
Divide and Funnel: a Scaling Technique for Mix-Networks

Debajyoti Das
imec-COSIC, KU Leuven

debajyoti.das@esat.kuleuven.be

Sebastian Meiser
Visa Research

smeiser@visa.com

Esfandiar Mohammadi
University of Luebeck

esfandiar.mohammadi@uni-luebeck.de

Aniket Kate
Purdue University

aniket@purdue.edu

Abstract
While many anonymous communication (AC) protocols have
been proposed to provide anonymity over the internet, scaling
to a large number of users while remaining provably secure
is challenging. We tackle this challenge by proposing a new
scaling technique to improve the scalability/anonymity of AC
protocols that distributes the computational load over many
nodes without completely disconnecting the paths different
messages take through the network. We demonstrate that our
scaling technique is useful and practical through a core sample
AC protocol, Streams, that offers provable security guarantees
and scales for a million messages. The scaling technique
ensures that each node in the system does the computation-
heavy public key operation only for a tiny fraction of the
total messages routed through the Streams network while
maximizing the mixing/shuffling in every round.

We demonstrate Streams’ performance through a prototype
implementation. Our results show that Streams can scale well
even if the system has a load of one million messages at any
point in time. Streams maintains a latency of 16 seconds while
offering provable “one-in-a-billion” unlinkability, and can be
leveraged for applications such as anonymous microblogging
and network-level anonymity for blockchains. We also illus-
trate by examples that our scaling technique can be useful
to many other AC protocols to improve their scalability and
privacy, and can be interesting to protocol developers.

1 Introduction

Starting with Chaum [17], anonymous communication (AC)
protocols [5, 6, 9, 18, 20, 22, 23, 30, 34, 38–41, 50–55, 58, 60,
65, 66] strive to be both practically applicable with minimal
computational and communication overhead while providing
strong anonymity properties. Some protocols, like Tor [29,30],
focus more on low latency and low bandwidth overhead, while
others, like dining cryptographers’ networks [18] focus on
easily provable sender anonymity. Most AC protocols fall
in between those two, either guaranteeing or providing an

argument for the anonymity being offered while attempting
to minimize the overhead introduced through delay, noise
messages, or user coordination/preprocessing.

AC protocols need to ensure that messages cannot be traced
from source to sink, i.e., from sender to recipient; the typi-
cal way to achieve this is by having messages mingle with
other messages in a way that is hard to disentangle by a cu-
rious observer or malicious protocol party. This property of
message indistinguishability, often called “mixing”, mainly
occurs when messages meet in an honest protocol party that
in turn both performs cryptographic operations on them and
outputs them in a shuffled order to break a potential linking
between incoming and outgoing messages.1 However, an ad-
versary can additionally leverage differences in user behavior
(e.g, if Alice is active only at a specific time of the day) to
guess who might have sent a message. Even a trusted-third-
party anonymizer can not defend against such leakage. Some
protocols [23, 41, 50, 52, 53, 58, 60, 65, 66] defend against that
by restricting/enforcing how the protocol clients can behave.
We consider that problem to be orthogonal and focus on the
“mixing” problem.

To ensure that messages appear to mix goes hand in hand
with saturating network links between parties and funnel-
ing messages through a small number of mixing nodes. In
this paper, we present a novel method to scale up AC pro-
tocols by allowing them to distribute computation over an
arbitrarily large set of parties while preserving almost the
same degree of link saturation and the chance for messages
to meet. Our method replaces existing protocol parties with
computation-light "funnel" nodes that do not need to per-
form any public-key cryptographic operation on individual
messages. An arbitrary amount of other protocol parties per-
form the required cryptographic computations for them before
sending the processed messages to their next destination.

We demonstrate the applicability of our scaling method
on a core AC protocol, Streams, for which we prove a strong

1The two messages in question don’t have to physically meet at an honest
party. Indeed, the property can hold when two messages each meet some
other, say, noise messages, that then end up confusing the paths being taken.

1

mixing property. Streams might be of independent interest for
certain applications (see Section 10.2), as it scales to a million
messages and achieves practical end-to-end latency with close-
to-optimal mixing against honest-but-curious global attackers
with a limited amount of honest-but-curious nodes and clients
and strong background knowledge.

With a prototype implementation, we demonstrate that
Streams can scale for a million messages with an end-to-end
latency of 16 seconds for each message, for a fraction of 10%
compromised nodes in the system, while offering pairwise
message unlinkability up to δ≤ 2−30 (≈ 10−9). Our proofs
formally show mixing occurs in the presence of a global pas-
sive adversary that (passively) compromises a fraction of the
protocol parties. We extend the protocol’s security to defend
against active attacks by incorporating recently proposed de-
fenses and heuristics from prior work [58]. (c.f. Section 6.)

We find Streams to be useful for applications such as
blockchain access privacy and anonymous microblogging.
Moreover, we find our scaling method for distributing compu-
tations over protocol parties to be not only relevant to Streams
but also encouraging for protocol designers interested in scal-
ing up other AC protocols. As three representative examples,
we consider the prominent Loopix, Karaoke, and Vuvuzela
protocols, and describe how our scaling technique of divide
and funnel can enhance their mixing properties.

2 Problem statement and System Overview

2.1 System Model
We consider a typical mix network based architecture [50,58]
allowing users to send messages anonymously using an over-
lay network of mix nodes. Our main objective is to demon-
strate our scaling technique by designing an end-to-end prov-
ably secure and scalable AC protocol.

Similar to provably-secure mix-net systems such as [19,50–
52, 65, 66], we assume that protocols parties work in rounds.
However, only the nodes need to synchronize their rounds;
the system’s clients do not need to be aware of such rounds or
synchronization. Even for the nodes, as we further elaborate in
Section 4.4, synchronization only improves anonymity, while
safety and liveness of the protocol remain unaffected even if
nodes are unsynchronized.

2.2 Attacker Model and Security Goals
Just as many other AC protocols [5, 12, 50–52, 55, 65, 66],
Streams is designed as a core building block for anonymous
communication. In this work, we prove Streams’s anonymity
properties against a static passive (i.e., honest-but-curious)
attacker. In particular, we consider passive global network
attackers, passive statically compromised (i.e., honest but cu-
rious) nodes, and passive compromised clients. To precisely
characterize the security guarantee that Streams offers, we

utilize a property that we call pairwise unlinkability: the at-
tacker shall not be able to figure out which of two messages
entering a system at a similar time corresponds to which of
the two same messages leaving the system at a later point.

This notion of unlinkability is closely related to other
prominent anonymity notions; in Section 3.1 we relate it
to sender anonymity [11] (which of two potential senders has
sent a specific message?), relationship anonymity [11] (who
is in communication with who?), and unobservability (is a
given sender actively sending a message or idle?).

Even though our formal analysis focuses on global passive
adversaries, Streams incorporates integrity protection using
the standard cryptographic methods [25]. In Section 6 we
discuss how our protocol can defend against active attacks.

Non-goals. Similar to [5, 12, 19, 20, 22, 23, 34, 50–52, 55, 58,
60], we do not consider side-channel attacks — the detailed
analyses of fingerprinting of web-browsing and other side-
channels that might arise in specific application scenarios
are left for future work. As with other AC protocols [5, 12,
19, 20, 22, 23, 34, 50–52, 55, 58, 60, 65, 66] in the literature,
we do not consider an adversary whose sole purpose is to
launch denial-of-service (DoS) attacks. Attacks like targeted
flooding to degrade the performance of a node is out of scope
for this work — any technique that can be deployed against
such attacks for other protocols can be deployed for Streams
as well. However, we deploy countermeasures against DoS-
anonymity attacks (loop messages) from the literature [58].

2.3 Protocol Idea

Assumptions. We assume that each pair of nodes maintain
SSL/TLS session between them. Additionally, we leverage the
Sphinx packet format [25] that provides end-to-end encryption
for all messages, and a node does not learn the path length and
the relay position of the node on the path of a packet. Towards
dealing with an adaptive adversary, we assume randomness
beacons [21, 31] available to all the protocol parties.

Scaling Technique. Streams tries to keep all messages in the
system together across different rounds, which allows them to
mix better and after fewer rounds. In a given round, all clients
and all nodes funnel all their messages (except the messages
that are to be delivered in that round) through a single desig-
nated node that we call funnel node for that round. However,
our aim is to scale the system for millions of messages; using
only one node per round to perform the public-key crypto-
graphic operations for all messages is infeasible.

We make this extreme form of funneling and mixing fea-
sible by distributing the computation-heavy cryptographic
operations among all available nodes; yet we use one dedi-
cated, randomly chosen funnel node per round to optimize
mixing. We separate each round into a compute phase and a
funnel phase. In the compute phase the stream of message fans
out to all nodes before merging again (in the funnel phase) in

2

round r

round r
funnel phase

round r+1

round r+1
funnel phase

A

C
Alice

funnel
B All new and existing

messages are sent to
the compute nodes.

B

C

A
funnel

All messages from the
compute nodes are sent

to the funnel node.
Funnel node waits till

the round is over.

A

B

C

funnel

The funnel node sends
all the messages to
respective compute

nodes at the beginning
of the round.

A

B

C
funnel

All messages from the
compute nodes are sent

to the funnel node.
Funnel node waits till

the round is over.

Figure 1: Routing Strategy in Streams for the funnel node
sequence {B,A,C} when Alice sends an onion packet with
onion layers for nodes {C,A, . . .}

the next dedicated and randomly chosen funnel node. As a
result, Streams can be scaled up considerably while providing
strong pairwise unlinkability for all messages that are jointly
kept in the system for long enough to meet and mix.

Routing Strategy. Streams routes messages through a series
of compute and funnel phases, so that each message alternates
between compute nodes and funnel nodes. To send a message
msg, a user Alice chooses a path consisting only of compute
nodes and onion encrypts msg for those compute nodes; she
sends msg to the first of those nodes. The protocol parties
(nodes) collectively choose the funnel node that collects and
shuffles packets in a round. Fig. 1 pictorially illustrates the
routing strategy in Streams. Section 8.2 demonstrates that the
compute phase is significantly shorter than the funnel phase.

The nodes only need to agree on the next funnel node,
which yields another advantage: for every message the client
picks the compute nodes on the path of the message to con-
struct the onion packet without knowing the funnel nodes.
The system could use a round-robin scheduling for funnel
nodes; we choose to use randomness beacons instead so that
the adversary cannot strategically compromise funnel nodes.

2.4 Properties Achieved by Streams

Below we summarize the key properties achieved by our
scaling technique and the design of Streams:

1. Streams provides strong pairwise unlinkability of mes-
sages, only requiring a modest latency overhead: for any la-
tency in ω(logη), the probability that two messages are pair-
wise unlinkable is overwhelming in the security parameter
η, even when a constant fraction of nodes are (passively)
compromised. We formally prove our security claims about
Streams in Section 5.

2. Streams is designed for scalability and can manage up to
one million messages in the system at any given time, while
being reasonably practical (several seconds of end-to-end
latency and low communication overhead for users).

3. Streams allows the clients to be oblivious to the round
synchronizations among the nodes; they can send their mes-
sages whenever they want.

4. Streams is resilient to hiccups in synchronization (up to
a certain extent) among local clocks of the nodes without any
external intervention.

5. Streams provides message integrity and defends against
anonymity attacks based on packet drops (c.f. Section 6).

2.5 Comparison with the State of the Art

In this section we give an overview over existing anonymous
communication (AC) protocols and discuss their main differ-
ences to Streams. The Tor network [30] offers low latency and
low communication overhead; yet low latency together with
low communication overhead has been shown to be a concep-
tual problem for anonymous communication [26, 27], as has
been illustrated with traffic analysis against Tor [13, 35, 46].
We do not attempt to compete with Tor’s near real-time la-
tency; instead, we add just enough latency (several seconds)
to achieve provable unlinkability.

The recently proposed AC protocol Loopix [58] combines
a stratified mix network architecture with exponentially dis-
tributed delays to achieve a flexible mixing protocol that does
not require fixed rounds; Loopix offers tuneable parameters
that balance between latency overhead and the required traffic
volume to offer protection against traffic analyses, without
providing a formal proof on the degree of pairwise unlink-
ability for any given parameter set. It is not clear whether
Loopix offers strong pairwise unlinkability for interesting la-
tency numbers. Additionally, Loopix scales for many users by
employing multiple paths, which in turn reduces the chance
of two messages mixing with each other. In Section 10.1, we
discuss how Loopix could improve their mixing degree while
scaling up by utilizing our scaling approach.

Karaoke [52] and Stadium [65] can scale to millions of
users. To do so, both protocols employ a network topology
that leverages a number of noise messages in Θ(|servers|2) to
achieve link saturation, which yields a property similar to pair-

3

wise unlinkability. With Streams we follow a different path:
we achieve optimal link saturation using the TLS-only funnel
nodes, thus reducing the amount of noise messages required.
In Section 10.1, we discuss how to scale up these protocols
with our approach without this explosion of noise messages.
Most importantly, however, these two protocols strive for
a weaker anonymity property based in differential privacy
and, in contrast to Streams, not statistical indistinguishabil-
ity (even for ideal cryptographic operations). Differentially
private AC protocols allow an attacker to develop a strong
suspicion about who sent a message, which we strive to avoid.
Vuvuzela [66] also aims for differential privacy guarantees.
In addition, in Vuvuzela each node processes all messages
in the system, leading to a large latency (around 37 seconds
with one million messages in the system, with a chain of only
3 nodes). The trust assumption based on having only three
nodes in the system makes a direct comparison challenging;
with Streams we opt for a larger number of protocol parties
to avoid having to place trust in a small set of nodes.

