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Abstract. As a building block, gadgets and associated algorithms are
widely used in advanced lattice cryptosystems. The gadget algorithms
for power-of-base moduli are very efficient and simple, however the cur-
rent algorithms for arbitrary moduli are still complicated and practically
more costly despite several efforts. Considering the necessity of arbitrary
moduli, developing simpler and more practical gadget algorithms for ar-
bitrary moduli is crucial to improving the practical performance of lattice
based applications.
In this work, we propose two new gadget sampling algorithms for ar-
bitrary moduli. Our first algorithm is for gadget Gaussian sampling. It
is simple and efficient. One distinguishing feature of our Gaussian sam-
pler is that it does not need floating-point arithmetic, which makes it
better compatible with constrained environments. Our second algorithm
is for gadget subgaussian sampling. Compared with the existing algo-
rithm, it is simpler, faster, and requires asymptotically less randomness.
In addition, our subgaussian sampler achieves an almost equal quality
for different practical parameters. Overall these two algorithms provide
simpler options for gadget algorithms and enhance the practicality of the
gadget toolkit.

1 Introduction

Lattice based cryptography is not only a strong contender in the NIST post-
quantum standardization, but also offers powerful versatility leading to the con-
structions of various advanced cryptographic primitives ranging from identity
based encryption (IBE) [13, 1], attribute based encryption (ABE) [27], group
signatures [29, 34, 36] to fully homomorphic encryption (FHE) [24, 26, 15], func-
tional encryption [3, 2, 35] and much more [7, 28]. Many advanced lattice cryp-
tosystems rely on strong lattice trapdoors that allow to sample lattice points
from Gaussian-like distributions. The notion of lattice trapdoor was introduced
in [25] along with a sampling algorithm. Later a series of works [37, 19, 20, 14, 18]
proposed improved trapdoor constructions and sampling algorithms.

Currently, the state-of-the-art lattice trapdoor framework is developed by
Micciancio and Peikert [37]. Following the idea of [39], the trapdoor sampling in
this framework is decomposed into online and offline two phases, and the online
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sampling is accomplished by the sampling over a special lattice Λ⊥(gt) = {z ∈
Zk : gtz = 0 mod q} defined by the gadget g = (1, b, · · · , bk−1). Thanks to
the good structure of the short basis of Λ⊥(gt), the sampling over Λ⊥(gt) is
convenient and fast, which improves the efficiency of the online sampling. As a
building block of lattice based cryptography, gadgets have been in effect used in
much more applications, e.g. [26, 11, 12]. In summary, the use of the gadget is
mainly based on four algorithms:

– Digit Decomposition: Given u ∈ Zq, find a short x such that 〈x,g〉 =
u mod q. This is the most widely used case, identifying a number of size
O(bk) with a vector of norm O(b

√
k).

– LWE Decoding: Given sg + e mod q for a sufficiently small e, recover s.
This algorithm is deterministic as the digit decomposition and a representa-
tive usecase is in the decryption of LWE cryptosystems.

– Gaussian Sampling: Given u ∈ Zq, sample x from a discrete Gaussian
on a lattice coset Λ⊥u (gt) = {z ∈ Zk : gtz = u mod q}. This algorithm is
randomized unlike the digit decomposition and LWE decoding. It is the main
component of the Micciancio-Peikert trapdoor [37] and used in lattice based
signatures, IBE and many other primitives.

– Subgaussian Sampling: Given u ∈ Zq, sample a subgaussian x in Λ⊥u (gt).
This algorithm is also randomized and can work with much less randomness
than the Gaussian sampling. It is used in some FHE schemes as an alternative
to the digit decomposition for tighter parameters [4].

Micciancio and Peikert gave very efficient gadget Gaussian sampling and
LWE decoding algorithms in [37] but mainly for the special case where the mod-
ulus q = bk. Genise and Micciancio later proposed an equally efficient (in an
asymptotic sense) gadget Gaussian sampler for arbitrary moduli [21]. Genise,
Micciancio and Polyakov also devised gadget subgaussian sampling and LWE
decoding algorithms applicable to an arbitrary modulus q [23]. With these ef-
forts, recent years have seen significant progress in bringing advanced lattice
cryptosystems in practice [17, 16, 30, 9, 8].

Despite the same asymptotic complexity, there still exist some gaps between
the practicalities of the gadget algorithms for the special q = bk and for an
arbitrary modulus q < bk. The specialized algorithms for q = bk are very sim-
ple and only require integer operations. In contrast, the existing algorithms for
q < bk are complicated, and particularly the Gaussian sampler has to resort
to high-precision arithmetic, which limits the use of gadget algorithms on some
constrained devices. To close these gaps is not only of theoretical interest but
also crucial for practical applications: many lattice cryptosystems require the
modulus q to support the NTT/RNS/CRT techniques for better performance,
hence q < bk in these cases.

Our contribution. Towards better practicality of the gadget toolkit, we improve
on two randomized gadget algorithms, i.e. Gaussian sampling and subgaussian
sampling, for arbitrary moduli.
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We present a new gadget Gaussian sampler that avoids the floating-point
arithmetic in existing algorithms. Compared with the previous algorithms, our
sampler achieves the same quality and asymptotic complexity, but is simpler and
highly parallelizable. Verified by experiments (see Figures 1 and 2), our sampler
is as fast as the original Genise-Micciancio sampler [21] for practical parameters,
but slower than an improved variant of the Genise-Micciancio sampler [16] in
which continuous Gaussian sampling is heavily used.

We also propose a new gadget subgaussian sampler. It does not use any linear
transformation and most computations are identical to those in the specialized
algorithm for q = bk. Consequently, the new sampler is simpler, faster and only
requires O(k log b)-bits of randomness, which improves the previous (considered
essentially optimal) result by O(k). Indeed the subgaussian parameter achieved
by our algorithm may be

√
2 times as large as that by the previous algorithm

in the worst case. But it is convenient to get an almost equal quality in practice
by selecting proper parameters without speed and security loss.

In summary, we provide the gadget toolkit with simpler algorithmic options.
Due to the absence of high-precision arithmetic, the new gadget Gaussian sam-
pler is of some interest when side-channel protections and constrained devices
are taken into account. The new subgaussian sampler can be used to improve
the efficiency and simplicity of the implementation of advanced lattice schemes.

Techniques. We now briefly explain the used techniques. In this work, we focus
on the gadget g = (1, b, · · · , bk−1) and the gadget lattice Λ⊥(gt) = {z ∈ Zk :
gtz = 0 mod q}.

