
Small Leaks Sink a Great Ship: An Evaluation of
Key Reuse Resilience of PQC Third Round

Finalist NTRU-HRSS

Xiaohan Zhang, Chi Cheng, Yue Qin, and Ruoyu Ding

China University of Geosciences, Wuhan, 430074, China
{chengchi}@cug.edu.cn

Abstract. NTRU is regarded as an appealing finalist due to its long
history against all known attacks and relatively high efficiency. In the
third round of NIST competition, the submitted NTRU cryptosystem is
the merger of NTRU-HPS and NTRU-HRSS. In 2019, Ding et al. have
analyzed the case when the public key is reused for the original NTRU
scheme. However, NTRU-HRSS selects coefficients in an arbitrary way,
instead of fixed-weight sample spaces in the original NTRU and NTRU-
HPS. Therefore, their method cannot be applied to NTRU-HRSS. To
address this problem, we propose a full key mismatch attack on NTRU-
HRSS. Firstly, we find a longest chain which helps us in recovering the
following coefficients. Next, the most influential interference factors are
eliminated by increasing the weight of targeted coefficients. In this step,
we adaptively select the weights according to the feedbacks of the oracle
to avoid errors. Finally, experiments show that we succeed in recovering
all coefficients of the secret key in NTRU-HRSS with a success rate of
93.6%. Furthermore, we illustrate the trade-off among the success rate,
average number of queries, and average time. Particularly, we show that
when the success rate is 93.6%, it has the minimum number of queries
at the same time.

Keywords: Post-quantum cryptography · Lattice based cryptography
· NTRU · Public key reuse · Key mismatch attack.

1 Introduction

Under the threat of rapid development of quantum computers [15], the current
public key algorithms which base their security on number theoretic problems
will no longer be safe. For example, the RSA and DH algorithms relying on
integer factorization and discrete logarithm problems could be broken as shown
in Shor’s pioneer paper [27]. To thwart attacks from quantum computers, the
cryptography community has prompted to look for a new cryptosystem, which
is called post-quantum cryptography (PQC) [7].

The National Institute of Standards and Technology (NIST) has started a
project to select and evaluate PQC algorithms against both classical and quan-
tum computers ever since 2016 [21]. The second round NIST PQC standardiza-
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tion process has been completed on July, 2020 [1]. On the finalists, the lattice-
based public key encryption (PKE) or key encapsulation mechanism (KEM)
algorithms draw significant attention, since there are 3 out of 4 candidates, KY-
BER [3], SABER [12], and NTRU [6]. NIST aims to standardize at most one of
them when the third round ends. Among them, NTRU has been regarded as a
compelling one due to its long history against known attacks and relatively high
efficiency [1].

Currently, it can be noted that in the widely adopted Internet standards,
the key reuse mode is commonly used. For example, in the released Transport
Layer Security (TLS) 1.3 [26], the key pair in the pre-shared key mode is reused.
However, key reuse may cause attacks in lattice-based key exchange [18]. In
general, key reuse attacks can be divided into signal leakage attacks [8, 13] and
key mismatch attacks [10]. The main reason for the signal leakage attack is that
if the key is reused, the relevant signal information used for key recovery leaks
the relevant information of the secret key. Meanwhile, the key mismatch attack
is to query the two communication parties whether the shared keys match or
not, analyzing the feedbacks to recover the secret key.

Nowadays, a series of key mismatch attacks have been successively proposed.
In [10], a key mismatch attack was proposed by Ding et al. on the one pass case
of [11], in which no information leaked by the signal function was used. Later,
Bauer et al. [5] proposed a key mismatch attack against a PQC second round
candidate NewHope [2]. In [23], Qin et al. showed that the recovery in Bauer et
al. was incomplete, and then proposed an effective key recovery scheme. Okada
et al. followed closely, and in [22] they further improved Qin et al.’s method.
Later, the work of [14] gave a key mismatch attack on another PQC second
round candidate LAC. In [24], a key mismatch attack is proposed against Kyber.
Băetu et al. proposed a classical key mismatch attack as well as a quantum key
recovery [4]. In [25] Qin et al. gave a systematic approach to find bounds of key
mismatch attacks against all the NIST candidate KEMs.

Unlike the protocols based on Ring Learning with Errors (RLWE) problem
[20] or Modular Learning with Errors (MLWE) problem [19], the NTRU cryp-
tosystem submitted to the NIST [6] is operated in a different polynomial ring
which modulo xn − 1. Therefore, these attacks proposed by Ding et al. [10],
Qin et al. [23] or Okada et al. [22] cannot be directly applied to the NTRU
cryptosystem [6]. The main reason is that NTRU lacks the structure of affine
transformation, making it difficult to recover the secret key using the previous
method.

In 2019, Ding et al. [9] proposed a key mismatch attack on the original NTRU
scheme [16]. As we know, the coefficients of the secret key in NTRU belong to
{−1, 0, 1} and there is a longest chain of consequent coefcients that consists of
either consecutive 1s or consecutive -1s of a secret key at least. With the longest
chain, they proposed an elegant method, which is claimed to recover all the
coefficients in the secret key.

