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Abstract
Publish-subscribe protocols enable real-timemulti-point-
to-multi-point communications for many dispersed com-
puting systems like Internet of Things (IoT) applications.
Recent interest has focused on adding processing to such
publish-subscribe protocols to enable computation over
real-time streams such that the protocols can provide
functionalities such as sensor fusion, compression, and
other statistical analysis on raw sensor data. However,
unlike pure publish-subscribe protocols, which can be
easily deployed with end-to-end transport layer encryp-
tion, it is challenging to ensure security in such publish-
process-subscribe protocols when the processing is car-
ried out on an untrusted third party. In this work, we
present XYZ, a secure publish-process-subscribe sys-
tem that can preserve the confidentiality of computa-
tions and support multi-publisher-multi-subscriber set-
tings.WithinXYZ, we design two distinct schemes: the
first using Yao’s garbled circuits (the GC-Based Scheme)
and the second using homomorphic encryption with
proxy re-encryption (the Proxy-HE Scheme). We build
implementations of the two schemes as an integrated
system atop the Message Queue Telemetry Transport
(MQTT) pub-sub protocol. We evaluate our system on
several functions and also demonstrate real-world ap-
plications based on it. The evaluation shows that the
GC-Based Scheme can finish most tasks two orders of
magnitude times faster than the Proxy-HE Schemewhile
Proxy-HE can still securely complete tasks within an
acceptable time for most functions but with a different
security assumption and a simpler system structure.

1 Introduction
Modern interconnected networked systems like Inter-

net of Things are dispersed often requiring a strategic,
opportunistic movement of computation to data, and
data to computation, in a fashion that best suits user
application needs. Recent developments in IoT enable

applications to use multi-point-to-multi-point commu-
nication by use of the publish-subscribe (pub-sub) para-
digm [21]. The publish-subscribe messaging allows mul-
tiple data consumers to connect to streams of real-time
data frommultiple sensors. Commonly used examples of
pub-sub protocols are Message Queue Telemetry Trans-
port (MQTT) [31], Advanced Message Queuing Protocol
(AMQP) [30] and commercial pub-sub platform as a ser-
vice (PaaS) providers such as PubNub [42] with their
own proprietary protocols and APIs. The key idea be-
hind pub-sub protocols is the use of a broker as a relay,
which is typically centralized and implemented on a
cloud server, such as Mosquitto of MQTT [35]. Sensors
(also called publishers) publish messages to specified
"topics" that are sent to the broker; data consumers (also
called subscribers) send to the broker a subscribe request
to specified topics and receive data from the broker. The
broker in a traditional pub-sub system plays primarily
a message-forwarding role with optional extension to
client authentication, but this basic functionality does
not serve the emerging need for data processing in such
systems [33]. Enabling data processing on the broker
before forwarding instead of merely relaying raw data
helps provide more meaningful data derived from raw
sensor data and detect potential anomalies. In some
cases, it can also reduce the overall throughput and im-
prove clients’ energy efficiency. This is important in IoT
environments considering the fact that most IoT devices
are of a low-budget setting. One of the examples of such
intermediate processing is that PubNub recently intro-
duced processing capability into their PaaS system in the
form of real-time compute functions as "BLOCKS" [43].
However, as brokers are typically hosted on third-

party servers, adding computational processing to pub-
sub middleman introduces concerns about security. An
application that wishes to make use of a third-party
broker for traditional pub-sub messaging could always
use end-to-end encryption to provide security [10, 41],
but with computational functionality being moved to
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the server, such encryption is no longer enough. Addi-
tionally, approaches like moving computation to clients
simply do not work when sensitive individual data has
to be aggregated but protected, for example, building
privacy-preserving machine learning models from sen-
sitive data of medical sensors [1] and federally aggre-
gating model parameters from multiple IoT users while
preventing information leakage especially for users with
small datasets [44]. To our knowledge, with the ex-
ception of proposals to utilize trusted execution envi-
ronments, such as Intel SGX [5, 29], there is no prior
practically implemented protocol that provides secure
computation on a pub-sub broker for IoT. Given the
security vulnerabilities identified with SGX in recent
years [16, 28, 45], a system based on secure computation
would be more desirable. The development of such a sys-
tem has the potential to dramatically lower the barrier
for use of third-party edge/cloud-based computation, es-
pecially for privacy-sensitive data streams such as data
from smart homes or wearable devices collecting physi-
ological information [3]. This is the focus of our work.
To reduce the impact from performing secure computa-
tion on the overhead of IoT devices as much as possible,
clients in our system are only required to encrypt or
decrypt the data, which is the relatively cheap part in
secure computation and has already existed in previous
secure pub-sub messaging protocols.
OurContributions.Our core contributions can be sum-
marized as follows:
1. It is challenging to integrate multi-party computation

into IoT messaging protocols constricted by its pub-
sub structure despite the growing need of intelligent
movement between secure computation and data in
such a dispersed system. We build a system, XYZ,
to bridge this gap.

2. XYZ is a secure publish-process-subscribe system
based on MQTT for IoT applications that can perform
secure multi-party computation on the broker side.
We propose and implement two distinct multi-party
computation schemes with different system construc-
tions and security assumptions. Both schemes sup-
port multi-publisher-multi-subscriber settings.

3. The first scheme is based on Yao’s garbled circuits [49].
We introduce techniques like communication reduc-
tion and seed synchronization to circumvent the con-
straints of traditional pub-sub.We also provide forward-
secure seed extension for extra security.

4. The second scheme is based on homomorphic en-
cryption [6] and proxy re-encryption [37]. We in-
troduce techniques like key exchange reduction to
mitigate conflicts between proxy re-encryption and
traditional pub-sub structure, and subscriber repre-
sentative mechanism to support multi subscribers.

5. We evaluatedXYZ on different functions, i.e., mean,
variance, weighted mean, private set intersection and
secure federated learning. The function library in
our system can be easily extended to support more
complex functions. We also provide concrete real-
world IoT applications based on our system.
The rest of the paper is structured as follows: in §2

we provide an overview of our secure publish-process-
subscribe system and its related work; in §3 and §4 we
introduce two different schemes (the GC-Based Scheme
and the Proxy-HE Scheme) in our system respectively;
in §5, we describe the detailed implementation of our
system; lastly in §6, we evaluate our system and demon-
strate concrete real-world applications.

