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Abstract—We consider the problem of constructing an uncon-
ditionally secure cipher for the case when the key length is less
than the length of the encrypted message. (Unconditional security
means that a computationally unbounded adversary cannot
obtain information about the encrypted message without the key.)
In this article, we propose data compression and randomization
techniques combined with entropically-secure encryption. The
resulting cipher can be used for encryption in such a way that
the key length does not depend on the entropy or the length of
the encrypted message; instead, it is determined by the required
security level.
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I. INTRODUCTION

The concept of unconditional secrecy was presented in
the seminal article by C. Shannon, where he also showed
that a one-time pad (or Vernam cipher) is unconditionally
secure [1]. In particular, unconditional secrecy means that
a computationally unbounded adversary cannot obtain any
information about an encrypted message without a key. It is
clear that this property is highly desirable, but if the one-
time pad is used to encrypt a message, the length of the key
used must be at least the length of the message (or, more
precisely, its Shannon entropy). This requirement is too strict
for many applications, and there are many approaches for
creating secure ciphers with short or low entropy keys, see [2]–
[9]. One such approach was suggested by C. Shannon in [1],
who described ideal cipher systems where a computationally
unbounded adversary ”does not obtain a unique solution to
the cipher but is left with many alternatives, all of reasonable
probability”. He built a theory of ideal ciphers and described
some of them for the case when the probability distribution
of encrypted messages is known. Later, ideal systems were
proposed for the case of unknown statistics, see [6].

A very interesting and promising new way of building se-
cure systems with short keys is the so-called entropic security,
proposed by Russell and Wang [2] and developed by Dodis
and Smith [3]. This cipher uses the entropy of the original
message in such a way that the key length should be roughly
the difference between the message length and its min-entropy
(the exact definition will be given below). Unlike the ideal
cipher and some others, this cipher is guaranteed to hide the

values of any function of the original message, and not just
some of its symbols. (Note that the use of the entropy message
to improve the strength of the cipher was also used in [6], [9].)

The notion of an entropy-secure symmetric encryption
scheme is extremely important for cryptography because, as
Dodis and Smith [3] said, ”Russell and Wang showed how
one can construct entropically-secure symmetric encryption
schemes with keys much shorter than the length of the input,
thus circumventing Shannons famous lower bound on key
length”.

Another way to construct a short key cipher is the so-
called honey cipher, proposed by Jewels and Ristenpart [7] and
developed by Joseph, Ristenpart and Tang [8]. In some ways,
the honey cipher is like the ideal cipher: a computationally
unlimited adversary has many possible highly probable de-
cryptions. Li, Tang and Zhang [10] developed and combined
the ideas of the honey cipher and the entropy ciphers to create
a new class of easily implementable short key codes. In a
sense, the idea of preprocessing an original message in order
to increase its entropy is being developed and widely used in
their methods.

Data compression and randomization are two methods of
preprocessing the original message that have been used for
centuries in cryptography [1], [11]. Moreover, homophonic
coding can be used to compress and randomize together
[11], [12]. The goal of both transformations is to make
the probability distribution of the original messages closer
to the uniform one (see an overview in [13]). Interestingly,
both transformations have been successfully applied to some
cryptographic problems: they were used to extract randomness
[14]–[16] and to build an ideal steganographic system [17].

In this article, we combine entropically-secure encryption
with the suggested compression and data randomization tech-
niques. Using compression and randomization, the original
message is transformed in such a way that the difference
between its length and its min-entropy is constant. This make
it possible to apply an entropically-secure cipher so that the
key length is independent of the entropy or the length of the
message (but depends on the required security level).