However, their method cannot be directly applied to the current whole NTRU
cryptosystem. The NTRU cryptosystem submitted to the third round of NIST
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competition [6] is a merger of NTRU-HPS [16] and NTRU-HRSS [17]. One of
the most important differences is that they compute on cyclotomic polynomials
Φ1 = x − 1 and Φn = xn−1 + xn−2 + · · · + 1, instead of xn − 1 in the original
NTRU. Another important difference is that NTRU-HPS is similar to the original
NTRU scheme, which still selects coefficients from fixed-weight sample spaces.
While NTRU-HRSS selects coefficients in an arbitrary way. Therefore, Ding et
al.’s method still works for NTRU-HPS, but cannot be applied to NTRU-HRSS.

Contributions. In this paper, we propose a complete key mismatch attack
on NTRU-HRSS. The main contributions of this paper include:

1. We investigate the resilience of the NTRU-HRSS KEM under a misuse case:
we assume that the same key is reused for multiple key establishments and
an attacker can use a key mismatch oracle.

2. Unlike the direct recovery of secret key in Ding et al’s method, we recover
the product of a secret key and a cyclotomic polynomial, which is also the
reason why Ding et al.’s method cannot be applied directly. Specifically, we
first find a longest chain. After that, we increase the weight of targeted coef-
ficients to eliminate the most influence of disturbances. Considering that the
introduction of weight may lead to the errors in the recovery, we adaptively
select the weights according to the feedbacks of the oracle to avoid errors.

3. As verified by the experiments, our improved method can recover all the
coefficients in the secret key with a probability of 93.6%. Moreover, by eval-
uating the trade-off between the success rate and average number of queries,
we can achieve minimum number of queries with a success rate of 93.6% at
the same time.

Organization of this paper. In Section 2, we introduce the basic notions
and describe the NTRU-HRSS KEM. In Section 3, we propose a complete key
mismatch attack on NTRU-HRSS KEM. We give the experimental results and il-
lustrate the trade-off among the success rate, average number of queries, average
time in Section 4. Finally, the conclusion is given in Section 5.

2 Preliminaries

2.1 Notations

In NTRU, n, p and q are coprime integers. We denote the i-th cyclotomic poly-
nomial by Φi. Specifically, Φn = xn−1 + xn−2 + · · · + 1, Φ1 = x − 1, and
Φ1Φn = xn − 1. Zq represents the integer ring modulo q. Let Zq[x] represent a
polynomial ring, in which all polynomial coefficients are selected from Zq.

We further define the polynomial ringsRq = Zq[x]/(xn−1),R′q = Zq[x]/(Φn),
and R′p = Zp[x]/(Φn). Here, all polynomials are in bold. A polynomial P in Rq

is of degree at most n − 1 with coefficients in Zq. If a polynomial P′ belongs
to R′q, it is a polynomial of degree of n − 2 with coefficients P′[i] belonging

to the set Zq, where P′[i] (0 ≤ i ≤ n − 2) represents the ith coefficient of the
polynomial P′. P and P′ can also be represented as a vector with n and n − 1



4 Zhang et al.

coordinates, respectively. For a real number x, the operation dxe represents the
smallest integer not less than x.

NTRU was originally presented as a probabilistic public key encryption
(PPKE) scheme in [16]. In the third round NTRU submission, PPKE is replaced
with the deterministic public key encryption (DPKE) scheme and all aspects of
the designs are unified except for the use of fixed-weight sampling. Specifically,
the probability of occurrence of -1, 0 and 1 are 85

256 , 86
256 , 85

256 , and we can easily

sample them from (
7∑

i=0

2ibi) mod 3. Here bi is randomly selected from {0, 1}.

2.2 NTRU-HRSS KEM

Table 1. The CPA version of the NTRU-HRSS KEM

Alice Bob

f ∈ F+ , g ∈ F+

fq ←− f−1 ∈ R′q
fp ←− f−1 ∈ R′p
h←− pgΦ1fq ∈ Rq

hq ←− h−1 ∈ R′q
h−−−−−→ r ∈ R′p , m ∈ R′p

a← cf ∈ Rq
c←−−−−− c← rh + Lift(m) ∈ Rq

m′ ← afp ∈ R′p
r′ ← (c− Lift(m′))hq ∈ R′q
if (r′,m′) ∈ R′p ×R′p

Return(r′,m′, 0);
else

Return(0, 0, 1);

The most important definitions in the NTRU-HRSS KEM are shown as be-
low.

Definition 1. The Lift function Lift: R′p → Rq is defined as P′=Lift(m),

P′ = m(Φ−11 mod (p,Φn))Φ1. (1)

Definition 2. Non-negative-correlation:

F+ = {P ∈ R′p : 〈xP,P〉 ≥ 0}. (2)

In NTRU-HRSS, n = 701, q = 8192, and p = 3 are employed. It consists of
three parts:
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(1) Alice selects f and g uniformly at random from F+. Then she computes
the inverses of f in R′q and R′p as fq and fp. Next she computes the public key
h←− pgΦ1fq and the inverse of h in R′q. Finally, she sends h to Bob.