Stadium, Vuvuzela, and Karaoke require all clients to send
messages together before processing a batch to accomplish
two goals: (1) avoid leakage from user behaviour (e.g., if Bob
is not active when a message is sent, Bob can’t have been the
sender); (2) servers in the first layer add noise messages to
the batch to help their mixing process. This kind of synchro-
nization among millions of clients is very difficult to achieve
in a real world scenario. The design of Streams does not re-
quire the help of noise messages from the servers to achieve
mixing. Moreover, Streams disentangles the mixing property
from user behavior. Hence, we only require the servers to
have synchronized clocks but not the clients to use a syn-
chronized usage pattern. We explain in Section 3.1 how our
mixing property combined with such restricted client behavior
directly implies the traditional anonymity notions achieved
by the above protocols. Not requiring the messages to be
processed in batches is a design advantage in itself; to the
best our knowledge, only Loopix [58] aims for that property
before Streams.

Atom [50] is a closely related protocol both in terms of the
guarantees provided and the explicit focus on scaling: atom’s
random permutations are similar to pairwise unlinkability and
are presented together with a technique for horizontal scaling.
Atom’s horizontal scaling techniques can handle a million
short messages within a reasonable amount of time (around
28 minutes). In contrast, Streams offers a significantly shorter
end to end latency in the order of a few seconds. In Table 1 we
compare Streams with Atom, Stadium, and Karaoke in terms
of the number of communication hops required to achieve the
security guarantees they provide. In the second row of the
table, we estimate the number of hops required by Atom to
achieve δ < 2−30 with 10% corrupted nodes. In Section 8.3,
we additionally present a detailed performance comparison
with Atom, Stadium, and Karaoke.

Ando et al. [8] propose a butterfly topology to achieve

Table 1: End-to-end latency offered by Streams compared to other
provably secure protocols when they handle a total system load
of one million messages. In the first two rows, NIZK means non-
interactive zero knowledge proofs of knowledge.

Protocol #hops Security
Defense against active

attacks

Atom [50] 320 δ≤ 2−64 NIZK
Atom (est.) 120 δ≤ 2−30 NIZK
Stadium [65] 9 DP verifiable shuffle

Karaoke [52] 14 DP
server noise + bloom

filter
Loopix [58] ≥ 3 unknown loop messages
Streams 32 δ≤ 2−30 loop messages

scalability and prove a mixing property. Butterfly networks
are extremely effective in shuffling messages in the absence
of compromised parties, but are not resistant in their pres-
ence. Even individual compromised nodes can jeopardize
the mixing properties of the network. To overcome this chal-
lenge, Ando et al. propose to use Ω(log2(η)) many rounds
for the security parameter η in order to provide mixing in
the presence of passively compromised nodes. As Streams
funnels messages through single nodes it can resist passively
compromised nodes with just O(log(η)) rounds.

Dining cryptographers’ networks (DC-nets) [18] and its
successors [23,24,41,60,67] offer easily provable sender ano-
nymity, low latency, and can be scaled up to a certain extent
via the any-trust assumption on the servers; however, these
protocols inherently demand to fix the users participating in a
protocol-round in advance, and expect those users to agree on
pair-wise symmetric keys and cannot manage churn easily.

The line of two-party or multi-party computation as a ser-
vice towards offering anonymity [5, 6, 22, 34, 55] promises
strong guarantees in the presence of compromised servers.
As these protocols are communication-heavy, the number of
MPC-parties cannot easily be scaled up; hence, spreading the
trust over a large number of servers is more challenging here
than it is for mixnets, such as Streams.

3 Security Definition And Background

Anonymity properties, such as sender anonymity or relation-
ship anonymity, depend heavily on the behavior of clients
and their choices for the overall message latency: Even if the
protocol in question implements a trusted third party it cannot
hide which clients are sending messages at which time; more-
over, if Alice and Bob send messages at different times, but
the overall latency of each of those messages is drawn from
the same (independent) distribution, then the recipients of said
messages as well as a passive observer can learn information
about the potential sender simply by analyzing the timing.

To avoid dealing with these client-dependent and distribu-
tion dependent aspects of anonymity we here focus on the

4

degree of mixing provided by AC protocols. To this end we
follow the examples of indistinguishability-based anonymity
notions. We formalize the question if the adversary could
distinguish whether or not two messages, that spent at least a
given amount of shared time in the protocol, could have been
swapped along the way. This property is close to message
swapping properties from the literature, such as tail indistin-
guishability by Kuhn et al. [49]. We assume an honest-but-
curious global network level attacker that can eavesdrop on a
fraction of the nodes (statically chosen), and has strong back-
ground knowledge about the behavior of the clients, formally
the attacker controls all but two users.

Definition 1 (Pairwise unlinkability). A protocol provides
pairwise unlinkability of messages over time t up to probabil-
ity δ for 0≤ δ< 1 if any pair of messages (u0,m0, ts,0, t f ,0,R0)
and (u1,m1, ts,1, t f ,1,R1) for honest u0,u1, where u is the
sender of the message, m the content, ts the time the mes-
sage enters the system, t f the time the message leaves the sys-
tem, and R the receiver of the message, with min(t f ,0, t f ,1)−
max(ts,0, ts,1) ≥ t cannot be distinguished from the pair
(u1,m0, ts,1, t f ,0,R0) and (u0,m1, ts,0, t f ,1,R1) with an advan-
tage greater than δ by any efficient global passive adversary
A passively and statically compromising at most c nodes.

A global passive adversary here is a machine that can ob-
serve all network traffic between parties, but not alter it di-
rectly. Passive and static corruption means that the adversary
can choose a set of c out of all K nodes at the beginning of the
protocol; the adversary then has access to the internal states of
these c nodes, including all of their keys and random choices.
Efficient here means that the adversary is restricted in its com-
putational power to run at most a number of steps polynomial
in the length of its input, which effectively just rules out that
it can break the underlying cryptographic primitives of the
protocol. Informally, we say that the two messages are shuf-
fled from the adversary’s point of view if a protocol achieves
pairwise unlinkability. We say that a protocol achieves strong
pairwise unlinkability if δ is negligible in a security parameter
η. Ideally, we want our protocol to achieve strong pairwise
unlinkability. We discuss below how pairwise unlinkability
relates to sender anonymity and relationship anonymity.
Pairwise properties and more than two parties. Note that
pairwise unlinkability for all pairs of messages is a strong
property that holds for all pairs of messages at the same time.
The property also naturally extends to more than two mes-
sages. Practically, distinguishing between two cases where
more than two messages are different/swapped is often easier
than just distinguishing a single pair. Formally, we can bound
the advantage by increasing δ. Consider a case where there are
three messages (u0,m0, ts,0, t f ,0,R0), (u1,m1, ts,1, t f ,1,R1), and
(u2,m2, ts,2, t f ,2,R2) with min(t f0 , t f1 , t f2)−max(ts0 , ts1 , ts2)≥
t. We know that the adversary cannot distinguish this
case from (u1,m0, ts,0, t f ,0,R0), (u0,m1, ts,1, t f ,1,R1), and
(u2,m2, ts,2, t f ,2,R2) with advantage greater than δ. More-

over, we know that the adversary cannot distinguish
that case from (u2,m0, ts,0, t f ,0,R0), (u0,m1, ts,1, t f ,1,R1), and
(u1,m2, ts,2, t f ,2,R2) with advantage greater than δ. Thus, the
adversary cannot be able to distinguish the first and last of
those cases with advantage greater than 2 ·δ. This argument
extends naturally to any larger set of messages that are being
swapped around simultaneously.

3.1 Pairwise Unlinkability and Anonymity

Our notion of pairwise unlinkability is conceptually closely
related to tail indistinguishability by Kuhn et al. [49]. The
main difference is that in their definition packets are required
to meet in a node that processes them cryptographically. In
this sense pairwise unlinkability follows a previous notion
of unlinkability of Kate et al. [48], but extends it with the
explicit time when a message enters and leaves the system.

Sender anonymity. One common anonymity notion, sender
anonymity, states that the recipient of a message cannot dis-
tinguish whether the message originated in one sender over
another sender, even for a pair of potential senders of the
adversary’s choice. This notion closely resembles pairwise
unlinkability with one key difference: sender anonymity typi-
cally talks about a single challenge message, not about a pair
of messages; this can be overcome by requiring a degree of
bandwidth overhead, such as ensuring all senders commu-
nicate regularly and can send dummy messages to confuse
the adversary. However, even requiring dummy messages to
be sent, an adversary might still deduce the challenge sender
from timings alone.

If, say, the adversary observes Alice sending a message in
round t and Bob sending a message in round t +2, the arrival
time of the challenge message together with the distribution
of the latency might tell the adversary who of them is more
likely to have sent the challenge message. In the simplest ex-
ample, for a constant latency, the adversary could immediately
exclude one of them from being the challenge sender.

Note that this apparent attack is independent of how a pro-
tocol achieves anonymity and even applies if the messages
are kept in a trusted third party for the same amount of time.

Relationship anonymity. A similar notion states that if two
senders send one message each to two receivers, a third party
is unable to decide which sender talks to which receiver signif-
icantly better than purely guessing. Loopix calls this property
Sender-Receiver Third-party Unlinkability. Given that the
two messages in question are sent in the same round and that
both senders choose a sufficiently large latency from the same
distribution, pairwise unlinkability immediately implies this
anonymity property.

If the challenge senders send their messages h rounds apart,
we achieve a weaker, quantitative form of this property (akin
to differential privacy), where the degree of anonymity de-
pends on the round difference h and the latency distribution.

5

ℓ Maximum latency allowed for a message
L Minimum required latency of a message
I Set of all nodes

Ih Set of all honest nodes
K Total number of nodes |I|
c Number of compromised nodes |I− Ih|
O An onion packet
η The security parameter
δ the adversarial advantage

$← [b,c] Draw uniformly at random from [b,c]

Figure 2: Protocol and system parameters for Streams

Unobservability. The notion of unobservability states that
the adversary cannot distinguish between a sender actively
engaged in communication and the sender being idle. This
property too is highly dependent on the sending patterns of
clients and whether or not they introduce noise messages
regularly. If we require all senders to send dummy messages
whenever they don’t have a real message to send, then this
property follows from pairwise unlinkability.

4 Protocol Description

Here we present the system setup, the protocol design of
Streams, and how the separation of duty into compute and
funnel phases helps scale for a large number of users. In
Appendix A, we present a formal specification of the protocol
in Universal Composability (UC) framework.

4.1 System Setup
We consider a set S of users communicating to a set R of re-
cipients through a set I of intermediate nodes (or just ‘nodes’).
In real life, the same user can act as sender as well as recipi-
ent, however, we consider the sender role and recipient role
as two separate logical entities. Each sender is denoted by ui
where i ∈ {1, . . . ,N} and |S |= N. Similarly, each recipient is
denoted by Ri where i ∈ {1, . . . ,N′} and |R |= N′.

We consider global passive adversaries that can statically
compromise up to c nodes out of a total of K = |I| nodes.
In this section, we only consider passive corruption, which
means that the compromised protocol parties still follow the
protocol specifications, however the adversary has access to
all the internal states of a compromised party. In Section 6 we
discuss the necessary adaptations for the protocol against an
active adversary.

Our protocol uses a round-based communication model
and synchronized clocks. In Section 9.1, we discuss how our
results can be extended to loosely synchronized clocks.

We consider the availability of a public key infrastructure
(PKI) to all the users and nodes. For each party (client or node)
P there exist a private public key pair (skP,pkP). For a party P

to send a message to a party Q, P needs to know the public key
pkQ of Q. We assume such a PKI system can be instantiated
using a one time setup similar to [19, 20, 30, 40, 58] — the
exact procedure is out of scope for this work. We summarize
all the system parameters in Figure 2.

For our formal security proofs, we consider static corrup-
tion by the adversary. However, we make use of randomness
beacons to defend our protocol against dynamic corruption.

Randomness Beacon. We assume that each protocol party
(including the adversary) has access to an incorruptible ran-
domness beacon. In particular, future values of this beacon
are not known to the adversary.

A randomness beacon [59] emits a new random value at
intermittent intervals such that the emitted values are bias-
resistant, i.e., no entity can influence a future beacon value,
and unpredictable, i.e., no entity can predict future beacon
value. NIST’s Randomness Beacons project [21] and the
emerging Drand Organization [31] are two prominent ready
to use Internet-based instantiations of randomness beacon,
while several other protocols [14, 15, 43, 61, 64] and imple-
mentations [1, 2, 42] are also available.

To focus on the building blocks that we provide, we abstract
away from the cryptographic details of those constructions
and assume such an ideal randomness beacon. It outputs each
time a ℓ-long substring of an infinite random string beacon;
using that ℓ-length string a protocol party can derive the funnel
nodes for the next ℓ rounds. Formally, we only require the
randomness beacon to be unpredictable before the protocol
starts, as our adversary can only statically compromise parties;
the beacon, however, can also be leveraged for resistance
against dynamic corruption.

4.2 The Core Protocol

First we present the core protocol that does not scale well with
the number of users. We then describe our complete protocol
with horizontal scaling in Section 4.3.

Packet format. We use the Sphinx packet design [25, 47]
to ensure that all messages are end-to-end encrypted; we
call them “onion packets”. The Sphinx packet design also
guarantees that an intermediate node, just by looking at a
packet, does not learn any information beyond the routing
information needed to forward the message to the next node
— it hides the path length and the relay position of the node
on the path, and the node does not learn anything other than
the next nodes on the path.

Clients. Whenever a client wants to send a message m, she
decides the delay d for every message by picking a number
from [ℓ2 , ℓ−1] following a distribution D. In general D can
be any discrete probability distribution; however, in a typical
setting we assume D to be uniform in [ℓ2 , ℓ−1].

The client derives the path of a packet based on the string
returned by the randomness beacon. For a given round r if the

6

SendMessage(msg):

d← DelayDistribution
(
ℓ
2 , ℓ−1

)
{x1, . . . ,xd}

$←− Id ; p := {x1, . . . ,xd ,R}
Construct a Sphinx onion packet O with path p and content
msg
Send the onion packet O to x1.

