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Abstract. This paper introduces IronMask, a new versatile verification tool for masking security. Iron-
Mask is the first to o↵er the verification of standard simulation-based security notions in the probing
model as well as recent composition and expandability notions in the random probing model. It sup-
ports any masking gadgets with linear randomness (e.g. addition, copy and refresh gadgets) as well
as quadratic gadgets (e.g. multiplication gadgets) that might include non-linear randomness (e.g. by
refreshing their inputs), while providing complete verification results for both types of gadgets. We
achieve this complete verifiability by introducing a new algebraic characterization for such quadratic
gadgets and exhibiting a complete method to determine the sets of input shares which are necessary
and su�cient to perform a perfect simulation of any set of probes. We report various benchmarks
which show that IronMask is competitive with state-of-the-art verification tools in the probing model
(maskVerif, scVerif, SILVER, matverif). IronMask is also several orders of magnitude faster than VRAPS
–the only previous tool verifying random probing composability and expandability– as well as SILVER
–the only previous tool providing complete verification for quadratic gadgets with non-linear random-
ness. Thanks to this completeness and increased performance, we obtain better bounds for the tolerated
leakage probability of state-of-the-art random probing secure compilers.

Keywords: Side-channel security, masking, physical defaults, automatic verification, complete verifi-
cation, composition, probing model, random probing model, IronMask

1 Introduction

Side-channel attacks exploit the physical leakage of a device executing cryptographic implementa-
tions to extract the manipulated secrets. They can be built from cheap equipment and are generally
able to recover the keys in a limited time in the absence of specific protections.

Since the discovery of these attacks in the late nineties, the community investigated several ap-
proaches to counteract them. Among these approaches, masking [22,30] is one of the most deployed
in practice. The main idea of masking is to split the information between several variables called
shares. In a nutshell, for tth-order Boolean masking, each sensitive value x is split into (t+1) shares
x1, . . . , xt+1. The first t shares x1, . . . , xt are generated uniformly at random and the last one xt+1

is computed as xt+1  x � x1 � · · · � xt. Doing so, the attacker must collect and then aggregate
the information from all the shares to recover sensitive data. This becomes exponentially hard with
the number of shares as each observation comes with noise.

While Boolean masking can be easily implemented for linear operations that are directly applied
on each share separately, it becomes much more complex for non-linear computations for which
shares must be interleaved. These operations require additional randomness to preserve the security
order.

To properly reason on the security of these operations, and more generally on the security of
masked implementations, the leakage is generally formalized in so-called leakage models. The most
famous one is probably the t-probing model, introduced by Ishai, Sahai, and Wagner in 2003 [32].



In this model, the leakage is modeled as the exact values of t intermediate variables chosen by
the attacker. Variants of this model include the robust probing model [28] in hardware scenarios,
which considers wider leakage to model physical e↵ects such as glitches. Instead of t intermediate
variables, the attacker gets t sets of variables that belong to the same combinatorial set. While
probing-like models are very convenient to build security proofs, they sometimes fail to closely
reflect the reality of embedded devices. For instance, they do not capture horizontal attacks [9],
which exploit in particular the repeated manipulation of variables within an execution.

Therefore, the community is starting to focus on more realistic leakage models, such as the
random probing model [1,26]. The leakage is assumed to gather the exact value carried out by
each wire of the circuit with probability p. The security tightly reduces to the security in the noisy
leakage model [35,26] in which each variable leaks a noisy function of its value. The random probing
model can also be extended to capture glitches or other side e↵ects.

In any model, the security of almost all masking approaches relies on the security of small
gadgets (i.e., atomic masked operations) and their composition. For instance, in the probing model
and its variants, the type-system of Barthe et al. [6] makes it possible to securely compose small
gadgets that are proven to be (strong) non-interferent. The t-non-interference is itself satisfied when
any set of t intermediate variables can be perfectly simulated from t input shares while the t-strong
non-interference adds a condition on the output observations. Both properties imply t-probing
security. Similarly, in the random probing model, Ananth et al. [2] use an expansion strategy on
top of secure multi-party computation protocols while Beläıd et al. use an expansion strategy on
top of random probing expandable gadgets [13,16,17]. The latter works only require gadgets that
are masked at small orders to build circuits achieving an arbitrary level of random probing security.

Even at reasonable orders, the manual verification of security properties on small gadgets has
been shown to be very error-prone [24]. Therefore, automatic tools are regularly built to apply
a formal verification. For instance, two existing tools currently check random probing properties
(namely, VRAPS [13] and STRAPS [20]). However, none of these two tools provide completeness
(i.e., they can falsely deem a set of leaking variables as insecure with respect to the secret). In
terms of e�ciency, VRAPS makes it di�cult to verify even small gadgets at reasonable orders and
STRAPS only manages to do it using verification rules from the underlying tool maskVerif [5,6,3]
(which only verifies probing security properties), which by construction, are not complete.

As for tools which achieve complete verification of some (probing like) security properties, we
count only SILVER [33], which su↵ers from low performance, and matverif [19], which is restricted
to specific gadgets only.

Our contributions. In this work, we introduce IronMask, a new automatic verification tool to
check probing and random probing security properties using complete and e�cient procedures.
Our main contributions are the following:

– We formalize all of the probing and random probing properties of the state of the art from a
single common building block, a function we call SIS, and show that all of the security properties
can be verified using a unique instantiation of that function (Section 2). In a nutshell, SIS
receives as input a set of probes on a gadget (and the description of the corresponding gadget)
and performs a number of operations on the algebraic expressions of the probes in order to
determine the exact sets of input shares which are necessary and su�cient to perform a perfect
simulation of these probes. While SIS partially uses some properties from the state of the art,
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it was not clearly exhibited before, and the unification of all the (random) probing-like security
notions with respect to this function was not explicitly well-defined.

– We extend the algebraic characterization introduced in [11,12] of gadgets with linear random-
ness (i.e. all random values are additive on the wires of the gadget) to more general gadgets with
non-linear randomness which perform quadratic operations on input shares mixed with random-
ness (Section 3). Our extended characterization notably captures recent gadget designs [9,16],
achieving advanced security properties such as resistance to horizontal attacks or random prob-
ing security. From this characterization, we provide a complete verification method that applies
to most (if not all) masking gadgets for standard operations (addition, multiplication, refresh-
ing, etc.). In comparison, the only previously existing complete verification method for such
general gadgets would rely on exhausting the truth table of tuples of intermediate variables
with respect to the inputs and the randomness, which is highly ine�cient.

– We introduce IronMask, a new versatile verification tool for all probing and random probing-like
properties in the state of the art (Section 4). IronMask supports the verification of traditional
gadgets with linear randomness, as well as newly formalized gadgets with non-linear random-
ness along with a complete verification method for both types of gadgets based on our extended
algebraic characterization. IronMask implements several optimizations to make the verification
faster. We benchmark the performance of our new tool (Section 5) and show that it is compet-
itive with state-of-the-art verification tools in the probing model (maskVerif, scVerif, SILVER,
matverif). IronMask is also several orders of magnitude faster than VRAPS, the only previous tool
verifying random probing composability and expandability, and SILVER, the only previous tool
providing complete verification for gadgets with non-linear randomness. IronMask uses complete
methods for the verification, unlike VRAPS and STRAPS which are the only verification tools in
the random probing model. Thanks to this completeness and increased performance, we obtain
better bounds for the tolerated leakage probability3 of state-of-the-art random probing secure
compilers. IronMask is open-source and publicly available at:

https://github.com/CryptoExperts/IronMask

2 Characterization of Security Notions for Masking Gadgets

2.1 Preliminaries

Throughout the paper, K shall denote a finite field. For any n 2 N, we shall denote [n] the integer
set [n] = [1, n] \ Z. For any tuple ~x = (x1, . . . , xn) 2 Kn and any set I ✓ [n], we shall denote
~x|I = (xi)i2I .

An arithmetic circuit over a field K is a labeled directed acyclic graph whose edges are wires
and vertices are arithmetic gates processing operations over K (e.g., additions, multiplications,
copies). A randomized arithmetic circuit is equipped with an additional random gate of fan-in 0
which outputs a fresh uniform random value of K.

In the following, the n-linear decoding mapping, denoted LinDec, refers to the function
S

n
Kn
!

K defined as
LinDec : (x1, . . . , xn) 7! x1 + · · ·+ xn ,

3 Increased performance yields a tighter approximation of the failure probability in the random probing model, while
completeness allows to compute more accurate and complete values for that probability. Both factors result in a
tighter, more accurate approximation of the failure probability, from which tighter bounds on the tolerated leakage
probability are derived. See Section 5.1 for more details.
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for every n 2 N and (x1, . . . , xn) 2 Kn. We shall further consider that, for every n, ` 2 N, on input
(~x1, . . . , ~x`) 2 (Kn)` the n-linear decoding mapping acts as

LinDec : (~x1, . . . , ~x`) 7! (LinDec(~x1), . . . , LinDec(~x`)) .

For any x 2 K, an n-linear sharing of x is a vector ~x 2 Kn such that LinDec(~x) = x. A random
vector ~x distributed over Kn is said to be a uniform sharing of x := LinDec(~x) if for any set I ✓ [n]
with |I| < n the random vector ~x|I is uniformly distributed over K|I|.

In the following, we shall call an (n-share, `-to-m) gadget denoted G for some function g :
K`
! Km, a randomized arithmetic circuit that maps an input (~x1, . . . , ~x`) 2 (Kn)` to an output

(~y1, . . . , ~ym) 2 (Kn)m such that

�
LinDec(~yi)

�
1im

= g

h�
LinDec(~xi)

�
1i`

i

with probability 1 over the internal randomness of G.
For any wire on a randomized arithmetic circuit, we shall call a probe on this wire, the symbolic

expression of the circuit inputs (shares) and the generated randoms (outputs of random gates)
associated to this wire.

In the following, we shall say that a tuple ~P of symbolic expressions of input sharings ~x1, . . . ,
~x` (of size n) and randomness ~r (of size ⇢) can be perfectly simulated from ~x1|I1 , . . . , ~x`|I` if and
only if for any distributions D~x1 , . . . , D~x`

over Kn there exists a probabilistic algorithm S (the
simulator) such that given ~x1  D~x1 , . . . , ~x`  D~x`

, ~r  K⇢, we have

S(~x1|I1 , . . . , ~x`|I`)
id
= eval~P

(~x1, . . . , ~x`,~r) , (1)

where  means randomly sampling from a set or a distribution,
id
= means identically distributed

and eval~P
is the function which outputs an evaluation of the symbolic expressions in ~P from its

arguments.

2.2 Security Notions

To be composed in secure circuits, gadgets are generally expected to satisfy slightly stronger security
notions than (random) probing security4. In a nutshell, security proofs generally demonstrate that
the observations made on a gadget and/or on its output shares can be perfectly simulated from
a subset of its input shares. If this subset is strictly smaller than the set of input shares and if
the sharing is uniform (which is the case in tight masking circuits), then the observations can
be simulated independently from the secrets and are therefore independent from the secret. Such
properties also make it possible to compose secure gadgets by analyzing the propagation of the
simulated observations.

Although many di↵erent security notions have been introduced to build proofs of gadgets in the
(random) probing model, we show that they can almost all be defined on top of a single building
block: the set of input shares (SIS) function. The latter takes as input a set of probes on internal
wires of the gadget as well as a set of output shares, and returns a set of input shares necessary
(and su�cient) to perfectly simulate these internal probes and output shares. We formalize the SIS

4 Although some composition rules were established directly between probing secure gadgets (e.g., [15]), their scope
remains limited.
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primitive in Definition 1 before showing how to use it to express state-of-the-art properties. For the
sake of clarity, we restrain the following definitions to the case of single output gadgets (which is
the most common case), but the extension to multi-output gadgets is straightforward. We denote
SISG to be SIS with input gadget G.

Definition 1. Let G be an (n-share, `-to-1) gadget mapping ` input sharings (~x1, . . . , ~x`) 2 (Kn)`

to an output sharing ~y 2 Kn. Let ~P be a set of probes on G and O ✓ [n] a set of output indices.
The function SISG maps ~P and O to the unique smallest sets of input indices I1, . . . , I` such that
(~P , ~y|O) can be perfectly simulated from ~x1|I1 , . . . , ~x`|I`.