(2) After receiving h, Bob selects r and the shared key m uniformly at random
from R′p. Then he calculates the ciphertext c← rh + Lift(m). Subsequently, he
sends c to Alice.

(3) When Alice receives c, she calculates a ← cf, m′ ← afp and r′ ←
(c − Lift(m′))hq. In the end, she checks whether (r′,m′) in message space or
not.

2.3 The Key Mismatch Attack Oracle O

Algorithm 1: The Oracle O
Input: c,m
Output: 1 or 0

1 a← cf ∈ Rq

2 m′ ← afp ∈ R′p
3 r′ ← (c− Lift(m′))hq) ∈ R′q
4 if (r′,m′) ∈ R′p ×R′p and m = m′ then
5 Return 1;
6 else
7 Return 0;

In the process of key mismatch attack on NTRU-HRSS, Alice is an honest
server and the adversary A acts as Bob. For convenience, we build the Oracle O
that plays the role of Alice. In addition, we suppose that public key h is reused
and A has access to the Oracle O many times. The inputs of oracle O are c and
m. Afterwards, O calculates a, m′ and r′ as depicted in Algorithm 1. Next, O
first checks whether (r′,m′) in the message space and then checks whether m =
m′ holds. If both of them are yes, O outputs 1, and 0 otherwise. That is, when
O outputs 1, m and m′ match, otherwise m and m′ mismatch. By observing
the outputs of O, A can get information about the secret key.

2.4 Why Ding et al.’s Method cannot be applied to NTRU-HRSS

To illustrate why Ding et al.’s method cannot be applied to NTRU-HRSS, we
suppose that A directly uses Ding et al.’s method. Then A first needs to find a
longest chain that consists of either consecutive 1s or consecutive -1s of conse-
quent coefcients of the secret key g.

To launch this attack, A sets m as 0 and r[0] = · · · = r[l− 1] = d q
2ple, where

l ranges from 2 to n − 1. Then, A calculates c. Then c and m are sent to the
oracle O.

By receiving the inputs c and m, O first calculates
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a ≡ cf (mod q)

≡ rhf + Lift(m)f (mod q)

≡ rhf (mod q)

≡ prgΦ1fqf (mod q).

(3)

Since fq ∈ R′q, fqf = (1 + tΦn), where t ∈ Z. Further, we have

a ≡ prgΦ1(1 + tΦn) (mod q)

≡ prgΦ1 (mod q)

≡ prg(x− 1) (mod q)

≡ prgx− prg (mod q)

(4)

Next, for i = 0, 1, . . . n− 1, O gets

a[i] ≡

{
p(rg)[n− 1]− p(rg)[0] (mod q) if i = 0,

p(rg)[i− 1]− p(rg)[i] (mod q) otherwise.
(5)

Similarly, since r = (r[0], . . . , r[l − 1])=(d q
2ple, . . . , d

q
2ple), Equation (5) can

be transformed as

a[i] ≡


pd q

2pl
e(g[n− l]− g[0]) (mod q) if i = 0,

pd q

2pl
e(g[(i− l) mod n]− g[i]) (mod q) otherwise.

(6)

The basic idea of Ding et al.’s method is to find a longest chain of length
k to help recovering all the coefficients in g. To achieve this goal, a[i] should
be related to k + 1 coefficients. In original NTRU, the number of 1s and -1s is
equal in g, i.e. g ≡ 0 (mod Φ1), then a[i] is related to k + 1 coefficients. But in
NTRU-HRSS, the distribution of g is modified and g 6≡ 0 (mod Φ1), then a[i]
is only related to two coefficients of g as depicted in Equation (6). Hence, we
cannot use this method to recover the longest chain of g, let alone the remaining
coefficients of g. Therefore, Ding et al.’s method cannot be applied directly.

3 Our Proposed Attack

In this section, we propose an attack on NTRU-HRSS KEM. Firstly, we intro-
duce the parameter choices of the adversary, then propose improvements in two
following subsections, finally describe the complete attack.

3.1 Parameter Choices of the Adversary

We recover G = gΦ1 instead of g in Ding et al.’s method. We say that A
succeeds if he recovers any equivalent of G, which is denoted as G′.
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The equivalent of G. G′ can differ from G by a sign s ∈ {−1, 1} and
a shifting of its coefficients. The relationship between G′ and G is shown as
follows, for some integer v ∈ N,

G′ = s

n−1∑
i=0

G[(i + v) mod n]xi

= sxv
n−1∑
i=0

G[i]xi

= sxvG.

(7)

Now Equation (4) becomes a ≡ prG (mod q) .
And for i = 0, 1, . . . , n− 1, t ∈ Z, we get

a[i] =

 p(rG)[i] if p(rG)[i] ∈
[
−q

2
,
q

2

]
,

p(rG)[i]− tq otherwise.
(8)

Then we have

m′[i] ≡ (afp)[i] (mod p)

≡ (a[0]fp[i] + · · ·a[n− 1]fp[(i + 1) mod n]) (mod p).
(9)

Next, if all p(rG)[i] ∈
[
− q

2 ,
q
2

]
, the corresponding m′[i] is equal to

m′[i] ≡ p(rG)[0]fp[i] + · · · p(rG)[n− 1]fp[(i + 1) mod n] (mod p)

≡ 0 (mod p).
(10)

Otherwise, if there is one p(rG)[j] /∈
[
− q

2 ,
q
2

]
, for j ∈ [0, n− 1], then

m′[i] ≡ −tqfp[(i− j) mod n] 6≡ 0 (mod p). (11)

Since we set m = 0, Equation(11) means that m′ 6= m and the corresponding
O outputs 0. Therefore, in order to recover the coefficients of G, we only need to
make p(rG)[j] /∈ [− q

2 ,
q
2 ] by setting the proper coefficients of r. Then, according

to the output of O, we can recover G.