Figure 3: Client Protocol Design Πclient with Scaling

randomness beacon returns the string {xr,xr+1, . . . ,xr+ℓ}, any
onion packet constructed at round r will be constructed for
the path of nodes {xr, . . . ,xr+d ,R} for a delay d and intended
recipient R. The client will send the onion packet to node xr
at round r.

All other clients as well as nodes send their packets to
the node xr at round r, since the randomness beacon returns
the same node {xr,xr+1, . . . ,xr+ℓ} to all the parties (clients,
nodes, and the adversary) at round r.

Nodes. The nodes act similar to onion routers [30, 40] except
a node in our protocol accepts packets only in the rounds indi-
cated by the randomness beacon. More formally, when a node
receives a packet in round r, it checks if xr matches its own
id for a string {xr,xr+1, . . . ,xr+ℓ} returned by the randomness
beacon — if not, it rejects the packet. If xr matches its id,
the node with onion packets peels a layer of onion for each
packet and forwards them to the next destination.

4.3 Horizontal Scaling With Compute and
Funnel Phases

One major bottleneck in the above protocol is the processing
power of the nodes — the total number of clients the system
can serve is restricted by the processing power of the weakest
node. We propose to separate duties such that, instead of one
node processing all the onion packets in a round, many nodes
come together to share the processing load. Each round is
then separated into a compute phase, where the task of onion
decryption to prohibit linking is distributed over all nodes, and
a funnel phase, where a randomly chosen node collects and
mixes all the messages. The compute phase does not have a
fixed time span. Immediately after processing, each compute
node directly forwards the packet to the next funnel node. The
funnel node uses the full time of each round. At the end of
the round, the funnel node forwards the shuffled packets to
the respective subsequent compute node. As an additional
advantage, now the clients do not need to be aware of the
funnel node synchronization; because the packets are onion
encrypted only for the compute nodes, not for the funnel nodes
— which we explain in detail shortly. Figure 1 illustrates these
compute and funnel phases.

We assume persistent TLS connections between each pair
of nodes, so that they have an authenticated and encrypted

QUEUE := a queue where the node stores incoming messages.
nodeID := a unique ID in [0,K−1]

IncomingMessage (onion packet O):

ADD O to QUEUE

NewRound (round number r):

funnel := Query the randomness beacon for the current
round r
if nodeID= funnel then

tempQ := Shuffle and copy the elements from QUEUE
while tempQ is not empty do

O := dequeue the first element from tempQ
Forward O to node x over TLS for O = {x,O′}

end while
else

Wait until all messages are received from funnel for
round r

end if
tempQ := Copy all the elements from QUEUE
nextFunnel := Query randomness beacon for next round
(r+1)
while tempQ is not empty do

O := dequeue an element from tempQ
{x,O′} := Remove one onion layer from O
Forward onion {x,O′} to nextFunnel over TLS

end while

Figure 4: Node Protocol Design with Scaling

channel between them. Therefore, even a global network level
adversary cannot see the content of a packet passed between
two nodes unless one of them is compromised; however the
adversary can observe that a packet is passed between them.

The separation into funnel or compute node is conceptual:
the same node can act as a funnel node or a compute node
in different rounds. The funnel nodes are picked using the
string {xr,xr+1, . . . ,xr+ℓ} emitted by the randomness beacon.
Each client picks the compute nodes uniformly at random
(with replacement) from all available nodes for each hop of
an onion packet independent of any other packet or any other
hop of the same packet, and constructs the onion packet only
for the compute nodes. All the packets in every round go to
the designated funnel node; the funnel node shuffles all the re-
ceived packets and forwards them (without any cryptographic
operation) to the compute nodes based on the next node infor-
mation in the Sphinx packet header. Then the compute node
removes one layer of a received onion packet, and forwards
the packet immediately to the next designated funnel node.
Funnel nodes act as mix nodes for the messages. All mes-
sages will meet in the same funnel nodes as their paths are
coordinated by the randomness beacon. Specifically, a node
only acts as a funnel node if the randomness beacon deter-
mines that it is the funnel node for the current round. The
funnel node is a bottleneck of the system in terms of network

7

bandwidth; however, the funnel node does not have to per-
form any cryptographic computations, allowing the system to
scale up to the full bandwidth capabilities.
Compute nodes act similar to onion routers [30, 40] — in
every round a compute node with onion packets peels a layer
of onion for each packet and immediately forwards them to
the next designated funnel node.

The pseudocode representations of the protocols run by
each honest client and each honest node in the presence of
global passive adversaries (that can additionally passively
compromise some protocol parties) are presented in Fig. 3
and Fig. 4 respectively. Additionally, we present the defenses
for our protocol against active attacks in Section 6.

A

B

C

D

Message from Alice
Message from Bob

round r

(a) Messages from Alice and Bob
mix with each other in a round
when they both pass through hon-
est compute nodes and then an
honest funnel node D.

A

B

C

D

round r

(b) Message from Alice and Bob
do not mix with each other in
a round if the funnel node D is
not honest even though they pass
through honest compute nodes.

A

B

C

D

round r

(c) Messages from Alice and Bob
do not mix with each other in
a round if none of them passes
through honest compute nodes in
the same round.

A

B

C

D

round r

(d) Messages from Alice and
Bob do not mix with each other
in a round if both of them do
not pass through honest compute
nodes in the same round.

Figure 5: Cases where two messages mix (or not).

It is important to observe that the following event is equiva-
lent to two messages going through an honest mixnode in the
core protocol: two messages are processed by some honest
compute nodes (not necessarily same) in round r, and then
both of them go through the same honest funnel node in round
r+1. In that case, the two messages achieve “mixing” even
if the whole network before and after that is compromised.
In Figure 5, we pictorially show the possible cases when two
messages can mix (or not).

4.4 Client and Node Synchronization

Note that clients in Streams need not be synchronized: clients
choose the path of compute nodes for their messages and then
send them to the first such compute node. Thus, the clients
don’t need to be aware of the succession of funnel nodes and
the rounds in which they are used.

If nodes lose their synchronization with the protocol, the
messages they forward don’t reach the correct funnel nodes
anymore. Consequently, anonymity is significantly harmed.
This can be detected by funnel nodes (as the wrong nodes
receive messages) and the offending compute node can be
fixed or removed from the protocol. While anonymity is re-
duced, the liveness of the protocol is untouched: the affected
messages can still be sent to the next compute node specified
on its path that will hopefully be synchronized and allow the
message to rejoin the stream. In Section 9.1 go into further
depth on the topic of loose synchronization.

5 Security Analysis

In this section we analyze the security of our protocol Streams
against a global passive adversary that can passively compro-
mise (the compromised parties still follow the protocol) some
portion of the nodes. We discuss the required integrity mea-
sures for our protocol against active adversaries in Section 6.

In Appendix B we present a detailed security proof that
first shows that Streams (as presented in Appendix A) can
be abstracted by an ideal functionality FStreams and second
proves pairwise unlinkability for FStreams. Here we present
the core security properties achieved by Streams and their
implications.

5.1 Pairwise Unlinkability of Streams

First we argue that Streams provides pairwise unlinkability of
messages for δ < γ L over L rounds for a constant fraction γ.

Theorem 1 (Security of Streams). Assuming a secure public-
key encryption scheme, a secure TLS functionality, an incor-
ruptible randomness beacon, and given a constant fraction
c
K < 1, Streams provides pairwise unlinkability of messages
over L rounds up to probability δ as in Definition 1, where
δ < γ L for γ = 1−

(
K−c
K

)3.

The key idea is that two messages get shuffled if they go
through an honest funnel node right after going through honest
compute nodes (c.f. Figure 5). It is not necessary that they
pass through the same honest compute node, however, they
need to pass through some honest compute nodes in the same
round just before passing through an honest funnel node. If
the messages stay in the system long enough (L is sufficiently
high), with high probability there will be at least one such
honest sequence so that they can mix.

8

As a consequence of the above theorem, for all L∈ω(logη)
for a security parameter η the adversarial advantage δ is neg-
ligible, and all pairs of messages that stays together in the
protocol for at least L rounds, get shuffled with overwhelming
probability.

γ = 1−
(
K−c
K

)3 is conceptually the proportion of compute
node and funnel node pairs in a round where the two messages
cannot mix. In Figure 6a we plot the relationship between γ

and the fraction c
K of compromised parties.

If we want to have the same level of concrete security as
without compute and funnel nodes, we need to increase la-
tency, or with similar latency the protocol can only be resilient
against lesser fraction of compromised nodes. However, one
advantage of this construction is that the cost or overhead
does not increase linearly with the number of clients, or more
importantly, does not even depend on the number of clients.
In Fig. 6b, we compare the latency overhead needed for our
protocol (with compute and funnel separation) to achieve
different level of security with that of our core protocol with-
out compute and funnel separation (refer to Theorem 2). For
c
K ≤ 0.2 the number of rounds only doubles with the separa-
tion of duties to achieve the same level of security.

Even though, the separation into compute and funnel phases
provides scalability at the cost of security, the δ value still de-
creases exponentially with latency. We show the relationship
between them in Fig. 6c.

5.2 Pairwise Unlinkability of Core Protocol
We also want to analyze the scenario where we do not need
to scale horizontally, core protocol described in Section 4.2 is
sufficient (e.g., the nodes are as powerful as network routers
or the total number of users is less than few thousands).

Theorem 2 (Pairwise unlinkability of the Core protocol). As-
suming a secure public-key encryption scheme, an incorrupt-
ible randomness beacon, and given a constant fraction c

K < 1,
the core protocol described in Section 4.2 provides pairwise
unlinkability of messages over L rounds up to probability δ

as in Definition 1, where δ <
(
c
K

)L.

The above theorem also gives us an important insight about
how much security is degraded to achieve scalability through
our funnel and compute nodes.

6 Defense Against Active Attackers

Resiliency of anonymous communication against active at-
tacks is well studied in the literature [7, 63] and not the main
focus of this work. We leverage existing techniques to protect
packet integrity and to prevent a total loss of anonymity due
to packet dropping. Our scaling methodology is generally
orthogonal to the protection against active attacks and we
invite the consideration of further protective measures against

active attacks. Concretely, we use exactly the same strategy
as Loopix [58] to defend against active attacks. Our protocol
already makes use of the Sphinx [25] packet format, which
comes with confidentiality (including padding) and message
integrity, and allows for defense against replay attacks and
tagging attacks (see below). Additionally, following Loopix,
we incorporate messages (called loop messages) that users
send to themselves to detect and combat packet drops by an
active adversary. We consider the following relevant attacks:

(n-1) Attacks [62]. In such attacks, the adversary blocks all
but one target message to a node in order to follow the target
message. In case the adversary decides to drop messages from
an honest user Alice, Alice will likely not receive her own
loop messages back and she will know that the system is
under attack. Alice can then spread the word through some
public medium so that other users can stop using the system.

If Alice sends λ loop messages for every real message, the
adversary can drop a message from Alice with a probability of

λ

1+λ
that Alice will detect the attack (since loop messages are

indistinguishable from real messages). Therefore, if the adver-
sary drops k messages from Alice, Alice will detect the attack

with probability 1−
(

1
1+λ

)k
. As a result, the probability of

detection increases drastically with increasing k.
Note that we do not require any specific usage pattern from

the users to enable this defense, we only require that they add
λ additional messages per real message whenever they are
using the system. Additionally, λ can be any constant number,
however for our system we conservatively choose λ = 1. 2

Replay Attacks. Replay attacks are detected and prevented
using the replay detection tag implemented in the Sphinx
packet header. The replay detection tag allows a node to ver-
ify if a packet has already been seen or not; if the packet is
a replay it is dropped. In our system, we verify the replay
detection tag only on the compute nodes. For a funnel node,
the traffic from a compute node to the funnel node is pro-
tected by TLS/SSL, and hence, protected from replay attacks
if the compute node is honest. In case the compute node is
adversarial, the funnel node anyway cannot ensure mixing for
the packets coming from that compute node. The subsequent
honest compute node could then figure out whether a replay
attack occurs, using the replay detection tags.

Tagging Attacks. The Sphinx packet structure also defends
against tagging attacks — if the adversary tries to tag a mes-
sage, the Sphinx packet verification will fail and the packet
will be dropped. If a loop message is dropped, the correspond-
ing user will detect the attack.

2This value corresponds to roughly four times the number of loop mes-
sages per other message when compared to Loopix; it can be argued that
Loopix’ randomized and strictly controlled message sending patterns might
confuse some adversaries – we leave these considerations and the exact
choice of λ to system designers.

9

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

corruption ratio (c/K)

γ

(a) corruption ratio c
K vs. the probability γ of

two messages not mixing in a randomly cho-
sen funnel node and its predecessors (compute
nodes) in a pair of paths.

0.05 0.1 0.2 0.3

10
20

40

60

80

corruption ratio (c/K)

la
te

nc
y

(r
ou

nd
s)

with separation, δ < 2−40

without separation, δ < 2−40

with separations, δ < 2−30

without separation, δ < 2−30

(b) corruption ratio c
K vs. the required latency

(in rounds) to achieve different levels of secu-
rity — viz, one in a billion (δ< 2−30) security,
and one in a trillion (δ < 2−40) security.

10 20 40 60

0

−25

−50

−100

−150

latency

lo
g 2

δ

c/K is 5%
c/K is 10%
c/K is 20%

(c) latency (in rounds) vs. logδ for different
values of corruption ratio c

K (e.g. 5%, 10%,
20%). The linear decrease in logδ means ex-
ponential decrease in the δ value.

Figure 6: Effective security of introducing compute and funnel phases

7 Implementation

We have developed a proof-of-concept implementation of
Streams in approximately 5000 lines of Go code (v1.15). Our
implementation3 builds upon the existing Loopix implemen-
tation [28] for the cryptographic and sphinx packet realiza-
tions4; we then add our own implementation for funnel and
compute nodes. We make following system considerations.