Our gadget Gaussian sampling algorithm follows Peikert’s approach [39]: it
first generates a perturbation vector of certain covariance and then generates a
Gaussian sample from an easy-to-sample lattice. Concretely, we represent the ba-
sis Bq of Λ⊥(gt) as Bq = TD where T, D were first suggested in [21]. With such
a factorization, the sampling over Λ⊥(gt) is decomposed into the sampling over
L(D) that is easy and over integers and the perturbation sampling of covariance
Σ = s2I − TTt that introduces floating-point arithmetic. To avoid floating-
point arithmetic, we exploit an integral matrix decomposition Σ = AJAt with
A ∈ Zk×k′ and J being diagonal, which is inspired by [18]. But a technical
difference is that the middle matrix J is a diagonal but not identity matrix,
which allows to reduce the size of A, that is only k× (k+ 2) much smaller than
the size of the Gram root given in [18], while keeping A integral. With such a
compact integral decomposition, the perturbation sampling can be done by ap-
plying a linear transformation of A on DZk′ ,

√
J, which is simple, fast and highly

parallelizable.
Our gadget subgaussian algorithm is very different from the one proposed

by Genise, Micciancio and Polyakov [23]. The Genise-Micciancio-Polyakov algo-
rithm relies on the factorization Bq = TD used in the previous gadget Gaussian
sampler [21]: it first performs subgaussian sampling with respect to D and then
multiplies by T to get the final result. The subgaussian sampling with respect to
D requires O(k2 log b)-bits of randomness while the specialized algorithm sam-
pling directly over Bbk needs only O(k log b)-bits. The linear transformation T
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also introduces extra computational overhead. Consequently, a performance gap
occurs between the Genise-Micciancio-Polyakov algorithm for q = bk and q < bk.
To close this gap, our idea is to convert the sampling for q < bk into the sam-
pling for a power-of-b modulus. In a nutshell, we propose to first sample the
(k − 1) lower digits by calling the subgaussian algorithm for the modulus bk−1

and then to compute the highest digit. Specifically, we sample within two sets
S0 = {x | 〈x,g〉 = u} and S1 = {x | 〈x,g〉 = u− q} and in each set the highest
digit xk−1 is basically fixed and so is 〈x′,g′〉 mod bk−1 where x′ = (x0, · · · , xk−2)
and g′ = (1, b, · · · , bk−2). Our sampler proceeds in three steps. First, it chooses
either S0 or S1 to which the output belongs. Once the set is fixed, it then calls
the specialized algorithm to output a subgaussian x′ given 〈x′,g′〉 mod bk−1. Fi-
nally it computes xk−1 according to the chosen Si and the exact value of 〈x′,g′〉.
To ensure x is subgaussian, it suffices to show the expectation of the output x
is 0. To this end, we figure out the probability of Si should be chosen according
to u. As a consequence, we prove the subgaussian parameter of the output is
at most

√
(b− 1)2 + α2

√
2π with α = bq/bk−1c+ 1, which can be close to even

better than the previous result (b + 1)
√

2π for some practical (q, b). Thanks to
the ease of the specialized algorithm, our subgaussian algorithm achieves better
practical performance (see Figure 3) and requires O(k log b) random bits which
asymptotically improves the previous result and is essentially identical to the
case q = bk.

Roadmap. We start in Section 2 with some preliminary material. Section 3 is
devoted to recalling the state of the art of the gadget Gaussian and subgaussian
samplers. We present our new gadget Gaussian and subgaussian sampling algo-
rithms in Section 4 and Section 5 respectively. Finally, we conclude in Section 6.

2 Preliminaries

2.1 Notation

A number is denoted by a lower case letter, e.g. z ∈ Z. A vector is denoted by
a bold lower case letter, e.g. v, and in column form (vt is a row vector). The
inner product of two vectors is 〈x,y〉 = xty. Let Zq = {0, 1, · · · , q − 1} for a
positive integer q. For integers b > 0 and u < bk, the b-ary decomposition of u is
[u]kb = (u0, · · · , uk−1) ∈ Zkb such that

∑
i b
iui = u. We denote matrices with bold

upper case letters, e.g. B. Let Bt be the transpose of B. Unless otherwise stated,
the norm of a vector is the `2 norm. Let ‖B‖col = maxi‖bi‖. We use log and ln
to denote the base 2 logarithm and the natural logarithm respectively. Let ε > 0
be some very small number. We use the notational shortcut ε̂ = ε+O(ε2). Then
1+ε
1−ε = 1 + 2ε̂ and ln( 1+ε

1−ε ) = 2ε̂.
A random variable x sampled from a distribution D is written as x ← D.

A random variable distributed as D is denoted x ∼ D. The max-log distance
between two distributions D1 and D2 over the same support S is

∆ML(D1, D2) = max
x∈S
| ln(D1(x))− ln(D2(x))|.
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As shown in [38], ∆ML(D1, D2) ≤ ∆ML(D1, D3) +∆ML(D2, D3).

2.2 Linear Algebra

For T ∈ Rn×k, let span(T) be the linear span of the columns of T and ker(T) be
the kernel of T. The (foreward) Gram-Schmidt orthogonalization of an ordered
set of linearly independent vectors B = {b1, · · · ,bk} is B̃ = {b̃1, · · · , b̃k} where
each b̃i is the component of bi orthogonal to span(b1, · · · ,bi−1).

We write Σ > 0 (resp., Σ ≥ 0) when a symmetric matrix Σ ∈ Rn×n is
positive definite (resp. semidefinite), i.e. xtΣx > 0 (resp., xtΣx ≥ 0) for all
nonzero x ∈ Rn. We write Σ1 ≥ Σ2 or Σ2 ≤ Σ1 if Σ1 −Σ2 ≥ 0, and similarly
for Σ1 > Σ2. It holds that Σ1 > Σ2 > 0 if and only if Σ−12 > Σ−11 > 0. If
Σ = AAt, we call A a Gram root of Σ. Let

√
Σ denote any Gram root of Σ

when the context permits it.

2.3 Lattices

A lattice is the set of all integer combinations of linearly independent vectors
b1, · · · ,bn ∈ Rm. We call B = (b1, · · · ,bn) a basis and n the dimension of the
lattice. The lattice is full-rank if n = m. We denote by L(B) the lattice generated
by the basis B. A coset of a lattice Λ is a set of the form {v+a|v ∈ Λ} := Λ+a.
Let Λ∗ = {x ∈ span(Λ)|〈x, Λ〉 ⊆ Z} be the dual lattice of Λ.