Note that for any gadget G, the smallest set of input shares returned by SISG is uniquely defined
from the result [11, Lemma 7.5], which demonstrates that if a set of probes can be simulated from
di↵erent sets of inputs shares, then it can also be simulated by the intersection of these sets.

Probing security notions.We now formalize the probing-like security notions (i.e., to achieve security
and secure composition in the probing model) for any n-share, `-to-1 gadget G (all these notions
can be generalized for the case of multiple outputs). Definition 2 recalls the non-interference (NI)
property from [6].

Definition 2 (t-NI). A gadget G is t-NI if for any tuple ~P of t1 internal probes and any set O of t2
output share indices such that t1+ t2  t, the sets (I1, . . . I`) := SISG(~P ,O) satisfy |Ii|  t, 8i 2 [`].

Other common probing-like properties can be defined in a similar way by changing the condition
on the sets (I1, . . . , I`) in the output of the SISG primitive. We list these conditions in Table 1 for
some of the most common probing-like properties, with respect to t and O. While most of the
properties are interesting in the context of composing secure gadgets to achieve global security,
directly verifying the probing security of a complete implementation is useful in some cases, such
as analyzing a complete 2-share AES implementation. To represent this case, we denote PS? the
SIS-based probing security definition. PS? is actually equivalent to the case of (n�1)-NI with O = ;
and t = n� 1. We list this property in Table 1 as well.

Table 1: Probing-like security notions from the basic primitive SISG. t1 indicates the number of
probes on input and intermediate variables, while t2 indicates the number of probes on output
shares, with t = t1 + t2.

Notion Condition
t-NI [5] |Ii|  t, 8i 2 [`]
t-SNI [6] |Ii|  t1, 8i 2 [`]
t-TNI [11] |Ii|  t1 + t2, 8i 2 [`]
(t, f)-NI [4] |Ii|  f(t1, t2), 8i 2 [`]
t-PINI [21] |([iIi) \O|  t1

PS? |Ii|  n� 1, 8i 2 [`]

Because the probing model is often criticized as it fails to reflect the reality of embedded
systems (see for instance horizontal attacks [9]), the community recently started to study the
random probing model. Despite its complexity compared to the simple probing model, the random
probing model was shown to be closer to the more realistic noisy leakage model, reducing the gap
between theoretical proofs and concrete observations.
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Random probing security notions. To formalize security notions in the random probing model, we
rely on the LeakingWires procedure formalized in [13]. This (probabilistic) procedure outputs a tuple
of probes ~P on the gadget G such that each wire of G is added to ~P independently with probability
p, where p is the leakage probability (a.k.a. leakage rate). Definition 3 recalls the random probing
composability (RPC) notion [13] based on the SIS primitive.

Definition 3. Let p, " 2 [0, 1] and n, t 2 [0, n]. Let G be a n-share `-to-1 gadget and let ~P be the
random vector defined as ~P = LeakingWires(G, p). Then G is (t, p, ")-RPC if for every O ✓ [n] with
|O| = t, the sets (I1, . . . , I`) = SISG(~P ,O) satisfy Pr[(|I1| > t) _ . . . _ (|I`| > t)]  ", where the
probability is taken over all tuples of probes ~P obtained through LeakingWires(G, p).

We call the event
�
(|I1| > t) _ . . . _ (|I`| > t)

�
a failure event (failure of a perfect simulation)

and " is the failure probability or the probability of a failure event to occur. The random probing
expandability (RPE) notions introduced and analyzed in [13,16,17] can also be defined in a similar
fashion. Like the authors of [13,16,17], we restrict its definition to 2-input circuits for the sake
of clarity but recall that the extension is straightforward. We have that G is (t, p, ")-RPE1 (resp.
RPE2) if for every O ✓ [n] with |O| = t (resp. if there exists O ✓ [n] with |O| = n � 1), the sets
(I1, I2) = SISG(~P ,O) satisfy

�
Pr[|I2| > t]  "

�
^

�
Pr[|I2| > t]  "

�
^

�
Pr[(|I1| > t) ^ (|I2| > t)]  "

2
�
.

The three random probing notions are summarized in Table 2. As in the probing security case earlier,
it can be useful to directly verify the random probing security of a complete implementation. To
represent this case, we denote (p, ")-RPS? the SIS-based definition of random probing security.
This notion is actually similar to the RPC definition, except that we do not consider probes on
the outputs, i.e. O = ;, and a failure occurs when all the shares (of one input) are necessary to
perfectly simulate the probes, i.e. the failure event is

Pr[(|I1| = n) _ . . . _ (|I`| = n)]  " .

In [13], the authors introduce a method to verify random probing properties by computing the

Table 2: Random probing-like security notions from the basic primitive SISG.
Notion Output O Condition(s)

(t, p, ")-RPC [13] 8 O, |O| = t Pr[(|I1| > t) _ . . . _ (|I`| > t)]  "

(t, p, ")-RPE1 [13] 8 O, |O| = t
�
8i, Pr[(|Ii| > t)]  "

�
^
�
Pr[(|I1| > t) ^ (|I2| > t)]  "

2
�

(t, p, ")-RPE2 [13] 9O, |O| = n� 1
�
8i, Pr[(|Ii| > t)]  "

�
^
�
Pr[(|I1| > t) ^ (|I2| > t)]  "

2
�

(p, ")-RPS?
O = ; Pr[(|I1| = n) _ . . . _ (|I`| = n)]  "

failure probability " as a function f(p) of the leakage probability p. For (p, ")-RPS? of an n-share
gadget of s wires for example, " = f(p) is computed as

f(p) =
X

~P s.t. (I1,...,I`)=SIS(~P ,;)
|I1|=n _..._ |I`|=n

p
|~P |(1� p)s�|~P |

. (2)

In the above equation, we consider that each tuple of probes ~P on a gadget can exactly leak with

probability p
|~P |(1� p)s�|~P | since each of the wires in ~P is added independently with probability p,
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and each of the remaining wires does not leak with probability 1� p. Then, out of all such possible
tuples of wires, f(p) represents the sum over the probabilities of obtaining tuples of probes only
for which we get a failure event using SIS (the failure event being (|I1| = n _ . . ._ |I`| = n) in this
context). For a gadget with a total of s wires, computing f(p) then amounts to computing

f(p) =
sX

i=1

ci p
i(1� p)s�i (3)

where we simply group the probabilities with respect to the size of the tuples of probes. In other
words, ci is the number of tuples of i wires, for which we obtain a failure event using SIS. For
instance, if there are exactly 2 tuples of probes ~P1,

~P2 for which we get a failure event and such
that | ~P1| = | ~P2| = 3, then we get c3 = 2 in equation (3). For other random probing properties, the
computation is similar with the di↵erence of considering the correct failure event with the correct
t, and the condition on the output set of shares O which is not empty anymore. As shown in [13],
a set of (t, p, ")-RPE gadgets with " = f(p) can be expanded into a probing secure circuit (with
arbitrary security level) for any leakage probability smaller than pmax, with pmax 2 [0, 1] being the
solution of the equation f(p) = p. This threshold is called the tolerated leakage probability of the
gadgets.

The recent Probe Distribution Table (PDT) of Cassiers et al. [20] can also be expressed in terms
of our basic function SISG. The PDT is a two-dimensional table indexed by all possible sets of input
indices ~I = (I1, . . . , I`) where Ii ✓ [n] and by all possible sets of output indices O ✓ [n], defined as

PDT[~I ][O] :=
X

~P s.t. ~I=SIS(~P ,O)

p
|~P |(1� p)s�|~P | (4)

where s is the number of wires in G. In other words, each entry in the PDT is a di↵erent function
f(p) as in equations (2), (3). Computing the PDT amounts to considering each possible tuple of
probes ~P on the gadget, and compute SISG(~P ,O) = ~I = (I1, . . . , I`) for each possible set of output
shares indices O ✓ [n]. Then, update the corresponding function in the PDT indexed by ~I and O

as PDT[~I ][O] = PDT[~I ][O] + p
|~P |(1 � p)s�|~P |. When exploring all the possible sets of internal

probes ~P and all the sets of output indices O, the output of SISG shall serve as a basis to compute
the expected distributions.

We showed how standard probing and random probing security notions can be expressed in
terms of the SISG function. In the next section, we focus on the algebraic characterization of
masking gadgets and the concrete evaluation of the SISG function.

3 Algebraic Characterization of Masking Gadgets

In this section, we recall and extend the algebraic characterization of masking gadgets, and the
subsequent security results. Previous works [11,12] considered gadgets with linear randomness,
i.e. all random values are additive on the wires of the gadget. We refer to these gadgets as LR-
gadgets (see for instance multiplications and refresh gadgets from [32]). In this work, we extend
the characterization to gadgets with non-linear randomness, i.e. on gadget performing non-linear
operations on input shares mixed with randomness. We denote these gadgets as NLR-gadgets.
Our extended characterization notably captures recent gadget designs, see e.g. [9,16], achieving
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advanced security properties such as resistance to horizontal attacks or random probing security.
We also show how to verify the security of masking gadgets using this algebraic characterization
by a concrete evaluation of the SIS primitive, which will be the core primitive of IronMask.

3.1 Characterization of Gadgets with Linear Randomness

In this paper, we call an LR-gadget any `-to-m gadget G : (~x1, . . . , ~x`) 7! (~y1, . . . , ~ym) with the
output of the form:

(~y1, . . . , ~ym) := R
�
F (~x1, . . . , ~x`), ~r

�
,

where F is any arithmetic circuit, R is a linear arithmetic circuit (i.e. computing a linear function)
and ~r is a vector of internal randomness uniformly drawn from K⇢. Formally, each coordinate of ~r
is the output of a randomness gate of G, and F and R are composed solely of operation gates. Note
that this characterization is more general than the one from [11,12], which only considers quadratic
circuits for F . We show hereafter that we can still obtain an e�cient and complete evaluation of SIS
for those gadgets, which in turn yields an e�cient verification of the considered security notions.

By definition, any probe on an LR-gadget can be written as

p = fp(~x1, . . . , ~x`) + ~r
T
· ~sp (5)

for some arithmetic function fp : (Kn)` ! K and some constant vector ~sp 2 K⇢.

Given a tuple of probes ~P = (p1, . . . , pd) on the gadget G, we are interested in determining the
set of input shares necessary for a perfect simulation of all probes in ~P . In particular, if ~P can
be simulated with at most n � 1 of each input sharing, then we know that ~P is independent of
the secret inputs. Beläıd et al. [11] showed how to use a Gaussian elimination technique in order
to determine the simulatability of a tuple of probes for gadgets with linear randomness over the
binary field. This technique was later extended to any finite field in [12]. We base the verification
procedure for LR-gadgets in our tool on this technique.

We start by stating the result with Gaussian elimination from [11,12] in a di↵erent formulation
that is more convenient for our purposes. For this, we first define a simple function shares(.), which
takes as input a tuple of symbolic expressions (e1, . . . , ed) of the input shares, i.e. ei = fei(~x1, . . . , ~x`)
for some algebraic function fei , and which outputs the (smallest) sets of indices I1, . . . , I` such
that (e1, . . . , ed) functionally depends on (~x1|I1 , . . . , ~x`|I`). Notice that evaluating shares(.) simply
consists in extracting the indices of the input shares that are contained in the symbolic expressions
(e1, . . . , ed). We stress that the input shares (~x1|I1 , . . . , ~x`|I`) where (I1, . . . , I`) := shares(e1, . . . , ed)
are necessary and su�cient for a perfect simulation of (e1, . . . , ed). Note that shares(.) is executed
on the tuple of expressions that is the output tuple of the Gaussian elimination technique. In fact,
after executing the Gaussian elimination, we are guaranteed that the remaining expressions cannot
be simplified any further in the given field K and they are solely formed of operations between input
shares (they do not include any random variables). In this case, to perfectly simulate the resulting
tuple (which is equivalent to perfectly simulating the tuple given before Gaussian elimination),
there is no choice but to have access to all of the input shares that are involved in the remaining
expressions, which is why shares(.) simply extracts the indices of these input shares.

Lemma 1. Let G be an n-share gadget. Let ~P = (p1, . . . , pd) be a tuple of probes on G. Let
S 2 Kd⇥⇢ be the matrix such that

S = (~sp1 | ~sp2 | · · · | ~spd)
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(i.e. each ~spi is a column vector of S) and let S0 be the row reduced form of the matrix S such that
S
0 is of the form

S
0 =

✓
0m,d�m 0m,R�d+m

Id�m S
00

◆

up to some permutations on the rows with S
0 = N ·S where N is an invertible matrix in Kd⇥d. Let

~P
0 be defined as

~P
0 = N · ~P = (p01, . . . , p

0
m, p

0
m+1, . . . , p

0
d) .