2 Overview and Related Work
2.1 Overview

Our secure publish-process-subscribe protocol should
handle secure computation on the broker’s side using
encrypted data from publishers and distribute encrypted
processed data to subscribers. Our protocol involves 𝑎
publishers, 𝑏 publishers and third-party server(s). We
assume a semi-honest adversary A who can corrupt a
certain set of clients and the server(s). A semi-honest
adversary does not deviate from the protocol but tries
to learn as much information as possible. Additionally,
certain collusion is restricted. Our security definition
requires that A only learns the data from corrupted
publishers and final outputs from corrupted subscribers,
but nothing about honest parties’ inputs.
Definition 1 (UC-Security). A protocol 𝜋 securely re-
alizes F in the presence of A in the real world, if there
exists a simulator S in the ideal world such that for all
inputs, probability distributions of the ideal world and the
real world are indistinguishable.
Ideal Functionality. We describe the ideal functional-
ity as a generic definition of a secure publish-process-
subscribe protocol. Our ideal functionality F interacts
with participating parties as shown in Figure 1.
Real-World Schemes.Our system adopts two different
multi-party computation schemes using garbled circuits
and homomorphic encryption with proxy re-encryption
respectively with different security assumptions and
system constructions. This availability of different de-
signs offers users more choices to better fit specific needs
when constructing secure publish-subscribe-process sys-
tems in practice. The summary of scheme comparison
is listed in Table 1. The two schemes have different se-
curity assumptions. The detailed definitions of A in
our two different schemes will be described in §3 and
§4. In terms of the system complexity, our GC-Based
Scheme needs both the garbler and the broker on third-
party servers. Even with our reduced communication
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Initialization
• Each new publisher sends a policy to the broker specifying al-
lowed computation on its data.

Publish
• Each publisher publishes its data to F. If the data from a publisher
is not received in the given time period, F marks it as null.

Subscribe
• To subscribe to the computation𝐶 , each subscriber sends a sub-
scription message to the broker containing requested𝐶 .
• The broker sends𝐶 and its subscribers to F.
Process
• F determines a subset 𝑃 ′ ⊂ 𝑃 of publishers whose data can be
used to compute𝐶 , then sends 𝑃 ′ to the broker.
• The broker sends back 𝑃𝐶 ⊂ 𝑃 ′ whose policies allow𝐶 .
• If data of all available publishers in 𝑃𝐶 is enough to compute𝐶 ,
F evaluates it and sends the result to subscribers, otherwise F
sends an empty message to subscribers.

Figure 1. Ideal World Functionality

extension, which circumvents the direct communica-
tion among the garbler and clients in pub-sub setup,
this scheme still requires the garbler as an independent
intermediate party. Additionally, extra procedures like
key ratcheting and seed synchronization are needed for
indirect communication between clients and the garbler
as well as seed sharing for multi-party support. On the
contrary, the broker can act as a proxy in the Proxy-HE
Scheme, which can be easily constructed on top of the
standard pub-sub protocol. As a trade-off, the Proxy-HE
Scheme is two orders of magnitude times slower than
the GC-based Scheme in general.

Scheme GC-Based Proxy-HE

Adversary
can’t control both
Garbler and Broker

can’t control both
Broker and Subscribers

System
Complexity needs both Garbler/Broker only needs Broker

Issues seed sharing; data reusability computation overhead
Typical Cost ~10 ms ~1000 ms

*Typical cost is from computing variance with 100 publishers.

Table 1. Comparison of Two Schemes in Our System

2.2 Related Work
Secure Pub/Sub System. A few previous studies on
secure pub/sub messaging systems have been conducted
and secure pub/sub schemes have been proposed [38,
47], but these work all focused on the simple pub/sub
system without a computation functionality from the
broker.
Cryptographic Primitives & Systems. Our secure
publish-process-subscribe system is related to the work
on garbled circuits [14, 15, 27, 32] and homomorphic
encryption [12, 26]. However, existing schemes do not
fit our real-time publish-process-subscribe system. Ka-
mara et al. developed two protocols, a covertly (in the
covert adversary model, an adversary is caught proba-
bilistically) secure protocol that outsources the garbled

circuit generation and a maliciously secure protocol
that outsources evaluation [32]. Carter et al. also pro-
posed a maliciously secure protocol that outsources gar-
bled circuit evaluation but uses a new oblivious transfer
mechanism to reduce bandwidth and computation [15].
In another paper, Carter et al. proposed a maliciously
secure protocol that outsources garbled circuit gener-
ation [14]. Bachrach et al. developed a protocol that
allows a set of parties with data stored in the cloud to
compute on encrypted data using a third-party eval-
uator [27]. All the work above attempted to provide
a solution to more general cloud server models using
garbled circuits but didn’t address the issues from the
publish-subscribe protocol’s unique messaging mech-
anism. Different from how garbled circuits work, ho-
momorphic encryption [6] allows arbitrary computa-
tion on encrypted data. Gentry proposed the first fully
homomorphic encryption scheme [12, 26] followed by
several improved schemes, e.g., the BGV scheme [11].
Dijk et al. showed that privacy-preserving outsourced
computation on data from multiple parties and supply-
ing output to multiple parties requires, in addition to
homomorphic encryption, access-controlled ciphertexts
and re-encryption [46]. They reduce a scheme that com-
putes data from two parties and supplies outputs to
two parties to black-box program obfuscation, which is
hard to accomplish in general [7]. Additionally, restric-
tions on parties in the paper make its potential applica-
tion less realistic. Nikolaenko et al. proposed a scalable
privacy-preserving system for ridge-regression combin-
ing additive homomorphic encryption and Yao’s garbled
circuits [40]. In their setting, a single evaluator is inter-
ested in learning ridge regression over data of a large
number of data owners without learning the individual
data of data owners. Our system works in a different
way: (a.) we don’t want to reveal output to the evalu-
ator, (b.) we have multiple subscribers who want the
output of computation from multiple publishers, and (c.)
our data owners, publishers, are oblivious of subscribers
and subscribers are oblivious of publishers. Nikolaenko,
et al.,[39] proposed a similar system but for privacy-
preserving matrix factoring instead of ridge regression.
IoT with Proxy Re-Encryption. We also make use
of proxy re-encryption in our Proxy-HE Scheme. This
scheme, first proposed as a method to delegate decryp-
tion rights [37], solves the asynchronous encryption
issue in the publish-subscribe protocol. Polyakov et al.
proposed a proxy re-encryption scheme based on ho-
momorphic encryption to tackle this problem [10, 41].
However, their work focused on the simple publish-
subscribe setup and did not further address the issue
that publishers and subscribers need to communicate
back and forth via the broker to generate re-encryption
keys every time a communication is established. In our
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work, we use the proxy re-encryption library built by
them but apply it into the Proxy-HE Scheme in our se-
cure publish-process-subscribe system with additional
communication optimization.