II. DEFINITIONS AND PRELIMINARIES

We consider the problem of symmetric encryption, when
there are two parties Alice and Bob and Alice wants to



securely transmit a message M to Bob, where M ∈ {0, 1}n,
n ≥ 1, obeys a certain probability distribution p defined
on the set {0, 1}n. Alice and Bob have a shared secret key
K = K1...Kk, which can be much shorter than the length of
M , that is k � n. Alice encrypts M with K and possibly
some random bits, and obtains the word cipher(M,K). Then
she sends it to Bob, who decrypts the received message and
obtains M . In addition, there is a computationally unlimited
adversary Eve who does not know M and K, but knows the
probability distribution p and wants to find some information
about M based on the encrypted message.

Russell and Wang [2] suggested a definition of the entropic
security which was generalised by Dodis and Smith [3] as
follows: A probabilistic map Y is said to hide all functions on
{0, 1}n with leakage ε if, for every adversary A, there exists
some adversary Â (who does not know Y (M)) such that for
all functions f ,

|Pr{A(Y (M)) = f(M)} − Pr{Â( ) = f(M)} | ≤ ε. (1)

(note that Â does not know Y (M) and, in fact, she guesses
the meaning of the function f(M).) In what follows the
probabilistic map Y will be cipher(M,K) and f is a map
f : {0, 1}n → {0, 1}∗.

Definition 1: The map Y () is called (t, ε)-entropically
secure if Y () hides all functions on {0, 1}n, whenever the
min-entropy of the probability distribution p is at least t, where
min-entropy hmin(p) is as follows:

hmin(p) = − log max
a∈A

p(a) . (2)

(Here and below log = log2 .)
Note, that in a sense the definition 1 is a generalisation of

the Shannon notation of the perfect security. Namely, if we
take ε = 0 and Y = cipher(M,K) and f(x) = x, we obtain
that for any M

|Pr{A(cipher(M,K)) =M} − Pr{Â( ) =M} | = 0

(So, A and Â obtained the same result, but A estimates the
probability based on cipher(M,K), whereas Â does it without
knowledge of cipher(M,K)). So, the entropic security (1)
can be considered as a generalisation of the Shannon’s perfect
secrecy.

The following theorem of Dodis and Smith [3] is a gener-
alisation of the results of Russell and Wang [2].

Theorem 1: ( [3]) Let there be an alphabet {0, 1}n, n > 0,
with a probability distribution p. Then there exists an efficient
(hmin, ε)-entropically secure cipher with the k-bit key where

k = n− hmin(p) + 2log(1/ε) + 2. (3)

Another important notion is that of indistinguishability:
Definition 2: ( Dodis and Smith [3].) A randomized map

Y () is (t, ε)-indistinguishable if there is a random variable G
such that for every distribution on messages M over {0, 1}n
with min-entropy at least t, we have

SD(Y (M), G) ≤ ε,

where for two distributions A,B

SD(A,B) =
1

2

∑
M∈M

|Pr{A =M} − Pr{B =M}| .

Dodis and Smith [3] showed that entropic security and
indistinguishability are deeply connected:

Theorem 2: ( [3] .) Let Y be a randomized map with inputs
of length n. Then

1. (t, ε)-entropic security for predicates implies (t− 1, 4ε)-
indistinguishability.

2. (t − 2, ε)-indistinguishability implies (t, ε/8) -entropic
security for all functions when t ≥ 2 log(1/ε) + 1.
So, both notions are equal up to small changes in the param-
eters.

III. THE SUGGESTED METHOD

We can see from Dodis and Smith Theorem 1 that the choice
of the length of the key k depends significantly on the min-
entropy of the probability distribution; specifically, k ≥ n −
hmin + 2 log(1/ε) + 2, where n is the length of a ciphered
message.

In this paper we suggest the following two-step cipher: first,
transfer (encode) the messages M in such a way that difference
between n and hmin is a small constant, and then apply an
entropically secure cipher with k = 2 log(1/ε) + O(1). The
first transformation will be based on methods of source coding
(or data compression) and randomisation. Both algorithms are
described in two following short sections.