3.2 Finding a Longest Chain

After that, the remaining problem is how to recover G according to the output of
O. In NTRU-HRSS, the most crucial issue is finding a longest chain. To illustrate
this issue, we first discuss the range of coefficients in G.

G = gΦ1

= g(x− 1)

= (g[0]x + · · ·+ g[n− 1]xn)− (g[0] + · · ·+ g[n− 1]xn−1)

= (g[n− 1]− g[0]) + (g[0]− g[1])x + · · ·+ (g[n− 2]− g[n− 1])xn−1,

(12)
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and for i = 0, 1, . . . n− 1,

G[i] =

{
g[n− 1]− g[0] if i = 0,

g[i− 1]− g[i] otherwise.
(13)

According to Equation (13), the sum of z consecutive coefficients in G is

G[i] + · · ·+ G[i + z − 1] =

{
g[n− 1]− g[z − 1] if i = 0,

g[i− 1]− g[i + z − 1] otherwise,
(14)

where z ∈ [2, n].
For i ∈ [0, n − 1], g[i] ∈ [−1, 1], according to Equation (13), G[i] ∈ [−2, 2].

And according to Equation (14), we can get (G[i] + · · ·+ G[i+ z− 1]) ∈ [−2, 2].
Specifically, when z = 2, (G[i] + G[i + 1]) ∈ [−2, 2]. By simply adding the

two consecutive coefficients, we can draw the first conclusion:
(1) In G, the tuples {(1,2), (2,1), (-1,-2), (-2,-1), (-2,-2), (2,2)} do not exist.
When z = 3, (G[i]+G[i+1]+G[i+2]) ∈ [−2, 2]. Therefore, we can similarly

conclude that:
(2) There are at most two consecutive 1’s or -1’s in G.
By denoting a chain (2,−2, . . . , 2 ∗ (−1)k−1) with length k the k-chain, we

have the following result.

Theorem 1. When k ≤ 6, we can find a longest chain of the form (2,−2, . . . , 2∗
(−1)k−1) in G with a high probability.

Proof. From the second observation, we cannot find a longest chain consisting
of consecutive 1’s or -1’s. Therefore, a longest k-chain consists of consecutive
coefficients as (2,−2, . . . , 2 ∗ (−1)k−1) in G.

According to Equation (13), for i = 0, 1, . . . n−1, we note that when G[i] = 2,
it should be the case that g[i − 1] = 1, g[i] = −1. Corresponding to this, when
G[i] = −2, we have g[i− 1] = −1, g[i] = 1. Thus, the occurrence probability of
(2,−2, . . . , 2∗ (−1)k−1) in G is the same as that of (−1, 1, . . . , (−1)k−1) in g. As
we mentioned above, the probabilities of occurrences of -1, 0 and 1 are 85

256 , 86
256 ,

85
256 , respectively.

Let X denote the event that a k-chain (2,−2, . . . , 2 ∗ (−1)k−1) occurs in
G. To calculate the average number of times a k-chain occurs in G, we try to
get the corresponding expectation Ek(X ). By dividing X into the subevents Xi

i = 0, . . . , n− k, where each Xi denotes the event that a k-chain (2,−2, . . . , 2 ∗
(−1)k−1) occurs in the i-th position of G. Since Ek(Xi) = ( 85

256 )k and recall that
n =701, from the property of Expectation, we have

Ek(X ) =

n−k∑
i=0

Ek(Xi) = (
85

256
)k ∗ (702− k). (15)

In Table 2, we show the relationship between k and Ek(X ), where k is selected
from the set {2,3,4,5,6,7}. As we can see when k = 6, Ek(X ) is near 1.
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Table 2. The average number of times a k-chain occurs in G

k 2 3 4 5 6 7

Ek(X ) 77.171 25.587 8.483 2.813 0.933 0.309

The results show that there is at least a longest chain that consists of consec-
utive coefficients such as (2,−2, . . . , 2 ∗ (−1)k−1) in G when k = 6. Afterwards,
we use the chain as an anchor to recover G.

3.3 The Selection of Parameter r

In addition, in order to recover G, the adversary A directly sets all coefficients
of r as 0 except for the first few coefficients of r. In NTRU-HRSS, while setting
r, we need to increase the weight of targeted coefficients.

