
Low-Complexity Deep Convolutional Neural Networks on Fully
Homomorphic Encryption Using Multiplexed Convolutions

Eunsang Lee
Department of Electrical and Computer

Engineering, INMC, Seoul National University
shaeunsang@snu.ac.kr

Joon-Woo Lee∗
Department of Electrical and Computer

Engineering, INMC, Seoul National University
joonwoo42@snu.ac.kr

Junghyun Lee
Department of Electrical and Computer

Engineering, INMC, Seoul National University
ljhfree530@snu.ac.kr

Young-Sik Kim
Department of Information and

Communication Engineering, Chosun
University

iamyskim@chosun.ac.kr

Yongjune Kim
Department of Information and

Communication Engineering, DGIST
yjk@dgist.ac.kr

Jong-Seon No
Department of Electrical and Computer

Engineering, INMC, Seoul National University
jsno@snu.ac.kr

Woosuk Choi
Samsung Advanced Institute of Technology

woosuk0.choi@samsung.com

ABSTRACT
Privacy-preserving machine learning on fully homomorphic en-
cryption (FHE) is one of the most influential applications of the
FHE scheme. Recently, Lee et al. [16] implemented the standard
ResNet-20 model for the CIFAR-10 dataset with residue number
system variant Cheon-Kim-Kim-Song (RNS-CKKS) scheme, one of
the most promising FHE schemes, for the first time. However, its
implementation should be improved because it requires large num-
ber of key-switching operations, which is the heaviest operation
in the RNS-CKKS scheme. In order to reduce the number of key-
switching operations, it should be studied to efficiently perform
neural networks on the RNS-CKKS scheme utilizing full slots of
RNS-CKKS ciphertext as much as possible. In particular, since the
packing density is reduced to 1/4 whenever a convolution of stride
two is performed, it is required to study convolution that maintains
packing density of the data. On the other hand, when bootstrapping
should be performed, it is desirable to use sparse slot bootstrapping
that requires fewer key-switching operations instead of full slot
bootstrapping. In this paper, we propose a new packing method that
makes several tensors for multiple channels to be multiplexed into
one tensor. Then, we propose new convolution method that out-
puts a multiplexed tensor for the input multiplexed tensor, which
makes it possible to maintain a high packing density during the
entire ResNet with strided convolution. In addition, we propose a
method that parallelly performs convolutions for multiple output
channels using repeatedly packed input data, which reduces the
running time of convolution. Further, we fine-tune the parameters
to reach the standard 128-bit security level and to further reduce the
number of the bootstrapping operations. As a result, the number
of key-switching operations is reduced to 1/107 compared to Lee
et al.’s implementation in the ResNet-20 model on the RNS-CKKS
scheme. The proposed method takes about 37 minutes with only
one thread for classification of one CIFAR-10 image compared to 3
hours with 64 threads of Lee et al.’s implementation. Furthermore,
we even implement ResNet-32/44/56/110 models for the first time
on RNS-CKKS scheme with the linear time of the number of layers,
which is generally difficult to be expected in the leveled homomor-
phic encryption. Finally, we successfully classify the CIFAR-100

dataset on RNS-CKKS scheme using standard ResNet-32 model, and
we obtain a running time of 3,942s and an accuracy of 69.4% close
to the accuracy of backbone network 69.5%.

KEYWORDS
Artificial intelligence; Cheon-Kim-Kim-Song (CKKS); Convolution;
Fully homomorphic encryption (FHE); Privacy-preserving machine
learning (PPML); Residue number system variant Cheon-Kim-Kim-
Song (RNS-CKKS); ResNet model

1 INTRODUCTION
Various performance improvements have been made in artificial in-
telligence due to the emergence of deep learning, and its practicality
has been improved a lot. However, if the privacy of the users’ data
is not guaranteed, the users may not be able to use artificial intelli-
gence services due to privacy leakage. In some cases, enterprises
having high-end artificial intelligence technologies may not be able
to provide their services due to legal issues of data privacy. For
these reasons, providing artificial intelligence services preserving
privacy of users’ data, called privacy-preserving machine learning
(PPML), has become a more important research topic [21].

A possible way to implement PPML is to use homomorphic en-
cryption (HE), which allows algebraic operations on the encrypted
data. Although fully homomorphic encryption (FHE) technologies
that allow algebraic operations without restriction of number of
operations have also been proposed, the high latency of FHE oper-
ations has been pointed out as the reason for the low practicality
of FHE schemes. Many works overcame the problem by using HE-
friendly network, that is, the neural network that has small number
of layers or low-degree approximate polynomial of activation func-
tion using leveled HE schemes [8, 10, 18, 19] or combining HE
with multi-party computation (MPC) technique [2, 12, 20, 22]. How-
ever, with the recent reduction of latency of FHE operations, the
practicality of FHE in the PPML has been increased significantly
[1, 11, 23]. Hence, the PPML only using FHE has become practically
possible.