Synchronization. For the prototype implementation we con-
sider a global clock that every protocol party (clients and
nodes) follows. For real deployments, the global clock can
be replaced with local clocks in combination with the idea of
loose synchronization technique described in Section 9.1.

About Rounds. We decide the round duration based on the
load on the system, or more specifically, how many onion
packets are there in the system at any given point of time.
We are going to demonstrate later that the amount of time it
takes to process onion packets is proportional to the number
of packets in our system.

Random Shuffle. We implement the Fisher–Yates shuf-
fle [32] to achieve in-memory shuffle of n elements with
Θ(n) computational complexity. This algorithm requires a
continual source of randomness — each funnel node uses a
locally stored random number table for that purpose. More-
over, shuffling can be preprocessed by shuffling the indexes;
when a message comes, it is directly stored in the shuffled
position of the index.

3The (anonymized) implementation is available at the following link:
https://drive.google.com/drive/folders/
10EjJGqo0ZzHrLm5V78dSRDdOhR1FQHd0

4However, we want to emphasize that our system design is fundamentally
different from Loopix, we only use their library to implement cryptographic
and sphinx packet operations.

8 Performance Evaluation

In this section we evaluate the performance of Streams using
our prototype implementation.

8.1 Processing Capacity of Compute Nodes
We first evaluate how many onion packets can be processed
by a single compute node in a given amount of time. To that
end, we run a standalone compute node, then give the node
different number of onion packets to process, and measure the
time spent to process those packets. For this experiment, we
run a compute node on a machine which has 48 Intel Xeon
Silver 4116 processors (3 GHz) with 128 GB RAM.

1,000 2,000 3,000
0

200

400

600

800

Tin

Ti
m

e
(m

s)

Figure 7: number of packets (Tin) sent to a compute node per
round (x-axis) vs. time taken in milliseconds (y-axis) for the
compute node to process those packets.

In Figure 7, we plot a graph between number of onion
packets given to a compute node vs. time taken to process
those packets. We take the measurements by repeating the
experiment 10 times and taking an average of those.

We note that our crypto library is implemented in the high
level language Go. A more optimized implementation in a
low-level language can improve the packets processing speed
significantly at compute nodes.

10

https://drive.google.com/drive/folders/10EjJGqo0ZzHrLm5V78dSRDdOhR1FQHd0
https://drive.google.com/drive/folders/10EjJGqo0ZzHrLm5V78dSRDdOhR1FQHd0

8.2 Processing Capacity of Funnel Nodes
Now we evaluate how our funnel nodes can scale for different
numbers (200K,400K, · · · ,1M) of onion packets even with
slow compute nodes. Since, the number of compute nodes is
expandable, the funnel nodes dictate the round duration. We
want to measure for funnel nodes how much time is taken by
the TLS layer to process different number of packets, as well
as how much time is taken to run the the shuffle algorithm.

Experimental Setup. To evaluate the performance/scalability
of funnel node, we run a standalone funnel node and send
varying number of onion packets to that funnel node and
measure the time taken for the following two operations:
1. process different number of packets by the TLS layers;
2. run the Fisher–Yates shuffle algorithm for those packets.
We run the funnel node program on a machine with 48 Intel
Xeon Silver 4116 processors (3 GHz) with 128 GB RAM.
We allow the system to spawn up to 100 threads for parallel
processing.

Results. We plot our findings in Figure 8. All the measure-
ments are average of 10 runs approximated to the nearest inte-
ger. Since we achieve in-memory shuffle using Fisher–Yates
algorithm, the observed shuffle time is only around 10 mil-
liseconds even for 1 million packets (c.f. Fig. 8a), even though
the whole shuffle protocol runs in a single thread.

On the other hand, processing 1M packets over TLS takes
around 112 milliseconds even though we spawn up to 100
threads for TLS processing. The overhead involves AES
encryption/decryption for TLS, and handling multiple TLS
threads to ensure one thread does not overwrite a packet from
another thread. This experiment shows that the dominant fac-
tor in deciding the round duration is TLS processing. This
overhead can be further improved by having a more optimized
implementation to handle the TLS threads.

Memory and Network Overhead. When we run the above
benchmarks for the funnel node, we also measure the memory
usage of the process and estimate the throughput require-
ments (amount of data received by the funnel node over the
network for those many packets) based on each packet size
(2056 Bytes) — we plot them in Fig. 8c. We can observe
that, for 1M packets the memory utilization by the server pro-
cess remains below 3 GB, however, the network throughput
requirement can become a bottleneck (receives a total of 2.1
GB in messages). If we choose round duration to be 1 second,
to handle 1M packets the responsible funnel node requires a
burst network capacity of around 17 Gbps.

There are service providers [33, 57] that supports up to 40
Gbps network speed. Streams nodes do not continuously need
a high network capacity, it suffices it they have a high burst
capacity and a moderate average capacity. Also, Amazon
EC2 c5.18xlarge instances can support 25 Gbps [10] speed.
In the future (or) if the system needs to support more than 1M
messages per round, the servers can setup Multipath-TCP [4,
45,56], in order to fulfill the GBps requirement. Moreover, the

GBps bandwidth prices fell drastically in the past and there is
no reason to expect any change to that trend.

8.3 End-to-end Latency Evaluation

We evaluate the end-to-end latency offered by our protocol
in the following way: we choose our round duration to be
1 second which can easily incorporate the TLS processing
time at the funnel, the communications between compute and
funnel nodes, and the overhead of round synchronization (we
discuss about it in Section 9.1); and from Fig. 6b we know the
number of rounds required to achieve δ≤ 2−30. If we consider
that almost 10% of the total nodes are compromised, we need
ℓ = 16. The makes the end-to-end latency for a message in
our protocol to 16 seconds.

If the system can process 1 million messages every round,
it can allow about 625K new messages on average in every
round (each message stays in the system for ℓ= 16 rounds).
With noise message ratio λ = 1, the system can support 312K
new real messages per round.

Comparison With Other Protocols. If we compare the per-
formance of Streams with other provably secure protocols that
can serve similar number of total messages in the system, only
Karaoke performs better than Streams in terms of latency, but
at the cost of anonymity (only provides differential privacy
with ε = ln2 with an end-to-end latency of 6 seconds).5 Our
protocol outperforms Stadium with a significant margin (Sta-
dium has an end-to-end latency of 68 seconds while providing
only DP guarantees). While comparing, we consider the total
number of messages that can be handled by a system rather
than the total number of users. Because, in protocols like
Karaoke or Stadium, the users need to send their messages at
the beginning of an epoch, and wait for those messages to get
delivered before starting the next epoch. In contrast, Streams
users can send messages whenever they want.

Atom provides much stronger security guarantees (δ <
2−64) than Streams, however, Streams has much lower end-
to-end latency than Atom. We estimate the end-to-end latency
of Atom (in their trap message scenario with no churn) from
their measurements [50], for δ≤ 2−30 and c

K = 10% — the
estimated end-to-end latency for each message is around 630
seconds, which is much higher than Streams.

9 Resiliency Improvements

9.1 Resiliency for Loose Synchronization

In our protocol description in Section 4 we assumed that all
the protocol parties are perfectly synchronized. However, it

5In our comparison, we are gracious and do not count the worst-case
waiting time for sending a message in Karaoke and Stadium, which leads to
a factor of 2 in terms of latency.

11

0.2 0.4 0.6 0.8 1
·106

2

4

6

8

10

Tin

Ti
m

e
(m

s)

(a) Number of packets (Tin) sent to a funnel
node (x-axis) vs. the amount of times in mi-
croseconds (y-axis) to run Fisher Yates shuffle
for the given number of packets.

0.2 0.4 0.6 0.8 1
·106

40

60

80

100

Tin

Ti
m

e
(m

s)

(b) number of packets (Tin) sent to a funnel
node via TLS connections (x-axis) vs. the
amount of times in milliseconds (y-axis) to
process those packets.

0.2 0.4 0.6 0.8 1
·106

1,000

2,000

3,000

Tin

M
i
B

memory usage
data usage

(c) number of packets (Tin) sent to a compute
node per round vs. the resources consumed in
terms of maximum memory usage by a funnel
server and the amount of data received.

Figure 8: Onion packets processing at funnel nodes

can be challenging to maintain such synchronization con-
tinuously. Here we discuss how to relax that assumption by
allowing each protocol party to follow their own local clock.

We assume that the maximum difference between two lo-
cal clocks of the nodes is bounded by µ milliseconds. The
clients do not need to keep track of rounds at all, and can send
messages to the system whenever they want. A client sends
an onion packet to the first compute node on the onion path.
The compute node based on its local clock can decide which
funnel node to forward the packets to. As long as µ is lower
than a few hundred milliseconds, we can add µ in the com-
putation of round duration to handle the synchronization gap
among the nodes. We can still have a reference global clock
which the nodes can synchronize their local clocks with from
time-to-time. We only need equivocation protection from that
global clock, the protocol does not depend on that clock for
the anonymity property.

However, suppose nodes (at most 10% for example) in the
system have a difference of more than few hundred millisec-
onds with the reference global clock. Such unsynchronized
compute nodes can send packets to wrong funnel nodes. If a
node receives an onion packet that it is not supposed to receive
(probably a dishonest or badly synchronized compute node
has sent the packet to a wrong funnel node), the node just
forwards the packet to the correct compute node (according
to the onion packet header) at the end of the round. Thus, the
protocol still functions properly, although the latency needs
to be increased based on the amount of such unsynchronized
(and compromised) nodes to provide same level of mixing.

With the above modified approach, a node does not have
to derive at which round it should act as a funnel node or
compute node. For all the onion packets (according to the
onion headers) if it is the intended compute node, it acts as a
compute node; for all the rest of the packets it acts as a funnel
node and forwards them to the next corresponding compute
nodes at the end of the round.

9.2 Denial-of-Service (DoS) Attacks Against
Funnel Nodes

Although our formal security analysis does not consider DoS
attacks, our design of having one funnel node per round intro-
duces a single point failure against such attacks. If a powerful
adversary is able to redirect the DoS attack to the next funnel
node within a span of one round, and can keep doing that, it
will be able to block the whole system.

Defense. To defend against such attacks, we utilize the fact
that each pair of nodes have a persistent TLS connection
between them. If the funnel node is under attack, when the
compute nodes send packets to the funnel they will not receive
any TCP/IP acknowledgments for the dropped packets. Here
we only consider the scenario where the funnel is under attack,
and not the scenario where a malicious funnel intentionally
drop packets. We discuss about that scenario in Section 9.3.

In our defense strategy, whenever the compute nodes detect
such an attack against the funnel nodes, the compute nodes
will shuffle the packets they locally have and directly forward
them to the next compute nodes at the end of the round. This
will compromise anonymity but provide availability for the
system when the funnel nodes are under attack.

Assuming limited capacity of the adversary to DoS the
funnel nodes, we can consider that only a constant fraction ι

of funnel nodes will under attack; and the anonymity provided
by the protocol will be lower bounded by that when a total of
ι+ c nodes are compromised6.

If the adversary is really strong and can attack all the funnel
nodes one after another, the overall anonymity of the system
reduces to the anonymity provided by Karaoke but without
the noise messages from the servers. However, considering a
constant fraction of honest users, differential privacy bounds
similar to Karaoke [52] can be derived. We consider the exact
bounds in such scenarios to be out of scope for this work, and
leave it for future work.

6If a funnel node is compromised, the protocol anyway does not achieve
any mixing on that funnel node; and it is equivalent to directly forwarding
the message to the next compute node.

12

9.3 Avoiding Single Points of Failure

The scaling technique presented here and exemplified within
Streams regularly funnels all packets through a single node
(hence the term funnel nodes). While this allows the maximal
number of packets to mix, it also inherently creates single
points of failure: a funnel node can get overwhelmed and
process packets more slowly than anticipated or it could even
fail outright. We could argue that this is not entirely new
for anonymous communication protocols, but that does not
alleviate the concern in all cases.

We consider a comprehensive analysis of different modes
of node failures and resiliency assumptions out of scope for
this paper and thus only present brief considerations. Rare and
short delays and slowdowns of funnel nodes can be considered
as issues with synchronization (see above). If the risk of total
failure or repeated and significant delays is deemed too high,
then one or more redundant funnel nodes can be introduced
as follows: every round clients and compute nodes alike send
a copy of each packet to each of the two or more funnel nodes
selected for that round. In the next round each compute node
gets the messages from all funnel nodes and can verify that
they worked properly. Since clients choose the sequence of
compute nodes, the packets from different funnels still visit
the same compute nodes.

Implementing this method naturally increases the overall
network load (as twice as many packets are sent to and form
compute nodes); this does not lead to new bottlenecks, as
compute nodes are limited mostly by the complexity of com-
putation and should be able to handle an increase in network
load, while the load for funnel nodes is unchanged. However,
redundant funnel nodes slightly decrease the guarantees pro-
vided: our analysis holds as provided, except that if any one of
the two funnel nodes is compromised then we are in the case
where "the funnel node is compromised". This effectively
decreases the security provided slightly. 7 We leave further
analyses and considerations to future work.

10 Application Considerations

10.1 Applicability of Our Scaling Technique

One common bottleneck in traditional mixnet based systems
is the processing power of the nodes — the total number of
users the system can serve is restricted by the processing
power of the weakest node. To avoid this issue, many systems
[52, 58, 65, 66] employ parallel mixnets to scale with the
number of users. However that approach does not always
provide provable unlinkability. Karaoke [52], Stadium [65],
Vuvuzela [66] achieve anonymity in the differential privacy

7In Theorem 3, where we show that there is a constant 0 < γ < 1, we
choose γ = 1−

(
K−c
K

)3
. This changes to γ = 1−

(
K−c
K

)3+τ
if we use τ

redundant funnels for a total of τ+ 1 funnel nodes per round. The overall
complexity remains; gamma is just a larger constant.

sense at the expense of latency overhead and the chance of
mixing degrades with the number of parallel paths.