As we stated above, the coefficients of G range from -2 to 2, and there are
many disturbances to prevent us from recovering coefficients of G correctly.
We take two adjacent coefficients of G as an illustration, including 52 = 25
tuples. According to the first conclusion above, the tuples of the set {(1,2),
(2,1), (-1,-2), (-2,-1), (-2,-2), (2,2)} do not exist in G. Then, we can classify
the remaining tuples in accordance with the summation of the two adjacent
coefficients in Table 3. The tuples of equal summation interfere with each other’s
recovery. Concretely, when the summation is -2, the tuples (-2,0) and (0,-2)
disturb the recovery of the tuple (-1,-1). Therefore, we need to make the sum
of these tuples unequal to eliminate the disturbance by increasing the weight of
some coefficients. Obviously, increasing the weight of 0 is useless, and increasing
the weight of 1 or -1 is ineffective since 2 or -2 can get the double weight. Finally,
we can only increase the weight of coefficients 2 and -2, which has proved to be
effective.

Table 3. Different summation of the two adjacent coefficients

Summation Tuple1 Tuple2 Tuple3 Tuple4 Tuple5

-2 (-2,0) (0,-2) (-1,-1)

-1 (-2,1) (1,-2) (-1,0) (0,-1)

0 (-2,2) (2,-2) (-1,1) (1,-1) (0,0)

1 (-1,2) (2,-1) (0,1) (1,0)

2 (0,2) (2,0) (1,1)

Additionally, the tuples of different summation can also interfere each other’s
recovery in Table 4. To recover the coefficients of G correctly, when G[i]=0, if
r[i− 1] ≥ 0, we set r[i] > 0, and if r[i− 1] < 0, we set r[i] < 0.

For convenience, we define some symbols. Let num1 denote the number of
recovered coefficients with absolute value of 1 in G, then num2 denote the
number of recovered coefficients with absolute value of 2 in G and w is the
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Table 4. Interference between tuples of different summation

Recovered tuple Interference tuple1 Interference tuple2

(-2,0) (-2,2) (-2,1)

(0,-2) (1,-2) (2,-2)

(2,0) (2,-2) (2,-1)

(0,2) (-1,2) (-2,2)

weight of whose absolute value is 2 in recovered coefficients of G. Gs denotes
the weighted sum of recovered coefficients in G, which can be computed as
Gs = 2 ∗ num2 ∗ w + 1 ∗ num1. ru denotes the unit value of r and ru > 0.

If w is too large, the mismatch appears prematurely, and if it is too small,
it is not enough to recover the target coefficients. To take a balance, we set the
initial value of w to 4.

3.4 The Full Attack

In this subsection, we introduce our method to recover G. Recall that we suppose
the length of a longest chain that consists of consecutive coefficients such as
(2,−2, . . . , 2 ∗ (−1)k−1) in G is k.

The key mismatch attack consists of three steps. And the adversary A always
sets m as 0 in each step.

Step 1: In this step, the adversary A recovers (G[0], · · · ,G[k − 1]) and de-
cides the value of k. For this purpose, he needs to find a longest chain in G.

The parameter selections of r is shown as below.
For l ≥ 2, 0 ≤ i ≤ l − 1, A sets r = (r[0], . . . , r[l − 1], 0, . . . , 0),

r[i] =


⌈

q

2p ∗ 2l

⌉
if i is even,

−
⌈

q

2p ∗ 2l

⌉
if i is odd.

(16)

Since a ≡ prG (mod q), for i = 0, 1, . . . n− 1,

a[i] ≡ p(r[0]G[i] + · · · r[n− 1]G[(i + 1) mod n]) (mod q)

≡ p(r[0]G[i] + · · · r[l − 1]G[(i− l + 1) mod n]) (mod q).
(17)

Note that when l ≤ k, |a[i]| ≡ p ∗
⌈

q
2p∗2l

⌉
∗ 2l > q

2 , which means O outputs

0, and when l = k + 1, |a[i]| ≡ p ∗
⌈

q
2p∗2(k+1)

⌉
∗ (2k + 1) < q

2 , which means O
outputs 1. Therefore, when O outputs 1, A can get k = l − 1.

Step 2: The adversary A has recovered (G[0], . . . ,G[k− 1]) and he needs to
recover G[k] in this step.

Step 2.1: The adversary A judges whether (G[k],G[k+1]) is (0,2) or (0,-2).
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Algorithm 2: Find-w-1

Input: num1, num2

Output: w
1 Set w = 4, Gs = NULL, temp = NULL;
2 for i := 1 to 3 do
3 Gs = 2 ∗ (num2 + 1) ∗ w + num1;
4 temp = d q

Gs∗2pe;

5 if temp ∗ (Gs − 2 ∗ w) ∗ p≥ q
2
or d

q
2
−temp∗(Gs−2∗w)∗p

temp∗p e < 2 ∗ w then

6 w = w − 1;
7 end
8 else
9 break;

10 end

11 end
12 Return w

Algorithm 3: Find-w-2

Input: num1, num2

Output: w
1 Set w = 4, Gs1 = NULL, Gs2 = NULL;
2 for i := 1 to 3 do
3 Gs1 = 2 ∗ num2 ∗ w + num1 + 1;
4 Gs2 = 2 ∗ num2 ∗ w + num1 + 2;
5 if d q

Gs1∗2p
e = d q

Gs2∗2p
e or d q

Gs1∗2p
e ∗ (Gs1 − 1) ∗ p≥ q

2
then

6 w = w − 1;
7 end
8 else
9 break;

10 end

11 end
12 Return w
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First of all, A sets the proper w in Algorithm 2. In this step, when O outputs
0, which demonstrates that (G[k],G[k + 1]) is (0,2) or (0,-2). Hence, A needs
to keep O output 1 before adding the tuple (0,2) or (0,-2). Also, the absolute
value of the sum of two coefficients in the tuple must be 2. Otherwise, A needs
to decrease w.