∗Corresponding author

1

Packing in HE is the method that loads multiple data into a
single ciphertext. Since operations on multiple data can be per-
formed simultaneously by one operation on ciphertext, it would be
desirable to pack data into the ciphertext as many as possible for
efficient implementation of the deep neural network. However, it is
not easy to perform a desired task such as convolution using only
fully-packed ciphertexts because the operations between slots are
very limited on the packed ciphertext. Since higher packing den-
sity leads lower ciphertext overhead and run-time overhead, some
studies [7, 12] have been studied deep neural networks that utilize
HE ciphertexts with high packing density. As for hybrid methods
using HE and MPC technique, the packing density in HE ciphertext
could be increased by re-encrypting using MPC technique even if
the packing density was temporarily lowered. However, if PPML
model is implemented using only FHE, maintaining the packing
density during the entire PPML model is a difficult problem since
re-encryption is not allowed and the modification of data structure
is usually expensive in HE. In the case of using a low packing den-
sity, the computation time increases considerably because the total
number of key-switching operations required to process the same
data is inversely proportional to the packing density.

The main factor that decreases the packing density is strided con-
volution, i.e., convolution of stride larger than one. If the strided con-
volution is performed, the data structure in ciphertexts is changed.
However, it is difficult to maintain the packing structure after the
strided convolution without the help of MPC technique. Although
Lee et al. [16] implemented strided convolution on the residue num-
ber system variant Cheon-Kim-Kim-Song (RNS-CKKS) scheme, the
packing density is reduced to 1/4 after convolution of stride two.
Thus, it is important to devise an efficient convolution method on
FHE that maintains packing density in deep neural networks with
strided convolutions.

1.1 Our Contribution
First, we propose a new packing method, MultPack that makes
tensors for multiple channels to be multiplexed into one tensor.
Then, we propose a convolution algorithm, MultConv that outputs
a multiplexed tensor for the input multiplexed tensor. Using this
algorithm, the entire ResNet network can be performed while main-
taining high packing density of data. As a result, the total number of
key-switching operations is significantly reduced compared to the
previous work [16], where key-switching is the heaviest operation
in the RNS-CKKS scheme.

We also propose a faster convolution algorithm, PrlMultConv
that parallelly performs convolutions for multiple output channels.
This method packs several repeated input tensors in one ciphertext,
encodes filters to multiply each repeated tensor by different weight
values, and performs convolution so that convolutions for multiple
output channels can be performed simultaneously. Further, while
this convolution algorithm utilizes full slots, repeatedly packed data
can be considered as sparsely packed data during bootstrapping,
and thus faster sparse slot bootstrapping can still be used instead
of full slot bootstrapping.

As an additional contribution, we use lighter and tighter pa-
rameters than Lee et al.’s work to reduce level consumption while
achieving almost the same classification accuracy. Instead of using

Lee et al. [16] proposed ratio
latency (s) 10,602 2,271 4.67
number of threads 64 1 64for one image
amortized 10,602 79 134.2running time (s)
number of key-switching 375,920 3,489 107.7operations
security level (bits) 111.6 128 0.87

Table 1: Comparison of various performance between Lee et
al.’s implementation and the proposed implementation of
the standard ResNet-20

two bootstrapping per layer and per ciphertext in Lee et al.’s work,
we use only one bootstrapping per layer and per ciphertext. As a
result, the total number of key-switching operations is reduced to
1/107 compared to Lee et al.’s implementation of the ResNet-20 on
RNS-CKKS scheme [16].

The efficiency of the proposed methods is numerically confirmed
with the SEAL library [26], which is one of the representative RNS-
CKKS libraries. We implement ResNet-20 for the CIFAR-10 dataset
on RNS-CKKS scheme using SEAL library. Table 1 shows various
performance improvement compared to Lee et al.’s work [16]. The
latency is reduced to 1/4.67, and it will be far more significant
than Lee et al.’s implementation using many threads when we
implement it with various hardware accelerators. Since we use
only one thread rather than many threads for one image, we are
able to infer many images simultaneously with many threads. If
we perform the inference of 50 images with 50 threads, it takes
3,972s for total running time, whose amortized running time is
79s. It can be regarded as reduction to 1/134 compared to Lee et
al.’s work in terms of the amortized running time. The security
is increased to 128-bit security compared to the previous 111-bit
security. Therefore, we significantly improve the performance in
the aspect of latency, amortized running time, and security in the
ResNet-20 on the RNS-CKKS scheme.