3 The GC-Based Scheme
In this section, we describe our scheme designed

with Yao’s garbled circuits. The overall structure of the
scheme is shown in Figure 2. In the real world, F is
replaced by our scheme described in §3.2.
3.1 Components
Yao’s Garbled Circuits. Yao’s garbled circuits [49] is a
secure computation scheme that allows the participat-
ing parties to evaluate their private inputs in a func-
tion even if they do not trust each other. The com-
ponents of Yao’s garbled circuits 𝐺𝐶 , with algorithms
(𝐺, 𝐸𝑛𝑐𝑜𝑑𝑒, 𝐸𝑣𝑎𝑙, 𝐷), can be defined as follows [48]:
1. On input circuit 𝑐 , the garbling algorithm 𝐺 outputs

a garbled circuit 𝐶 , encoding 𝑒 and decoding 𝑑 .
2. On inputs (𝑒, 𝑥 ), the encoding algorithm 𝐸𝑛𝑐𝑜𝑑𝑒 out-

puts a garbled output𝑋 , where 𝑥 is the original input.
Then the evaluation algorithm 𝐸𝑣𝑎𝑙 takes in (𝐶,𝑋 )
and outputs a garbled result 𝑌 .

3. On inputs (𝑑,𝑌 ), the decoding algorithm 𝐷 outputs
the plaintext.

Reduced Communication Extension. The basic pro-
tocol assumes direct communication with the garbler.
However, the publishers and subscribers in our system
communicate with the garbler only through the bro-
ker. To address this issue, we describe an extension
that allows clients and the garbler to generate wire la-
bels/masks independently. This ensures our scheme’s
compatibility with a standard publish-subscribe system
where all communication is only through the broker.

Publishers and the garbler share a truly random seed
𝑠 and use a pseudorandom number generator to inde-
pendently generate two wire labels for each input bit,
circumventing wire label exchange between publishers
and the garbler. Similarly, subscribers for the compu-
tation 𝐶 and the garbler share a truly random seed 𝑠 ′
and use a pseudorandom number generator to indepen-
dently generate output masks, avoiding direct output
mask exchange between subscribers and the garbler.
Seed Synchronization. The above method requires
synchronization between clients and the garbler. We
adapt the key ratcheting protocol of Signal, a popular
secure messaging protocol, to generate seeds securely.
Ratchet keys work by advancing a secret key at every
round using the preimage-resistance property of a cryp-
tographic hash function [19] [25]. At any round, a seed
can be derived from a ratchet key to be used to generate
pseudorandom strings. To maintain synchronization of
the ratchet keys between the clients and the garbler,

when sending values, publishers add the round of the
ratchet key to derive the seeds used to generate the
labels in the message. When the broker requests the
garbling of the circuit to the garbler, it also specifies the
rounds of the values it will use, such that the garbler can
advance the ratchet key accordingly to derive the same
seed and generate matching labels. Similarly, the gar-
bler tells the broker the function ratchet key round for
generating the mask, such that the broker can forward
this information to subscribers which in turn advance
their stored ratchet keys to derive a matching mask.
Forward-Secure Seeds. While the extension reduces
publishers’ and subscribers’ communication with the
garbler significantly, an adversary stealing a seed 𝑠 from
a publisher and colluding with the broker compromises
the confidentiality of all of the publisher’s inputs, in-
cluding past, current, and future inputs. Similarly, an
adversary stealing the seed 𝑠 ′ for the computation 𝐶
from a subscriber and colluding with the broker com-
promises the confidentiality of outputs of all executions.

We design an extra procedure that ensures that seeds
are forward-secure, i.e., an adversary stealing a seed
wouldn’t be able to compromise the confidentiality of
any past inputs and outputs. The key ratcheting used in
our scheme can make all seeds 𝑠 and 𝑠 ′ forward-secure.
An adversary stealing publishers’ seed 𝑠 or subscribers’
seed 𝑠 ′ would still learn all current and future inputs of
the publisher or outputs for computation 𝐶 . But once
the adversary compromises target clients, it will learn
this information anyway with or without stealing the
seeds. The detailed protocol can be found in Figure 3.
3.2 Protocol Design
As shown in Figure 2, the design of our GC-Based

Scheme includes four major parties: publisher(s), the
broker, the garbler, subscriber(s). We first describe the
threat model for this scheme and then explain the de-
tailed design in two different settings: single-publisher-
single-subscriber and multi-publisher-multi-subscriber.
Adversary Model. In the GC-Based Scheme, we have
four parties in 𝐺𝐶 (𝑎, 𝑏): 𝑎 publishers, the broker, the
garbler and 𝑏 subscribers as defined.
Definition 2 (The GC-Based Adversary). A semi-honest
adversary AGC can corrupt any subset of 𝑏 subscribers
and at most 𝑎 − 2 publishers.AGC can corrupt the broker
or the garbler, but not at the same time. In other words,
the broker and the garbler can not collude with each other.
Single-Publisher-Single-Subscriber. In order to pub-
lish a value, the publisher generates two wire labels𝑤0
and 𝑤1 for every bit 𝑏 of the value, sends both labels
𝑤0 and 𝑤1 to the garbler, and only 𝑤𝑏 to the broker;
the broker receives the computation request from the
subscriber and requests the garbler to garble the circuit
for 𝑋𝑂𝑅 ◦𝐶; the garbler sends the masked result back
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Figure 2. Structure of the GC-Based Scheme: two cloud servers but the actual communication between clients and the garbler is via the broker

to the broker for it to evaluate; the subscriber unmasks
the result from the broker.
Multi-Publisher-Multi-Subscriber. The multi-sub
functionality can be realized by the garbler sharing the
same mask seed with subscribers under the same com-
putation request. However, the functionality of multiple
publishers requires sharing of seeds for wire labels. This
is achievable but needs extra sharing constructions(for
example, sharing same seeds among publishers for the
computation involving them but this has to be done
for each computation separately) and additional trust
among publishers (an adversary controls both the broker
and other publishers sharing seeds with honest publish-
ers can reveal honest publishers’ data).
Figure 3 depicts how our GC-Based Scheme works.