Compared to those protocols, the latency required to main-
tain the same level of anonymity with our scaling technique
grows more gracefully with the number of users (does not
grow at all up to 1 million messages). Other protocols can
in fact make use of our scaling technique of splitting the
mixing and computing responsibilities to improve their scala-
bility/privacy properties. Below we describe how our scaling
technique can be used to improve some example protocols:

Loopix [58]. When Loopix needs to scale for many users it
employs multiple paths, which in turn reduces the chance of
two messages mixing with each other. Instead Loopix can
split the responsibilities in the following way: the random-
ized delay and mixing of messages happens at a funnel node,
while the onion decryption happens at a compute node. This
separation of duties would not introduce fixed-length rounds
to Loopix, thus allowing Loopix to keep the desired asyn-
chronous model. To keep a comparable level of security as
well as the overall structure of the protocol, the paths cho-
sen by clients now include both funnel nodes and compute
nodes. In exchange, the separation of duties could drastically
reduce the requirement to expand the number parallel paths
for Loopix, and hence, could guarantee better mixing.

Karaoke [52]. Since Karaoke already works in rounds, it is
easier for Karaoke to adopt our scaling technique. Depending
on the number of messages that have to be processed per
round, the nodes would choose one or more funnel nodes
after the compute phase (e.g., one funnel node per million
of messages). If the number of users in the system exceeds
several million, the messages can be randomly distributed
among a few funnel nodes, e.g., by using a hash function with
the message and the random number from the randomness
beacon as input. In that case, each funnel node will achieve
shuffling for the subset of messages it receives. As this subset
would be randomly chosen, over log-many rounds pairwise
shuffling will occur. As a result, this separation of duties
increases the chance of mixing, and it reduces the number
of parallel paths. Reducing the number of in parallel paths
in turn further improves the required number of round until
messages mix, i.e., until mixing can be proven.

Vuvuzela [66]. Vuvuzela employs a single chain of nodes,
and can directly enjoy the benefits of efficient scaling using
our technique. The extension would be very similar to how
Streams employs the scaling technique in this paper — each
Vuvuzela node can be replaced with a funnel node and a
bunch of compute nodes. By employing many compute nodes,
Vuvuzela can significantly reduce the time required to process
packets in a round, and thus reduce the overall end-to-end
latency by a significant factor, or scale for more number of
users with similar end-to-end latency, while maintaining high
level of anonymity.

13

10.2 Application Scenarios of Streams

Our performance analysis clearly demonstrates that Streams
can scale well with a large number of users. Beyond the
traditional mixnet applications such as anonymous e-mailing,
we find Streams to be useful to applications such as network-
level anonymity for publishing blockchain transaction [44],
and anonymous microblogging.

In cryptocurrency networks such as Bitcoin and Ethereum,
when users publish their transactions to the networks, the
network-level adversaries can easily link these transactions to
their respective users’ IP addresses. Deanonymization attacks
in the blockchain space enables targeting users with substan-
tial stakes/coins. Unlike currently considered/employed so-
lutions in this space such as Tor, Dandelion++ [36], Streams
can offer provable security guarantees without introducing an
unacceptable delay: as the consensus process already takes
up to a few minutes in these public blockchain environments,
latency delay of a few second for provable network anonymity
can be acceptable.

Similar to Atom [50], Riposte [22] and Express [34],
Streams with its latency of only a few seconds can also be
useful for scenarios where users want to broadcast short mes-
sages in a provably anonymous manner. Such an anonymous
microblogging service can be particularly useful to whistle-
blowers and protesters against authoritarian regimes, and free-
dom of expression in general.

11 Conclusion and future work

In this paper we introduced a scaling technique for anony-
mous communication protocols that distributes cryptographic
computations while still allowing messages to meet and mix.
We demonstrated the applicability of our scaling technique
with the sample protocol Streams by scaling it for a million
messages while keeping the end-to-end latency as low as
16 seconds, and guaranteeing good pairwise unlinkability of
messages with 10% compromised nodes in the system. The
property that the users are not required to be synchronized
with rounds is an added advantage of Streams (and our scal-
ing technique in general) over other round-based protocols
like Karaoke, Atom, or Stadium. Our scaling technique can
be leveraged by protocol designers because of its relevance
for other protocols (demonstrated through the examples of
Loopix, Vuvuzela, and Karaoke) to improve scalability and
mixing guarantees through network link saturation.

Our scaling technique also comes with its own limitations
— (i) beyond 1M messages the Gbps connection speed require-
ments of the nodes can become a bottleneck; (ii) the nodes
still need to have some level of round synchronization among
themselves. An interesting future work can be to evaluate the
exact system parameters to achieve a desired level of security
when multiple funnel nodes are employed in parallel to scale
the system beyond several millions of messages.

References

[1] blockchain oracle service, enabling data-rich smart con-
tracts. https://provable.xyz/, accessed 2021.

[2] Generate random numbers for smart contracts using
chainlink vrf, accessed 2021.

[3] RFC 8446. The transport layer security (tls) protocol
version 1.3. https://tools.ietf.org/html/rfc8446, accessed
April 2021.

[4] RFC 8684. Tcp extensions for multi-
path operation with multiple addresses.
https://datatracker.ietf.org/doc/html/rfc8684, accessed
April 2021.

[5] Ittai Abraham, Benny Pinkas, and Avishay Yanai.
Blinder–scalable, robust anonymous committed broad-
cast. In Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1233–1252, 2020.

[6] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste,
and Thomas Zacharias. MCMix: Anonymous Messag-
ing via Secure Multiparty Computation. In Proceedings
of the 26th USENIX Security Symposium, pages 1217–
1234. USENIX Association, 2017.

[7] Mashael Alsabah and Ian Goldberg. Performance and
security improvements for tor: A survey. ACM Comput.
Surv., 49(2), September 2016.

[8] Megumi Ando, Anna Lysyanskaya, and Eli Upfal. Prac-
tical and Provably Secure Onion Routing. In Proceed-
ings of the 45th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 144:1–
144:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2018.

[9] Megumi Ando, Anna Lysyanskaya, and Eli Upfal. On
the complexity of anonymous communication through
public networks. CoRR, abs/1902.06306, 2019.

[10] Amazon AWS. Amazon EC2 instance
network bandwidth. https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/
ec2-instance-network-bandwidth.html, Ac-
cessed January 2021.

[11] Michael Backes, Aniket Kate, Praveen Manoharan, Se-
bastian Meiser, and Esfandiar Mohammadi. AnoA: A
Framework For Analyzing Anonymous Communication
Protocols. In Proc. 26th IEEE Computer Security Foun-
dations Symposium (CSF 2013), pages 163–178, 2013.

[12] Ludovic Barman, Italo Dacosta, Mahdi Zamani, Ennan
Zhai, Apostolos Pyrgelis, Bryan Ford, Joan Feigenbaum,

14

https://provable.xyz/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html

and Jean-Pierre Hubaux. Prifi: Low-latency anonymity
for organizational networks. Proceedings on Privacy
Enhancing Technologies, 2020:24–47, 10 2020.

[13] K. S. Bauer, D. McCoy, D. Grunwald, T. Kohno, and
D. C. Sicker. Low-resource routing attacks against tor.
pages 11–20, 2007.

[14] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik
Nayak. Randpiper - reconfiguration-friendly random
beacons with quadratic communication. IACR Cryptol.
ePrint Arch., (1590), 2020.

[15] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. Jour-
nal of Cryptology, 18(3):219–246, 2005.

[16] R. Canetti. Universally Composable Security: A New
Paradigm for Cryptographic Protocols. pages 136–145,
2001.

[17] David Chaum. Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms. Communications
of the ACM, 4(2):84–88, 1981.

[18] David Chaum. The dining cryptographers problem: Un-
conditional sender and recipient untraceability. Journal
of Cryptology, 1(1):65–75, 1988.

[19] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate,
Anna Krasnova, Joeri de Ruiter, and Alan T. Sherman.
cmix: Mixing with minimal real-time asymmetric cryp-
tographic operations. In 15th International Conference
on Applied Cryptography and Network Security 2017,
2017.

[20] Chen Chen, Daniele E. Asoni, David Barrera, George
Danezis, and Adrian Perrig. HORNET: High-speed
onion routing at the network layer. In Proc. ACM Confer-
ence on Computer and Communications Security (CCS),
pages 1441–1454, 2015.

[21] Information Technology Laboratory Computer Secu-
rity Division. Interoperable randomness beacons: Csrc,
accessed April 2021.

[22] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.
Riposte: An anonymous messaging system handling
millions of users. In 2015 IEEE Symposium on Security
and Privacy, pages 321–338. IEEE, 2015.

[23] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Ac-
countable Anonymous Group Messaging. pages 340–
350, 2010.

[24] Henry Corrigan-Gibbs, David Isaac Wolinsky, and
Bryan Ford. Proactively Accountable Anonymous Mes-
saging in Verdict. In Proc. 22nd USENIX Security Sym-
posium, pages 147–162, 2013.

[25] George Danezis and Ian Goldberg. Sphinx: A Compact
and Provably Secure Mix Format. pages 269–282, 2009.

[26] D. Das, S. Meiser, E. Mohammadi, and A. Kate. Ano-
nymity trilemma: Strong anonymity, low bandwidth
overhead, low latency - choose two. In 2018 IEEE Sym-
posium on Security and Privacy (SP), pages 108–126,
May 2018. extended version under https://eprint.
iacr.org/2017/954.

[27] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Comprehensive anonymity
trilemma: User coordination is not enough. Proceedings
on Privacy Enhancing Technologies, 2020:356–383, 07
2020.

[28] Deepmind. Anonymous messaging using mix
networks. https://github.com/deepmind/
loopix-messaging, Accessed January 2021.

[29] R. Dingledine and N. Mathewson. Tor Protocol Specifi-
cation. https://gitweb.torproject.org/torspec.
git/, Accessed March 2021.

[30] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceed-
ings of the 13th Conference on USENIX Security Sym-
posium - Volume 13, SSYM’04, page 21, USA, 2004.
USENIX Association.

[31] Drand. Drand - a distributed randomness beacon dae-
mon, Accessed April 2021.

[32] Manuel Eberl. Fisher-yates shuffle. Arch. Formal Proofs,
2016, 2016.

[33] Hurricane Electric. Hurricane Electric internet ser-
vices. http://he.net/ip_transit.html, Accessed
July 2021.

[34] Saba Eskandarian, Henry Corrigan-Gibbs, M. Zaharia,
and D. Boneh. Express: Lowering the cost of
metadata-hiding communication with cryptographic pri-
vacy. ArXiv, abs/1911.09215, 2019.

[35] N. S. Evans, R. Dingledine, and C. Grothoff. A Practical
Congestion Attack on Tor Using Long Paths. pages 33–
50, 2009.

[36] Giulia C. Fanti, Shaileshh Bojja Venkatakrishnan, Surya
Bakshi, Bradley Denby, Shruti Bhargava, Andrew Miller,
and Pramod Viswanath. Dandelion++: Lightweight
cryptocurrency networking with formal anonymity guar-
antees. Proc. ACM Meas. Anal. Comput. Syst.,
2(2):29:1–29:35, 2018.

[37] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-
Reza Sadeghi, and Jörg Schwenk. Universally compos-
able security analysis of tls. In Joonsang Baek, Feng

15

https://eprint.iacr.org/2017/954
https://eprint.iacr.org/2017/954
https://github.com/deepmind/loopix-messaging
https://github.com/deepmind/loopix-messaging
https://gitweb.torproject.org/torspec.git/
https://gitweb.torproject.org/torspec.git/
http://he.net/ip_transit.html

Bao, Kefei Chen, and Xuejia Lai, editors, Provable Secu-
rity, pages 313–327. Springer Berlin Heidelberg, 2008.

[38] Nethanel Gelernter, Amir Herzberg, and Hemi Lei-
bowitz. Two cents for strong anonymity: the anonymous
post-office protocol. 01 2017.

[39] Sharad Goel, Mark Robson, Milo Polte, and Emin
Sirer. Herbivore: A scalable and efficient pro-
tocol for anonymous communication. 2003.
https://www.cs.cornell.edu/people/egs/
herbivore/herbivore.pdf.

[40] D. M. Goldschlag, M. G. Reed, and P. F. Syverson.
Onion Routing. Commun. ACM, 42(2):39–41, 1999.

[41] Philippe Golle and Ari Juels. Dining cryptographers
revisited. In Proc. of Eurocrypt 2004, 2004.

[42] Mads Haahr. True random number service, Accessed
April 2021.

[43] Timo Hanke, Mahnush Movahedi, and Dominic
Williams. Dfinity technology overview series, con-
sensus system. arXiv preprint arXiv:1805.04548,
2018.

[44] Ryan Henry, Amir Herzberg, and Aniket Kate.
Blockchain access privacy: Challenges and directions.
IEEE Security Privacy, 16(4):38–45, 2018.

[45] Benjamin Hesmans and Olivier Bonaventure. Tracing
multipath tcp connections. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, page
361–362, New York, NY, USA, 2014. Association for
Computing Machinery.

[46] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr,
and Paul Syverson. Users get routed: Traffic correlation
on tor by realistic adversaries. In Proc. ACM SIGSAC
conference on Computer & communications security
2013, pages 337–348, 2013.

[47] Aniket Kate and Ian Goldberg. Using Sphinx to Improve
Onion Routing Circuit Construction. pages 359–366,
2010.

[48] Aniket Kate, Greg M Zaverucha, and Ian Goldberg.
Pairing-based onion routing with improved forward se-
crecy. ACM Transactions on Information and System
Security (TISSEC), 13(4):1–32, 2010.

[49] Christiane Kuhn, Martin Beck, and Thorsten Strufe.
Breaking and (Partially) Fixing Provably Secure Onion
Routing. In Proceedings of the 41st IEEE Symposium
on Security and Privacy, pages 168–185. IEEE, 2020.