Further, we implement ResNet-32/44/56/110 models on RNS-
CKKS scheme, and it is the first implementation result for these
standard deep neural networks. From this result, it can be seen that
the running time of these models is linear with the number of layers,
while linear time with the number of layers is generally difficult to
be expected on the leveled HE. Finally, we successfully classify the
CIFAR-100 dataset on RNS-CKKS scheme using standard ResNet-32
model, and we obtain a running time of 3,942s and an accuracy of
69.4% close to the accuracy of backbone network 69.5%.

1.2 Related Works
Several works have been done in the standard deep neural networks
using HE without any additional cryptographic techniques. Lou et
al. [18] implemented the standard deep neural networks such as
ResNet-18 and ResNet-20 with leveled version of fast fully homo-
morphic encryption over the torus (TFHE) [5]. Since the leveled
HE sets parameters to support the depth of particular operations in
advance so that bootstrapping is not required, impractically large

2

encryption parameters can be required to implement deeper neural
networks when using the leveled HE [6]. Instead of the leveled HE,
it is desirable to implement deeper neural networks using FHE that
supports bootstrapping and arbitrarily deep operations with fixed
practical parameters.

Chilloti et al. [6] implemented deeper neural networks on the
fully homomorphic version of TFHE scheme with MNIST dataset.
Although they showed some possibility of implementing deep neu-
ral networks on FHE scheme, the dataset to be classified is still
rather simple, and the classification accuracy is not sufficiently
high. Lee et al. [16] implemented ResNet-20 on RNS-CKKS scheme
using bootstrapping. Although it is the first study to apply boot-
strapping of the CKKS scheme to deep neural networks, it requires
large number of key-switching operations. Further, because 64
threads are continuously used, it can only be performed on CPUs
that support at least 64 threads. The total number of key-switching
operations is far more important when using accelerator with many
cores such as GPU or FPGA, and thus the significant reduction of
total number of key-switching operations contributes greatly to
practicality for PPML with FHE.

There are also many works implementing neural networks us-
ing MPC techniques partly [2, 12, 20, 22] or wholly [17, 24, 25].
Using MPC techniques, low latency is usually obtained, and low
communication cost can also be achieved using HE-friendly net-
work. However, it takes large communication cost for standard
deep neural networks that require many invocations of activation
functions. Previous works using MPC take several gigabytes of
communication cost to infer one CIFAR-10 image in the standard
ResNet models, which makes the implementations less practical
for some environments not supporting communication resources
enough.

Gazelle [12] and Cheetah [22] are hybrid PPML models in that
they use both HE andMPC technique. Gazelle and Cheetah’s strided
convolution focuses only on how to perform the operation, and
there is no consideration for subsequent homomorphic operations.
The reason is that data can be decrypted and re-encrypted using
MPC techniques, which allows packed data to be restructured to
facilitate subsequent homomorphic operations. However, in order
to perform the entire deep neural network only with FHE, new diffi-
culties arise because subsequent convolution operations should be
performed without re-encryption process and restructuring pack-
ing data.

2 PRELIMINARIES
2.1 Notations
We use x to denote a vector in R𝑛 for some integer 𝑛. For x =

(𝑥0, 𝑥1, · · · , 𝑥𝑛−1), ⟨x⟩𝑟 denote the cyclically shifted vector of x by
𝑟 to the left, that is, (𝑥𝑟 , 𝑥𝑟+1, · · · , 𝑥𝑛−1, 𝑥0, · · · , 𝑥𝑟−1). x · y denotes
the component-wise multiplication (𝑥0𝑦0, · · · , 𝑥𝑛−1𝑦𝑛−1). For an
integer 𝑎 ∈ Z, the remainder of 𝑎 divided by 𝑞 is denoted by 𝑎mod 𝑞.
For a real number 𝑥 ∈ R, ⌈𝑥⌉ denotes the least integer greater than
or equal to 𝑥 , and ⌊𝑥⌋ denotes the greatest integer less than or equal
to 𝑥 .