Then, the set of input shares necessary to simulate the probes in ~P is shares(p01, . . . , p
0
m).

Sketch of proof. The proof of the result follows the proof of Theorem 3.1 from [11] and Theorem
3.2 of [12]. It is shown in the latter that we can perfectly simulate the probes in ~P by perfectly
simulating all probes in ~P

0, since the matrixN is invertible and we can obtain ~P fromN
�1

· ~P
0. Then,

to perfectly simulate probes in the tuple ~P
0, we observe from S

0 that each algebraic expression in the
tuple (p0

m+1, . . . , p
0
d
) contains a random value that does not appear in any other algebraic expression

in ~P
0. We can thus perfectly simulate (p0

m+1, . . . , p
0
d
) by generating d �m uniform random values

without the need of any input shares. The remaining algebraic expressions (p01, . . . , p
0
m) contain no

random values and are all of the form p
0
i
= fp0i

(~x1, . . . , ~xm) for i 2 [m]. Hence, to perfectly simulate
each of them we need (and only need) the input shares which are involved in each fp0i

(~x1, . . . , ~xm),
namely the inputs shares indexed by (I1, . . . , I`) := shares(p01, . . . , p

0
m). Using the input shares

(~x1|I1 , . . . , ~x`|I`) we can perfectly simulate (p01, . . . , p
0
m) and thus perfectly simulate all algebraic

expressions in ~P
0, from which we get a perfect simulation of the probes in ~P .

Lemma 1 actually provides a way to evaluate the function SIS in the case of LR-gadgets. Note
that the set of probes ~P in the lemma must be defined as the union of ~P and ~y|O in an evaluation
of SISG(~P ,O) (while used to define security notions, SIS is based on two arguments to di↵erentiate
probes on internal wires and probes on output shares whereas this distinction is not used in the
evaluation process of Lemma 1). According to the above lemma, an evaluation of SIS simply consists
of a row reduction on the matrix of the random dependencies (S), after which the function shares(.)
is used on the obtained expressions without random values (i.e. (p01, . . . , p

0
`
) in the lemma). The

output of SIS is then exactly the output of shares(.), which is the set of input shares necessary
for a perfect simulation of all the probes. We show in Section 4 how this technique is e�ciently
implemented in our verification tool.

3.2 Characterization of Gadgets with Non-Linear Randomness

In this section, we extend the algebraic characterization for LR-gadgets of Section 3.1 to NLR-
gadgets, i.e. gadgets performing non-linear operations on input shares mixed with randomness. An
NLR-gadgets is an `-to-m gadget G : (~x1, . . . , ~x`) 7! (~y1, . . . , ~ym) with the output of the form:

(~y1, . . . , ~ym) := R`+1

�
F (R1(~x1,~r1), . . . , R`(~x`,~r`)),~r`+1

�

where F is any arithmetic circuit, the Ri are linear arithmetic circuits and the ~ri are vectors of
random values uniformly drawn from K⇢i . We further assume that F computes a homogeneous
multi-linear form, namely F (~z1, . . . ,~z`) is a sum of degree-` monomials, each of which being a
product containing exactly one coordinate from each ~zi.
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For the sake of clarity, we describe the verification method for the particular case of 2-input
gadgets; the extension to ` inputs is straightforward. We thus present NLR-gadgets as 2-to-m
gadgets G : (~x1, ~x2) 7! (~y1, . . . , ~ym) with the output of the form:

(~y1, . . . , ~ym) := R3
�
F (R1(~x1,~r1), R2(~x2,~r2)),~r3

�

This characterization notably covers a wide majority (if not the totality) of multiplication gadgets.
It covers in particular multiplication gadgets which first start by refreshing one of (resp. each
of) their inputs before performing sharewise products that are finally recombined into the output
sharing (with additional randomness). Such multiplication gadgets have been recently described
in [31,13,16,21].

Any probe on such an NLR-gadget is either a probe on the inner circuits Ri(~xi,~ri) and is of the
form:

p = ~x
T
i · ~wp + ~r

T
i · ~sp (6)

for i 2 {1, 2} (since the Ri are linear arithmetic circuits) with ~wp 2 Kn
,~sp 2 K⇢i , or is a probe on

the outer circuits and is of the form:

p = fp(~z1, ~z2) + ~r
T
3 · ~sp (7)

where ~zi := Ri(~xi,~ri) for i 2 {1, 2} with ~sp 2 K⇢3 , and for some arithmetic function fp : (Kn)2 ! K.
We show hereafter that we can still obtain an e�cient and complete evaluation of SIS for those
gadgets, which in turn yields an e�cient verification of the considered security notions.

The verification technique for NLR-gadgets essentially consists in several iterations of the verifi-
cation process for LR-gadgets used in Lemma 1. The steps of the technique are as follows. Suppose
that we have a tuple of probes ~P = (p1, . . . , pk, pk+1, . . . , pd) where (p1, . . . , pk) are all of the form (7)
while (pk+1, . . . , pd) are all of the form (6).

1. First, we apply the Gaussian elimination technique of Section 3.1 on the probes (p1, . . . , pk)
with respect to the vector of randoms ~r3. This is possible since all of these probes respect the
form (5) w.r.t. inputs (~z1, ~z2) and randomness ~r3. Specifically, let S3 := (~sp1 | ~sp2 | · · · | ~spk),
with ~spi defined from (7), and let N3 the permutation matrix such that S

0
3 = N3 · S3 is the

row reduced form of S3 (see Lemma 1). From this, we get a new derived tuple ~P
0 := N3 ·

~P = (p01, . . . , p
0
m, p

0
m+1, . . . , p

0
k
) and we know from Lemma 1 that each of the expression in

(p0
m+1, . . . , p

0
k
) can be perfectly simulated by simply generating k �m uniform random values.

Thus, we end up with (p01, . . . , p
0
m), which we need to perfectly simulate, and where each of the

p
0
i
is of the form fp0i

(~z1, ~z2) with no random values from ~r3, along with the remaining probes

(pk+1, . . . , pd). We then construct the new tuple to simulate ~P
00 = (p01, . . . , p

0
m, pk+1, . . . , pd),

which we rewrite as ~P
00 = (p001, . . . , p

00
m+d�k

). Thus, in order to perfectly simulate the tuple of

probes ~P , we need to perfectly simulate the probes in ~P
00.

We stress at this stage that each algebraic expression p
00
i
in ~P

00 is either of the form p
00
i
=

fp00i
(~z1, ~z2) with fp00i

a homogeneous bilinear form (this is of the first m coordinates resulting
from Gaussian elimination) or of the form (6) (i.e. the probes on R1 or R2 that are not a↵ected
by the previous Gaussian elimination since they do not contain any randoms from ~r3).

2. For each p
00
i
in ~P

00 of the form p
00
i
= fp00i

(~z1, ~z2), we factor its algebraic expression with respect
to the vector of values (~x1||~r1). In other terms, we rewrite each p

00
i
as

p
00
i = (~x1||~r1)

T
· ~hp00i

(8)
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where ~hp00i
is a tuple of n + ⇢1 algebraic expressions of the form (6) w.r.t. (~x2,~r2). We then

construct a new tuple ~P2 := (~hp001 k · · · k
~hp00m) to which we append all the expressions p00

i
of the

form (6) w.r.t. (~x2,~r2) (i.e. probes from R2).

3. We perform the same procedure as in the last step but this time factoring each p
00
i
in ~P

00 of the
form p

00
i
= fp00i

(~z1, ~z2) with respect to (~x2||~r2), rewriting each p
00
i
as

p
00
i = (~x2||~r2)

T
· ~gp00i

(9)

From those expressions we define a new tuple ~P1 := (~gp001 k · · · k ~gp00m) where the coordinates of
the ~gp00i

’s are of the form (6) w.r.t. (~x1,~r1), to which we append all the expressions p
00
i
of the

form (6) w.r.t. (~x1,~r1) (i.e. probes from R1).

4. Recall from the first step that perfectly simulating ~P amounts to perfectly simulating ~P
00. We

will prove later in this section that the input shares from ~x1 and ~x2 that are necessary and
su�cient to produce a perfect simulation of ~P 00 are the same as the ones for a perfect simulation
of ~P1,

~P2 constructed in the last two steps. Observe that all probes in ~P1,
~P2 respect the form (6),

which is a special case of (5). Hence, we separately apply the Gaussian elimination technique
of Lemma 1 on ~P1 with respect to (~x1,~r1), and on ~P2 with respect to (~x2,~r2). This provides us
with the sets of input shares I1 on ~x1 and I2 on ~x2 that are respectively necessary and su�cient
to produce a perfect simulation of the expressions in ~P1 and ~P2. These sets are therefore output
as the necessary and su�cient sets of input shares for a perfect simulation of ~P .

We state in the following lemma that the above verification method is complete (the proof is in
appendix).

Lemma 2. Let G be a 2-input n-share NLR-gadget. Let ~P = (p1, . . . , pd) be a tuple of probes on
G. Let ~P1,

~P2 be the tuples of linear expressions w.r.t. (~x1,~r1) and (~x2,~r2) obtained by applying
the above method. The sets I1, I2 obtained by applying the method of Lemma 1 on ~P1 with respect
to (~x1,~r1) and separately on ~P2 with respect to (~x2,~r2) are the sets of input shares necessary and
su�cient to simulate ~P .

The verification method introduced above actually describes the procedure of the function SIS

in the case of NLR-gadgets to determine the simulatability of a set of probes on such gadgets.
We show in Section 4 how this technique is implemented in IronMask. We now present a concrete
example of SIS execution on a set of probes on an NLR-gadget.

Example: Let us consider the following 2-share multiplication gadget (with inputs a and b, and
output e) while taking K = F2:

c1 = a1 + ra, c2 = a2 + ra

d1 = b1 + rb, d2 = b2 + rb

e1 = (c1 ⇤ d1 + r) + c1 ⇤ d2

e2 = (c2 ⇤ d1 + r) + c2 ⇤ d2

The above gadget is an example of NLR-gadgets, and uses 3 random values: ra is used to refresh
the input sharing a, rb is used to refresh the input sharing b, and r is used during the compression
of the products into the output sharing e. The non-linear random values are ra and rb with respect

11



to e.
Suppose that we would like to verify one of the security properties defined in Section 2 using SIS.
To do this, we need to be able to determine for each set of probes (formed of intermediate values
and/or output shares) on the gadget, the exact set of input shares necessary and su�cient for a
perfect simulation of all of the probes in the set. Let us consider for instance the following set of 2
probes on the gadget:

P = {p1 = c1 ⇤ d1 + r, p2 = c2 ⇤ d1 + r}

We need to determine the set of input shares of a and b necessary to perfectly simulate probes in
P . SIS will be executed in four steps as described earlier.
Step 1: get rid of the random values that are additive in the compression step (which are not
additive to the shares of a and b), in this case it is the unique random value r . Using the Gaussian
elimination technique, we construct a new set :

P
0 = {p1 + p2 = c1 ⇤ d1 + c2 ⇤ d1, p2 = c2 ⇤ d1 + r}

Since r only appears in p2, this probe can be perfectly simulated by a uniform random value. Next
we need to consider the simulation of the new set

P
00 = {c1 ⇤ d1 + c2 ⇤ d1} = {(a1 + ra) ⇤ (b1 + rb) + (a2 + ra) ⇤ (b1 + rb)}

Step 2: factor the expressions in P
00 with respect to the elementary variables of shares of a and

random values which are additive to the shares of a and the constant term 1, in this case the
variables (a1, a2, ra, 1). Since there is a single expression in P

00, we can rewrite is as:

P
00 = {a1 ⇤ (b1 + rb) + a2 ⇤ (b1 + rb) + ra ⇤ (b1 + rb + b1 + rb) + 1 ⇤ (0)}

from which we construct the new set of the expressions multiplying (a1, a2, ra, 1)

P2 = {b1 + rb, b1 + rb, 0, 0}

Step 3: do the same thing with respect to (b1, b2, rb, 1):

P
00 = {b1 ⇤ (a1 + ra + a2 + ra) + b2 ⇤ (0) + rb ⇤ (a1 + ra + a2 + ra) + 1 ⇤ (0)}

from which we construct
P1 = {a1 + a2, 0, a1 + a2, 0}

Step 4: determine the input shares of a necessary to simulate the expressions in P1 and the shares
of b necessary to simulate the expressions in P2.