2.4 Gaussian

The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as ρ(x) :=
exp(−π‖x‖2). Let ρB(x) = exp(−πxtΣ−1x) where Σ = BBt. Since ρB(x)
is completely determined by Σ = BBt, we also write ρ√Σ(x) = ρB(x). Let
ρ√Σ,c(x) = ρ√Σ(x − c) for c ∈ span(Σ). When c = 0, we omit the subscript

c. For a countable set of S ⊂ Rn, let ρ√Σ(S) =
∑

s∈S ρ
√

Σ(s). The discrete
Gaussian over a lattice Λ with center c and covariance matrix Σ is defined by
the probability function

DΛ,
√

Σ,c(x) =
ρ√Σ,c(x)

ρ√Σ,c(Λ)
∝ ρ√Σ,c(x).

The discrete Gaussian on Λ + c, for c ∈ span(Λ), is defined by DΛ+c,
√

Σ(x) =

ρ√Σ(x)/ρ√Σ(Λ + c) for all x ∈ Λ + c. When Σ = s2I, we call the Gaussian

spherical of width s and write the subscript
√

Σ as s simply.
For a lattice Λ and ε > 0, ηε(Λ) = min{s > 0 | ρ 1

s
(Λ∗) ≤ 1 + ε} is called the

smoothing parameter. The following definition is a generalized version.

Definition 1 ([39], Definition 2.3). Let Σ > 0 and lattice Λ ∈ span(Σ). We

write
√

Σ ≥ ηε(Λ) if ηε(
√

Σ
−1 · Λ) ≤ 1 i.e. η√Σ−1(Λ∗) ≤ 1 + ε.

5



Notice that for two lattices of the same rank Λ1 ⊆ Λ2, the denser lattice al-
ways has the smaller smoothing parameter, i.e. ηε(Λ2) ≤ ηε(Λ1). Let ηε(Zn) =√

ln(2n(1+1/ε))
π . Here we recall several facts to be used later.

Lemma 1 ([25], Lemma 3.1). Let Λ ⊂ Rn be a lattice with a basis B, then
ηε(Λ) ≤ ‖B̃‖col · ηε(Zn).

Theorem 1 (Adapted from Theorem 3.1 [22]). For any ε ∈ [0, 1), matrix
S of full column rank, lattice Λ ⊂ span(S), and matrix T such that ker(T) is a
Λ-subspace and ηε(Λ ∩ ker(T)) ≤ S, then ∆ML(T ·DΛ,S, DTΛ,TS) ≤ 2ε̂.

Theorem 2 (Adapted from Theorem 3.1 [39]). Let Σ1,Σ2 ∈ Rn×n be
positive definite matrices. Let Σ = Σ1 + Σ2 and let Σ3 ∈ Rn×n be such that
Σ−13 = Σ−11 + Σ−12 . Let Λ1, Λ2 be two full-rank lattices in Rn such that

√
Σ1 ≥

ηε(Λ1) and
√

Σ3 ≥ ηε(Λ2) for ε ∈ (0, 1/2). Let c1, c2 ∈ Rn, then the distribution
of x← DΛ1,

√
Σ1,p−c2+c1

where p← DΛ2,
√

Σ2,c2
is within max-log distance 4ε̂ of

DΛ1,
√

Σ,c1
.

2.5 Subgaussian Random Variables

A random variable X over R is subgaussian with parameter α > 0 if for all t ∈ R,
its (scaled) moment generating function satisfies

E[exp(2πtX)] ≤ exp(πα2t2).

Scaling a subgaussian X with parameter α by any c ∈ R to c·X yields a subgaus-
sian random variable with parameter |c|α. If X is subgaussian with parameter
α, then Pr[|X| ≥ t] ≤ 2 exp(−πt2/α2). If X is a random variable with E(X) = 0
and |X| ≤ b for some b > 0, then X is subgaussian with parameter b

√
2π [40].

Moreover, if X is subgaussian variable, then E[X] = 0. An important property
of suggaussian called Pythagorean additivity is defined as follow.

Lemma 2. Let X,Y be discrete random variables over R such that X is subgaus-
sian with parameter α and Y conditioned on X taking any value is subgaussian
with parameter β. Then, X + Y is subgaussian with parameter

√
α2 + β2.

A random vector x over Rn is subgaussian with parameter α > 0 if 〈x,u〉 is
subgaussian with parameter α for all unit vectors u.

Lemma 3. Let x be a discrete random vector over Rn such that each coordinate
xi is subgaussian with parameter αi given the previous coordinates take any
values. Then, x is a subgaussian vector with parameter maxi{αi}.

3 Recall the Gadget Sampling

The gadget Gaussian and subgaussian samplings are two primary algorithms
associated to the lattice gadget. For better completeness and comparisons, let
us briefly recall the state of the art of these two algorithms.

Throughout the paper, we focus on the most widely used gadget defined by
g = (1, b, · · · , bk−1) where b ∈ N such that the global modulus q ≤ bk. The
lattice Λ⊥(gt) = {z ∈ Zk : gtz = 0 mod q} is called the gadget lattice.
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3.1 Gadget Gaussian Sampling

The goal of gadget Gaussian sampling is to generate a sample from a discrete
Gaussian on a lattice coset Λ⊥u (gt) = {z ∈ Zk : gtz = u mod q}. The associated
algorithms were developed by Micciancio and Peikert [37] to construct an efficient
and powerful lattice trapdoor framework. As shown in [37], the gadget Gaussian
sampling is convenient thanks to a good basis of Λ⊥(gt) as follows:

Bq =



b q0
−1 b q1

−1
. . .

...
. . . b qk−2
−1 qk−1

 (1)

where q =
∑k−1
i=0 b

iqi. Particularly, when q = bk, Bq is bi-diagonal and thus its
Gram-Schmidt orthogonalization in reverse order is diagonal, which leads to a
very simple sampler that runs in O(k) and is implemented over integers. But
the sampler for q < bk proposed in [37] requires O(k2) complexity even with
pre-computation.

Later, Genise and Micciancio proposed in [21] an improved gadget Gaussian
sampler for q < bk that achieves the complexity of O(k) as well. Their approach
is build upon the Gaussian convolution technique [39]. In more details, they
noticed a factorization Bq = TD with

T =



b
−1 b

−1
. . .