3.3 Security Analysis
We describe a simulator S that simulates the view of

the adversary A𝐺𝐶 in the ideal world to prove that our
scheme guarantees both correctness and security.
S receives from F the number of publishers |𝑃𝐶 |

whose policy allows computing 𝐶 on their data. S cre-
ates 2𝑙 |𝑃𝐶 | number of random wire labels (𝑟 00 , 𝑟 10 ), . . . ,
(𝑟 02𝑙 |𝑃𝐶 |−1, 𝑟

1
2𝑙 |𝑃𝐶 |−1), where 𝑙 being the bit-length of a

publisher’s input. We use a blackbox garbled circuit
simulator from the projective prv.sim secure garbling
scheme with circuit 𝑀 ◦𝐶 being the side information
as described in [9].
S receives F (𝑀 ◦𝐶, ®𝑥𝐶 ) from F , where𝑀 is an XOR

masking function. S sends F (𝑀 ◦ 𝐶, ®𝑥𝐶 ) to the gar-
bled circuit simulator and obtains a fake garbled𝐺𝐶𝑓 𝑎𝑘𝑒 .
S generates a random string 𝑜𝑟 of the same length as
output. S sends (𝐺𝐶𝑓 𝑎𝑘𝑒 , 𝑟 00 , . . . , 𝑟 02𝑙 |𝑃𝐶 |−1, 𝑜𝑟 ) to the ad-
versary. As garbled circuits distribution is independent
of the input wire labels, 𝐺𝐶𝑓 𝑎𝑘𝑒 is computationally in-
distinguishable from the 𝐺𝐶 in the real execution. The
random output 𝑜𝑟 in ideal execution is indistinguishable
from 𝑜 + 𝑟 in the real execution.

In the ideal world, S creates a fake garbled circuit.
Note that this fake garbled circuit doesn’t use wire labels
(𝑟 00 , 𝑟 10 ), . . . , (𝑟 02𝑙 |𝑃𝐶 |−1, 𝑟

1
2𝑙 |𝑃𝐶 |−1) for garbling. Otherwise,

the adversary could use 𝑟 00 , . . . , 𝑟
0
2𝑙 |𝑃𝐶 |−1 labels to evalu-

ate the circuit on 0𝑙 |𝑃𝐶 | , whichwould allow the adversary
to distinguish between real and ideal executions.
Our security assumption allows at most 𝑎 − 2 cor-

rupted publishers. AGC learns the final output with
𝑎 − 2 corrupted publishers’ inputs while S has the same
information. Neither of them could learn the input of
the two honest publishers’ inputs.

The view of S in the ideal world is indistinguishable
from the view thatAGC has in the real world execution.

4 The Proxy-HE Scheme
In the previous section, we construct a secure publish-

process-subscriber scheme using Yao’s garbled circuits,
which requires both the broker and the garbler. Addi-
tionally, our GC-Based Scheme restricts the adversary
to compromising only one third-party server (the broker
or the garbler) at one time while also requiring commu-
nication between the garbler and clients goes through
the broker. Besides the limitations listed above, standard
garbled circuits also suffer from reusability, namely for
each type of computation involving different publish-
ers, the wire labels have to be different. This introduces
the issues that a publisher needs to publish different
versions of the same data for each computation and
that a publishers’ current inputs can not be extended
to computation involving a distinct set of publishers in
the future. In a real system, these issues can potentially
increase the overhead by a large margin.

In this section, we design a Proxy Homomorphic En-
cryption (Proxy-HE) Scheme with a simpler structure
and a different security assumption while addressing the
issues discussed above. Besides homomorphic encryp-
tion, our scheme also uses proxy re-encryption to solve
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Initialization
• Each new publisher sends the broker a policy specifying allowed
computations on its data.
• Each new publisher generates and sends to the garbler a truly

random seed 𝑠 . This seed will be used to create wire labels without
interaction.

Subscribe
• To subscribe computation𝐶 , each subscriber sends a subscription
request containing𝐶 to the broker. If the broker does not allow
the subscriber to learn𝐶’s output, it sends an error message back
to the subscriber.
• Each new subscriber shares a truly random seed 𝑠′with the garbler
for masking/unmasking the result.

Publish
• To publish 𝑘th value, the publisher generates two pseudorandom
wire labels, 𝑤0 and 𝑤1, using a seed 𝑠 from a pseudorandom
number generator (PRNG), for each bit of the value. 𝑤0 is 𝑖th and
𝑤1 is (𝑖 + 1)th numbers in pseudorandom sequence generated
using 𝑠 ; 2𝑘𝐿 ≤ 𝑖 < 2(𝑘 + 1)𝐿, 𝐿 being the bit-length of a value.
• For each input bit 𝑏, the publisher sends only wire label 𝑤𝑏 to the
broker.

Process
• After receiving 𝑤𝑏 , the broker sends the garbler identifiers of
publishers along with the set of subscribers allowed to the com-
putation, then requests the garbler to garble circuit for 𝑋𝑂𝑅 ◦𝐶 .
𝑋𝑂𝑅 is used to mask the output of the circuit.
• The garbler independently generates input wire labels using the

seed 𝑠 from each publisher contributing input and an output mask
𝑟 using 𝑠′ for the output.
• The garbler generates a garbled circuit𝐺𝐶 for the circuit𝑋𝑂𝑅◦𝐶
using both wire labels for each input bit, 𝑤0 and 𝑤1 for a bit 𝑏.
The garbler uses the mask 𝑟 it to mask the output 𝑜 of 𝐶 , such
that evaluating𝐺𝐶 would result in a masked output 𝑜 ⊕ 𝑟 .
• The broker evaluates the garbled circuit using wire labels sent
by publishers in set 𝑃𝐶 , obtains masked output 𝑜 ⊕ 𝑟 , and sends
𝑜 ⊕ 𝑟 to all subscribers of computation𝐶 .
• Subscribers in the set 𝑆𝐶 use 𝑟 to unmask the output 𝑜 .
Forward-Secure Seeds
• Generate a truly random key 𝐾0.
• Generate, using pseudorandom function (PRF) with key 𝐾0, a
pseudorandom seed 𝑠0 and a pseudorandom key for the ratchet
round 1. Seed 𝑠0 is used to generate pseudorandom strings during
ratchet round 0.
• At round 𝑖 , using PRF with key 𝐾𝑖 , generate a pseudorandom

seed 𝑠𝑖 and key for ratchet round 𝑖 + 1. Seed 𝑠𝑖 is used to generate
pseudorandom strings during ratchet round 𝑖 .

Figure 3. The GC-Based Scheme

encryption issues in secure publish-subscribe systems.
The overall structure is shown in Figure 4. In the real
world, F is replaced by our scheme described in §4.2.
4.1 Components
Homomorphic Encryption. Homomorphic encryp-
tion (HE) [6] is a scheme that allows computation to
be performed on encrypted data without revealing the
original data to the computing parties. The components
of HE in general, with algorithms (𝐺, 𝐸𝑛𝑐, 𝐸𝑣𝑎𝑙, 𝐷), can
be defined as follows:

1. The key generation algorithm 𝐺 outputs a key pair
(𝑃𝑘, 𝑆𝑘). The encryption algorithm 𝐸𝑛𝑐 takes in mes-
sages𝑚1, · · · ,𝑚𝑛 and 𝑃𝑘 , then outputs 𝐶1, · · · ,𝐶𝑛 .