– for input a, we trivially need both input shares (a1, a2) to perfectly simulate expressions in P1.
– for input b, we apply one step of Gaussian elimination with respect to rb, to obtain the new set

P
0
2 = {b1 + rb, 0, 0, 0}. We can see that we can perfectly simulate the single non-zero expression

with a uniform random value. Thus, in this case, no shares of b are necessary to perfectly
simulate P

0
2 and hence also P2.

Hence, to perfectly simulate P1 and P2, we need both input shares of a and no shares of b. Thanks
to Lemma 2, we can conclude that P can be perfectly simulated using both shares of a and no
shares of b.
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4 E�cient Verification

In this section, we introduce IronMask, a new tool that we developed to check probing and random
probing security properties using the algorithms presented in Section 3. The implementation of
IronMask considers currently a finite field K of characteristic 2, it can be easily extended in the
future to any finite field since the verification methods introduced in the previous sections work in
any finite field K. IronMask is written in C, and the only external libraries it depends on are the
GNU Multiple Precision Arithmetic Library (GMP) and the POSIX Threads (pthreads) library.

4.1 Data Representation

#shares 2

#in a b

#randoms r0

#out c

m0 = a0 * b1

t0 = r0 + m0

m1 = a1 * b0

t1 = t0 + m1

m2 = a0 * b0

c0 = m2 + r0

m3 = a1 * b1

c1 = m3 + t1

(a) 2-share ISW multiplica-
tion

#shares 3

#in a

#randoms r0 r1 r2

#out d

d0 = a0 + r0

d0 = d0 + r1

d1 = a1 + r0

d1 = d1 + r2

d2 = a2 + r1

d2 = d2 + r2

(b) 3-share refresh

Fig. 1: Masking gadgets written in IronMask’s syntax

IronMask takes as input gadgets written in a simple syntax to describe circuits, borrowed from
VRAPS [13]: a gadget is a list of assignments of additions or multiplications into variables, alongside
directives to specify the number of shares, the inputs, the outputs and the randoms. Figure 1
illustrates our input syntax on a 2-shares ISW multiplication (Figure 1a) and a 3-share refresh
gadget (Figure 1b). In Figure 1a, the variables a0/b0 (resp. c0) and a1/b1 (resp. c1) are the 1st

and 2nd shares of the input a/b (resp. output d). Similarly to maskVerif, the syntax ![ expr ] can
be used to stop the propagation of glitches in the robust probing model. For instance, tmp = a0*b0

could be replaced by tmp = ![ a0*b0 ], in which case tmp would leak a0*b0 instead of leaking a0

and b0 separately.
Internally, IronMask represents each wire of the gadget as an array of integers composed of three

parts. The first ` parts correspond to linear dependencies on the inputs of the gadget: if the k
th

bit of the n
th element is set to 1, then the wire depends linearly on the k

th share of the n
th input.

The second part is a bitvector, where the k
th bit set to 1 indicates a linear dependency on the

k
th random of the gadget. Finally, the third part is a bitvector as well, where the k

th bit set to 1
indicates a linear dependency on the kth quadratic monomial appearing in the symbolic expressions
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of the gadget wires. For instance, the internal representation of the wires a0, a1, r0, m3, t1 and c1

of Figure 1a are as follows:

inputs randoms mults

a0: [ 1, 0, 0, 0,0,0,0 ]

a1: [ 2, 0, 0, 0,0,0,0 ]

r0: [ 0, 0, 1, 0,0,0,0 ]

m3: [ 0, 0, 0, 0,0,0,1 ]

t1: [ 0, 0, 1, 1,1,0,0 ]

c0: [ 0, 0, 1, 0,0,1,0 ]

With an additional data structure storing the operands of each multiplication:

0: a0 * b1 1: a1 * b0

2: a0 * b0 3: a1 * b1

Using this internal representation enables e�cient operations down the line: the linear depen-
dencies of a wire on the input shares are accessible with a single operation, the number of such
input shares is e�ciently obtained by counting the number of bits to one in its first element (or
first two elements for 2-input gadgets), and xoring two wires, which is one of the basic operations
of our Gaussian elimination, can be easily done by xoring pointwise the arrays representing them.

To model glitches in the robust probing model, we use the same glitch model as in [3]. Namely,
we consider that an expression a + b (resp a ⇤ b) leaks a and b separately, instead of leaking a + b

(resp a⇤b). Registers (usually called flip-flops) can be used to stop the propagation of these glitches.
In IronMask, when taking glitches and transitions into consideration, each wire is represented by
an array of arrays instead of a single array, since the leakage of an assignment is the union of the
leakages of its right-hand side operands. For instance, the wire c0 in Figure 1a in the presence of
glitches is represented as:

inputs randoms mults

c0: [ [ 0, 0, 1, 0,0,0,0 ],

[ 1, 0, 0, 0,0,0,0 ],

[ 0, 1, 0, 0,0,0,0 ] ]

If a flip-flop was added to m2 to stop the propagation of glitches by doing m2 = ![a0*b0], then the
robust leakage of c0 would become:

inputs randoms mults

c0: [ [ 0, 0, 1, 0,0,0,0 ],

[ 0, 0, 0, 0,0,1,0 ] ]

4.2 Basic Verification

In this section, we present the procedures implemented in IronMask for the verification of probing
and random probing properties. Recall that in Section 2, we give definitions of all the security
properties based on a single building block SIS: a primitive that, given a set of probes (internal
probes and output probes), determines the input shares necessary for a perfect simulation of these
probes. Thus, to verify any security property, IronMask uses a concrete implementation of the
function SIS based on the algebraic characterization techniques discussed in Section 3.
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Gadgets with linear randomness. For the verification of LR-gadgets introduced in Section 3.1
(i.e. gadgets in which all random values are additive), IronMask relies on the SIS LR procedure
(Algorithm 1). This procedure is a direct application of the result presented in Lemma 1. We recall
that Algorithm 1 in IronMask considers currently a finite field of characteristic 2.

Algorithm 1 SIS LR returns the input shares that are leaked by the tuple ~P with expressions of
the form (5), assuming ` input sharings

1: procedure GaussElimination(~P )
2: for each probe pi of ~P do
3: if pi contains at least one random variable then
4: r  choose (any) one random variable in pi

5: for each probe pj of ~P with i 6= j do
6: if pj contains r then
7: pj  pi + pj

8: pi  r

9: procedure shares(~P )
10: I1  ;, . . . , I`  ;
11: for each probe pi of ~P do
12: Add all input shares in pi of each input j to Ij

13: return I1, . . . , I`

14: procedure SIS LR(~P )
15: ~P 0  GaussElimination(~P )
16: return shares( ~P 0)

As in Lemma 1, a Gaussian elimination is first performed on the tuple by the procedure Gaus-
sElimination, after which each probe of the input tuple is either ”replaced” by a random r (as
shown on line 8 of the procedure GaussElimination), or contains one or more input shares and
no random values. In fact, what we mean by replacing the probe pi by a random value r on line 8
is that after eliminating r from the expressions of all other expressions pj in the same tuple (loop
from line 5 to 7 where the instruction pj  pi + pj aims to remove r from pj in a finite field of
characteristic 2), we end up with r only appearing in the expression of pi and so as explained in the
proof of Lemma 1, simulating pi amounts to generating r uniformly at random without the need
for any other variables. We represent this by replacing the expression of pi by the single random
value r. Then, the shares leaked by the input tuple can be found on the probes that do not contain
any randoms using the procedure shares. The latter actually corresponds to an implementation
of the function shares(.) used in Lemma 1.

Gadgets with non-linear randomness. For NLR-gadgets (i.e. gadgets performing non-linear
operations on input shares mixed with randomness), IronMask uses the SIS NLR procedure (Al-
gorithm 2), which implements the four steps described in Section 3.2. As mentioned in Section 3.2,
SIS NLR currently only supports gadgets with two input sharings, but can be extended in the
future to ` input sharings.

First, SIS NLR performs Gaussian elimination with respect to the vector of output randoms
(i.e. ~r3), using a modified version of GaussElimination that takes as inputs the randoms to
use for the elimination. This corresponds to step 1 of Section 3.2. The modified probes in ~P 0 do
not contain any more random values of ~r3. Next, two new tuple of probes ~P1,

~P2 are constructed
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Algorithm 2 SIS NLR returns the input shares that are leaked by the tuple P in an NLR-gadget
refreshing its output with the randoms ~r3 (c.f. sec. 3.2), assuming 2 input sharings

procedure SIS NLR(~P , ~r3)
~P 0  GaussElimination(~P , ~r3)
~P1  ( ), ~P2  ( )
for each probe pi in ~P 0 do

if pi contains no randoms of ~r3 then
( ~P 0

1,
~P 0
2) FactAndExtract(pi)

( ~P1,
~P2) ( ~P1|| ~P 0

1,
~P2|| ~P 0

2)

I1  SIS LR( ~P1), I2  SIS LR( ~P2)
return I1, I2

from the probes in ~P 0, using the FactAndExtract procedure, which corresponds to the factoring
technique discussed in steps 2 � 3 of Section 3.2. The pseudo-code of this function is left out for
conciseness. We thus get two tuples P1 and P2 containing input shares, randoms and refreshed input
shares from each input. Since those variables are linear, we can use the initial SIS LR procedure
to extract the input shares that they leak.

Verification of security properties. Checking any probing or random probing property (e.g.
NI, SNI, RPC, RPE, ...) consists in enumerating tuples of probes, using SIS LR or SIS NLR to
get the input shares that they leak (we abbreviate with SIS and suppose that we make a call to
the correct algorithm for LR-gadgets and NLR-gadgets), and take some action in consequence (see
Section 2.2). In the following, we shall call a t-failure tuple (or simply a failure tuple when t is
not made explicit) any tuple of probes that leaks more than t input shares of one or more input
sharings (i.e. for which SIS outputs a set or more of cardinality strictly greater than t).

For instance, to verify if an n-share gadget is t-NI, we enumerate all tuples of size t, and make
sure that none of them is a t-failure tuple (Algorithm 3). This corresponds to the first row of
Table 1. Or, to verify the (p, ")-RPS? of an n-share gadget G in the random probing model (first
row of Table 2), we need to compute the coe�cients ci from equation (3) of the failure probability
function f(p) = " as explained in Section 2.2. This corresponds to enumerating all the tuples of
probes (excluding the output wires) of size 1 to a threshold cmax and count how many leak more
than t-shares (after cmax, upper and lower bounds on f(p) are obtained, we refer the readers to [13]
for more details on the process and the threshold). This corresponds to the procedure depicted in
Algorithm 4.

Algorithm 3 Is t NI returns true if G is t-NI and false otherwise, assuming G has ` input sharings
procedure Is t NI(G, t)

for each tuple ~P of size t in G do
I1, . . . , I`  SIS(~P )
if |I1| > t or . . . or |I`| > t then

return false
return true

Enumerating all tuples becomes impractical as soon as gadgets start growing larger than a few
hundred variables, since the number of tuples of size k in a gadget containing s variables is

�
s

k

�
.
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Algorithm 4 GetCoeffsRPS? returns an array of cmax cells where the k
th index contains the

number of failure tuples of k probes on n-share gadget G with ` input sharings
procedure GetCoeffsRPS?(G, cmax)

coe↵s  [0, . . . , 0] of size cmax

for k = 1 to cmax do
for each tuple ~P of k probes on G do

I1, . . . , I`  SIS(~P )
if |I1| > n� 1 or . . . or |I`| > n� 1 then

coe↵s[k] += 1

return coe↵s

For instance, checking that a 9-share masked ISW multiplication containing 279 variables is 8-NI
requires enumerating

�279
8

�
⇡ 8⇥ 1014 tuples, which is not far from being out of reach for modern

computers.

The rest of the section is organized as follows. In Section 4.3, we address dimension reduction
techniques proposed in [11,19] to reduce the search space of the enumerated tuples. In Section 4.4, we
present some optimizations of our implementations that make verification faster by reducing the cost
of SIS LR (since the latter is also a building block for SIS NLR) and parallelizing our procedures.
Finally, in Section 4.5, we introduce a constructive algorithm to generate failures without having
to enumerate all tuples in the case of linear gadgets.