A. Lossless codes

1) Shannon code and its generalisations: Let there be an
alphabet A = {a1, ..., aL} with probability distribution p(a)
and let p(a1) ≥ p(a2) ≥ ... ≥ p(aL) > 0. Define Q1 =
0, Qt =

∑t−1
i=0 p(ai), t = 2, ..., L and let Q̂i be a presentation

of Qi in binary system as an infinite {0, 1} word with finite
number of ones and without the initial 0. (That is, 1/2 =
100000..., 1/3 = 010101.....) The codeword λ̂(ai) for symbol
ai is chosen to be the first dlog(1/p(ai)e binary digits in Q̂i,
i = 1, ..., L. It is clear that,

|λ̂(ai)| = dlog(1/p(ai))e . (4)

For example, let A = {a1, a2, a3} and p(a1) =
13/16, p(a2) = 1/8, p(a3) = 1/16. Then, λ̂(a1) = 0,
λ̂(a2) = 110, λ̂(a3) = 1111. Clearly, these codewords can be
made shorter as follows: λ(a1) = 0, λ(a2) = 10, λ(a3) = 11.
This procedure for removing extra digits can be described
using binary trees. It is known that the Shannon code can be
represented as a binary tree, the branches of which correspond
to codewords. In this tree, the left child is marked with 0, and
the right child is 1. If some node has one child, it is removed,
and the corresponding digit from the corresponding codeword
is also removed. The obtained code we denote as λSh and
derive from (4) the following:

|λSh(ai)| ≤ dlog(1/p(ai))e ≤ log(1/p(ai)) + 1. (5)



Also, it is known that the set of codewords λ(a1), ..., λ(aL)
is prefix-free. (Recall that, by definition, a set of words U is
prefix-free if for any u, v ∈ U neither u is a prefix of v nor v
is a prefix of u.)

Note that, for any sequence x1x2....xn, n ≥ 1, from the
alphabet A and a prefix-free code λ the encoded sequence
λ(x1)λ(x2)...λ(xn) can be decoded to x1x2....xn without
errors. Such a code λ is called lossless code. Hence, any prefix-
free code is a lossless one.

Note the the “initial” code λ̂(ai) has the same properties
as a modified λ, that is, it is the prefix-free and (5) is valid.
(That is why we do not describe the transformation of λ̂ to λ
in detail and do not estimate its complexity.)

2) Trimmed codes: Let λ be a lossless code for letters from
A. Consider the following probability distribution p(a1) =
1/2, p(a2) = 1/4, ..., p(aL−1) = p(aL) = 2−(L−1). From the
description of the Shannon code we can see that |λSh(aL))| =
L− 1.

In the following applications, the complexity of the cipher
will largely depend on the lengths of the codewords. Thus,
it will be convenient to use codes for which the length of
the code of any letter does not exceed dlogLe + 1 for any
probability distribution (instead of L − 1 as in the previous
example). It is also worth noting that it will be shown later
that one extra bit of the length of the codeword can add at
most 1 extra bit of the length of the encryption key.

We call such codes as trimmed and define one of them as
follows: if λ is a code then

λtr(ai) =

{
0λ(ai) if |λ(ai)| ≤ dlogLe
1 bindlogLe(i) if |λ(ai)| > dlogLe ,

(6)

where bindlogLe(i) is a binary presentation of i whose length
is dlogLe. (For example, bin3(3) = 011). We see that the
maximal codeword length is not greater than dlogLe+1. Also,
note that for any prefix-free code the maximal codeword length
is not less than dlogLe.

Let us explain how to decode. First, the decoder reads the
first binary letter. If it is 0, the decoder uses the codeword of
the code λ in order to find the encoded letter. If the first letter
is 1, the next dlogLe letters contain the binary decomposition
of i, i.e. the letter is ai.

If the trimmed code is built based on the Shannon code,
from (6) and (5) we obtain

|λtrSh(ai)| ≤ dlog(1/p(ai))e+ 1 ≤ log(1/p(ai)) + 2. (7)

B. Randomised prefix-free codes

Let λ be a prefix-free code for the alphabet A and

l = max
i=1,...,L

|λ(ai)| .