2. On inputs (𝐶1, · · · ,𝐶𝑛) and the computation 𝑓 , the
evaluation algorithm 𝐸𝑣𝑎𝑙 outputs the result 𝐶𝑟𝑒𝑠𝑢𝑙𝑡 .

3. The decryption algorithm takes inputs (𝑆𝑘,𝐶𝑟𝑒𝑠𝑢𝑙𝑡 )
and outputs the plaintext result 𝑓 (𝑚1, · · · ,𝑚𝑛).

Proxy Re-Encryption. Proxy re-encryption (PRE) was
first proposed to delegate decryption rights [37] and can
be applied in many cryptographic scenarios nowadays.
PRE enables ciphertexts to be decrypted by a secret key
that is not paired with the original public key encrypting
the plaintexts. PRE, with algorithms (𝐾𝐺, 𝐸, 𝑅𝐺, 𝑅𝐸, 𝐷),
can be defined as follows [4]:

1. The standard key generation algorithm 𝐾𝐺 outputs a
key pair (𝑃𝑘𝐴, 𝑆𝑘𝐴) for Party A and another key pair
(𝑃𝑘𝐵, 𝑆𝑘𝐵) for Party B. Party A uses 𝑃𝑘𝐴 to encrypt the
message𝑚 with the encryption algorithm 𝐸, which
outputs ciphertext 𝐶𝐴.

2. The re-encryption key generation algorithm𝑅𝐺 takes
the inputs (𝑃𝑘𝐴, 𝑆𝑘𝐴, 𝑃𝑘𝐵, 𝑆𝑘𝐵) and outputs a key
𝑅𝑘𝐴→𝐵 for re-encryption. On inputs (𝑅𝑘𝐴→𝐵,𝐶𝐴), the
proxy then applies the re-encryption algorithm 𝑅𝐸

and outputs 𝐶𝐴→𝐵 .
3. Party B applies the decryption algorithm 𝐷 on inputs

(𝐶𝐴→𝐵, 𝑆𝑘𝐵) and get the output𝑚.

In our scheme shown in Figure 5, publishers can en-
crypt the data using their own public key; after proxy
re-encryption, subscribers are able to decrypt the ci-
phertext with subscribers’ secret key. This solves the
asynchronization issue under the traditional publish-
subscribe encryption, allowing publishers to publish
messages without the need to wait for subscribers’ pub-
lic keys to encrypt their data. In our implementation,
we use the PRE built-in PALISADE library [41].
KeyExchangeReduction.As shown in Figure 5, proxy
re-encryption would require that, once a subscriber re-
quests computation, publishers (also the key authority of
themselves) involved in the computation have to receive
the public key from the subscriber and then regenerate
a re-encryption key for re-encrypting the original en-
crypted data [41]. This introduces the asynchronous
communication issue again under the IoT context and
also an additional communication cost. To solve this
problem, we design a solution called key exchange re-
duction. At the initialization state of the system, the
broker asks all subscribers to upload their public keys.
Then each publisher regenerates a re-encryption key for
each subscriber once they receive subscribers’ public
keys from the broker. The broker maintains a map be-
tween a re-encryption key and its subscriber-publisher
pair. Every time when a new client joins the system,
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Figure 4. Structure of the Proxy-HE Scheme: only one cloud server which handles both communication and computation

Figure 5. Single-Hop PRE Scheme without Key Exchange Reduction

the broker updates the map. Under this design, when-
ever a subscriber requests computation, the broker only
needs to find the re-encryption keys from the map to re-
encrypt the data without going back to the publishers,
which reduces the key exchange communication.
4.2 Scheme Design

Figure 4 depicts the structure of the Proxy-HE Scheme,
which only has three major parties without the need for
a garbler. Similarly, we describe the threat model and
the two different settings of this scheme.
Adversary Model. In the Proxy-HE Scheme 𝑃𝐻𝐸 (𝑎, 𝑏),
we have three parties: 𝑎 publishers, the broker and 𝑏
subscribers as defined.
Definition 3 (The Proxy-HEAdversary). A semi-honest
adversaryAPHE can corrupt both the broker and at most
𝑎 − 1 publishers, or, APHE can corrupt any subset of the
𝑏 subscribers and at most 𝑎− 2 publishers.APHE can not
corrupt the broker and subscribers at the same time.
We believe the assumption that the broker can not

collude with subscribers is acceptable because it is in-
evitable that the adversary can obtain a publisher’s raw
data when it controls both the server and subscribers.
Single-Publisher-Single-Subscriber. In this setting,
the publisher publishes encrypted data using its pub-
lic key; the broker re-encrypts the data using the re-
encryption key of the publisher and the subscriber, and
performs homomorphic computation; the subscriber re-
quests desired computation then decrypts results sent

from the broker using its private key. Proxy re-encryption
is used here to solve the asynchronization issue between
the publisher’s publishing encrypted data and the sub-
scriber’s requesting secure computation.
Multi-Publisher. When a computation involves sev-
eral publishers, it is important to have all the data from
different publishers encrypted under the same key set-
ting. Otherwise, the broker would not be able to perform
homomorphic computation on the inputs from different
publishers encrypted by different keys. Luckily, it is vi-
able to handle this issue using proxy re-encryption. Once
the encrypted data is re-encrypted, the data from differ-
ent publishers can be used for homomorphic computa-
tion (i.e. these data are now considered as encrypted un-
der the same key) and yield correct results, even though
the re-encryption keys are different.
Multi-Subscriber.When a group of subscribers request
the same computation, it is wasteful to recompute the
result for each subscriber. It is quite straightforward that
we can reduce the cost by only computing the result
once and then distributing it to all subscribers having
the same request. However, it would be challenging to
do so under the scheme of homomorphic encryption
since each subscriber has its own key pair. We noticed
that this problem is similar to the asynchronization prob-
lem between publishers and subscribers but now among
subscribers. Hence, we apply PRE (2 hops) and a key
map between subscribers to circumvent repetitive com-
putation. The multi-subscriber functionality works as
in Figure 6. The scheme selects the subscriber with the
smallest ID as the subscriber representative, and the bro-
ker performs the encrypted computation based on this
representative’s key pair. Before distributing the compu-
tation result, the broker re-encrypts the result for each
subscriber using the re-encryption key associated with
the representative and the subscriber. Each subscriber
then decrypts it using its own private key to get the
result.

Our final scheme can be found in Figure 7.
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Initialization
• Each subscriber is assigned with a 𝐼𝐷 number. Each subscriber
works with the broker to generate re-encryption keys for others
subscribers whose 𝐼𝐷 numbers are larger than its.