. . . b
−1 b

 and D =


1 d0

1 d1
. . .

...
1 dk−2
dk−1

 (2)

and then decomposed the sampling into two steps: generating p ← DL,r
√

Σ2

and outputting T · DL(D),r,−c with Σ2 = (s/r)2I − TTt, c = T−1(u − p).
Originally, [21] proposed to set L = L(Σ2) to simplify the sampling of p. Later,
[16] suggested to sample p via continuous Gaussian sampling, which turns out
practically efficient given some high-precision arithmetic library.

Hu and Jia also gave a gadget Gaussian sampler for q < bk [32]: instead of
sampling a spherical Gaussian, they proposed to sample a non-spherical one over
Λ⊥(gt). This improves the efficiency of the gadget Gaussian sampling at the cost
of complicating the offline sampling in the Micciancio-Peikert framework, which
defeats some optimization techniques [21, 18]. In this paper, we are interested
in spherical gadget Gaussian sampling as in [37, 21] that gives a better overall
performance.
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3.2 Gadget Subgaussian Sampling

The gadget subgaussian sampling produces a subgaussian vector on a lattice
coset Λ⊥u (gt). It has advantages over digit decomposition and gadget Gaussian
sampling: the subgaussian has a “pythagorean additivity” property, which gives
rise to tighter parameters than digit decomposition; the subgaussian sampling
is faster and requires less randomness than the Gaussian one.

Genise, Micciancio and Polyakov initiated the study of gadget subgaussian
sampling [23] and proposed two algorithms for q = bk and q < bk respectively.
When q = bk, the algorithm is in effect a specialized version of the Babai’s
nearest plane algorithm [5] on Bq (Eq. (1)). This algorithm achieves subgaussian
parameter at most (b− 1)

√
2π with O(k) operations and log q random bits.

The gadget subgaussian algorithm for arbitrary moduli, i.e. q < bk, proceeds
in a rather different manner. It exploits the same matrix factorization Bq = TD
(Eq. (2)) as in [21]. Concretely, it performs a specialized Babai’s nearest plane
algorithm on D and applies a linear transformation of T to lift the solution to
Λ⊥u (gt). In the end, this algorithm runs in linear O(k) time, requires O(k log q)
random bits and achieves subgaussian parameter at most (b+1)

√
2π. Overall the

subgaussian algorithm for arbitrary moduli is more complicated and randomness
inefficient than the one for q = bk.

4 Gadget Gaussian Sampling without Floats

In contrast to the specialized gadget Gaussian sampler for q = bk, the state-of-
the-art sampler for arbitrary moduli is still complicated and heavily uses floating
point arithmetic, despite the asymptotically same complexity (See Section 3.1).
Floating point arithmetic has many drawbacks in practice in terms of security,
numerical stability and efficiency. Particularly, once the gadget sampler relies on
floating point operations, it would be inconvenient and inefficient to deploy the
trapdoor cryptosystems [37] in constraint devices1.

Here we present a new gadget Gaussian sampler for arbitrary moduli but
without using floating point arithmetic. Our sampler achieves the complexity of
O(k) as the Genise-Micciancio sampler [21] and is even simpler. Moreover, the
practical running time of our sampler is close to that of the Genise-Micciancio
sampler; a large part of samplings in our algorithm are parallelizable.

1 Ideally, gadget sampling can be performed on a lightweight device while other costly
computations are done on a powerful machine and in an offline phase.
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4.1 The Algorithm

Let us recall that g = (1, b, · · · , bk−1), the modulus q < bk and as shown in [21]
the gadget lattice Λ⊥(gt) = {z ∈ Zk : gtz = 0 mod q} has a basis

Bq =



b q0
−1 b q1

−1
. . .

...
. . . b qk−2
−1 qk−1

 =



b
−1 b

−1
. . .

. . . b
−1 b




1 d0

1 d1
. . .

...
1 dk−2
dk−1

 = TD.

To sample DΛ⊥(gt),s,u, our algorithm proceeds in two steps as per [39]. First,
it generates a perturbation vector p of covariance r2Σ2 = s2Ik−r2TTt. Then it
samples v′ from DL(D),r,T−1(u−p) and the final output is v = Tv′. The second
step is easily implemented over integers. To avoid floating point operations in
perturbation sampling, we use a similar technique in [18]. Specifically, we discover
a simple binary matrix

A =


1 1 1

1 1
. . .

. . .

1 1

 ∈ Zk×(k+2)

such that A

(
b · Ik+1

1

)
At = (b + 1)2 · Ik −TTt = Σ2 for s = (b + 1)r which

coincides with [21]. According to Theorem 1, applying a linear transformation

of A on some Gaussian of covariance r2
(
b · Ik+1

1

)
gives the perturbation of

covariance r2Σ2. The matrix A has much less columns than the generic Gram
decompositions in [18], which boosts the practical performance greatly. Addi-
tionally, the Gaussian transformed by A is non-spherical unlike the case in [18],
which is crucial for non-square b. We formally describe our sampler in Algo-
rithm 1 and prove its correctness in Lemma 4.
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Algorithm 1: Gadget Gaussian sampler GadgetGaussian(b, k, q, l, s, u)

Input: positive integers b, k, q, l such that q < bk, q = [q]kb and l ≥ 4
√
bk,

s = (b+ 1)r with r ≥ ηε(Zk), u ∈ Zq and u = [u]kb .
Output: a sample x from a distribution within max-log distance (2k + 6)ε̂ of

DΛ⊥(gt),s,−u

1: d0 = q0/b
2: for i = 1, · · · , k − 1 do
3: di = (di−1 + qi)/b
4: end for
5: p← Pert(r, b, k, l) {p ∼ DZk/l,r

√
(b+1)2Ik−TTt}

6: c← T−1(p− u)

7: z← SampleD(r, c,d) {Dz ∼ DL(D),r,c,D =

(
Ik−1 d

0

)
}

8: return x← Bqz

Algorithm 2: The subroutine Pert(r, b, k, l)

Input: positive integers b, k, l such that l ≥ 4
√
bk and r ≥ ηε(Zk).

Output: a sample p from a distribution within max-log distance 2ε̂ of
DZk/l,r

√
(b+1)2Ik−TTt

1: A =


1 1 1

1 1
. . .

. . .