4.3 Dimension Reduction

Checking any probing or random probing property requires enumerating many tuples. For instance,
for a gadget G made of s variables,

�
s

t

�
tuples need to be checked to assess whether G is t-NI or

not. To reduce the number of tuples that have to be considered, we remove some variables from
the search. First, as proposed in [11] and further explained in [19], elementary deterministic probes
can be removed when checking any probing or random probing property. Then, when checking for
probing properties only, we use the “reduced sets” optimization proposed in [19], which consists
in eliminating some “less powerful” variables from the search. In appendix, we recall the principle
of those two optimizations, and show how to make the first one work in the random probing
model, and why the second one cannot be used in this model. Note that the dimension reduction
technique is proved to be sound in [19], which means that our verification technique implementing
the optimization remains sound.

4.4 Implementation Optimizations

On-the-fly Gaussian Elimination. In order to find all failures of a given size, we enumerate all the
tuples of that size, and apply the SIS procedure on each of them. This means that a full Gaussian
elimination has to be performed on each tuple. However, we generate the tuples in lexicographic
order, which mean that two consecutive tuples only di↵er only by their last elements, and, in most
cases, only by their very last element. For two consecutive tuples, it is thus very likely that most of
the Gaussian elimination will be identical. We take advantage of this by implementing our Gaussian
elimination on the fly: for each tuple, we only recompute the elimination on the elements that di↵er
from the previous tuple.
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Table 3: RPS* performance of our new constructive algorithm against our traditional enumerative
one

Gadget Shares #wires
Enumerative Constructive

cmax
Verif
time

cmax
Verif
time

ISW refresh 8 140 8 5min
8 3sec
10 6min

ISW add 7 224 7 18min
8 2sec
9 2min

n log n refresh 8 100 9 1min
9 2sec
11 2min

ISW mult
refreshed

6 297
6 2min

6 12min
7 38min

The cost of the Gaussian elimination for a single tuple of k elements of a gadget containing s in-
puts and randoms is O(sk2). Performing the elimination on-the-fly brings the amortized complexity
down to O(sk).

A similar, slightly more e�cient technique has been used by [19] to speed up their implementa-
tion. They used a revolving-door algorithm to generate the tuples, so that each consecutive tuple
di↵ers by exactly one element, which allowed them to amortize the cost of their analysis. However,
we cannot use this revolving-door algorithm because when changing the i

th element of a tuple, the
Gaussian elimination needs to be recomputed from this ith element up to the end of the tuple.

Parallelization. Recall that we generate the tuples in lexicographic order, which admits an e�cient
unranking algorithm. This means that we can easily compute what the jth tuple of size k is, for any
j and any k. Multi-threading the verification of n tuples is thus trivial: to run l threads in parallel,
the j

th thread starts with the bj ⇥ n/l
th
c tuple, and verifies the next bn/lc tuples.

Our implementation is multi-threaded in this fashion using POSIX threads, provided by the
pthread library. In order to be transparent from the properties’ point of view (e.g., from Algo-
rithms 3 and 4), the multi-threading is done inside SIS. To this end, we use a few mutexes, which
incur an overhead in the random probing model: the more failures a gadget contains, the less of
a speedup multi-threading o↵ers. Although it would not be hard to implement multi-threading on
the properties’ side rather than in SIS, we opted for readability and maintainability of the code,
at the expense of a bit of performance.

4.5 Constructive Approach

The enumerative approach of Section 4.2 generates a lot of tuples that are trivial non-failures
because they do not contain enough shares to be failures, or their shares are masked by random
variables. To overcome this issue, we designed a constructive algorithm to only generate potential
failures. We give a detailed description of this algorithm in Appendix D.

This constructive algorithm is faster than the traditional enumerative algorithm of Section 4.2
when checking (n � 1)-NI and RPS* properties for linear gadgets. Table 3 shows the exact per-
formance improvements when checking the RPS* property on some common linear gadgets (ISW
refresh [32], n log n refresh [9], and an “ISW addition” made of a share-wise addition preceded by
an ISW refresh of each input), and on an ISW multiplication with a circular refresh on one of the
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inputs. On linear gadgets, the constructive algorithm can go about 2 coe�cients further than the
enumerative one within the same time, thus producing much more precise results.

Furthermore, the constructive algorithm enables the verification of larger, previously out of
reach, gadgets. For instance, a 9-share ISW addition contains 243 variables, and thus contains�243

9

�
⇡ 7 ⇤ 1015 tuples of size 9 (for 8-RPS*), which is clearly beyond the capabilities of the

enumerative algorithm. Yet, our constructive algorithm is able to generate all of its failures of size
9 in 7 minutes.

However, on multiplication gadgets, the constructive algorithm is slower than the enumerative
one. Table 3 illustrates this on an ISW multiplication with an ISW refresh on one of the inputs. Ad-
ditionally, the constructive algorithm does not perform well in terms of performance when checking
t-NI or t-RPS* with t < n� 1, as well as SNI, RPC and RPE. We explain in Appendix D why this
is the case.

5 Evaluation

To showcase IronMask, we start in Section 5.1 by providing new bounds for the maximum RPE
leakage probability tolerated by some common gadgets (in the random probing model). Then, we
compare the scope (Section 5.2) and performance (Section 5.2) of IronMask and existing verification
tools: VRAPS and STRAPS in the random probing model, and maskVerif, matverif and SILVER in
the probing model. The description files of the gadgets tested in the following sections are publicly
available on IronMask’s GitHub repository.

5.1 New Random Probing Expandability Results

So far, VRAPS [13] was the only tool verifying the (t, p, ")-RPE property. IronMask is several orders
of magnitude faster than VRAPS, in addition to being complete (IronMask avoids failure false
positives i.e. detected failure tuples which are not really failures, unlike VRAPS), allowing us to
compute more precise bounds for the coe�cient of the failure function f(p) = " (c.f. Section 2.2)
and hence more precise bounds on the tolerated leakage probability. In particular, we consider the
ISW multiplication and refresh [32], the n log n refresh [9], the circular refresh [7], as well as the
addition, copy, and multiplication from [16, Section 6.2]. Additionally, we consider addition (resp.
copy) gadgets obtained by doing an ISW or n log n refresh on one of the inputs followed by a simple
addition (resp. copy). Finally, we also evaluate a double-SNI multiplication [31] made of an ISW
multiplication where one of the inputs is refreshed using a n circular refreshes [25] (with n shares).

The result are shown in Table 4. For the t parameters, we used t = b(n� 1)/2c (with n shares),
as recommended by [16]. For large gadgets, we cannot compute precisely the maximum leakage
probability tolerated in reasonable time. Instead, like [13], we compute all failures up to a given
size cmax, which allows us to obtain upper and lower bounds for the leakage probability.

For ISW multiplication, our results improve previous results from [13] (obtained with VRAPS)
in two ways: by increasing the value cmax of the verification we obtain tighter bounds on the failure
event function f(p) and thus tighter intervals (and even exact values in some cases) for the tolerated
leakage probability. Plus, thanks to the completeness of the verification of IronMask by avoiding
failure false positives (unlike VRAPS), we obtain better values for the estimated tolerated leakage
probability (by better we mean higher probability values). For example, our results show that the
(exact) tolerated leakage probability of the 6-share ISW multiplication is 2�12 instead of the 2�13

lower bound of [13]. We obtain similar improvements for the 5-share gadgets of [16] which are today
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Table 4: Maximum t-RPE leakage probabilities tolerated by some common masking gadgets

Gadget Shares t Ampl. order cmax #wires
log2 maximum

tolerated proba.
Verif. time

Linear Randomness

ISW
[32]

mult
5 2 3/2 6 180 -10.54 24min
6 2 3/2 5 267 -12.00 13min
7 3 2 5 371 [-10.45, -8.73] 28min

refresh
5 2 3 10 50 -4.28 2min
6 2 3 8 75 [-4.81, -4.61] 5min
7 3 4 7 105 [-5.50,-4.01] 21min

add
5 2 3 7 110 [-6.48,-4.70] 11min
6 2 3 6 162 [-7.81,-5.03] 17min
7 3 4 6 224 [-8.47,-4.15] 3h

copy
5 2 3 6 105 [-5.92,-5.54] 12min
6 2 3 5 156 [-6.92,-5.93] 24min
7 3 4 4 217 [-8.02,-3.87] 33min

n log n
[9]

refresh
4 1 2 30 30 -5.27 1sec
8 3 4 7 100 [-5.42,-4.36] 18min

add
4 1 2 8 68 -5.40 4min
8 3 4 6 216 [-8.40,-4.40] 4h

copy
4 1 2 6 64 -6.96 27sec
8 3 4 4 208 [-7.94,-4.25] 55min

circular
refresh [7]

5 2 3 25 25 -4.84 1sec
10 4 3 8 50 -5.21 1min

[16]
add 5 2 3 9 55 [4.67,-4.42] 10min
copy 5 2 3 6 60 -6.17 41sec

Non-linear Randomness
Double-SNI

ISW
4 1 2 5 190 -9.85 5min
5 2 5/2 5 305 [-10.01,-8.09] 31min

[16] mult 5 2 3 6 405 [-9.67,-7.66] 31h

the gadgets giving the best asymptotic complexity of O(3.23) for the expansion strategy with a
constant leakage probability and for a target random probing security of 2�. Our results improve
the lower bound on the tolerated leakage probability for those gadgets from 2�12 to 2�9.67. For all
the other gadgets in the table, we report the first verification results of the RPE property.

5.2 Comparison with State-Of-The-Art Tools

We compare IronMask to six carefully chosen state-of-the-art tools: maskVerif [5,6,3] (and its ex-
tension scVerif [8]), matverif [19], SILVER [33], VRAPS [13], and STRAPS [20], with which our new
tool IronMask shares the following features:

– does not rely on any gadget’s structure (unlike e.g., maskComp [6], tightPROVE [15], Tornado [14]),
– verifies probing or random probing-like security notions.

We discuss the properties that are concretely verified, and provide some benchmarks to highlight
the main di↵erences with IronMask.

Scope. Introduced in 2015 [5] and then extended multiple times ([6,3]), maskVerif is the very first
tool able to verify reasonable higher-order masking schemes. Based on a symbolic representation of
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leakage, it integrates the language-based verification of (robust) probing security and (S)NI notions
with or without leakage on registers transitions. One step further, the latest extension of maskVerif,
referred to as scVerif [20], captures even more hardware side e↵ects, potentially configurable by the
user [8]. Compared to our proposal, maskVerif includes tricks to verify bigger circuits (e.g., s-boxes,
block encryption scheme) but fails to provide a complete verification as soon as the randomness is
not linear (i.e., failure false positives may be produced).

In the same vein, matverif [19] targets the same properties as maskVerif. It features a new
method to obtain a complete verification (i.e., without any failure false positive) for specific circuits
(e.g., ISW multiplications) and significantly improve its performance thanks to dimension-reduction
strategies. In terms of supported gadgets, matverif is more limited than maskVerif and IronMask, as
it does not support gadgets with non-linear randomness at all. Unlike our proposal and similarly
to maskVerif, matverif focuses only on the verification of probing-like properties.

Following a di↵erent strategy, SILVER [33] was built to verify the physical security of hardware
designs. It takes as input either a Verilog implementation or an instruction list and checks the
probing, (S/PI)NI notions in the standard and robust models, as well as the uniformity of some
output sharing. On the one hand, it outperforms the capacities of maskVerif by o↵ering a complete
verification based on a symbolic and exhaustive analysis of probability distributions and statistical
independence of joint distributions. On the other hand, its verification is significantly slower than
that of maskVerif.

Introduced in 2020, VRAPS is the first tool to verify random-probing-like properties [13] (to
the best of our knowledge). Written in Python and SageMath, it was built to evaluate the RPE
security of some base gadgets, in order to assess the global security of the expanding compiler
of [13]. Specifically, VRAPS detects all the leaking tuples within an implementation with respect to
the RPS?, RPE1, RPE2 and RPC security properties introduced in Section 2. Nevertheless, it su↵ers
from low performance and, unlike IronMask, can generate failure false positives for both gadgets with
linear and non-linear randomness. VRAPS supports more gadgets than IronMask which is limited to
LR-gadgets and NLR-gadgets. Nevertheless, to the best of our knowledge, all the masking gadgets
in the literature fit the latter representations. While VRAPS can additionally (directly) verify bigger
gadgets (i.e., composition of atomic gadgets), in practice, the performance and the completeness
would be very low. In addition, the verification of atomic gadgets using IronMask already makes
it possible to obtain secure global circuits since once individually verified (for probing or random
probing properties), they can be safely composed [6,?].

