 1]: They show how to go from a statistically binding
commitment to a computationally-equivocal commitment scheme that preserves the statistical
binding property.

2. [BCKM21b, Theorem 2]: They show how to go from an equivocal statistical-binding commit-
ment scheme to an extractable commitment scheme that has statistical hiding property.

For the first step, we note that our statistical binding definition is compatible with their security
proof [BCKM21b, Section 4.2]. They essentially use the statistical binding property to argue that the
committed bit is information theoretically determined, and use this fact to construct an extractor
to show binding. This property is immediately satisfied by our statistical binding property by
switching to the ideal world experiment. In the end, we get computationally-equivocal statistically-
binding (still according to the relaxed definition) quantum bit commitments from statistically-
binding commitments.

For the second step, what they need from the statistical binding property is again some form of
inefficient extraction as shown in the following [BCKM21a, Section 5.2], which is also satisfied by our
definition: “Since the commitments are statistically binding, the values of 𝑥̂, 𝜃 that 𝒞 would accept
are statistically determined after ℛ commits. Let |𝜓⟩𝖷𝖸 be the joint state of the committer and
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receiver where 𝖷 corresponds to the committer’s 2𝜆3 registers, and 𝖸 corresponds to the receiver’s
state. Then the committer’s check can only pass if the sampling strategy of Lemma 5.3 succeeds
for the committed values of 𝑥̂, 𝜃.”

The rest of the proof follows and thus we recover Theorem 6.11 with our statistical binding
property. By instantiating the statistically binding bit commitments in Theorem 6.11 with PRS
(Theorem 6.5 and Theorem 4.1), we obtain the following corollary.

Corollary 6.14. Assuming the existence of (2 log 𝜆 + 𝜔(log log 𝜆))-PRS, there exists maliciously
secure computation protocol for P/poly in the dishonest majority setting.
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