1 1

 ∈ Zk×(k+2)

2: y← (ȳ, yk+1) ∈ Zk+2 where ȳ← DZk+1,lr
√
b, yk+1 ← DZ,lr

3: return p← 1
l ·Ay

Algorithm 3: The subroutine SampleD(r, c,d)

Input: vectors c,d such that D =

(
Ik−1 d

0

)
, r ≥ ηε(Zk).

Output: a sample z such that the distribution of Dz is within max-log
distance 2kε̂ of DL(D),r,c

1: zk−1 ← DZ,r/dk−1,ck−1/dk−1

2: c← c− zk−1d
3: for i = 0, · · · , k − 2 do
4: zi ← DZ,r,ci
5: end for
6: return z

Lemma 4. Let b, k, q, l ∈ N such that q < bk and l ≥ 4
√
bk. Let ε ∈ (0, 12 ) and

s ≥ (b+ 1) · ηε(Zk). For any u ∈ Zq with u = [u]kb , GadgetGaussian(b, k, q, l, s, u)
returns a sample within a max-log distance (2k + 6)ε̂ from DΛ⊥(gt),s,−u.
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Remark 1. All involved base samplers are assumed to be perfect for simplicity.
It is routine to adapt Lemma 4 to the setting of imperfect base samplers.

Proof. We first prove the correctness of Pert(r, b, k, l). Let S =

(√
b · Ik+1

1

)
and

Σ2 = (b+1)2Ik−TTt. A routine computation shows (AS)(AS)t = Σ2. Clearly,
y follows DZk+2,rlS and AZk+2 = Zk. Note that Zk+2 ∩ ker(A) is a lattice of
rank 2 and contains two linearly independent vectors v0 = (1, 0, · · · , 0,−1),v1 =
((−1)0, (−1)1, · · · , (−1)k, 0) of norm ≤

√
k + 1. According to Lemma 1, it holds

that ηε(Zk+2 ∩ ker(A)) ≤ ηε(Z2)
√
k + 1 ≤ rl and then ηε(Zk+2 ∩ ker(A)) ≤ rlS

as S ≥ I. By Theorem 1, we have

∆ML(p, DZk/l,r
√

Σ2
) = ∆ML(lp, DZk,rlAS) = ∆ML(Ay, DZk,rlAS) ≤ 2ε̂

and the correctness of Pert(r, b, k, l) follows.
Since ‖D̃‖col ≤ 1, Lemma 1 shows s ≥ (b+1)ηε(D). The algorithm SampleD(r, c,d)

is actually Klein algorithm [25] on D, so ∆ML(Dz, DL(D),r,c) ≤ 2kε̂ by The-

orem 4.1 of [25] and ‖D̃‖col ≤ 1. It remains to show r
√

Σ3 ≥ ηε(Zk/l) where
Σ−13 = Σ−11 +Σ−12 and Σ1 = TTt as per Theorem 2. Indeed [21] showed in Corol-

lary 1 that r′
√

Σ3 ≥ ηε(L(Σ2)) for r′ =
√
2b(2b+1)
b+1 ηε(Zk). From L(Σ2) ⊂ Zk, it

follows that ηε(Zk) ≤ ηε(L(Σ2)) and then

ηε(Zk/l) ≤
ηε(L(Σ2))

l
≤ r′

l

√
Σ3 ≤ r

√
Σ3.

We now complete the proof. ut

4.2 Comparison

The comparison between our gadget Gaussian sampler and the Genise-Micciancio
one [21] is summarized as follows:

Gaussian quality. Both two samplers are proposed to sample a spherical Gaus-
sian over the gadget lattice. The quality of the sampler is measured by the min-
imal Gaussian width s it achieves. As shown in Lemma 4, the minimal s for our
sampler is (b+ 1) · ηε(Zk). While a lower bound of s given in [21] (Corollary 1)
is
√

2b(2b+ 1) · ηε(Zk), it is improved to (b+ 1) · ηε(Zk) in [16] via replacing the
integer perturbation sampling with a continuous version. Therefore, our sampler
achieves the same quality with the Genise-Micciancio one.

Arithmetic. All intermediate numbers in Algorithm 1 are either integer or
fraction with a simple bounded denominator, which supports a complete integer
implementation. Indeed some base samplers (forDZ,lr

√
b andDZ,r/dk−1,ck−1/dk−1

)
deal with irrational width or relatively complicated center. Nevertheless, they
can still be implemented over integers by classic techniques [38, 6]. In contrast,
the Genise-Micciancio sampler needs floating point arithmetic in computing a
square Gram root of Σ2, and to achieve higher quality, it also requires continuous
Gaussian samplings.

11



Memory. As a direct result of integer arithmetic, our sampler requires less RAM
and storage for precomputed values. In addition, the new-introduced matrix A
is of regular structure and thus causes no storage overhead.

Time complexity. Algorithm 1 consists of (2k + 2) integer samplings and
other arithmetic computations, i.e. computing d,Ay, c, need only O(k) integer
operations thanks to the nice structures of A,T. Therefore our sampler runs in
O(k) assuming constant time for base samplings and scalar arithmetic, which
is the same with the Genise-Micciancio sampler. Additionally, the subroutine
Algorithm 2 is highly parallelizable.

Experimental result. We implement our new sampler and compare with the
implementations of the Genise-Micciancio sampler and its variant in [16] avail-
able in the PALISADE library2. For a fair comparison, we implement all base
samplers with the open source code of Karney sampler. The experiments were
run in C++ on a laptop with an Intel Core i7-10510U CPU with 4 cores @
1.80GHz, running Ubuntu 20.04.2 LTS.

Figure 1 shows the speed comparison among three algorithms under different
moduli q and the same base b = 2 and width s = 100. Basically, our algorithm
is as fast as the Genise-Micciancio sampler but about twice slower than the
variant in [16]. Figure 2 shows the speed comparison under different bases b
and a fixed modulus q ≈ 9 · 1018. In the corresponding experiment, we work
with s = (b + 1) · ηε(Zk) ≈ 4.578(b + 1) as used in practice [16]. Since the
bound of s in [21] is greatly larger than that in the variant of [16], we omit the
comparison with [21]. The samplers in [21] and [16] need floating-point arithmetic
for Cholesky decomposition, and the one in [16] also uses continuous Gaussian
sampling. In contrast, our algorithm avoids all floating-point operations. The
efficiency advantage of the variant of [16] is due to the fact that the continuous
Gaussian sampling in C++ header file “random” is significantly faster than the
Karney sampling in the PALISADE library. With a faster base sampler, our
algorithm hopefully outperforms the one of [16].