[50] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas,
and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 406–422,
New York, NY, USA, 2017. Association for Computing
Machinery.

[51] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle: An Efficient Communication System
With Strong Anonymity. In Proc. Privacy Enhancing
Technologies Symposium (PETS 2016), pages 115–134,
2016.

[52] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In 13th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 18),
pages 711–725, Carlsbad, CA, October 2018. USENIX
Association.

[53] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: Strong metadata security for voice calls. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, page 211–224, New York, NY,
USA, 2019. Association for Computing Machinery.

[54] Stevens Le Blond, David Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A Scalable,
Traffic Analysis Resistant Anonymity Network for VoIP
Systems. In Proc. ACM Conference on Special Inter-
est Group on Data Communication (SIGCOMM 2015),
pages 639–652, 2015.

[55] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha,
Rahul Govind, Aniket Kate, and Andrew Miller. Hon-
eybadgermpc and asynchromix: Practical asynchronous
mpc and its application to anonymous communication.
In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 887–
903, 2019.

[56] IP networking lab. MultiPath TCP - Linux Kernel im-
plementation. https://www.multipath-tcp.org/,
Accessed January 2021.

[57] OVHcloud. Customizable public bandwidth to reach
your full potential. https://www.ovhcloud.com/de/
bare-metal/bandwidth/, Accessed July 2021.

[58] Ania Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian
Meiser, and George Danezis. The loopix anonymity
system. In Proc. 26th USENIX Security Symposium,
2017.

[59] Michael O Rabin. Randomized byzantine generals. In
24th Annual Symposium on Foundations of Computer
Science (sfcs 1983), pages 403–409. IEEE, 1983.

16

https://www.cs.cornell.edu/people/egs/herbivore/herbivore.pdf
https://www.cs.cornell.edu/people/egs/herbivore/herbivore.pdf
https://www.multipath-tcp.org/
https://www.ovhcloud.com/de/bare-metal/bandwidth/
https://www.ovhcloud.com/de/bare-metal/bandwidth/

[60] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate.
P2P Mixing and Unlinkable Bitcoin Transactions. In
Proc. 25th Annual Network & Distributed System Secu-
rity Symposium (NDSS), 2017.

[61] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter,
and Edgar Weippl. Hydrand: Practical continuous dis-
tributed randomness. In 2020 IEEE Symposium on Se-
curity and Privacy (SP). IEEE, 2020.

[62] Andrei Serjantov, Roger Dingledine, and Paul Syverson.
From a trickle to a flood: Active attacks on several mix
types. volume 2578, 02 2003.

[63] Fatemeh Shirazi, Milivoj Simeonovski, Muham-
mad Rizwan Asghar, Michael Backes, and Claudia Díaz.
A survey on routing in anonymous communication
protocols. ACM Comput. Surv., 51(3):51:1–51:39,
2018.

[64] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris
Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Michael J Fischer, and Bryan Ford. Scalable bias-
resistant distributed randomness. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 444–460.
Ieee, 2017.

[65] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. pages 423–440, 10
2017.

[66] Jelle van den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private mes-
saging resistant to traffic analysis. In Proc. 25th ACM
Symposium on Operating Systems Principles (SOSP
2015), 2015.

[67] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in Numbers: Mak-
ing Strong Anonymity Scale. In 10th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 12), pages 179–182, 2012.

A Protocol Description in UC Framework

We described the design of Streams in Section 4. Here we
formally present the protocol design of Streams in the UC-
framework.

A.1 Model
We use a hybrid world UC model [16] to represent our proto-
col – where the protocol has access to some additional ideal
(hybrid) functionalities that is available to the protocol as well
as the adversary. A protocol party (an honest user or node)

Array Rounds := {false, . . . , false} // Array of length
K+N+N′

Round := 0; PartiesIncremented := 0
QUEUE = a queue where the incoming messages are stored

QueryRound() from A or FCRF or party i:

return {Round,Rounds}

RequestRound() from party i:

return Rounds[i]

NextRound() from party i:

if Rounds[i] = true then
return “invalid action”

else
Rounds[i]← true; PartiesIncremented+= 1

end if
if PartiesIncremented= K+N+N′ then

Round+= 1; PartiesIncremented← 0
Reset Rounds[j] := false ∀ j : 0≤ j < K+N+N′

Forward all elements of QUEUE to A ; empty QUEUE
end if

Upon receiving msg (P,Pnext ,O, round) from Streams

if round= Round then
ADD (P,Pnext ,O,Round) to QUEUE

end if

Figure 9: Round Functionality Fround

or the adversary can access such a functionality through an
incorruptible ITI F that provides certain ideal guarantees,
e.g., clock time, key registration etc. More specifically, our
formalization uses four such functionalities: a round-based
communication functionality Fround , a globally available ran-
domness beacon FCRF , a key registration functionality FRKR,
and a secure channel functionality FSCS. The environment
E can access those ideal functionalities either through the
protocol parties or through the adversary.

Round Functionality Fround . We introduce a hybrid function-
ality Fround (see Figure 9) to enforce rounds on the protocol
parties. We ensure that the environment E activates the honest
parties in every round. Fround ensure, though, that the envi-
ronment E cannot activate a protocol party multiple times
in the same round by keeping track of the Rounds[i] flag for
each party i (including both clients and nodes). Additionally,
it ensures that all the network packets intended to send for a
given round is not send before or after that round to an honest
protocol party. As a consequence, the environment can stop
the entire protocol at anytime. As then no messages would
be delivered anymore, stopping the entire execution does not
leak any information to the environment.

Randomness Beacon Functionality FCRF . We assume that
each protocol party (including the adversary) has access to an

17

crf = an infinitely long random string.

GetFunnels(ℓ):

round,←QueryRound()
return {crf[round] mod K, . . . ,crf[round+ ℓ−1]
mod K}

Figure 10: Randomness Beacon Functionality FCRF

incorruptible randomness beacon. In particular, future values
of this beacon are not known to the adversary. We model this
beacon with an ideal functionality FCRF (see Fig. 10) that
outputs each time a ℓ-long substring of an infinite random
string beacon. Using that ℓ-length string a protocol party can
derive the next ℓ funnel nodes.

Key registration functionality FRKR. The key registration
functionality FRKR is solely used by the subprotocol Πsub
from [49], which handles all cryptographic operations. Πsub
is treated in a black-box manner throughout this section. For
completeness, we provide a description of Πsub and FRKR in
Appendix D.

Secure Channel Functionality FSCS. We also use the secure
communications sessions functionality FSCS from the work of
Gajek et al. [37, Figure 4]. They show that FSCS abstracts the
TLS [3] protocol. It is crucial to note here that all the protocol
parties in our model work in rounds, and therefore, FSCS as
well forwards all the messages to the Fround functionality
instead of the environment; the Fround functionality in turn
forwards those messages to the environment when the round
ends.

Packet format. We use the Sphinx packet design [25, 47]
to ensure that all messages are end-to-end encrypted; we
call them “onion packets”. The Sphinx packet design also
guarantees that an intermediate node, just by looking at a
packet, does not learn any information beyond the routing
information needed to forward the message to the next node
— it hides the path length and the relay position of the node on
the path, and the node does not learn anything other than the
next nodes on the path. The security properties of the packet
design is already incorporated in the onion subprotocol Πsub
that we use from the work of Kuhn et al. [49].

A.2 The Core Protocol

First we present the core protocol that does not scale well
with the number of users. Then in Appendix A.3 we describe
our complete protocol with horizontal scaling. Our protocol
has two kinds of parties — clients and nodes. So we define
our protocol in two parts as well — clients and nodes. Ad-
ditionally, the protocol parties as well as the adversary have
access to the hybrid functionalities as described above (in
Appendix A.1).

Clients. Whenever a client wants to send a message m, she
decides the delay d for every message by picking a number
from [ℓ2 , ℓ−1] following a distribution D. In general D can
be any discrete probability distribution; however, in a typical
setting we assume D to be uniform in [ℓ2 , ℓ−1].

The client derives the path of a packet based on the string
returned by the randomness beacon. For a given round r if
FCRF returns the string {xr,xr+1, . . . ,xr+ℓ}, any onion packet
constructed at round r will be constructed for the path of
nodes {xr, . . . ,xr+d ,R} for a delay d and intended recipient R.
The client will send the onion packet to node xr at round r.

All other clients as well nodes sends their packets to
the node xr at round r, since FCRF returns the same node
{xr,xr+1, . . . ,xr+ℓ} to all the parties (clients, nodes, and the
adversary) at round r.
Nodes. The nodes act similar to onion routers [30, 40] except
a node in our protocol accepts packets only in the rounds
indicated by the randomness beacon. More formally, when
a node receives a packet in round r, it checks if xr matches
its own id for a string {xr,xr+1, . . . ,xr+ℓ} returned by FCRF
— if not, it rejects the packet. If xr matches its id, the node
with onion packets peels a layer of onion for each packet and
forwards them to the next destination.

A.3 Horizontal Scaling With Compute and
Funnel Phases

One major bottleneck in the above protocol is the processing
power of the nodes — the total number of clients the system
can serve is restricted by the processing power of the weakest
node. We propose to separate duties such that, instead of
one node processing all the onion packets in a round, many
nodes come together to share the processing load. Each round
is then separated into a compute phase, where the task of
onion decryption to prohibit linking is distributed over all
nodes, and a funnel phase, where a randomly chosen node
collects and mixes all the messages. In UC-realization of our
protocol, we split those phases into separate rounds, to avoid
having two sequential communications within a single round.
Therefore, one single round of our original protocol maps to
two rounds in the UC-version. In the compute round, each
compute node processes the packets with them and forwards
them to the designated funnel node, then in the funnel round,
the funnel node shuffles all the messages that it received in
the last round, and forwards them to the respective subsequent
compute nodes.

The funnel nodes are picked using the string {xr,xr+1, . . . ,
xr+ℓ} emitted by the randomness beacon FCRF . Each client
picks the compute nodes uniformly at random (with replace-
ment) from all available nodes for each hop of an onion packet
independent of any other packet or any other hop of the same
packet. All the packets in every even round go to the next
designated funnel node. Then in the next (odd) round, the fun-
nel node shuffles all the received packets and forwards them

18

QUEUE = a FIFO queue.

SendMessage(msg,R) from party i
r← QueryRound()
if round ̸= r then

reject packet and exit
end if
ADD (msg,R) to QUEUE

Upon new round from E:
boolean flag := RequestRound() // defined in Fround
if flag ̸= true then

return “invalid action”
end if
if round mod 2 = 0 // compute round then

while QUEUE is not empty do
(msg,R)← dequeue QUEUE;

d← DelayDistribution
(
ℓ
2 , ℓ−1

)
{x1, . . . ,xd}

$←− Id ; p := {x1, . . . ,xd ,R}
call Process_new_onion(sel f ,msg,d +1, p) from
ΠT

end while
end if
NextRound()

Upon receiving a message msg from Πsub:
Output “Message msg received” to E

Figure 11: Client Protocol Design Πclient as described in Ap-
pendix A.3

ΠT :Process_new_onion(sel f ,msg,d +1, p)
Call Process_new_onion(sel f ,msg,d +1, p) from Πsub.
Intercept the network packet packet and send it to Πrer.

ΠT : Forward_Onion(O)

Call Forward_Onion(O) in the subprotocol Πsub.
Intercept the network packet packet and send it to Πrer.

Πrer: Upon a packet packet
_, f unnel← GetFunnels(2) // Select next funnel node
Send packet over FSCS to f unnel.

Figure 12: ΠT and Πrer

(without any cryptographic operation) to the compute nodes
based on the next node information in the Sphinx packet
header. Then, again in the even round, the compute node re-
moves one layer of the onion packet, and forwards the packet
immediately to the next designated funnel node.

The packets are onion encrypted only for the compute
nodes, not for the funnel nodes. Additionally, we assume au-
thenticated and encrypted channel between each pair of nodes
which is realized by the FSCS functionality. The pseudocode
representations of the protocols run by each honest client
and each honest node are presented in Fig. 11 and Fig. 13
respectively.

B Security Analysis (extended)

In this section we formally analyze the security of our proto-
col Streams against a global passive adversary that can stat-
ically and passively compromise (the compromised parties
still follow the protocol) some portion of the nodes.

For proving security, we first prove that an intermediary
representation, a UC ideal functionality FStreams, of Streams
that does not rely on cryptographic operations but on shared
memory. This ideal functionality FStreams is carefully crafted
such that all attacks on Streams can be mounted on FStreams
as well, against a wide range of attacker capabilities. In a
second step, we prove pairwise unlinkability for the faithfully
abstracted ideal functionality, which in turn implies pairwise
unlinkability for Streams.

We say that the ideal functionality F is realized by a pro-
tocol Π if all attacks (within the execution model) that can
be mounted on Π can be translated to attacks on Π, for a
wide range of attacker capabilities. An ideal functionality,
like FStreams, can abstract away from cryptographic details
while faithfully modeling all weaknesses of the protocol.

B.1 An Ideal Functionality for AC Protocols

The ideal functionality FStreams basically acts as as trusted
third party to whom users tell that they would like to anony-
mously send a message. This trusted third party leaks as much
information as Streams would leak. Due to the regular meet-
ing points at funnel nodes and TLS protection, FStreams does
not need to leak which onion is sent from which compute
node to which compute node, as long as the party that sends
the onion and the next subsequent funnel node are honest.
Removing the very leakage of which onion is sent to whom
enables us to prove a strong shuffling property for Theorem 3,
pairwise unlinkability with overwhelming probability (see
Definition 1).