The randomized code ρλ maps letters from the alphabet A to
the set {0, 1}l defined as follows.

ρλ(ai) = λ(ai) r
i
|λ(ai)|+1r

i
|λ(ai)|+2...r

i
l , (8)

where ri|λ(ai)|+1, r
i
|λ(ai)|+2, ..., r

i
l uniformly distributed and

independent random bits (for all i). Let us define a probability
distribution πλ on {0, 1}l as follows:

πλ(y1y2...yl) = p(ai)2
−(l−|λ(ai)|)

if y1y2...y|λ(ai)| = λ(ai). (9)

If for some y = y1...yl any λ(ai) is not a prefix of y, then
πλ(y) = 0.

Claim 1: hmin(πλ) = l − maxi=1,...,L(|λ(ai)| −
log(1/p(ai)). In particular,

hmin(πλSh
) > l − 1, hmin(πλtr

Sh
) > l − 2 . (10)

Here the first equation follows from the definition of the min-
entropy and (9), whereas (10) follows from (5) and (7).

C. The cipher

Here we describe a cipher with the length of key
2 log(1/ε)+O(1) which is (0, ε) entropically secure. It means
that this cipher is ε entropically secure for any probability
distribution (i.e. with any min-entropy). This cipher is based
on the application of the entropically secure cipher of Dodis
and Smith [3] to the suggested randomized code. We describe
the suggested cipher for the λtrSh code, but expanding to other
prefix-free codes is straightforward.

The suggested ciphering is carried out in the following three
steps: for a given ε ∈ (0, 1)

i) Build a code λtrSh for the alphabet {0, 1}n with a proba-
bility distribution p.

ii) Calculate l = maxa∈{0,1}n |λtrSh(a)| and probabilities
πλtr

Sh
(u) , u ∈ {0, 1}l. (From (6) we can see that l ≤ n+ 1.)

iii) For the alphabet {0, 1}l with the distribution π build
(l − 2, ε) entropically secure cipher of Dodis and Smith [3]
with the k-bit key where

k = 2log(1/ε) + 4 , (11)

Note that Dodis and Smith proposed three entropically secure
ciphers, any of which can be used; so we do not describe any
particular cipher here.

From the Dodis and Smith Theorem 1 (see (3)) and the
estimate of the min-entropy (10) we can see that such a cipher
exists for the distribution πλ on {0, 1}l.

Strictly speaking, we are dealing with two ciphers. One is
applied to the set {ρλ(M)} ⊂ {0, 1}l, whereas the second
one (the main one) is applied to {M} ⊂ {0, 1}n, and include
data compression and randomization. We denote the first one
cipherds and the second cipherc&r.

The Dodis and Smith Theorem 1 guarantees the entropic
security for the first cipher cipherds, so, we need to prove
a similar property for cipherc&r. The following theorem
describes the properties of this cipher:

Theorem 3: Let any message M belong to {0, 1}n, n > 0,
and they obey some probability distribution p. Let ε > 0. Then,
cipherc&r is (0, ε) entropically secure with the k-bit key with



k = 2log(1/ε) + 4 , that is, for any function A : {0, 1}l →
{0, 1}∗ and f : {0, 1}n → {0, 1}∗

|Pr{A(cipherc&r(M) = f(M)} − Pr{Â( ) = f(M)}| ≤ ε,

where Â does not use cipherc&r(M).
Comment 1. This means that the cipher is ε- entropically

secure with the secret keys whose lengths do not depend on
the probability distribution on the set of the messages {M} ⊂
{0, 1}n.
Proof. From Dodis and Smith theorem 1 we see that for any
function g

|Pr{A(cipherds(v) = g(v)} − Pr{Â( ) = g(v)}| ≤ ε,

where v is random variable with distribution {πλ(M),M ∈
{0, 1}n}, g is any function defined on {0, 1}l (g : {0, 1}l →
{0, 1}∗) and Â( ) does not depend on v (to be short, λ = λtrSh).
Taking into account that the code λ is prefix-free, we can
define such a function φ that for any a ∈ {0, 1}n and u =
ρλ(a), φ(u) = a. For any function f : {0, 1}n → {0, 1}∗
and M consider the function g(ρλ(M)) = f(φ(ρλ(M))(=
f(M)). The last inequality is valid for this function g and for
v = ρλ(M), hence

|Pr{A(cipherds(ρλ(M)) = f(φ(ρλ(M))}−

Pr{Â( ) = f(φ(ρλ(M))}| ≤ ε.