2 https://palisade-crypto.org/
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Fig. 1. Measured clock cycles with q ∈ {4093, 12289, 1676083, 8383498, 4295967357,≈
9 · 1018}, b = 2 and s = 100 averaged over 1000,000 runs.
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Fig. 2. Measured clock cycles with b ∈ {21, 22, · · · , 210}, q ≈ 9 · 1018 and s = (b+ 1) ·
ηε(Zk) averaged over 1000,000 runs.

5 Improved Gadget Subgaussian Sampling

In this section, we present a new gadget subgaussian sampler for arbitrary mod-
uli. Compared with the Genise-Micciancio-Polyakov algorithm [23] (See Sec-
tion 3.2), our algorithm is simpler, faster and requires asymptotically less ran-
domness. As for the quality, while the subgaussian parameter achieved by our
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sampler is
√

2 times as large as that by the Genise-Micciancio-Polyakov sampler
for large b and in the worst case, the actual quality of our sampler is close to
even better than that of the Genise-Micciancio-Polyakov sampler for practical
parameters (q, b).

5.1 The Algorithm

Our algorithm distinguishes two cases of q = bk and q < bk. For q = bk, the
sampling is identical to the existing algorithm (Algorithm 1, [23]) that is easy
and efficient. But for q < bk, our sampler proceeds very differently: it fully
exploits the ease of the procedure for q = bk and does not use special linear
transformation as the existing approach (Algorithm 2, [23]). The idea stems from
a simple observation that for q = bk and u ∈ Zq, the output x satisfies 〈x,g〉 ∈
{u, u− q} (See Lemma 6). The values u and u− q basically determine the most
significant digit xk−1 and thus 〈x′,g′〉 mod bk−1 where x′ = (x0, x1 · · · , xk−2)
and g′ = (1, b, · · · , bk−2). Our sampler for q < bk is designed upon above facts;
it consists of three steps: first, to choose 〈x′,g′〉 mod bk−1 according to proper
probability; then, to sample a subgaussian x′ with the sampler for q = bk−1

given 〈x′,g′〉 mod bk−1; finally, to determine the last coefficient xk−1 as per x′.
The formal description is illustrated in Algorithm 4.

Lemma 5 shows the correctness and performance of Algorithm 4.

Lemma 5. Let b, k, q, u ∈ N such that q ≤ bk and u ∈ Zq. Then SubGaussian(b, k, q, u)
outputs a subgaussian vector over Λ⊥u (gt). More precisely,

– if q = bk, SubGaussian(b, k, q, u) uses log q random bits, runs in O(k) time
and space and achieves subgaussian parameter at most (b− 1)

√
2π;

– if q < bk, SubGaussian(b, k, q, u) uses log q+(k−1) log b random bits, runs in
O(k) time and space and achieves subgaussian parameter at most

√
(b− 1)2 + α2

√
2π

with α = bq/bk−1c+ 1.

Remark 2. As a by-product, a digit decomposition for an arbitrary modulus is
obtained by de-randomizing Algorithm 4, that is replacing lines 8 and 17 with
deterministically choosing the option of higher probability. It can be seen that
the output of this digit decomposition is of infinity norm ≤ b/2.

To prove Lemma 5, we need the following lemma.

Lemma 6. Let b, k, q, u ∈ N such that q = bk and u ∈ Zq. Let x be the output
of SubGaussian(b, k, q = bk, u) and g = (1, b, · · · , bk−1). Then 〈x,g〉 = u with
probability (q − u)/q; 〈x,g〉 = u− q with probability u/q.

Proof. Since |xi| < b, some simple computation yields that 〈x,g〉 ∈ (−bk, bk).
Together with the fact that 〈x,g〉 = u mod q, it follows that 〈x,g〉 ∈ {u, u− q}.
Let p denote the probability of 〈x,g〉 = u, then

E[〈x,g〉] = p · u+ (1− p)(u− q).
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Algorithm 4: Gaussian subgaussian sampler SubGaussian(b, k, q, u)

Input: positive integers b, k, q, u such that q ≤ bk and u ∈ Zq.
Output: subgaussian x ∈ Λ⊥u (gt) with parameter (b− 1)

√
2π when q = bk;

with parameter
√

(b− 1)2 + α2
√

2π with α = bq/bk−1c+ 1 when q < bk.
1: if q = bk then
2: x← 0
3: for i = 0, · · · , k − 1 do
4: y ← u mod b ∈ {0, · · · , b− 1}
5: if y = 0 then
6: xi ← 0
7: else
8: with probability y/b, xi ← y − b, and xi ← y otherwise
9: end if

10: u← (u− xi)/b
11: end for
12: return x
13: end if
14: u0 ← u mod bk−1, u1 ← (u− q) mod bk−1

15: a0 ← b u
bk−1 c, a1 ← b u−qbk−1 c

16: sample r uniformly over [0, 1]
17: if r < q−u

q
then

18: x′ ← SubGaussian(b, k − 1, bk−1, u0)
19: if 〈x′,g′〉 = u0 with g′ = (1, b, · · · , bk−2) then
20: return x = (x′, a0) {〈x′,g′〉 = u0}
21: else
22: return x = (x′, a0 + 1) {〈x′,g′〉 = u0 − bk−1}
23: end if
24: else
25: x′ ← SubGaussian(b, k − 1, bk−1, u1)
26: if 〈x′,g′〉 = u1 then
27: return x = (x′, a1) {〈x′,g′〉 = u1}
28: else
29: return x = (x′, a1 + 1) {〈x′,g′〉 = u1 − bk−1}
30: end if
31: end if
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At each step, xi is chosen from {y, y − b} with expectation 0. Therefore

p · u+ (1− p)(u− q) = E[〈x,g〉] =

k−1∑
i=0

bi · E[xi] = 0.

This shows p = (q − u)/q and the proof is completed. ut

Proof of Lemma 5. For the case q = bk, Algorithm 4 is the same with Algorithm
1 in [23]. By Theorem 4 of [23], the statement for q = bk is proved. It remains
to prove the statement for q < bk.

To this end, we first prove that the output x satisfies 〈x,g〉 = u mod q.
Lemma 6 shows that 〈x′,g′〉 ∈ {ubit, ubit−bk−1} for bit ∈ {0, 1}. When 〈x′,g′〉 =
ubit, it holds that xk−1 = abit and thus

〈x,g〉 = 〈x′,g′〉+ xk−1 · bk−1 = ubit + abit · bk−1 = u− bit · q.