Formally, the ideal functionality FStreams provides API calls
for when clients want to send a message and they react to
network messages. Moreover, as we consider a round-based
protocol and the UC-framework is a sequential activation

19

INPUT_QUEUE = a queue where incoming messages are
stored
OUTPUT_QUEUE = a queue where outgoing messages are
stored
nodeID := a unique ID in [0,K−1]

Upon input message (onion packet O):

ADD O to INPUT_QUEUE

Upon new round from E:
boolean flag := RequestRound() // defined in Fround
if flag ̸= true then

return “invalid action”
end if
f unnel := GetFunnels(1)
if round mod 2 = 1 AND nodeID= f unnel then

Πfunnel
else if round mod 2 = 0 then

Πworker
end if
swap INPUT_QUEUE and OUTPUT_QUEUE.
NextRound()

Πfunnel:
Shuffle OUTPUT_QUEUE
while OUTPUT_QUEUE is not empty do

O← dequeue the first element from OUTPUT_QUEUE

Forward O to FSCS
end while

Πworker:
while OUTPUT_QUEUE is not empty do

O← dequeue the first element from OUTPUT_QUEUE

call Forward_Onion(O) from the subprotocol wrapper
ΠT

end while

Figure 13: Node Protocol Design as described in Ap-
pendix A.3

inputBuffer[] an array of queues to store messages for nodes
crf = an infinitely long random string
queue = a hashmap
round := 0; newRound[] := {false,false, . . .};
partyCount := 0

Upon new round from E for party P:
if newRound(P) = true then

return “invalid action”
end if
set newRound(P) := true ; partyCount+= 1
if round is odd (funnel round) AND P is a client then

(m,R, t)← dequeue inputBuffer[P]

d← DelayDistribution(ℓ2 , ℓ−1); {x1, . . . ,xd}
$←− Id

if !∃x ∈ {x1, . . . ,xd} such that xa ∈ Ih then
Send (m,x1, . . . ,xd) to S

else
let xa := the first honest party on the path
{P,x1, . . . ,xd}
Generate a random message q
Send (q,x1, . . . ,xa) to S
store (q,xa,m,xa+1, . . . ,xd ,R) in queue(round+a)

end if
end if
if round is even (compute round) AND
partyCount = N+K then

SendInformation()
end if
NextRound(P)

Upon input message (m, R, t) from E for party P:
if round ̸= t then

reject packet and exit
end if
Add (m,R, t) in inputBuffer[P]

Upon receiving a message m for party P:
Output m to E

Figure 14: Ideal functionality FStreams

20

SendInformation()

y := crf[round+1]%K
for each (q,xa,m,xa+1, . . . ,xd ,R) ∈ queue(round) do

Remove (q,xa,m,xa+1, . . . ,xd ,R) from queue(round)
link := q
if y ∈ Ih then

link :=⊥
end if
let xφ be the next honest node on the path {xa+1, . . . ,xd}
if there is no such xφ then

Add (link,m,xa+1, . . . ,xd ,R) in a temporary queue Q
else

generate a random message q′

Add (link,q′,xa+1, . . . ,xφ) in Q
Add (q′,xφ,m,xφ+1, . . . ,xd ,R) to

queue(round+φ−a)
end if

end for
Shuffle the elements of Q and send them to S

Figure 15: Leakage from the ideal functionality FStreams

framework (to simplify the analysis), we formally need a
“new round” API call.

The ideal functionality expects input messages of the form
(msg,R, t). As the protocol works in rounds, FStreams stores
the input messages in an input queue. Upon the “new round”-
command, an element from the input queue is processed.
When processing an input, the ideal functionality FStreams
checks which message only has compromised parties xi ̸∈ Ih
on its path. For those cases, the ideal functionality leaks the
message to the simulator S . Otherwise, FStreams provides a
temporary identifier (in the form of a random integer) to S
in place of a message, along with the segment of the path
until the next honest compute node. When the round corre-
sponding to that compute node comes, FStreams again provides
a new temporary identifier along with the next segment of
path. When FStreams switches the temporary identifiers, if
there are not honest funnel before or after the honest com-
pute node, it provides the mapping between the old and the
new identifiers to allow S to link between packets. Here we
slightly over-approximate the leakage by not distinguishing
between honest and compromised recipients, because in some
protocol setting (anonymous broadcast) or anonymity notion
(sender anonymity) the adversary can anyway see the message
in plaintext once it comes out of the protocol. We formally
present the ideal functionality in Fig. 15.

B.2 Pairwise Unlinkability of FStreams

Next we show that, at the expense of latency, our ideal func-
tionality provides pairwise unlinkability — if two messages
stay together in FStreams for a sufficiently long time (poly-
logarithmic in the security parameter), they get shuffled.

Theorem 3 (Pairwise unlinkability of FStreams). If the amount
of compromised nodes is a constant fraction c

K < 1, FStreams
provides pairwise unlinkability of messages over L rounds
up to probability δ as in Definition 1, where δ < γL/2 with
γ = 1−

(K−c
K

)3.

We postpone the full proof in Appendix C.2. Note that, L
rounds in the UC-framework version of our protocol trans-
lates to L = L/2 rounds in the original protocol. If L in
the above theorem is polylogarithmic, δ becomes negligible,
which gives us the following corollary.

Corollary 1. Given a constant fraction c
K , in the presence of

any adversary S , if two arbitrary messages stay together in
the protocol FStreams for L∈ω(logη) rounds they are shuffled
with an overwhelming probability.

B.3 Abstraction Proof for Streams

Recall that formally Streams runs in the
FCRF ,FRKR,FSCS,Fround hybrid model. Our ideal func-
tionality FStreams absorbs the hybrid functionalities FCRF ,
FRKR and FSCS completely. However, we keep the Fround
functionality untouched.

Note that, the realization of the ideal functionalities
FCRF ,FRKR,FSCS in the UC-world translates to secure
TLS/SSL, secure public-key encryption scheme, and incor-
ruptible randomness beacon in the real world.

Theorem 4. For any subprotocol Πsub in the FRKR-hybrid
model that UC realizes Fsub, the anonymity protocol Streams
from Appendix A using the subprotocol Πsub in the FCRF ,
FRKR, FSCS, Fround-hybrid model UC-realizes FStreams in the
Fround-hybrid model.

Kuhn et al. [49] show that under standard cryptographic as-
sumptions there is a protocol Πsub in the FRKR-hybrid model
that UC realizes Fsub. The key idea is to utilize (in a black-box
reduction) the UC-realization proof of Πsub such that in the
proof the subprotocol’s ideal functionality Fsub can be con-
sidered. This ideal functionality Fsub is used to abstract away
from any cryptographic operations. The second key insight
is that the attacker (and the simulator) can perfectly predict
how many onions are in the protocol and when each party
sends a message. So, only if the recipient is compromised or
a message is sent to a client (or the input buffer is full) infor-
mation is leaked from the protocol. In those cases, the ideal
functionality FStreams indeed leaks information such that the
simulator can faithfully (and indistinguishably) simulate the
network traffic. The full proof is postponed to Appendix C.

B.4 Pairwise Unlinkability of Streams

Since FStreams provides pairwise unlinkability of messages for
δ < γL/2 over L rounds for a constant fraction γ, as a corollary

21

to Theorem 4 and Theorem 3 we can state the following
security theorem for our protocol Streams.

Theorem 5 (Security of Streams). For any subprotocol Πsub
in the FRKR-hybrid model that UC realizes Fsub, given a con-
stant fraction c

K < 1, Streams (using Πsub) provides pairwise
unlinkability of messages over L rounds up to probability δ

as in Definition 1, where δ < γL/2 where γ = 1−
(
K−c
K

)3.

As a consequence, for all L ∈ ω(logη) for a security pa-
rameter η the δ is negligible, and all pair of messages that
stays together in the protocol for at least L rounds, get shuffled
with overwhelming probability. Recall that L rounds of the
protocol in the UC-framework translates to L = L/2 rounds
in the original protocol.

B.5 Pairwise Unlinkability for the Core Proto-
col

We also want to analyze the scenario where we do not need to
scale horizontally, core protocol described in Appendix A.2 is
sufficient (e.g., the nodes are as powerful as network routers
or the total number of users is less than few thousands).

Theorem 6 (Pairwise unlinkability of the Core protocol). For
any subprotocol Πsub in the FRKR-hybrid model that UC real-
izes Fsub, given a constant fraction c

K < 1, the core protocol
(using Πsub) described in Appendix A.2 provides pairwise
unlinkability of messages over L rounds up to probability δ

as in Definition 1, where δ <
(
c
K

)L.

The above theorem also gives us an important insight about
how much security is degraded to achieve scalability through
our funnel and compute nodes. Note that the number of rounds
L in the UC-framework version of the core protocol translates
to L rounds in original code protocol described in Section 4.2
as well, since there is no separate funnel and compute phase.
Similar to other proofs in this paper, we postpone this proof
to Appendix C.

C Postponed proofs

C.1 Streams UC-realizes Ideal Functionality
FStreams

We stress that it makes our result stronger that we cast our
ideal functionality in the Fround-hybrid model. It is straight-
forward to let FStreams additionally absorb Fround .

Theorem 4. For any subprotocol Πsub in the FRKR-hybrid
model that UC realizes Fsub, the anonymity protocol Streams
from Appendix A using the subprotocol Πsub in the FCRF ,
FRKR, FSCS, Fround-hybrid model UC-realizes FStreams in the
Fround-hybrid model.

Proof. We show the theorem via a series of game hops, start-
ing with the protocol Pi and an arbitrary network adversary
A . With delta changes in each game, in the final game we end
up with the ideal functionality FStreams and a simulator S . As
FCRF does not send messages to the environment and is not
accessible to the environment, it can be easily absorbed by
the ideal functionalities. For brevity, we hence neglect it in
the subsequent argumentation.

Game 1. In this game, we consider the original protocol
Streams execution with the network attacker A and the envi-
ronment E . The protocol follows the code in Figure 11 and
Fig. 13.

Now, we design a game and a protocol where the subproto-
cols associated with onion processing are replaced with ideal
functionality from [49].

Game 2. Instead of calling the protocol subroutines from
Πsub, our protocol Streams now calls the ideal functionality
Fsub from Kuhn et al. [49] (for completeness also in the ap-
pendix Figure 17). Moreover, the attacker is replaced by a
variant of the simulator Ssub from Kuhn et al.

• The simulator S∗sub behaves like the simulator Ssub in the
paper of Kuhn et al. [49] except that acts on one kind of mes-
sage differently to Ssub: if an FSCS instance sends a message
p := ("sent",Pi,Map,size), where "sent" is a string, Pi is
the sender of a packet, Map is the next funnel in the protocol,
size is the size of a packet. In that case, S∗sub sends the mes-
sage p directly to Ad , which is running inside Ssub. As Ad is
stateless, these extra messages do not change Ad’s behaviour.

The protocol Streams still follows the code in Figure 11
and Fig. 13, except that it called Fsub instead of Πsub.

Claim 1. There is a simulator Ssub such that Game 1 is indis-
tinguishable from Game 2.

Proof of Claim . Analogously to UC’s completeness theorem,
it suffices to consider the dummy attacker Ad that forwards
all messages to the environment and only acts on the envi-
ronment’s orders.8 We replace Ad with a simulator S∗sub that
almost behaves like the simulator Ssub in the paper of Kuhn
et al. [49], which internally runs Ad . S∗sub, however, has to
also present an indistinguishable view for E ; hence, it has to
forward all FSCS notifications to the environment, just as Ad
would do.

Next, we show that Game 1 (running Πsub, FRKR, and Ad)
and Game 2 (running Fsub and S∗sub) are indistinguishable. We
show that, if Game 1 is distinguishable from Game 2, then
Πsub does not UC realize Fsub, which contradicts [49]. FRKR
is faithfully simulated within Ssub; hence, it behaves exactly
the same in these two interactions.

8For any other attacker A and each environment E , there is an envi-
ronment E ′ that internally emulates the interaction between E and A . E ′
interacts with the dummy attacker Ad and produces the same view.

22

Towards contradiction, assume that Game 1 is distinguish-
able from Game 2. Given an environment E that can distin-
guish Game 1 from Game 2, we construct an environment
Esub that can distinguish Πsub and FRKR interacting with the
dummy attacker Ad from Fsub interacting with Ssub. Esub in-
ternally runs E . Esub has to ensure that E believes that it is in
Game 1 or Game 2, respectively. Hence, Esub has to ensure
that E gets the same messages as in Game 1 and Game 2, re-
spectively. So, we have to make sure that E sees the same the
funnel-protocol communication and the notification messages
from FSCS for each packet that are handed through from Ad in
Game 1. The funnel-protocol communication can be achieved
by Esub running the funnel-protocol instances. In Game 1 and
Game 2, the FSCS notification messages are sent whenever a
funnel or a compute node instance communicates with Fround .
Hence, Esub has to ensure that E gets these notification mes-
sages at the correct time, which can do as it internally runs
FSCS.

• The environment Esub internally runs FSCS, Fround , and
E . Let Int1,sub be the interaction between Πsub and FRKR
from [49] and the dummy attacker Ad with an environment
(in our case Esub), and let Int2,sub be the interaction between
Fsub and the simulator Ssub from [49]. As Esub does not know
whether it is interacting with Int1,sub or Int2,sub, we describe
its behavior agnostic to b = 1 or b = 2 with Intb,sub.

– Upon receiving a message a party from Intb,sub (i.e.,
from a Πsub instance or Fsub), run Πclient and forward
the response to E .

– Upon receiving a message over the network from Intb,sub
(i.e., from Ad or Ssub), forward the message to FSCS
and faithfully (as in Game 1) compute the interaction
between Fround , the funnel instances, and E .

– Upon receiving a message from E for the network at-
tacker, directly forward this message to the network
attacker in Intb,sub (i.e., to Ad or Ssub).

* Upon receiving a notification message from the in-
ternally emulated FSCS, forward it to E . (We stress
that S∗sub is split into this interaction and the part
that is run in Intsub.)

For each b∈ {1,2}, we have to show that for E the interaction
within Esub, which in turn interacts with Intb,sub, is indistin-
guishable from the interaction with Game b. For b = 1, the
interaction within Esub solely differs in the order in which the
notification message from FSCS arrives. As these messages
first reach Esub before reaching E , Esub can successfully re-
verse the order again (see above) and constructs a perfect view
for E .