Finally, STRAPS is a very recent tool designed to verify random probing-like properties [20]. In
particular, it was built to compute the distribution of a gadget’s input sets of shares with respect
to the output observations and the leakage probability of each internal wire. In its deterministic
mode, it relies on maskVerif as a basic primitive. One step further, it integrates a probabilistic
mode, based on Monte-Carlo methods, which significantly improves the performance by avoiding a
full exploration and limiting the analysis to selected tuples. While the probabilistic mode can allow
increased performance and thus more accurate results for random probing properties, it uses a set
of rules from maskVerif as a building block . These rules by construction do not provide complete
verification, which implies that the verification method of STRAPS is not complete either.

Table 5 recalls the categories of properties (as in Section 2) that are verified by the aforemen-
tioned tools on higher-order masked implementations. It additionally specifies the consideration of
hardware e↵ects, i.e. glitches (captured in the robust probing model). A green check (3) means
that the row tool verifies the column property. On the contrary, a red cross (7) means that the
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Table 5: Verified security properties on higher-order masked implementations for carefully chosen
state-of-art automatic tools.

Tools
probing-like RP-like
soft robust soft robust

maskVerif 3 3 7 7
scVerif 3 3 7 7
matverif 3 3 7 7
SILVER 3 3 7 7
VRAPS 3 7 3 7
STRAPS 7 7 3 7
IronMask 3 3 3 3

column property is not handled by the row tool. We can see that IronMask is the first tool to provide
verification for probing-like properties and also for random probing-like properties in the standard
model and in presence of glitches (robust model).

Additionally IronMask o↵ers a complete verification method for gadgets with linear randomness
as well as for most deployed gadgets with non-linear randomness (and in particular all known
multiplication gadgets). The only other tool providing complete verification for such gadgets is
SILVER but this is achieved by an exhaustive approach making its running time quickly prohibitive
(see comparison hereafter).

Performance. We evaluate the performance of IronMask compared to other state-of-the-art veri-
fication tools in both the probing and random probing models.

Probing Model. We compared the time required by IronMask, maskVerif and matverif to check that
some commonly-used gadgets are (n� 1)-NI and (n� 1)-SNI (abstracted NI and SNI hereafter for
conciseness). In particular, the gadgets we considered are: the ISW multiplication [32], the double-
SNI multiplication [31,21] using an ISW multiplication and a circular refresh [25] on one of the
inputs, the new NI and SNI multiplications from [19], and the n log n refresh [9]. The results are
presented in Table 6.

We used the multi-threaded version of each tool, setting the maximal number of cores to use to
4, to give a fair chance to maskVerif: while IronMask and matverif can use an arbitrary number of
cores, maskVerif is limited to 4 cores. We evaluated several masking orders for each gadget in order
to highlight the scaling of each tool. To save time, we did not run the verification of gadgets when
it would have taken more than a few hours. Finally, to analyze a gadget, matverif needs probes
description files to be generated using a SageMath script, and the main program to be recompiled.
While the incurred additional time was ignored in [19], we take it into account so that time we
report reflects the actual time that a user would need to check those gadgets.

Before discussing the results, we recall that the three tools are not functionally equivalent.
maskVerif can handle any circuit, while IronMask is limited to LR-gadgets and NLR-gadgets as
characterized in Section 3, andmatverif only handles LR-gadgets. On the other hand, the verification
of IronMask is complete for both types of gadgets, while maskVerif’s is not. In addition, while
IronMask is limited to LR-gadgets and NLR-gadgets, to the best of our knowledge, all the masking
gadgets in the literature fit the latter representations, and the verification of atomic gadgets already
makes it possible to obtain secure global circuits through composition [6,?].
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Table 6: Comparison of the performance of IronMask,maskVerif andmatverif on higher-order masked
gadgets. The multithreaded versions of each tools were used, with the maximum number of threads
set to 4. N/A means that a tool cannot check a gadget, whereas - means that a tool was not
evaluated on a gadget because we deemed it too slow.

Gadget Type Shares Property
Verification time

IronMask maskVerif matverif

ISW mult LR

7
NI 7sec 1min30sec 24sec
SNI 8sec 3min56sec 25sec

8
NI 4min 6sec 2h 10min 5min 19sec
SNI 5min 15sec 6h 30min 5min 15sec

9
NI 2h 22min - 2h 3min
SNI 3h 7min - 1h 58min

ISW mult
refreshed

NLR

6
NI 2sec 3sec N/A

SNI 3sec 10sec N/A

7
NI 3min 41sec 1min 50sec N/A

SNI 6min 8min 16sec N/A

8
NI 8h 52min 2h 2min N/A

SNI 14h 46min 10h 4min N/A

NI mult
[19]

LR

7

NI

1sec 1min50sec 5sec
8 5sec 2h 10min 9sec
9 2min50sec - 40sec
10 6h 28min - 1h 40min

SNI mult
[19]

LR

7

SNI

1sec 6min 8sec
8 46sec 6h 26min 17sec
9 24min - 4min 37sec
10 24h - 1h 54min

refresh
n log n

LR

9
NI 1sec < 1sec 1sec
SNI 24sec 2sec 1sec

10
NI 1sec <1sec 10sec
SNI 16min 9sec 10sec

11
NI 1sec <1sec 3min
SNI 7h 50min 1min 3min

12
NI 1sec <1sec 3h 35min
SNI - 5min 1h 52min

Overall, the three tools have similar performance, and allow to analyse gadgets up to simi-
lar masking orders, although each tool has its strengths and weaknesses. For instance, maskVerif

performs better on LR-gadgets, while matverif shines on LR multiplications. In the following, we
investigate in more details the relative speed of each tool.

To analyse the performance of IronMask compared to matverif, five main factors need to be
taken into account. First, matverif’s method to verify a tuple of probes on an LR-gadget has a
complexity linear in the tuple’s length, while our SIS LR method has the complexity of a Gaussian
elimination which in our implementation is quadratic in the tuple’s length. Second, the dimension
reduction performed by IronMask is faster than that of matverif in most cases, probably because
ours is written in C and matverif’s in SageMath. Third, our dimension reduction often removes more
wires, resulting in fewer tuples to consider. Fourth, matverif needs to be recompiled for each gadget.
Fifth and last, on linear gadgets (add and copy) and when checking (n� 1)-NI, IronMask uses the
constructive algorithm (see Section 4.5), which is much faster than any enumerative algorithm.

23



It can be observed through Table 6 that the scale of the speedups o↵ered by IronMask compared
tomatverif andmaskVerif depends mostly on the structure and nature of the gadgets. We will explain
hereafter the reason for this scaling depending on the tested gadgets.

matverif tends to be slower than IronMask at smaller masking orders, and at any order when
checking (n � 1)-NI on linear gadgets. However, at the highest masking orders, the cost of the
dimension reduction and the recompilation of matverif become negligible compared to the main
enumerative algorithm. matverif thus becomes faster than IronMask, thanks to its complexity linear
in the tuples’ length (compared to the quadratic complexity of IronMask’s SIS LR primitive).

On the standard ISW multiplication and the multiplication from [19], both matverif and Iron-

Mask outperform maskVerif thanks to the dimension reduction they use (see Section 4.3), which is
not implemented in maskVerif. For instance, the 7-order ISW multiplication contains initially 220
variables, but only 77 remain after the dimension reduction.

On the double-SNI ISW multiplication with a circular refresh on the inputs, the dimension
reduction is much less potent. For the 6th-order double-SNI multiplication, 175 probes must thus be
taken into account, against 57 for the standard 6th-order ISW multiplication. As a result, maskVerif

and IronMask have similar performance on this gadget.

The n log n refresh is obviously NI at any order, since at no point are multiple secret shares part
of the same probe. maskVerif seems to have a special rule to detect that, resulting in a verification of
NI that is almost instantaneous. We did not add this special rule in IronMask, but our constructive
algorithm (presented in Section 4.5) is able to very quickly detect that the gadget is indeed NI.
To check that this gadget is SNI, however, both matverif and IronMask enumerate all tuples, which
becomes very expensive as the masking order grows. As a result, checking that the 11th-order gadget
is SNI with IronMask would require at least a few days. On the other hand, maskVerif does not need
to enumerate all tuples, and is able to much quickly determine that this gadget is SNI, taking just
5 minutes to do so at order 11.

Table 7: Verification time of NI and SNI verification of the ISW multiplication and n log n refresh
by IronMask and SILVER

Gadget Shares Property
Verification time
IronMask SILVER

ISW mult

4
NI <1sec 1sec
SNI <1sec 2sec

5
NI <1sec 9min
SNI <1sec 14min

6
NI <1sec >10h
SNI <1sec >10h

refresh n log n

6
NI <1sec 8sec
SNI <1sec 20sec

7
NI <1sec 7min
SNI <1sec 14min

8
NI <1sec >10h
SNI 2sec >10h

As mentioned earlier, SILVER, while being the only tool mentioned here that is complete on
any gadget, su↵ers from severe performance limitations. This is illustrated in Table 7, which shows
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that SILVER is several orders of magnitude slower than IronMask on the ISW multiplication and
the n log n refresh.

Random Probing Model. Table 8 shows the time needed by VRAPS and IronMask to compute
the maximum tolerated leakage probability of the ISW multiplications when setting cmax to 4
(which is the maximum that is computable by VRAPS in reasonable time). IronMask was not multi-
threaded in this benchmark, and we recall that VRAPS does not support multi-threading. IronMask

is several orders of magnitude faster than VRAPS in addition to being more precise (since VRAPS

can incorrectly classify tuples as failures). The performance gains are explained by several factors.
First, IronMask is written in C, whereas VRAPS is written in SageMath. Second, IronMask uses
a complete technique based on Gaussian elimination to determine if tuples are failures, whereas
VRAPS uses SageMath’s symbolic calculus to iteratively apply simplification rules inspired from
maskVerif. Third, IronMask allocates less memory, and performs its Gaussian elimination on the
fly (see Section 4.4), whereas VRAPS allocates chunks of memory to store batches of tuples, and
restarts the simplifications from scratch for each tuple.

Table 8: Performance of t-RPE verification of IronMask and VRAPS on ISW multiplication gadgets
at orders 4 to 6

Shares t cmax #wires
log2 maximum
tolerated proba

Verification time
IronMask VRAPS

5 2 4 180 [-11.00,-10.67] 3sec 1h 15min
6 2 4 267 -13 17sec 24h
7 3 4 371 [-12.00,-7.83] 24sec 24h

The performance gains of IronMask over VRAPS have two main benefits. First, IronMask can
be more useful for prototyping, since for small cmax it can provide approximate results within a
few seconds. Second, IronMask can compute exact and more precise results by increasing cmax, as
shown in Table 4.

6 Related Work

Many tools have been implemented in the past few years to verify software and hardware masked
implementations. While we do not intend to provide an exhaustive list, we briefly recall the main
lines of works for the verification of probing-like and random-probing like properties.

In 2012, Moss et al. [34] design the first automatic type-based masking compiler to provide
first-order security against DPA. Following this seminal work, Bayrak et al. [10] investigate SMT-
based method to evaluate the statistical independence between leakage and secrets. Eldib, Wang,
and Schaumont [27] extend it to the verification of higher-order targets using a notion very similar
to non-interference. Nevertheless, the complexity of their model counting approach restricts it to
small masking orders.

Barthe et al. [5] then formalize the connection between the security of masked implementation
and probabilistic non-interference. Their method makes it possible to overcome the combinatorial
explosion of observation sets for high orders. The resulting tool, maskVerif, thus verifies reasonable
circuits at reasonable masking orders. After several improvements in the past few years [6,3], it
includes the verification of most probing-like security notions for di↵erent leakage models, including
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the robust probing model in the presence of glitches. Its extension into scVerif [20] captures even
more advanced hardware side e↵ects [8]. In the same line of work, checkMasks [23] o↵ers the same
functionalities with a larger scope (e.g., verification of Boolean to Arithmetic masking conversion)
and also a polynomial time verification on selected gadgets. In the same vein, Zhang et al. use
abstraction-refinement techniques to improve scalability and precision with their tool SCInfer [36]
whose complexity remains significant. Bordes and Karpman [19] also improves accuracy with the
elimination of false negatives.