Then A computes the value of Gs. Since the recovered coefficients of G are
(G[0],G[1], · · · ,G[k − 1]), and (G[k],G[k + 1]) is (0,2) or (0,-2). Therefore,
num2 = k + 1, num1 = 0, Gs = 2 ∗ (k + 1) ∗ w.

Next, A sets r = (r[0], . . . , r[k − 1], r[k], r[k + 1], 0, . . . , 0). For 0 ≤ i ≤ k − 1,

r[i] =


⌈

q

2p ∗Gs

⌉
∗ w if G[i] = 2,

−
⌈

q

2p ∗Gs

⌉
∗ w if G[i] = −2.

(18)

Specifically, A sets r[k] and r[k + 1] as follows.

(1) When G[k − 1] = −2, (G[k],G[k + 1])=(0,2), r[k] =
⌈

q
2p∗Gs

⌉
, r[k + 1] =⌈

q
2p∗Gs

⌉
∗ w. If O outputs 0, A recovers (G[k],G[k + 1]) as (0,2). Otherwise

(G[k],G[k + 1]) isn’t (0,2).

(2) When G[k− 1] = 2, (G[k],G[k+ 1])=(0,-2), r[k] = −
⌈

q
2p∗Gs

⌉
, r[k+ 1] =

−
⌈

q
2p∗Gs

⌉
∗ w. If O outputs 0, A recovers (G[k],G[k + 1]) as (0,-2). Otherwise

(G[k],G[k + 1]) isn’t (0,-2).
When (G[k],G[k+1]) is neither (0,2) nor (0,-2), according to Equation (13),

G[k] = g[k − 1]− g[k], (19)

and g[k − 1] is known, so the adversary A recovers G[k] in {-1,0} or {1,0} in
turn. Specifically, when G[k− 1] = 2, g[k− 1] = −1, g[k] ∈ {−1, 0, 1}, according
to Equation (19), G[k] ∈ {0,−1,−2}. Since the length of a longest chain that
consists of consecutive coefficients such as (2,−2, . . . , 2∗(−1)k−1) in G is k, then
G[k] 6= −2, G[k] ∈ {−1, 0}. Similarly, when G[k − 1] = −2, G[k] ∈ {1, 0}.

Step 2.2: When (G[k],G[k + 1]) is neither (0,2) nor (0,-2), A recovers G[k]
in {-1,0} or {1,0} in turn.

Firstly, A sets the proper w according to Algorithm 3. Then A computes the
value of Gs, since the recovered coefficients of G are (G[0],G[1], · · · ,G[k − 1]),
and G[k] ∈ {−1, 0} or {1, 0}. Therefore, num2 = k, num1 = 1, Gs = 2k ∗w + 1.
Next, A sets r = (r[0], . . . , r[k − 1], r[k], 0, . . . , 0). For 0 ≤ i ≤ k − 1, he sets
according to Equation (18). Afterward, we discuss the parameter selection of
r[k] in cases {-1,0} and {1,0}, respectively.

(1) When G[k − 1] = 2, i.e. G[k] ∈ {−1, 0}, r[k] = −
⌈

q
2p∗Gs

⌉
. If the output

of O related to the selection of r is 0, G[k] = −1, otherwise G[k] = 0.

(2) When G[k − 1] = −2, then G[k] ∈ {1, 0}, r[k] =
⌈

q
2p∗Gs

⌉
. If O′s output

associated with the selection of r is 0, G[k] = 1, otherwise G[k] = 0.
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Step 3: Suppose that A has recovered (G[0], . . . ,G[k − 1],G[k], · · · ,G[k +
t− 1]), then A needs to recover G[k + t], where t ∈ [1, n− k − 1].

Recall that (G[0], . . . ,G[k − 1]) is denoted as a k-chain, we denote a chain
(G[0], · · · ,G[k−1],G[k], · · · ,G[z′−1]) with length z′ the z′-chain, which is the
extension of the k-chain. Here G[k], · · · ,G[z′ − 1] can be arbitrary coefficients
and z′ is a fixed number. Through experiments we find that by setting z = 15
we can get the best results.

Step 3.1: A needs to determine whether (G[k+ t],G[k+ t+ 1]) is in the set
{(0,2), (2,0), (0,-2), (-2,0)}.

Firstly, A selects the proper w in Algorithm 2 and computes the value of Gs

according to Gs = 2 ∗ num2 ∗ w + num1. Then, according to Equation (13),

G[k + t] = g[k + t− 1]− g[k + t], (20)

and g[k + t− 1] is known, thus A can recover (G[k + t],G[k + t + 1]) in the set
{(0,2), (2,0)} or {(0,-2), (-2,0)}, respectively.