2.2 Description of Parameters
In this paper, various parameters such as
ℎ𝑖 , ℎ𝑜 ,𝑤𝑖 ,𝑤𝑜 , 𝑐𝑖 , 𝑐𝑜 , 𝑓ℎ, 𝑓𝑤 , 𝑠, 𝑘𝑖 , 𝑘𝑜 , 𝑡𝑖 , 𝑡𝑜 , 𝑝𝑖 , 𝑝𝑜 , and 𝑞 are used,
and the values of these parameters are determined differently
for each component such as convolution, batch normalization
(or convolution/batch normalization integration in Section 5),
downsampling, and average pooling.

First, for a three-dimensional input tensor of each compo-
nent 𝐴 = (𝐴𝑖1𝑖2𝑖3)0≤𝑖1<ℎ𝑖 ,0≤𝑖2<𝑤𝑖 ,0≤𝑖3<𝑐𝑖 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖 , ℎ𝑖 and
𝑤𝑖 are height and width of input tensor, respectively, and 𝑐𝑖
is the number of input channels. For the output tensor 𝐴′ =

(𝐴′
𝑖1𝑖2𝑖3
)0≤𝑖1<ℎ𝑜 ,0≤𝑖2<𝑤𝑜 ,0≤𝑖3<𝑐𝑜 ∈ Rℎ𝑜×𝑤𝑜×𝑐𝑜 , ℎ𝑜 and 𝑤𝑜 are

height and width of output tensor, respectively, and 𝑐𝑜 is the num-
ber of output channels. In the convolution, 𝑓ℎ and 𝑓𝑤 are kernel
sizes of the filter. In this paper, the horizontal and vertical strides
of the convolution are assumed to be the same for simplicity, and
we denote the stride of the convolution by 𝑠 . 𝑘𝑖 and 𝑘𝑜 are the
gaps of input and output tensors (described in Section 3 in detail),

respectively. We have 𝑡𝑖 = ⌈ 𝑐𝑖𝑘2
𝑖

⌉, 𝑡𝑜 = ⌈ 𝑐𝑜
𝑘2
𝑜
⌉, 𝑝𝑖 = 2

⌊log2 (
𝑛𝑡

𝑘2
𝑖
ℎ𝑖𝑤𝑖𝑡𝑖

) ⌋
,

𝑝𝑜 = 2
⌊log2 (

𝑛𝑡

𝑘2
𝑜ℎ𝑜𝑤𝑜𝑡𝑜

) ⌋
, and 𝑞 = ⌈𝑐𝑜𝑝𝑖 ⌉, where𝑛𝑡 is the number of full

slots of ciphertext. The detailed descriptions of 𝑘𝑖 , 𝑘𝑜 , 𝑡𝑖 , 𝑡𝑜 , 𝑝𝑖 , 𝑝𝑜 ,
and 𝑞 are given in Section 3, and the specific values of parameters
that are used in our simulation can be seen in Table 2 in Section 6.

2.3 RNS-CKKS Fully Homomorphic
Encryption

RNS-CKKS FHE scheme is an encryption scheme that supports
various fixed-point arithmetic vector operations with unlimited
depths on encrypted data. The ciphertext in the RNS-CKKS scheme
is the form of (𝑏, 𝑎) ∈ 𝑅2

𝑄ℓ
, where 𝑄ℓ =

∏ℓ
𝑖=0 𝑞𝑖 is a product of

prime numbers and 𝑅𝑄ℓ
= Z𝑄ℓ

[𝑋]/⟨𝑋𝑁 + 1⟩. Each ciphertext has
a non-negative integer called level, which means the capacity for
homomorphic multiplication operations, and we denote the level
as ℓ .

We denote the encryption and decryption in RNS-CKKS scheme
as Enc(·) and Dec(·), respectively. The data structure encrypted in
a ciphertext of RNS-CKKS scheme is one-dimensional vector with
length 𝑁 /2, where 𝑁 is the degree of the base polynomial of the
ring. We denote this length of the vector as 𝑛𝑡 , that is, 𝑛𝑡 = 𝑁 /2
in this paper. The supported homomorphic operations in RNS-
CKKS scheme are described as follows without specific algorithms,
where ct, ct1, ct2, ct3, and ct′ are ciphertexts, and u, v, v1, and v2
are vectors in R𝑛 .