When 〈x′,g′〉 = ubit − bk−1, it holds that xk−1 = abit + 1 and thus

〈x,g〉 = 〈x′,g′〉+ xk−1 · bk−1 = ubit − bk−1 + (abit + 1) · bk−1 = u− bit · q.

Therefore 〈x,g〉 = u mod q always holds.
Next, we show that E[xk−1] = 0 and |xk−1| ≤ α, so that the random variable

xk−1 is subgaussian with parameter α
√

2π. Indeed as shown in Algorithm 4,
xk−1 only has four possible values {a0, a0 + 1, a1, a1 + 1}. Since u ∈ Zq, we have
that a0 = b u

bk−1 c ∈
[
0, b q

bk−1 c
]

= [0, α − 1] and a1 = b u−q
bk−1 c ∈

[
b −q
bk−1 c,−1

]
=

[−α,−1]. Immediately, |xk−1| ≤ α. As for E[xk−1], we note that xk−1 = a0
occurs if and only if r < q−u

q and 〈x′,g′〉 = u0. By Lemma 6, it follows that

Pr[xk−1 = a0] =
(q − u)(bk−1 − u0)

q · bk−1
.

Similarly,

Pr[xk−1 = a0+1] =
(q − u) · u0
q · bk−1

; Pr[xk−1 = a1] =
u · (bk−1 − u1)

q · bk−1
; Pr[xk−1 = a1+1] =

u · u1
q · bk−1

.

Thus we have

E[xk−1] = a0
(q − u)(bk−1 − u0)

q · bk−1
+ (a0 + 1)

(q − u) · u0
q · bk−1

+ a1
u · (bk−1 − u1)

q · bk−1
+ (a1 + 1)

u · u1
q · bk−1

=
(q − u)(a0 · bk−1 + u0)

q · bk−1
+
u · (a1 · bk−1 + u1)

q · bk−1

=
(q − u)u

q · bk−1
+
u · (u− q)
q · bk−1

= 0

Then we verify x is subgaussian with parameter
√

(b− 1)2 + α2
√

2π. That

is to show that 〈x,v〉 is subgaussian with parameter
√

(b− 1)2 + α2
√

2π for all
unit vectors v = (v0, · · · , vk−1). Let v′ = (v0, · · · , vk−2). If |vk−1| = 1, then
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〈x,v〉 = xk−1vk−1 is subgaussian with parameter α
√

2π as per above argument.
If vk−1 = 0, then 〈x,v〉 = 〈x′,v′〉 and v′ is a unit vector. As per Algorithm 4
and the statement for q = bk, x′ is subgaussian with parameter (b − 1)

√
2π

and thus 〈x,v〉 is subgaussian with parameter (b − 1)
√

2π if vk−1 = 0. For the
case 0 < |vk−1| < 1, let p0 = 1

1−v2k−1
, p1 = 1

v2k−1
, then 1

p0
+ 1

p1
= 1. By Hölder

inequality, we have

E[e2πt〈x,v〉] =E[e2πt〈x
′,v′〉+2πtxk−1vk−1 ]

≤
[
E[e2πt〈x

′,v′〉]p0
]1/p0[E[e2πtxk−1vk−1 ]p1

]1/p1
≤ exp

(
2π2t2[(b− 1)2(1− v2k−1)p0 + α2v2k−1p1)]

)
= exp

(
2π2t2((b− 1)2 + α2)

)
.

In summary, we prove that x is subgaussian with parameter
√

(b− 1)2 + α2
√

2π.
It is clear that the complexity of Algorithm 4 is O(k). The random bits are

used in two places: line 17 uses log q bits to determine 〈x′,g′〉 mod bk−1 and the
subroutine SubGaussian(b, k − 1, bk−1, ubit) uses (k − 1) log b bits to output x′;
thus log q+(k−1) log b random bits are used in total. The proof is completed. ut

5.2 Comparison

In this subsection, we compare our new gadget subgaussian algorithm with the
Genise-Micciancio-Polyakov one [23]. The comparison is restricted to the case
q < bk.

Randomness. Less randomness is one of the main advantages of subgaussian
sampling. The Genise-Micciancio-Polyakov algorithm uses k log q = O(k2 log b)
random bits, which was claimed to be “almost optimal” in [23]. In fact, our
algorithm only needs log q+ (k− 1) log b = O(k log b) random bits. The reduced
randomness is due to the fully use of the randomness-efficient subroutine for
q = bk−1 in which each coefficient consumes log b bits; in contrast, the i-th coef-
ficient (before linear transformation) consumes i log b bits in Genise-Micciancio-
Polyakov sampler. Notably, Algorithm 4 for q < bk needs an asymptotically same
amount of randomness with the one for q = bk. We therefore believe that it is
essentially optimal in randomness requirement.

Complexity and performance. Both the Genise-Micciancio-Polyakov algo-
rithm and ours achieve O(k) complexity in time and space. Nevertheless, our
sampler proceeds in a direct and simple way, which actually saves the computa-
tion and storage with respect to the complicated linear transformation.

We implement Algorithm 4 fully over integers in C++. Since the imple-
mentation of the Genise-Micciancio-Polyakov sampler in the PALISADE library
uses floating-point arithmetic, we also adapt it to a fully integer version for
better comparison. The gadget base b is restricted to a power-of-2 in the exper-
iment, which leads to faster and more convenient operations as verified in [23].
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The experiment environment was a laptop with an Intel Core i7-10510U CPU
with 4 cores @ 1.80GHz, running Ubuntu 20.04.2 LTS. Figure 3 exhibits the
practical performance of subgaussian samplers. It can be seen that our sub-
gaussian sampler is faster than the Genise-Micciancio-Polyakov one whose the
integer implementation outperforms the floating-point implementation in the
PALISADE library. The speed of both algorithms mainly depends on the di-
mension k = d60/ log be. When b = 2 and k = 60, our algorithm is around 3.2
(resp. 2.3) times as fast as the PALISADE (resp. integer) implementation of
the Genise-Micciancio-Polyakov algorithm. As k decreases, the speed advantage
declines.
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Fig. 3. Runtime of subgaussian sampling rate for native uniformly random integers
(w.r.t a 60-bit modulus). Experimental values measure over 108 samplings.