In a parallel sequence of work, Rebecca [18] was designed to verify the probing security in
presence of glitches directly on Verilog implementations. It preceded the similar improvement on
maskVerif to also handle hardware implementations. One step further, Coco [29] was designed to
check masked software implementations given any possible architectural side e↵ects. Inspired from
Rebecca, it analyzes a CPU design as a hardware circuit and investigates all the potential leaks of
several shares. Finally, SILVER [33] o↵ers the verification of the classical probing-like security prop-
erties for hardware implementations with a complete method based of the analysis of probability
distributions.

Since the few past years, the community has made important e↵ort to provide designs in the
more realistic random probing model, see e.g. [1,26,2,13,16,20]. The random probing expandability
(RPE) approach developed in [13] currently gives the best complexity to achieve arbitrary random
probing security with a constant (and quantifiable) leakage probability. VRAPS [13] was the very
first tool to verify random probing properties and it was followed by STRAPS [20], which addition-
ally provides a probabilistic mode to boost the performances, but still does not provide a complete
verification method since it uses a set of verification rules from maskVerif which by construction
are not complete.

While all existing verification tools struggle to scale either to higher orders or to larger algo-
rithms, a di↵erent and complementary approach consists in compiling programs that are secure
by design using the composition security properties of some gadgets. This is notably the case of
maskComp [6], which tackles the composition problem by introducing the (S)NI notions. This com-
piler is based on standard t-SNI gadgets (built from the ISW scheme [32]) and inserts t-SNI refresh
gadgets at carefully chosen locations for the whole implementation to be t-NI. This was further
improved in tightPROVE [15] and tornado [14], which rely on the same gadgets and inserts t-SNI
refresh gadgets only when mandatory for the circuit to be t-probing secure.

7 Conclusion

In this paper, we introduce IronMask, a new tool for the formal verification of masking security.
Our tool is versatile: it supports the verification of many probing and random probing security,
composition and expandability notions. We further introduce a new algebraic characterization for
quadratic gadgets with non-linear randomness which notably captures multiplication gadgets re-
freshing their inputs (which have recently been used in di↵erent state-of-the-art masking schemes).
From this characterization, we design a complete verification method in the sense that it produces
complete verification results (which are notably not a↵ected by false positives). We provide a de-
tailed description of the di↵erent algorithms, data structures and optimizations composing our tool.
We also introduce a new constructive method for the exhaustive enumeration of so-called incom-
pressible failure tuples. This approach provides speed-up in some cases (specifically for RPS and
NI notions).
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We developed (in C) and benchmarked the implementation of IronMask, which, enjoying various
optimizations, will be made open source. For standard probing security notions (NI, SNI), IronMask

has similar performance as existing high-performance tools (maskVerif & matverif), while having
the advantage of providing complete results for quadratic gadgets with non-linear randomness.
It is also several order of magnitude faster than SILVER, the only other tool providing complete
results for those gadgets. For random probing security notions (RPC, RPE) our tool is several
orders of magnitude faster than, and also complete compared to, the previous tool VRAPS. These
completeness and increased performance allow us to report tighter and better bounds for RPE
masking gadgets, which improve the tolerated leakage probability of state-of-the-art random probing
secure compilers.
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15. Sonia Beläıd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits: Achieving probing security with
the least refreshing. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273
of LNCS, pages 343–372. Springer, Heidelberg, December 2018.
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A Proof of Lemma 2

Proof. The proof follows the di↵erent steps of the method described above. All the statements hold
from Lemma 1 except that the sets I1, I2 are necessary and su�cient for a perfect simulation of
~P
00. We prove this statement hereafter.
For any random distributions D~x1 and D~x2 over Kn, we denote D~P

the distribution induced

on ~P by picking ~x1  D~x1 , ~x2  D~x2 , ~r1  K⇢1 , ~r2  K⇢2 . Then I1 and I2 are the minimal
sets such that for any distributions D~x1 and D~x2 , there exists a probabilistic algorithm S (the

simulator) which given ~x1|I1 and ~x1|I2 outputs a tuple ~P which is i.i.d. as D~P
w.r.t. the random

draw ~x1  D~x1 , ~x2  D~x2 and the random coins of S.

Direction 1: The sets (I1, I2) are necessary to simulate ~P
00. Here we need to perfectly simulate the

distribution of ~P
00 given the random samplings ~x1  D~x1 , ~x2  D~x2 , ~r1  K⇢1 , ~r2  K⇢2 for any

distributions D~x1 and D~x2 over Kn. Let us consider the uniform distribution for D~x1 then the m first

coordinates of ~P 00 (i.e. the expressions of the form (8)) can be written as ~P
00
|[m] = (~u·~hp001 , . . . , ~u·

~hp00m),

where ~u is a vector uniformly sampled on Kn+⇢1 . Recall that the ~hp00i ’s corrdinates are expressions
of the form (6) w.r.t. (~x2,~r2).

Given the values taken by the ~hp00i ’s we can have di↵erent distributions for ~P
00
|[m]. A particular

case is the distribution “~P 00
|[m] = ~0 with probability 1” which appears if and only if ~hp001 = · · · =

~hp00m = ~0. In order to evaluate the probability of outputting ~P
00
|[m] = ~0 (which must be exact for a

perfect simulation), the simulator must hence evaluate the probability that ~hp001 = · · · = ~hp00m = ~0
occurs, which must be further conditioned on the remaining expressions p

00
i
of the form (6) w.r.t.

(~x2,~r2) (i.e. the probes on R2). This precisely means solving the linear system obtained from the
expressions in ~P2 which can be done by Gaussian elimination w.r.t. the ~r2 variables (just as what
is actually performed by step 4 of the verification method). The resulting equations without ~r2

variables imply some linear constraints on some of the shares from ~x2. These shares must then
be known by the simulator in order to decide if the system has a solution (and to evaluate the
probability to get ~hp001 = · · · = ~hp00m = ~0). Moreover, these shares are by construction the shares of
indexes in I2.

The exact same proof apply to I1 by taking the uniform distribution for D~x2 and considering
the expressions of the form (9) (together with the the probes on R1).
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Direction 2: The sets (I1, I2) are su�cient to simulate ~P
00. Suppose that we can perfectly simulate

the tuples of algebraic expressions ~P1,
~P2 using sets of input shares I1 on input sharing ~x1 and I2

on ~x2 respectively as described in step 4 above. Let two new sets of input shares Ĩ1 = [n] on ~x1 and
Ĩ2 = [n] on ~x2.

Observe first that we can perfectly simulate ~P 00 using the sets of input shares Ĩ1 and I2. In fact,
in the algebraic expression of each probe p

00
i
in ~P 00 of the form (8), the coordinates of the ~h

(p00i )’s

can all be perfectly simulated using I2 since by hypothesis we can perfectly simulate ~P2. Also, the
randoms in ~r1 are perfectly simulated by generating uniform random values, and all shares of input
~x1 are simulated using the full input sharing in Ĩ1 = [n]. Since we can perfectly simulate each term
in the expression of p00

i
, then we can perfectly simulate the expression p

00
i
and hence we can perfectly

simulate ~P 00 using Ĩ1 and I2. Similarly, we can perfectly simulate ~P 00 using the sets of input shares
I1 and Ĩ2 = [n] by observing the expressions of p00

i
of the form (9).

Thanks to [11, Lemma 7.5] (which demonstrates that if a set of probes can be simulated from
di↵erent sets of inputs shares, then it can also be simulated by the intersection of these sets), we
get that ~P 00 can be perfectly simulated using the sets of input shares Ĩ1 \ I1 = I1 and Ĩ2 \ I2 = I2,
which proves that by perfectly simulating the tuples ~P1,

~P2 using I1, I2, we can perfectly simulate
~P 00 using I1, I2. This concludes the proof for this direction.

B Dimension Reduction

We recall hereafter the principle of the dimension reduction optimizations from [11,19] and show
how to make the first one work in the random probing model, and why the second one cannot be
used in this model.

Removing elementary probes. Elementary deterministic probes refer to input shares, and products
of input shares. The idea behind the removal of those probes is that if a tuple P functionally
depends on k input shares, we can always make it depend on k + k

0 input shares (with k + k
0 less

or equal to the number of shares of the gadget) by adding elementary deterministic probes. For
instance, if a tuple t does not depend on the input share a0, then the tuple (t, a0) does, and so do
any of the tuples of the form (t, a0bi).

The goal of our search procedure, instead of finding tuples of size k1 that depend on t input
shares, now becomes to find tuples of size k2  k1 that depend on t� (k1� k2) input shares. In the
probing model, the existence of such a tuple is enough to know that the property being checked
does not hold. In the random probing model, however, we want to generate and count all failures.
When we find such a tuple P , we thus generate all expansions of P combined with elementary
deterministic probes that leak t input shares, thus making sure that all failures of the gadget are
generated.

Similarly, we can remove elementary random probes: if, after the Gaussian elimination on a
tuple P , some input shares are masked by random variables, we can make them appear by adding
the corresponding randoms. For instance, consider the 1-element tuple a0+r1+a1. It is easy to see
that adding r1 to this tuple would make it leak a0 and a1. For simplicity, we keep elementary
random probes when checking random probing properties, and only perform this optimization for
probing properties.

Using reduced sets. This optimization is formally introduced and proven correct in [19]. For com-
pletness, we informally recall its principle here.

30



Let P and P
0 be two sets of probes. P 0 is said to be a reduced set for P i↵ #P

0
 #P and

for every linear combination of probes of P , there exists a linear combination of P 0 using an equal
or lower amount of probes, which contains exactly the same random dependencies, and at least as
many input share dependencies. [19] proved that if P is a set of all wires of a gadget G and P

0 is
a reduced set for P , then, to prove that G is NI or SNI, the set of probes P

0 can be used instead
of P to enumerate all tuples. If no failure is found in P

0, then none can be found in P either, and,
conversely, if a failure is found in P

0, the same failure exists in P .
For instance, if we consider a set P = { r0, a0, a1, a0 + r0, a0 + r0 + a1 }, then the

set P 0 = { r0, a0, a1, a0 + r0 + a1 } is a reduced set for P . Evaluating the probing security
of a gadget using the latter would yield the same conclusion as with the former, while being faster
since the latter contains one less probe.

This optimization is especially potent on ISW-like multiplications, which contain a lot of wires
of the form X + aibj : the wire X can often be omitted since (informally), X + aibj contains the
same random dependencies as X, but, additionally, contains some additional input shares.

In the random probing model, this optimization cannot be used, because the a set P and a
reduced set P

0 would yield di↵erent failures. For instance, consider the sets proposed earlier as
example: P = { r0, a0, a1, a0 + r0, a0 + r0 + a1 }, and P

0 = { r0, a0, a1, a0 + r0 +

a1 }. The tuple (a0+r0,a0+r0+a1,a1), made of wires of P , reveals 2 input shares, and cannot be
build from wires of P 0, since a0+r0 is not in P

0.

C Incompressible tuples

Checking whether a tuple is a failure or not with the SIS procedure is expensive, especially in
multiplication gadgets with refreshes on the inputs, where we need to factorize multiplications and
perform a total of 3 Gaussian eliminations. An idea from [13] to tackle this issue is to use the notion
of incompressible failure tuple (Definition 4).

To speed up the verification, we can keep all incompressible failures in a data structure. Then,
to check whether a tuple P is a failure, we can start by checking if any subtuple P

0
⇢ P is an

incompressible failure. If so, then there is no need to perform the Gaussian eliminations. If no P
0

is an incompressible failure, then the full verification must be applied. If P is thus found to be a
failure, then it is incompressible by definition, and is added to the set of incompressible failures.

For instance, consider the 2-share ISW multiplication of Figure 1a. When considering tuples of
size 2, we would find that one of the failures is the tuple P1 = (a0*b1+r0+a1*b0, r0), since it
leaks both shares of a (and b for that matter). Then, when moving on to tuples of size 3, we would
eventually consider the tuple P2 = (a0*b1+r0+a1*b0, r0, a0). Instead of performing a Gaussian
elimination to determine wether P2 is a failure or not, we could simply observe that it contains P1,
which we already know to be a failure. We can thus conclude that P2 is a failure as well, without
having to perform the Gaussian elimination.