Specifically, when g[k + t − 1] = −1, (G[k + t],G[k + t + 1]) is in the set
{(0,-2), (-2,0)}. When g[k+ t−1] = 1, (G[k+ t],G[k+ t+1]) is in {(0,2), (2,0)}.

After that, A sets r = (r[0], . . . , r[z′−1], 0, . . . , 0, r[k+t], r[k+t+1], 0, . . . , 0).
For 0 ≤ i ≤ z′ − 1,

r[i] =



⌈
q

2p ∗Gs

⌉
∗ w ∗ G[i]

2
if |G[i]| = 2,⌈

q

2p ∗Gs

⌉
∗G[i] if |G[i]| = 1,⌈

q

2p ∗Gs

⌉
if G[i] = 0 and r[i− 1] ≥ 0,

−
⌈

q

2p ∗Gs

⌉
if G[i] = 0 and r[i− 1] < 0.

(21)

And A sets r[k + t] and r[k + t + 1] as follows.
(1) When g[k + t − 1] = −1, (G[k + t],G[k + t + 1]) is in {(0,-2), (-2,0)}.

Firstly, A sets r[k + t] and r[k + t + 1] as:

1) (-2,0): r[k + t] = −
⌈

q
2p∗Gs

⌉
∗ w, r[k + t + 1] = −

⌈
q

2p∗Gs

⌉
,

2) (0,-2): r[k + t] = −
⌈

q
2p∗Gs

⌉
, r[k + t + 1] = −

⌈
q

2p∗Gs

⌉
∗ w.

A recovers (G[k + t],G[k + t+ 1]) as (-2,0) if O’s output associated with the
first choice of r is 0, otherwise A continues to set in the order. If the output of O
associated with the second choice of r is 0, A recovers (G[k + t],G[k + t+ 1]) as
(0,-2). Finally, if O does not output 0, which demonstrates (G[k+t],G[k+t+1])
is neither (-2,0) nor (0,-2).

(2) When g[k + t− 1] = 1, (G[k + t],G[k + t+ 1]) is in {(0,2), (2,0)}. At the
outset, A sets r[k + t] and r[k + t + 1] as:

1) (0,2): r[k + t] =
⌈

q
2p∗Gs

⌉
, r[k + t + 1] =

⌈
q

2p∗Gs

⌉
∗ w,

2) (2,0): r[k + t] =
⌈

q
2p∗Gs

⌉
∗ w, r[k + t + 1] =

⌈
q

2p∗Gs

⌉
.
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Similarly, A sets r[k + t] and r[k + t + 1] in the order and when O outputs
0, A recovers G[k + t],G[k + t + 1] as the corresponding tuple. In the end, if O
does not output 0, (G[k + t],G[k + t + 1]) is neither (0,2) nor (2,0).

Step 3.2: When (G[k + t],G[k + t+ 1]) isn’t in {(0,2), (2,0), (0,-2), (-2,0)},
A recovers G[k + t] in {0,-1,-2}, {1,0,-1} or {2,1,0} in turn.

Table 5. The two outputs of O corresponding to G[k + t] in three sets

Set

G[k + t] O
(0,0) (0,1) (1,1) (1,0)

{0,-1,-2} -2 -1 0

{1,0,-1} 1 1 0 -1

{2,1,0} 2 1 0

Specifically, when g[k + t − 1] = −1, g[k + t] ∈ {−1, 0, 1}, according to
Equation (20), G[k+t] ∈ {0,−1,−2}. When g[k+t−1] = 0, G[k+t] ∈ {1, 0,−1}.
And when g[k + t− 1] = 1, G[k + t] ∈ {2, 1, 0}.

Next, we discuss the parameter selections of r in cases {0,-1,-2}, {1,0,-1} and
{2,1,0}, respectively. The two outputs of O corresponding to G[k+ t] are shown
in Table 5.

(1) When g[k + t − 1] = −1, then G[k + t] ∈ {0,−1,−2}. A first selects w
according to Algorithm 3. Then A computes Gs = 2 ∗ num2 ∗ w + num1 + 1.
Next, A sets r = (r[0], . . . , r[z′− 1], 0, . . . , 0, r[k + t], 0, . . . , 0), for 0 ≤ i ≤ z′− 1,

he sets according to Equation(21) and r[k + t] = −
⌈

q
2p∗Gs

⌉
.

Afterward, A sets r = (r[0], . . . , r[z′ − 1], 0, . . . , 0, r[k + t], 0, . . . , 0], for 0 ≤
i ≤ z′ − 1,

r[i] =



⌈
q

2p ∗ (Gs + 1)

⌉
∗ w ∗ G[i]

2
if |G[i]| = 2,⌈

q

2p ∗ (Gs + 1)

⌉
∗G[i] if |G[i]| = 1,⌈

q

2p ∗ (Gs + 1)

⌉
if G[i] = 0 and r[i− 1] ≥ 0,

−
⌈

q

2p ∗ (Gs + 1)

⌉
if G[i] = 0 and r[i− 1] < 0.

(22)

and r[k + t] = −
⌈

q
2p∗(Gs+1)

⌉
.