Quality. The quality of the subgaussian sampler is measured by the subgaussian
parameter it achieves. That is Qour =

√
(b− 1)2 + α2

√
2π for our sampler where

α = bq/bk−1c + 1 ≤ b and QGMP = (b + 1)
√

2π for the Genise-Micciancio-
Polyakov one. While Qour ≈

√
2 · QGMP in the worst case (α = b) for large b,

our sampler can get close and even better quality in some typical situations:
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Slope Intercept
Binary 15.669 ± 0.067 -4.969 ± 0.550
GMP19 8.806 ± 0.090 3.867 ± 0.238
Ours 8.287 ± 0.034 4.297 ± 0.105

0 2 4 6 8 10
Depth

0

20

40

60

80

100

120

140

160
N 

ise
 le
ve
l (

in
 b

its
)

Binary
GMP19
Ours

Fig. 4. Noise growth for GSW-type multiplication in the KP-ABE variant over
Z[x]/(xn + 1) (n = 1024, b = 2, k = 180). The slope of the linear interpolation is
β log(mn) and β describes the rate of noise growth.

– for b = 2, the worst-case Qour =
√

5
√

2π is less than QGMP = 3
√

2π. For a
visualized comparison, we examine the effect of our algorithm (with b = 2) on
the noise growth in GSW-type products [26], which is a typical application of
subgaussian sampling. In the experiment, we generate a random error vector
inRmq whereRq = Zq[x]/(xn+1) and m = k+2 and then iteratively multiply
it by a matrix (g−1(ui)) ∈ Rm×m in which g−1(ui) ∈ Rm denotes the output
of either subgaussian or binary decomposition with input ui ∈ Rq. The noise
level (in bits) grows almost linearly in the depth, and the noise growth rate is
(mn)β . As shown in Figure 4, our algorithm achieves β ≈ 8.287/ log(mn) ≈
0.47 less than 0.50 and 0.89 for the Genise-Micciancio-Polyakov one and the
common binary decomposition, which means our subgaussian algorithm may
lead to more compact parameters in some advanced applications.

– for a large base b, there exist a certain number of NTT moduli q such that
Qour ≤ 1.05 ·QGMP . Moreover, some of these moduli can even achieve such
a bounded Qour for all possible b’s. Table 1 shows five such NTT moduli and
corresponding Qour/QGMP with different b.
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Overall, by choosing proper (q, b), it is convenient and flexible to make our
sampler achieve a similar quality with the Genise-Micciancio-Polyakov one in
practical use cases without efficiency and security loss.

Remark 3. The quality of the Genise-Micciancio-Polyakov sampler is determined
by the maximal singular value of the used linear transformation T (Eq. (2)),
and independent of the modulus q. As k grows, the maximal singular value of T
converges to (b+ 1) as shown in [33]. Therefore, we fix QGMP = (b+ 1)

√
2π as

a tight bound for the quality of the Genise-Micciancio-Polyakov sampler.

Remark 4. Despite the different subgaussian parameters, for both the Genise-
Micciancio-Polyakov sampler and ours, the infinity norm of the output vector is
bounded by b.

Table 1. The values of Qour
QGMP

for some recommended NTT moduli.

b
q

222 + 213 + 212 + 1 230 + 213 + 1 240 + 215 + 214 + 211 + 1 252 + 216 + 213 + 211 + 1 260 + 215 − 211 + 1

2 0.745 0.745 0.745 0.745 0.745
22 0.721 0.721 0.721 0.721 0.721
23 0.846 0.808 0.846 0.846 0.808
24 0.930 0.930 0.890 0.890 0.890
25 0.951 0.941 0.941 0.951 0.941
26 1.004 0.969 1.003 1.003 0.969
27 0.984 0.985 1.017 0.986 0.993
28 1.023 1.023 0.992 0.994 0.994
29 0.996 0.996 0.996 1.027 1.004
210 0.998 0.998 0.998 0.998 0.998
211 0.999 1.006 1.001 1.006 0.999
212 1.030 0.999 1.030 0.999 0.999
213 0.999 0.999 0.999 1.000
214 0.999 1.030 1.001 0.999
215 0.999 1.000 0.999 0.999
216 1.030 0.999 0.999 1.001
217 0.999 0.999 0.999
218 0.999 1.030 0.999
219 0.999 1.000 0.999
220 0.999 1.000 0.999
221 1.030 0.999 1.007
222 0.999 1.000
223 0.999 1.000
224 0.999 0.999
225 0.999 0.999
226 0.999 0.999
227 1.030 0.999
228 0.999
229 0.999
230 0.999
231 1.030

6 Conclusion

To conclude, we develop new gadget Gaussian and subgaussian sampling al-
gorithms. Our gadget Gaussian sampler for arbitrary moduli gets rid of the
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reliance on high-precision arithmetic while keeping a good efficiency and quality.
It can be a potentially more efficient option for gadget sampling in the context of
constrained environments and side-channel countermeasures. Additionally, our
gadget subgaussian sampler is simpler, faster and needs asymptotically less ran-
domness compared with the previous result. For practical parameters, it also
achieves almost the same quality with the previous sampler. Hence it should
be a refined alternative to the current subgaussian algorithm. Overall our re-
sults provide the current lattice gadget toolkit with some simpler and efficient
algorithm candidates, and improve the practicality of the gadget toolkit.

6.1 Future work

In this work, we focus on the gadget algorithms associated to the typical gadget
g = (1, b, · · · , bk−1). Some lattice applications [31, 10, 23] use the CRT gadget
to improve the efficiency. The CRT gadget is a generalized gadget based on
the Chinese Remainder Theorem, which is particularly effective for very large
moduli. The algorithms for g = (1, b, · · · , bk−1) can be directly adapted to the
CRT form, thus we omit the related details. Nevertheless, it would be worthy to
implement and evaluate our algorithms in the CRT setting.

The main interest of this work is the fundamental algorithms themselves, and
we do not study deeply from an implementation aspect. With the post-quantum
standardization underway, implementing more powerful lattice cryptosystems
may gain increasingly attention. We leave the optimized implementation and
the application of our results to practical implementations of lattice schemes as
future works. Additionally, our subgaussian sampler and the Genise-Micciancio-
Polyakov one seem susceptible to timing leakage. While this leakage is not an
issue in most current applications, the side-channel protections of gadget algo-
rithms require a future investigation.

While a general definition of gadget was proposed in [23], almost all known
gadget algorithms are designed for the gadget g = (1, b, · · · , bk−1) and its CRT
generalization. To develop more practical gadgets and associated algorithms is
an interesting problem.
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