Taking into account that cipherc&r(M) = cipherds(ρλ(M))
and f(φ(ρλ(M)) = f(M), we can see from the latest
inequality that

|Pr{A(cipherc&r(M)) = f(M)}−

Pr{Â( ) = f(M)}| ≤ ε .

The theorem is proven.
We can see from Theorem 2 of Dodis and Smith that

the cipher cipherc&r is 2ε indistinguishable. Below we di-
rectly prove that cipherc&r is ε indistinguishable with k =
2log(1/ε) + 5 .

Theorem 4: Let there be an alphabet = {0, 1}n, n > 0,
with some probability distribution. If, instead of (11), the
key length k equals k = 2log(1/ε) + 5 , the cipher is (0, ε)
indistinguishable.
Proof. From Theorem 2 of Dodis and Smith we know that, in
fact, the indistinhuishability is equal to the entropic security,
and it is valid for cipherds, but we are interested in the
indistinguishability of the cipherc&r. In order to prove it
suppose that the Dodis and Smith cipher cipherds is applied
to the words from the set ρλ(M) ⊂ {0, 1}l in such a way
that it is (1, ε/4) entropically secure, where the length of the
key equals 2 log(1/(ε/4)) + 1 = 2 log(1/ε) + 5. From the
Dodis and Smith theorem 2 we can see that this cipher is
(2, ε) indistinguishable, that is, SD(cipherds, G) ≤ ε, where
G is a random variable on {0, 1}l which is independent on
cipherds.

Define Ua = {cipherds(λ(a) r)} : r ∈ {0, 1}l−λ(a)} and
let G′(v) be defined as follows:

Pr{G′ = v} =
∑
w∈Uv

Pr{G = w}.

The following chain of equalities and inequalities is based on
these definitions and the triangle inequality for L1:

SD(cipherc&r, G
′) =

1

2

∑
u∈{0,1}n

|Pr{cipherc&r = u} − Pr{G′ = u}| =

1

2

∑
v∈{0,1}n

|
∑

w∈{0,1}l
Pr{cipherds = w} − Pr{G = w}| ≤

1

2

∑
v∈{0,1}n

∑
w∈{0,1}l

|Pr{cipherds = w} − Pr{G = w} | =

1

2

∑
w∈{0,1}l

|Pr{cipherds = w} − Pr{G = w} | =

SD(cipherds, G) ≤ ε .

So, SD(cipherc&r, G
′) ≤ ε.

Theorem is proven.

IV. CONCLUSION

As we have seen the suggested cipher is useful for a
message distribution with any min-entropy, whereas ciphers
of Russell, and Wang as well as Dodis and Smith are useful
if k = n − hmin + 2 log(1/ε) is less than n, where n is the
length of the ciphered message and k is the length of the key
(otherwise, one can use the one-time-pad with k = n and,
hence, shorter k).

Let us consider the choice of the data compression code.
We used the trimmed Shannon code, while there are other
efficient source codes, among which we mention versions
of Huffman code, Fano (or Shannon-Fano) codes, Rissanen
arithmetic code, and a few others. Taking into account that the
difference in length of the code of the trimmed Shannon code
and the minimum possible is not more than 2, and the same
is true for the length of the secret key of the corresponding
ciphers, we consider only the trimmed Shannon code. On the
other hand, it seems that different source codes can be useful
in the case of an unknown probability distribution of messages,
as well as some other situations.
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