Process
• Each time when a group of subscribers request the same com-
putation, the broker selects the one with the smallest 𝐼𝐷 as the
subscriber representative. The broker uses the representative 𝑋
for computation as in the single-subscriber setting.

Re-Encryption
• Once the computation is finished, the broker re-encrypts the mes-
sage using 𝑃𝑘𝑟𝑠 for each pair of 𝑋 and one of other subscribers.

Decryption
• Each subscriber decrypts the message with its own private key.

Figure 6. Multi-Subscriber Functionality of Proxy-HE

Initialization
• Each client generates its own pair of public and private keys.
• Each publisher generates a re-encryption key 𝑃𝑘𝑟𝑝 associated
with each subscriber and the broker updates the key map.
• Each subscriber is assigned with a 𝐼𝐷 number. Each subscriber
works with the broker to generate re-encryption keys for others
subscribers whose 𝐼𝐷 numbers are larger than its.

Publish
• Each publisher encrypts its data𝑀 using its own public key and
sends its encrypted data along with a policy specifying allowed
computations on its encrypted data to the broker.

Subscribe
• To subscribe computation𝐶 , each subscriber sends a subscription
requesting𝐶 to the broker and its public key 𝑃𝑘𝑠 . If the broker
does not allow the subscriber to learn𝐶’s output, it sends an error
message back to the subscriber.

Process
• First Re-Encryption Once the broker approves subscribers’ re-

quest, it selects the representative subscriber 𝑋 with the smallest
𝐼𝐷 in a group of subscribers requesting the same 𝐶 . Then the
broker reencrypts𝑀 using 𝑃𝑘𝑟𝑝 associated with X.
• The broker performs requested𝐶 on re-encrypted data.
• Second Re-Encryption The broker re-encrypts the message us-
ing 𝑃𝑘𝑟𝑠 for each pair of 𝑋 and one of other subscribers.
• The broker sends the result of HE operations to subscribers.
Decryption
• Each subscriber decrypts the message with its own private key.

Figure 7. The Proxy-HE Scheme

4.3 Security Analysis
Our scheme 𝑃𝐻𝐸 can guarantee both correctness and

security under the adversary assumptions.
Correctness. The correctness of our scheme is built on
the correctness of basic homomorphic encryption and
multi-hop proxy re-encryption. If both hold true [10, 26],
we can prove that our scheme is correct. Our scheme
𝑃𝐻𝐸 = (𝐾𝐺, 𝑅𝐺, 𝐸𝑛𝑐, 𝑅𝐸, 𝐸𝑣𝑎𝑙, 𝐷𝑒𝑐) can be proven cor-
rect: for all (𝑃𝑘, 𝑆𝑘) ← 𝐾𝐺 (1𝜆) with the security pa-
rameter 1𝜆 , 𝑅𝑘 ← 𝑅𝐺 (𝑃𝑘𝐵, 𝑆𝑘𝐴), all functions 𝑓 and
messages𝑚 in the message space𝑀 ,

𝑃𝑟 [𝐷𝑒𝑐 (𝑆𝑘𝑠 , 𝑅𝐸 (𝑅𝑒𝑘𝑠 , 𝐸𝑣𝑎𝑙 (𝑓 , 𝑅𝐸 (𝑅𝑒𝑘1,
𝐸𝑛𝑐 (𝑃𝑘1,𝑚1)), · · · , 𝑅𝐸 (𝑅𝑒𝑘𝑛, 𝐸𝑛𝑐 (𝑃𝑘𝑛,𝑚𝑛)))))

= 𝑓 (𝑚1, · · · ,𝑚𝑛)] = 1.

Privacy. As mentioned before, we do not consider the
collusion adversary scenario where the compromised
broker is able to collude with subscribers. Specifically,
we assume the compromised broker has no access to
any subscriber’s secret key. We describe a simulator S
that simulates the view of the adversary APHE .

In the real world, whenAPHE compromises both the
broker and a subset of publishers and subscribers, the
bound of the number of publishers allowed to be compro-
mised is 𝑎−1. This means that if there is only one honest
publisher and the rest are all controlled by APHE , that
honest publisher’s input is unknown to APHE due to
the fact APHE does not have access to any private key
that can decrypt the data. In the case whereAPHE com-
promises both any subset of the subscribers and a subset
of publishers, the bound of the number is 𝑎 − 2. APHE
has the final plaintext output of the computation and
the rest of 𝑎 − 2 publishers’ inputs but is unable to in-
fer the values of the 2 honest publishers’ inputs. In the
ideal world, S submits compromised publishers’ inputs
but learns nothing about the honest publishers’ inputs.
S’s view in the ideal world is indistinguishable from
APHE ’s view in the real world.

5 System
XYZ is designed to work on top of one of the stan-

dard pub-sub protocols, MQTT, which allows communi-
cation in a pub-sub model arbitrated by a broker. Note
that our work can easily be extended to other pub-sub
protocols. In this section, we first discuss the general
system design around MQTT and later explain the dif-
ferent system setups for the GC-Based Scheme and the
Proxy-HE Scheme respectively.
5.1 General Design
System Implementation Around MQTT.MQTT al-
lows subscribers and publishers to indirectly communi-
cate with each other via the broker by publishers pub-
lishing data to topics and subscribers receiving it from
topics after subscribing to them. In order to integrate our
schemes into the MQTT protocol, we require each client
(either publisher or subscriber) to have a device-specific
topic that allows a two-way authenticated communi-
cation between each client and the broker. The broker
(and the garbler in the GC-Based Scheme) will handle
the computation and distribute data. We implement the
broker using Eclipse Mosquitto 1.4.15 [23] and clients
using Eclipse Paho 1.3 in Python [24]. Both of them sup-
port versions 5.0, 3.1.1, and 3.1 of MQTT. We implement
the cryptographic components, namely garbled circuits,
homomorphic encryption and proxy re-encryption in
C/C++. In our system, the Mosquitto broker has to be
configured using access control list file such that certain
topics where publishers publish unprocessed data are
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inaccessible to other clients to protect private inputs
from publishers and only authorized subscribers can
have access to certain computation topics.
Supported Functions. We implement five functions
in our system: mean, variance, weighted mean, private
set intersection (PSI) and secure federated learning (FL).
Mean and variance are the two standard statistical func-
tions. Weighted mean is a function that calculates aver-
age where each data point has its weight and contributes
to the final mean unevenly.Weightedmean is considered
a simple version that can be extended to more compli-
cated functionalities like secure machine learning. PSI
is a function that can compute the intersection of differ-
ent sets of private items from different parties without
revealing any information besides the intersection. Se-
cure FL helps securely aggregate model parameters for
federated learning. We will explain the details on how
we construct these functions in our system later in this
section.
5.2 The GC-Based Scheme
Ratchet Keys. In the GC-Based Scheme, in order to im-
prove synchronization and security of seeds, we adapt
the key ratcheting protocol which can advance a secret
key at every round and then deriving a seed from a
ratchet key to generate pseudorandom strings. To set up
the ratchet keys, the broker will forward the messages to
the garbler such that clients can establish a ratchet key
with the garbler. This design choice of relayingmessages
to the garbler through the broker is important to main-
tain the MQTT semantics on the clients. However, we
need to add authentication in the MQTTmessages using
digital signatures and a key exchange protocol. This way,
the secrets can be shared between the clients and the
garbler via the broker. For publishers, this authenticated
key exchange is used to derive the publisher’s ratchet
key. For subscribers, for every computation subscription,
key exchange is performed to derive a key to encrypt
the function ratchet key from the garbler.
Extending Libgarble. Libgarble [36] is a garbling li-
brary written in C based on JustGarble [8]. It extends
JustGarble and adds new optimizations, such as, half-
gates [50] to combine the free-XOR optimization with
AND gates that only require two ciphertexts. As Libgar-
ble is currently in development, it lacks some function-
ality which we have to add in order to build and garble
circuits. On the garbling side, we implement the NOT
gate (expressed as the XOR of the input with 1 to take
advantage of the free-XOR optimization) and the OR
gate. We add arithmetic blocks to be used when building
circuits in order to allow signed fixed-point multiplica-
tion and signed fixed-point division. The motivation to
operate with fixed-point numbers is to apply arbitrary
functions based on arithmetic operations without the