VRAPS [13] uses a list to store the incompressible failures. As a result, the more incompressible
failures had been computed, the more expensive membership-checking became. Instead, we use a
trie (or prefix tree). Testing membership of a tuple P of size k inside a trie has complexity ✓(k),
and, if P is not in the trie, the search stops strictly before k steps. This is better than a hash table
as well, which would require to hash the whole tuple in at least k steps, regardless of whether P is
in the hash table or not.

The weakness of this optimization is that for a tuple P of size k, it requires to check all 2k

subtuple P
0
⇢ P . This e↵ective complexity can be improved because we use a trie. For instance, if
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Table 9: Columns map for the constructive generation of incompressible tuples of Figure 1b
input shares randoms

a0 a1 a2 r0 r1 r2

a0 a1 a2 r0 r1 r2

a0 + r0 a1 + r0 a2 + r1 a0 + r0 a2 + r1 a1 + r0 + r2

a1 + r0 + r1 a1 + r0 + r2 a2 + r1 + r2 a1 + r0 a2 + r1 + r2 a2 + r1 + r2

a0 + r0 + r1 a0 + r0 + r1

the tuple (p1, p2) is not a valid path in the trie, then no tuples (p1, p2, pi) can be in the trie either.
Still, the benefits of this approach depend on the size of the gadget, the number of multiplications,
and the size of the tuples.

VRAPS [13] is written in SageMath and uses expensive symbolic computation to determine
whether tuples are failures or not. As a result, this optimization, albeit implemented with a list
instead of a trie, was enough to speed up the verification. In our case, the benefits of this optimiza-
tion are more situational, and can only be seen on some multiplication gadgets with input refreshes.
Still, incompressible tuples are at the core of our new approach to compute failures, introduced in
Section 4.5.

D Constructive algorithm

The enumerative approach of Section 4.2 generates a lot of tuples which are trivial non-failures
because they do not contain enough shares to be failures, or their shares are masked by random
variables. Thus, we designed a constructive algorithm to only generate potential failures. More
precisely, our constructive algorithm aims at generating incompressible failure tuples, which are
defined in [13] as follows:

Definition 4 (Incompressible failure tuple). A tuple ~P is an incompressible failure tuple if it
is a failure, and if no tuple ~P 0 ⇢ ~P is a failure itself. (⇢ between two tuples means that all wires of
~P 0 are included in the tuple ~P ).

Note: The notion of incompressible failure tuple was used in VRAPS [13] to speed up the enumerative
verification of random probing properties. We investiguated this technique, and improved on the
implementation of [13] but observed that given the current high performance of our implementation,
the optimization from [13] in not advantageous in our case (see Appendix C for more details).

We will start by describing our constructive algorithm for the well-adapted case of LR-gadgets
and then explain how to extend it to NLR-gadgets. The idea is that given wires which are all of the
form (5), a failure tuple of probes on these wires has a specific form: it contains some wires with
input shares, and if those input shares are masked by randoms, it contains some additional wires to
cancel out those randoms. The expression masked by randoms means that the perfect simulation
of the considered probe amounts to generating a uniform random value. This is typically the case
in a tuple of probes where a random value appears only once in one of the expressions, which then
can be used to mask the expression of that probe. To cause a failure event and avoid masking the
expressions, additional wires using the same randoms are added to cancel them out.

We start by giving the intuition of the algorithm on the 3-share refresh gadget presented in
Figure 1b. We first build a map (Table 9), called Columns, whose keys are the input shares and
randoms of the gadget considered, and whose values are all the wires that depend on those inputs
and randoms (a wire will be displayed in several columns if it depends on several shares and/or
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Algorithm 5 Our constructive algorithm to generate failures. G is the gadget we are considering
and n is the number of shares required for a tuple to be a failure.

1: procedure UnmaskTuple(G, S, ~P , unmask index )
2: if ~P is a failure then
3: if ~P is incompressible then
4: S  S [ {~P}
5: return
6: if unmask index > length(~P ) then
7: return
8: UnmaskTuple(G, S, ~P , unmask index+1)
9: ~PGauss  GaussElimination(~P )
10: if ~PGauss[unmask index ] contains no randoms then
11: return
12: r  any random from ~PGauss[unmask index ]
13: for each wire w of G containing r and not in ~P do
14: ~P 0  ~P [ w

15: UnmaskTuple(G, S, ~P 0, unmask index+1)

16: procedure ConstructiveFailuresGenLR(G, n)
17: S  ;
18: for each tuple ~P in L do
19: UnmaskTuple(G, S, ~P , 0)

20: return S

randoms). To build a failure tuple that leaks 3 shares, we can pick one wire from each of the a0, a1
and a2 buckets, say (a0, a1+r0,a2+r1) for instance. This tuple is not a failure because the shares
a1 and a2 are masked by the randoms r0 and r1 (the two random values appear only once in the
tuple and can be used to mask the corresponding expressions). We thus pick a wire from the r0

bucket and add it to the tuple, say a0 + r0 + r1 (which happens to cancel r1 as well as r0). The
resulting tuple is (a0,a1+r0,a2+r1,a0+r0+r1), which is a failure. By doing this for every possible
wire of each column, we can generate all failures of the gadget of Figure 1b.

Algorithm 5 introduces more formally this procedure for LR-gadgets. This algorithm lists all of
the tuples composed of one element from each input share column (line 18); we note the resulting list
L. Note that those tuples might have some duplicates since some wires appear in several columns:
these duplicates are removed while building the tuples (which implies that the tuples in L contains
possibly less than n elements).

Then, for each tuple in L, the recursive procedure UnmaskTuple adds wires to the tuple so
as to cancel the randoms that mask its input shares. This procedure takes at argument the circuit
G, the set of incompressible tuples already computed S, a tuple ~P that needs to be turned into
a failure and an integer unmask index that contains the next index of ~P that we should try to
unmask. First, UnmaskTuple checks if ~P is a failure (line 2). To do so, we can use the procedure
SIS LR (Algorithm 1). If ~P is a failure, we then check if it is incompressible (line 3) by checking if
any tuple ~P 0 ⇢ ~P is already in S. Ignoring line 8 for now, a Gaussian elimination is then performed
on ~P (line 9). If the unmask index th element of the resulting tuple ~PGauss contains no random, then
there is nothing to unmask, and we can move on to the next index (which was actually already
done by line 8). Otherwise, we select any random r of ~PGauss and try to add to ~P each wire that
contains r (i.e., each wire of the r column of the Columnsmap, and move to the next unmask index
(lines 12 to 15).
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As a matter of fact, unmasking each element of ~P one by one misses some failures. This is the
reason for line 8, which basically skips the unmasking of the element of ~P at index unmask index
to move directly to index unmask index+1. Consider for instance a 2-share gadget and the tuple
~P = (a0+r0, a1+r1+r0). After the Gaussian elimination, the 1st element of ~P is r0, and lines 12
to 15 of UnmaskTuple will thus try to add a wire containing r1 to the tuple. However, this would
be missing the fact that the 2nd element of ~P , a1+r1+r0, already contains r1 and thus somewhat
unmasks a0+r1. By skipping the first element of ~P , we will then try to unmask its second element,
by adding the wire r1 to the tuple for instance. This will produce the tuple (a0+r0, a1+r1+r0,r1),
which is a failure, and would have been missed without the recursive call of line 8.

This constructive method is exhaustive since any incompressible failure tuple ~P can be built by
taking one elements in each column (and possibly remove duplicates) and then adding necessary
elements to remove the masks. More precisely, consider a minimal sub-tuple of ~P which contains
one element of each column. This sub-tuple ~P

0 will be listed in line 8. The other coordinates of ~P

are necessary to remove the masks remaining after an application of the Gaussian elimination to
~P
0 (otherwise ~P would not be incompressible). Since Algorithm 5 is exhaustive in the removal of

those masks, it will necessarily build ~P at some point.

Implementation. Our implementation of UnmaskTuple in Algorithm 5 does not perform a full
Gaussian elimination at every recursive call. Instead, the elimination is performed on the fly, sim-
ilarly as we do for the enumerative algorithm (see Section 4.4). Likewise, we keep a variable in-
put shares containing the input shares already revealed by the current tuple ~P , which enables to
check if ~P is a failure in constant time, without having to call SIS LR: we can simply check if
input shares contains n input shares.

Extension to gadgets with non-linear randomness. The procedure UnmaskTuple of Algorithm 5
only considers gadgets with linear randomness. To adapt it for gadgets with non-linear randomness,
we proceed in a similar manner as in SIS NLR (Algorithm 2): a first step unmasks randoms that are
used to refresh outputs, while a second step unmasks randoms that are used to refresh inputs. We
call ConstructiveFailuresGenNLR this version of our constructive algorithm and define Con-
structiveFailuresGen as the function that chooses between ConstructiveFailuresGenLR
and ConstructiveFailuresGenNLR depending on wether its input gadget contains linear or
non-linear randomness.

Application. Algorithm 6 shows how to use ConstructiveFailuresGen to compute all failures
of a gadget. While the latter returns all incompressible failures, to evaluate the failure function
coe�cients for random probing notions (RPC, RPE1, RPE2, RPS?), we need to count the number
of all failures, regardless of their incompressibility. To do so, we expand all incompressible failures
into regular failures by adding wires one by one (using the procedure ExpandTuple, whose pseudo-
code is trivial and left out for conciseness). However, doing so will lead to the same tuple being
generated multiple times: for instance, if the tuples (x1, x2) and (x1, x3) are both incompressible
failures, expanding them will generate (x1, x2, x3) and (x1, x3, x2), which are the same tuple.
We thus use a hash table (called Sfailure in Algorithm 6, and abstracted as a set for simplicity) to
store the tuples that we generate and prevent counting multiple times the same tuple. In practice,
our hash function returns the sum of the hashes of the indices of wires in the tuple, which results
in a fairly low number of collisions.
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Algorithm 6 GetCoeffsRPconstr returns an array of cmax cells where the k
th index contains

the number of failure tuples of size k in G

procedure GetCoeffsRPconstr(G, cmax)
coe↵s  empty array
t number of shares in G

Sincompr  ConstructiveFailuresGen(G, t)
Sfailure  ;
for k = 1 to cmax do

S
0
failure  all tuples of Sincompr of size k

for each tuple ~P of Sfailure do
S

0
failure  S

0
failure[ ExpandTuple(~P )

Sfailure  S
0
failure

coe↵s[k]  number of tuples in Sfailure

return coe↵s

Remark. We initially tried to count the failures from the incompressibles failures without generating
all of them. This problem can be formulated as follows: Let W be a set of integers (the wires). Let
S be a set of subsets of W of arbitrary sizes (the set of incompressible failures). How many subsets
of W of size k are super-sets of elements of S (those subsets are non-incompressible failures)? This
is a problem of inclusion-exclusion, and solving it requires computing the intersections of all pairs
of sets in the powerset of S. Since there are 2|S| such sets, this approach would be prohibitively
expensive for any gadget with more than a few incompressible failures.

Limitations. Many tuples are generated multiple times by this constructive algorithms, each time
through a di↵erent path in the recursion. For instance, on the refresh gadget of Figure 1b, the tuple
(a0,a1+r0,a2+r1,a1+r0+r1) can be generated by selecting (a0,a1+r0,a2+r1) as the initial tuple
(line 18 of Algorithm 5), and then adding a1+r0+r1 at line 14. However, the same tuple can also
be generated by selecting (a0,a1+r0+r1,a2+r1) line 18 and then adding a1+r0 line 14. This
phenomenon is even more impactful when dealing with multiplication gadgets, because multiple
shares of the same input will appear on the same wire, resulting in larger columns (in particular
in the “inputs” part of the Columns map), which can lead to a worst complexity than simply
enumerating all tuples.

Additionally, when checking properties t-NI with t < n � 1 or other properties where a tuple
can reveal less than n�1 input shares and yet be a failure (e.g., SNI, RPC, RPE), the constructive
algorithm is often slower than the traditional enumerative one. Regardless of the property being
checked and the failure condition, the constructive algorithm enumerates all tuples. However, with
the constructive algorithm, for an n-share gadget, to generate tuples of that leak k shares, all

�
n

k

�

possible combination of shares must be tested. For instance, on our running example of Figure 1b,
to generate all failures leaking 2 shares, we would generate all failures leaking the 1st and the 2nd

shares, then the ones leaking the 1st and the 2nd share, and, finally, the ones leaking the 2nd and
the 3rd share. This formula is also true when checking NI and RP, except that in that case, all n
shares must leak, which means that only

�
n

n

�
= 1 combination needs to be tested.
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