For b = 2, Esub internally emulates Game 1 (except for
Πsub). We show that for b = 2 nevertheless the view of E
when being emulated within Esub is indistinguishable from
the view when interacting in Game 2. Recall that the only dif-
ference between Game 1 and Game 2 is that Πsub is replaced
by Fsub, and Ad is replaced by Ssub. As Fsub is changed by

Esub, it suffices to analyze whether the message transcript to
Ssub is indistinguishable for Ssub and whether the transcript
from Ssub (through Esub) is indistinguishable for E .

Whenever by Int2,sub a message is sent by Ssub to Esub, this
messages first goes through the internally emulated instances
of the FSCS,Fround , and Πfunnel protocols. These protocols
solely forward messages, and of these only FSCS sends a no-
tification to the network attacker Ad . In this case, as defined
above, Esub directly forwards the notification to E ; this is
exactly the same that would happen in Game 2. All other
messages are forwarded and, as in Game 2, potentially sent to
E . Hence, whenever in Game 2 a message is sent to E also
in Esub’s internal emulation (if b = 2) a message is sent to E .

Next, we consider the case where for b = 2 a message is
sent by E (while it is being internally emulated by Esub) to the
network attacker, which would in Game 2 be S∗sub. As defined
above, in this case, Esub sends the message directly to the
network attacker in Intb,sub. As b = 2, the network attacker
is Ssub. Hence, the message transcript (from Ssub’s point of
view) is exactly the same as in Game 2.

If Intsub is the interaction with Πsub, FRKR, and Ad , Esub en-
sures that E has exactly the same view as in Game 1. If Intsub
is the interaction with Fsub and Ssub, Esub ensures that E has
exactly the same view as in Game 2. Hence, by assumption,
with the translation of Esub the submachine E can distinguish
the interaction with Πsub, FRKR, and Ad from the interaction
with Fsub and Ssub.

For any poly-bounded E , Esub acts as a poly-bounded en-
vironment in the UC game. Yet, Kuhn et al. [49] proved that
there is no poly-bounded environment that can distinguish
these two interactions, which is a contradiction. Hence, Game
1 and Game 2 are indistinguishable.

⋄

Game 3. We replace Πworker, Πclient, FSCS, Fsub with the ideal
functionality FStreams. The simulator S∗sub is replaced by a sim-
ulator S f . The simulator S f internally runs S∗sub but translates
the format of the output of FStreams to the format output by
Fsub. We stress that as we are in the hybrid Fround-model,
Fround remains in the ideal world as it was in the previous
games.

Claim 2. With the simulator S f , Game 3 is indistinguishable
from Game 2.

Proof of Claim . For the analysis, we divide the execution in
overlapping sub-sequences of the form compute node, funnel,
compute node (overlapping at the last funnel). For those sub-
sequences where the funnel is malicious or the first compute
node is malicious, FStreams has exactly the same leakage as
Fsub, except that the format of the leakage is translated. If
one of the funnels is honest and the first compute nodes is
honest, though, FStreams, in contrast to Fsub, does not leak
which compute node sends (the ideal abstraction of) an onion

23

to which other compute node. Next, we argue that this leakage
is also hidden in Game 2, as FSCS and the funnels hide this
information.

As the first compute node is honest, it does not leak to
the network attacker to whom the onion is sent. If the first
funnel is honest, it does not leak the link between the two
compute nodes to the network attacker. As FSCS only notifies
the network attacker that some messages was sent and as
the funnels shuffle the messages of each round, the network
attacker does not learn by whom an onion was sent. ⋄

Therefore, for simulator S our protocol Streams UC-
realizes the ideal functionality FStreams.

C.2 Security Analysis Proofs

Theorem 3. If the amount of compromised nodes is a con-
stant fraction c

K < 1, FStreams provides pairwise unlinkability
of messages over L rounds up to probability δ as in Defini-
tion 1, where δ < γL/2 for some constant constant fraction
0 < γ < 1.

Proof. Recall that, we assume that each node in a round is
chosen uniformly at random (funnel nodes by randomness
beacon and compute nodes by the clients) with replacement,
and independent of all other rounds. Conceptually, a careful
strategy where nodes are chosen by avoiding repetition as
much as possible can provide better security guarantees. For
the ease of analysis, we make such weaker assumption.

If two messages remain in FStreams for L rounds, they are
shuffled if both of those two messages have honest compute
nodes on their path in some round r, and then an honest node
is picked as the funnel node in round r+1. If that happens, a
shuffled list of newly generated temporary identifiers are given
to S on behalf of those messages. In Figure 5, we pictorially
show the possible cases when two messages can mix (or not).

Let a be the probability of a randomly picked node being
honest; a = K−c

K Since the funnel node is picked uniformly
at random (with replacement, and independent of all other
nodes), the probability of the funnel node being compromised
is c

K = (1−a), and being honest is a. Similarly, each compute
node on the path of a message is selected uniformly at ran-
dom (with replacement, and independent of all other nodes).
Therefore, the probability of an compute node being honest
is also a.

Therefore, the probability that the two messages mix in for
a given pair of compute node in round r and funnel node in
round (r+1) is a3. And, the probability that they don’t mix
in those pair of rounds is γ = (1−a3). If two messages stay
in the system together for L rounds, they do not mix with

probability at most δ <
(
1−a3

)L
2 .

γ is conceptually the proportion of sequences of nodes
where the two messages cannot mix. In Figure 6a we plot the

relationship between γ and c
K . For a constant c

K , γ is constant;
and hence δ < γL/2 where γ =

(
1−a3

)
Theorem 6. Given a constant fraction c

K , against any adver-
sary S , if two messages stay together for L ∈ω(logη) rounds
in the core protocol described in Appendix A.2 they are shuf-
fled with a probability (1−δ), where δ <

(
c
K

)L.

Proof Sketch. We skip the detailed proof as the proof method-
ology is very similar to the proof with compute and funnel
nodes. The UC proof becomes much easier if we do not have
to distinguish between compute and funnel nodes. And for the
combinatorial argument there is one key difference: instead
of the funnel node in the funnel round and the two compute
nodes in the immediate next compute round, there is only one
node and just one round.

Therefore, instead of representing each pair of rounds with
three coin tosses in the compute and funnel node scenario,
we have exactly one coin toss per round for the core protocol
with success probability a = c

K . And hence, we can define
an ideal functionality Fcore as described in Fig. 16, which
shuffles the messages in the system whenever they encounter
an honest node on the path. To provide a simulator for Fcore
we use the exact same simulator Ssub as the one we use in the
proof of Theorem 4, with only one minor modification that
Ssub directly forwards all the network messages to the round
functionality.

From the ideal functionality it is simple to show that the
probability of not finding an honest node in a path of length
L is upper bounded by δ≤

(
c
K

)L. Therefore, if two arbitrary
messages stay in the protocol for at least L rounds, they are
shuffled with probability at least 1−δ.

D Existing functionalities

Ideal Functionality for Onion Routing: We borrow the ideal
functionality Fsub for onion routing from the work of Kuhn
et al. [49, Algorithm 1]. We present the ideal functionality in
Figure 17 for completeness. Kuhn et al. [49, Appendix E] also
presents a modified version of Sphinx [47] that realizes the
ideal functionality Fsub. We use the same modified version of
Sphinx as our Πsub in the current work.

We aim for anonymous broadcast to the network. In our
ideal functionality, messages from our last node are sent to the
environment instead of delivering them to an explicit receiver.
The delivery of messages occurs through the environment
which controls the network functionality.
Secure Communications Sessions: We use the ideal function-
ality Fscs from the work of Gajek et al. [37, Figure 4] to
realize secure communications sessions. Their work shows
that the TLS protocol [37, Figure 5] UC-realizes the ideal
functionality Fscs.

24

inputBuffer[] an array of queues to store messages for nodes
crf = an infinitely long random string; queue = a hashmap
round := 0, newRound[] := {false,false, . . .};
partyCount := 0

Upon new round from E for party P:
if newRound(P) = true then

return “invalid action”
end if
set newRound(P) := true ; partyCount+= 1
if P is a client then

(m,R, t)← dequeue inputBuffer[P]
d← DelayDistribution(ℓ2 , ℓ−1);

{x1, . . . ,xd}
$←−

{crf[round]%K, . . . ,crf[round+d]%K}d

if !∃x ∈ {x1, . . . ,xd} such that xa ∈ Ih then
Send (m,x1, . . . ,xd) to S

else
let xa := the first honest party on the path
{P,x1, . . . ,xd}
Send (q,x1, . . . ,xa) to S where q $←−M
store (q,xa,m,xa+1, . . . ,xd ,R) in queue(round+a)

end if
end if
if partyCount = N+K then

SendInformation()
end if
NextRound(P)

Upon input message (m, R, t) from E for party P:
inputBuffer(P)+ = 1
if round ̸= t then

reject packet and exit
end if
Add (m,R, t) in inputBuffer[P]

Upon receiving a message m for party P:
Output “Message m received” to E

SendInformation()
for each (q,xa,m,xa+1, . . . ,xd ,R) ∈ queue(round) do

Remove (q,xa,m,xa+1, . . . ,xd ,R) from queue(round)
let xφ be the next honest node on the path {xa+1, . . . ,xd}
if there is no such xφ then

Add (m,xa+1, . . . ,xd ,R) in a temporary queue Q
else

Add (q′,xa+1, . . . ,xφ) in Q for q′ $←−M
Add (q′,xφ,m,xφ+1, . . . ,xd ,R) to
queue(round+φ−a)

end if
end for
Shuffle the elements of Q and send them to S

Figure 16: Ideal functionality Fcore for the Core Protocol

Data structure:
Bad: Set of Corrupted Nodes
L: List of Onions processed by adversarial nodes
Bi: List of Onions held by node Pi
// Notation:
// S: Adversary (resp. Simulator)
// Z: Environment
// P = (Po1 , . . . ,Pon): Onion path
// O = (sid,Ps,Pr,m,n,P , i): Onion = (session ID, sender,

receiver, message, path length, path, traveled distance)
// N: Maximal onion path length
On message Process_New_Onion(Pr,m,n,P) from Ps

// Ps creates and sends a new onion (either instructed
by Z if honest or S if corrupted)

if |P |> N ; // selected path too long
then

Reject
else

sid←R session ID ; // pick random session ID
O← (sid,Ps,Pr,m,n,P ,0) ; // create new onion
Output_Corrupt_Sender(Ps,sid,Pr,m,n,P ,start)
Process_Next_Step(O)

Procedure Output_Corrupt_Sender(Ps,sid,Pr,m,n,P , temp)
// Give all information about onion to adversary if

sender is corrupt
if Ps ∈ Bad then

Send “temp belongs to onion from Ps with sid,Pr,m,n,P ” to S
Procedure Process_Next_Step(O = (sid,Ps,Pr,m,n,P , i))

// Router Poi just processed O that is now passed to
router Poi+1

if Po j ∈ Bad for all j > i then
Send “Onion from Poi with message m for Pr routed through
(Poi+1 , . . . ,Pon)” to S
Output_Corrupt_Sender(Ps,sid,Pr,m,n,P ,end)

else
// there exists an honest successor Po j
Po j ← Pok with smallest k such that Pok ̸∈ Bad

temp←R temporary ID Send “Onion temp from Poi routed
through (Poi+1 , . . . ,Po j−1) to Po j ” to S
Output_Corrupt_Sender(Ps,sid,Pr,m,n,P , temp) Add
(temp,O, j) to L

On message Deliver_Message(temp) from S
// Adversary S (controlling all links) delivers onion

belonging to temp to next node
if (temp,_,_) ∈ L then

Retrieve (temp,O = (sid,Ps,Pr,m,n,P , i), j) from L
O← (sid,Ps,Pr,m,n,P , j)if j < n+1 then

temp′←R temporary ID Send “temp′ received” to Po j Store
(temp′,O) in Bo j

else
if m ̸=⊥ then

Send “Message m received” to Pr

On message Forward_Onion(temp′) from Pi
// Pi is done processing onion with temp′ (either

decided by Z if honest or S if corrupted)
if (temp′,_) ∈ Bi then

Retrieve (temp′,O) from Bi Remove (temp′,O) from Bi
Process_Next_Step(O)

Figure 17: Ideal functionality Fsub for onion routing [49].

25

	Introduction
	Problem statement and System Overview
	System Model
	Attacker Model and Security Goals
	Protocol Idea
	Properties Achieved by Streams
	Comparison with the State of the Art

	Security Definition And Background
	Pairwise Unlinkability and Anonymity

	Protocol Description
	System Setup
	The Core Protocol
	Horizontal Scaling With Compute and Funnel Phases
	Client and Node Synchronization

	Security Analysis
	Pairwise Unlinkability of Streams
	Pairwise Unlinkability of Core Protocol

	Defense Against Active Attackers
	Implementation
	Performance Evaluation
	Processing Capacity of Compute Nodes
	Processing Capacity of Funnel Nodes
	End-to-end Latency Evaluation

	Resiliency Improvements
	Resiliency for Loose Synchronization
	Denial-of-Service (DoS) Attacks Against Funnel Nodes
	Avoiding Single Points of Failure

	Application Considerations
	Applicability of Our Scaling Technique
	Application Scenarios of Streams

	Conclusion and future work
	Protocol Description in UC Framework
	Model
	The Core Protocol
	Horizontal Scaling With Compute and Funnel Phases

	Security Analysis (extended)
	An Ideal Functionality for AC Protocols
	Pairwise Unlinkability of FStreams
	Abstraction Proof for Streams
	Pairwise Unlinkability of Streams
	Pairwise Unlinkability for the Core Protocol

	Postponed proofs
	Streams UC-realizes Ideal Functionality FStreams
	Security Analysis Proofs

	Existing functionalities