constraint of having just integer values in our GC-Based
Scheme. Based on these implementations, we can build
mean, variance and weighted mean for the scheme.
5.3 The Proxy-HE Scheme
PALISADESetup.Weuse PALISADE library v1.10.5 [34]
in our implementation for the Proxy-HE Scheme. PAL-
ISADE currently provides three different homomorphic
schemes, namely BGV [11], BFV [22] and CKKS [18].
BGV is commonly believed to have better performance
on integers than BFV does [13]. Thus, in our system,
we choose BGV for integer operation and CKKS for real
number operation. PALISADE also has built-in proxy
re-encryption functionality for both schemes. Note that
the PALISADE library supports multi-hop PRE [41]. In
our evaluation, we slightly modified the default scheme
parameters from PALISADE for benchmark purposes.
Of course, these parameters can be tuned to have better
system performance in the future. The detailed parame-
ter configuration can be found in Table 2.

Scheme BGV CKKS

ring dimension 8192 8192
security level HEStd_128_classic HEStd_128_classic
multi depth 4 3

sigma 3.2 \
plaintext modulus 65537 \
scale factor bits \ 50

batch size \ 8

Table 2. Scheme Parameter Configuration: to fairly compare BGV
with CKKS, we try to keep ring dimensions and CRT moduli the same;
we choose the base 128-bit security in our evaluation; we also select
the minimum viable values of multi depth for maximum possible
multiplicative depth in our evaluation.

Extending PALISADE. The current PALISADE library
provides basic functions like addition and multiplica-
tion. To better fit our needs, we extend PALISADE to
have functions desired in our system as discussed. More
functions can be included in our system in the future.
We describe our implementation of the functions under
the Proxy-HE scheme as follows:

• Mean In our implementation, we choose between
BGV and CKKS for mean. It is straightforward to im-
plement mean on CKKS. However, BGV can only per-
form secure integer operations such that we cannot
calculatemean bymultiplying the sum and the inverse
of n (a real number). This means the computation of
mean on BGV requires the plaintext of𝑛. Thus, a mean
implementation on BGV will leak the number of pub-
lishers involved in the computation. If this number is
not sensitive, we can choose BGV as well.
• Variance and weighted mean Implementing vari-
ance and weighted mean on BGV shares a similar

9



averaging structure as mean. Thus, the scheme selec-
tion for these two functions is the same as above.
• Private set intersectionWe use the algorithm pro-
posed by Chen et al [17] to construct our PSI. Since
CKKS is the scheme of approximation, it will be hard
to implement this PSI algorithm on CKKS (the step
where we compare the result with zero can introduce
errors with approximation). Due to this limitation of
CKKS, currently we only consider BGV for PSI.
• Secure federated learningWe use a similar secure
FedAvg structure in [44] for our federated learning
function. The current system uses CKKS.

Data Transfer.We use serialization [20] to save cryp-
tocontexts, keys and encrypted data into binary files for
data transferring. During the initialization, we create
and store cryptocontexts and corresponding keys on
each machine. At the publish-process-subscribe stage,
MQTT transfers encrypted data in binary. The sizes of
binary files are usually 100 kb to 200 kb.

6 Evaluation
6.1 Setup
We have evaluated XYZ in an environment where

we run publishers, subscribers and the broker/garbler
on three computers (Ubuntu 18.04.5 LTS with 2 Intel
Xeon E5-2690 v4 cores and 4GB of RAM).

We have selected five functions of varying complexity
(mean, variance, weighted mean, PSI and SFL) to eval-
uate the cost of the different schemes discussed above.
For the Proxy-HE Scheme, both BGV and CKKS are eval-
uated. We evaluate these functions upon receiving the
values (real number for garbled circuits and CKKS; inte-
ger for BGV) from a variable number of publishers and
sending results to subscribers.
We put the cost into two categories: time cost for

the actual computation and communication cost for the
data transferred between clients and the broker as in
the size of data. Our measured time includes the time
of publishers encrypting data, the time of the broker
evaluating data (also the time used for garbling in the
GC-Based Scheme and the time used for re-encrypting
data in Proxy-HE) and the time of the subscriber de-
crypting results. We use the size of the data exchanged
to show communication costs on MQTT.
6.2 Results

In this part, wemainly focus on evaluating our system
regarding its multi-publisher-multi-subscriber function-
alities as well as its performance using different schemes.
In Figure 8 we show the cost results for the most

relevant steps of the secure computation of the three
numerical operations involving a varying number of
publishers. In this part, we assume that one subscriber
requests the computation. From our results, it is clear

that for these three functions, the GC-Based scheme
has a huge advantage in both time cost and communi-
cation cost as the number of publishers increases while
the difference is not largely noticeable for a small set
of publishers. This is because the most expensive steps
of our GC-Based Scheme are the garbling and evalua-
tion, which do not change much for multiple publishers.
Among these functions, mean is the lowest cost opera-
tion; variance and weighted mean share similar results
for both schemes. For two different implementations
of Proxy-HE, CKKS has nearly double the time cost of
BGV using the current version of PALISADE, but the
communication costs are close.