If the only output of O related to the first choice of r is 0, G[k + t] = −1.
And if both of the two outputs of O are 0, G[k + t] = −2. Then if both of the
two outputs of O are 1, G[k + t] = 0.

(2) When g[k + t− 1] = 1, G[k + t] ∈ {2, 1, 0}. Similarly, A first selects the
proper w and calculates Gs. Then, for 0 ≤ i ≤ z′ − 1, A sets r according to
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Equation (21) and r[k + t] =
⌈

q
2p∗Gs

⌉
. Subsequently, for 0 ≤ i ≤ z′ − 1, A sets

r according to Equation(22) and r[k + t] =
⌈

q
2p∗(Gs+1)

⌉
. If the only O′s output

associated with the first choice of r is 0, G[k + t] = 1. And if O outputs 0 twice,
G[k + t] = 2. Then if O outputs 1 twice, G[k + t] = 0.

(3) When g[k + t − 1] = 0, G[k + t] ∈ {1, 0,−1}. A similarly selects w
according to Algorithm 3 except judging whether d q

Gs1∗2p
e = d q

Gs2∗2p
e holds.

Then A computes the value of Gs by Gs = 2 ∗ num2 ∗ w + num1 + 1. Next, A
sets r = (r[0], . . . , r[z′ − 1], 0, . . . , 0, r[k + t], 0, . . . , 0), for 0 ≤ i ≤ z′ − 1. After

that, he sets r[k + t] = −
⌈

q
2p∗Gs

⌉
.

If the only O′s output related to the first choice of r is 0, G[k+ t] = 1. And if
O only outputs 0 on the second choice of r, G[k + t] = −1. Then if O outputs 1
twice, G[k + t] = 0. In addition, if O outputs 0 twice, which demonstrates there
are at least two chains of length z′ in G. In order to recover the unique G, A
simply assigns G[k + t] as 1, and he sets r[k + t] in recovering the remaining
coefficients of G later.

Finally, A repeats Step 3 until all the coefficients of G are recovered.

4 Experiments and Analysis

In this section, we introduce our experiments and the results show the correctness
and efficiency of our proposed attack. We run our code on an Intel Xeon E5-2620
at 2.1 GHz and a 64 GB RAM and our code is made public1.

To make our experiments more convincing, we generate 10,000 secret keys
using the code submitted to NIST [6] by the designers of NTRU, and then
take an average. At first, we succeed in launching key mismatch attacks on
the ntruhps2048509, ntruhps2048677 and ntruhps4096821 by using Ding et al.s
method. Experiments demonstrate the correctness of the method, and we can
indeed get an equivalent of secret key in NTRU-HPS with almost 100% proba-
bility.

Recall that z′ denotes the length of z′-chain, and w is the weight of whose
absolute value is 2 in recovered coefficients of G. In NTRU-HRSS, the parameters
(n, q, p) = (701, 8192, 3). Then we implement our proposed method to recover
all coefficients of the secret key in NTRU-HRSS, where we try different z′ in the
set {5,7,9,11,13,15,17,19}.

The results are shown in Table 6, where we illustrate the trade-off among
the success rate, average number of queries, and average time. We also represent
the relationship between the success rate and z′ in Figure 1. It is notable that
our proposed attack can achieve the success rate of 93.6% when z′ = 15. The
results show that among 10,000 secret keys, all coefficients of 9360 secret keys
can be recovered. Meanwhile, when z′ = 15, it also represents the least number
of queries. Therefore, we choose z′ = 15 in the final.

1 https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs/tree/master/

ntruhrss701_key_mismatch_attack

https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs/tree/master/ntruhrss701_key_mismatch_attack
https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs/tree/master/ntruhrss701_key_mismatch_attack
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Table 6. Performance comparison when increasing the value of z′

z′ Success rate(%) Average #queries Average time (s)

5 50.0 1884 12.652

7 70.0 1879 11.744

9 90.0 1855 11.471

11 92.4 1866 11.586

13 92.9 1856 11.853

15 93.6 1844 11.983

17 92.7 1867 11.858

19 90.0 1945 11.965
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Fig. 1. The relationship between z′ and the success rate

And when z′ > 15, we need to set a smaller weight w, which prevents us from
distinguishing some coefficients. Thus, the success rate continues decreasing as
depicted in Figure 1. In addition, when the weight w = 1, we cannot continue
decreasing w as required in Algorithm 2 or Algorithm 3. Otherwise the value of
w is 0, which is the reason why the success rate cannot be 100%.

5 Conclusion

In this paper, we propose a key mismatch attack on NTRU-HRSS KEM. Fur-
thermore, we illustrate the trade-off among the success rate, average number of
queries, and the average running time. As a result, we can achieve minimum
number of queries with a success rate of 93.6% at the same time. NTRU-HRSS
KEM submitted to NIST is CCA-secure, so our proposed key mismatch attack
does not harm the NTRU-HRSS designers’ security goals. However, in view of
the aspect of efficiency in the real life, the CPA version of NTRU-HRSS may
be used with the public key repeatedly used. Therefore, in order to avoid the
leakage of secret key, we need to take some countermeasures, such as regularly
updating the key or adding a system to detect the user’s query operation.
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