To microbenchmark our multi-subscriber functional-
ity, we test our system on mean operation for all three
implementations. We here only compare the computa-
tion cost since the communication cost between the bro-
ker and the subscribers has a nearly linear relationship
with the number of subscribers. Under our GC design,
the number of subscribers should not affect the time
cost in the view of the system. For Proxy-HE, the major
cost of this functionality is the re-encryption part on the
broker’s side. As shown in Figure 11, the re-encryption
is more expensive on CKKS than BGV in our system.
The cost is noteworthy when having a large number
of subscribers. For example, the multi-subscriber func-
tionality costs around 102 seconds in total on CKKS
for a system of 1000 subscribers. However, an alter-
native solution would be each subscriber parallelly re-
encrypting the message instead of the broker doing all
the re-encryption (around 20 ms for each subscriber on
BGV and around 90 ms on CKKS). Of course, this would
require each subscriber to maintain a re-encryption key
map and gets the ID of the representative along with
the message, which adds workload on subscribers.
For the distribution of costs, we show the results in

Figure 9 and Figure 10. Since the cost distributions of
variance and weighted mean are quite similar, here we
only show the figures of mean and variance. Note that
for the Proxy-HE Scheme here we only show the results
of BGV for demonstration. We evaluate this part under
the setting where multi publishers but one subscriber
are involved to better illustrate the cost distribution. For
the GC-Based Scheme, the most expensive part is the
garbling, whose cost is usually double the cost of the
evaluation part. In general, for Proxy-HE, re-encryption
takes up a great portion of the overall cost and it holds
a dominant position in mean. However, with more com-
plicated functions, the homomorphic evaluation part
increases the overall cost by a large margin (in vari-
ance and weighted mean) and costs PSI the most among
all parts. In short, large-size input data has a large re-
encryption overhead whereas complex computation has
a large evaluation overhead.
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Figure 8. Microbenchmark Results: here we have the cost on the server of three basic statistical operations (mean, variance and weighted mean).

Figure 9. Distribution of Costs for Each Step

At the moment we implement PSI on BGV implemen-
tation. Each publisher has an array with 10 elements.
During the evaluation of PSI, the first publisher’s data
will be computed with the rest of the publishers’ data
iteratively. The result is shown in Figure 10. The cost of
PSI in our BGV implementation is nearly linear against
the number of publishers for both types of costs.
We test our FL function on CKKS on a medium-size

convolutional neural network with 10 million parame-
ters. We compare the cost of FL function in our system

Figure 10. Microbenchmarks of PSI (BGV) and FL (CKKS)

to the cost of plaintext FedAvg function (GPU compari-
son runs on Google Compute Engine backend) shown
in Figure 10. The major performance drawback of our
FL function is the re-encryption step because of input
data size. Additionally, our Fl function can be seen as an
encrypted form of the regular FedAvg with acceptable
approximation loss, thus the performance of our model
is similar to plaintext-trained models.
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Figure 11. Microbenchmarks of Multi-subscriber Functionality

Encrypt Evaluate Decrypt Data
26.537 ms 24.361 ms 106.101 ms 1.196 MB
Table 3. Cost of Contact Tracing in Our System.

6.3 Applications
We prepare concrete applications for IoT scenarios to

show potential practical use of our system. For demon-
stration purposes, we use Proxy-HE Scheme here.
Contact Tracing. During the global pandemic, contact
tracing becomes a promising tool to help identify the
potential patients who might have contact with con-
firmed Covid-19 patients and slow down the spread of
the virus. However, privacy is a major concern since the
computation of regular contact tracing can reveal sen-
sitive personal location data. We demonstrate a simple
application using our system that implements PSI for
contact tracing without the need for plaintext location
information. Due to the sensitivity of the subject and
the lack of available public datasets, we wrote a python
program to generate random personal location datasets
for testing purposes. Each person in the dataset has 10
visited locations in the same hour (in real cases the time
granularity can be set to be more accurate).

In this application, we have two publishers (one is the
confirmed patient and the other is the potential contact)
with IoT devices recording their location data. These IoT
devices, for example, can be smartwatches and smart-
phones. The subscriber can be public health authorities
who are interested in contact tracing patients. The bro-
ker receives the encrypted location data from publishers,
performs PSI on the data and returns whether two pub-
lishers have been in contact with each other.
In Table 3, we can see the cost of PSI in our system

using BGV. The cost is low as we have a relatively small
number of publishers but can be exceptionally high as
the number of publishers goes up.
Daily Statistics of Parking Lots. The dataset for this
application is the live status of the parking lots of amajor
airport [2]. In particular, the airport provides updates of

Statistics BGV CKKS BGV CKKS
Mean 47.0 ms 173.6 ms 115.1 MB 77.2 MB
Variance 2543.7 ms 4485.8 ms 115.2 MB 77.2 MB

Table 4. Cost Required to Evaluate Different Statistical Measures of
the Parking Lot Dataset.

the number of occupied and free parking spaces for each
one of the 9 parking lots every 5 minutes. This makes a
total of 288 published values per day per parking lot.
In this application, we are interested in obtaining

daily statistics of the parking lots without revealing
private data at fine time granularity. For this scenario,
we have one publisher for one lot, which will be sending
the current number of free and occupied spots every
5 minutes. We simulate the scenario by running it 288
times. The broker will accumulate the data from each
day and compute the daily statistics.

Using the occupied spots data and the free spots data,
we compute the mean and variance of the number of
cars during a day. From these statistics, we can have
an understanding of the parking lot’s operation state
from a daily perspective without invading detailed data.
We observe that for the given amount of data, it can be
computed in a short period of time shown in Table 4.

7 Conclusion
We presentXYZ, a secure publish-process-subscribe

system with two multi-party computation schemes, i.e.,
the GC-Based Scheme and the Proxy-HE Scheme with
different security assumptions and system constructions.
To properly fit constraints from the traditional publish-
subscribe structure, we also propose optimizations such
as reduced communication extension and seed synchro-
nization in the GC-Based Scheme and key exchange
reduction along with multi-subscriber support in the
Proxy-HE Scheme. Without the need for two third-party
servers, our Proxy-HE Scheme has less system complex-
ity than the GC-Based Scheme does, but yields larger
overhead due to the time-consuming homomorphic en-
cryption. Additionally, our system supports multiple
publishers and multiple subscribers as well as provides
an extensible library of several functions.
Our secure publish-process-subscribe system starts

the conversation on integrating secure computation into
IoT systems, but future work needs to be further con-
sidered on expanding supported functions as well as
adding support for a distributed set of brokers.
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