• Homomorphic addition and substitution (⊕, ⊖)
– ct ⊕ u (resp. ct ⊖ u) → ct′ : If Dec(ct) = v, then

Dec(ct′) = v + u (resp. v − u).
– ct1 ⊕ ct2 (resp. ct1 ⊖ ct2)→ ct3: If Dec(ct1) = v1 and

Dec(ct2) = v2, then Dec(ct3) = v1 +v2 (resp. v1 −v2).
• Homomorphic multiplication (⊙, ⊗)

– ct ⊙ u→ ct′: If Dec(ct) = v, then Dec(ct′) = v · u.
– ct1 ⊗ ct2 → ct3: If Dec(ct1) = v1 and Dec(ct2) = v2,

then Dec(ct3) = v1 · v2.
• Homomorphic rotation (Rot)

– Rot(ct; 𝑟) → ct′: If Dec(ct) = v, then Dec(ct′) = ⟨v⟩𝑟 .
3

The homomorphic multiplication between ciphertexts and the
homomorphic rotation need the key-switching operation that
switches the secret key for a ciphertext to a new secret key without
any change for the message. These operations require far more
time than any other homomorphic operation. Thus, the number
of key-switching operations roughly determines the total amount
of operations in homomorphic arithmetic circuits. Lee et al. [16]
pointed out that the running time of the key-switching operation
is proportional to the required level squared, and thus the total
amount of operations is proportional to the sum of squared level of
the input ciphertexts of each key-switching operation.

After the homomorphic multiplication is performed, the modu-
lus is divided by one RNS prime number in modulus by rescaling
procedure. Thus, the modulus of the ring for the ciphertext is gradu-
ally reduced by a chain of homomorphic multiplication operations,
and there is a point when further homomorphic multiplication
can not be performed. This ciphertext is called level-0 ciphertext.
The bootstrapping operation makes this level-0 ciphertext to the
higher-level ciphertext for which homomorphic multiplications can
be performed. When the deep arithmetic operation is performed
homomorphically, the bootstrapping operation requires to be per-
formed periodically.

If the data to be encrypted is a vector with size less than 𝑛𝑡 , we
can reduce the running time for the bootstrapping with sparse pack-
ing technique. The sparse packing technique uses the homomor-
phism from Z[𝑌]/⟨𝑌 2𝑛 + 1⟩ to Z[𝑋]/⟨𝑋𝑁 + 1⟩, where 𝑌 = 𝑋𝑁 /2𝑛

and 𝑛 is power-of-two integer less than 𝑛𝑡 . In this technique, a
vector with length 𝑛 is encoded to a polynomial in Z[𝑌]/⟨𝑌 2𝑛 + 1⟩,
and then apply the above homomorphism to this polynomial. If a
message is encoded with this technique, the running time for the
bootstrapping operation can be reduced further. When the vector to
be sparsely packed into the ciphertext is v = (𝑣0, · · · , 𝑣𝑛−1) ∈ R𝑛 ,
the equivalent vector to this vector in the aspect of full-packing
after applying the homomorphism is (v|v| · · · |v) ∈ R𝑛𝑡 , which is a
vector with 𝑛𝑡/𝑛 vectors concatenated.

Due to the efficiency for the bootstrapping, a sparse secret key
is generally used when we perform the bootstrapping. We set the
Hamming weight of the secret key 𝑠 ∈ Z𝑁 as an additional param-
eter. If the Hamming weight of the secret key is ℎ, the secret key
is uniformly sampled from the set of the signed binary vectors in
{−1, 0, 1}𝑁 whose Hamming weight is ℎ. In case of using sparse
secret key, the security level is determined by the hybrid dual attack
in Cheon et al.’s work [4].

2.4 Convolution on Homomorphic Encryption
A three-dimensional tensor 𝐴 = (𝐴𝑖1𝑖2𝑖3)0≤𝑖1<ℎ𝑖 ,0≤𝑖2<𝑤𝑖 ,0≤𝑖3<𝑐𝑖 ∈
Rℎ𝑖×𝑤𝑖×𝑐𝑖 is the input of convolution, where ℎ𝑖 , 𝑤𝑖 , and 𝑐𝑖 are
height, width, and number of input channels, respectively. The
output of the convolution is three-dimensional tensor 𝐴′ =

(𝐴′
𝑖1𝑖2𝑖3
)0≤𝑖1<ℎ𝑜 ,0≤𝑖2<𝑤𝑜 ,0≤𝑖3<𝑐𝑜 ∈ Rℎ𝑜×𝑤𝑜×𝑐𝑜 . The filter (weight

tensor) of the convolution is 𝑈 ∈ R𝑓ℎ×𝑓𝑤×𝑐𝑖×𝑐𝑜 , where 𝑓ℎ and 𝑓𝑤
are kernel sizes, and 𝑐𝑜 is the number of output channels of con-
volution. In this paper, we only consider convolution using zero
paddings.

It is often necessary to map three-dimensional tensor 𝐴 ∈
Rℎ𝑖×𝑤𝑖×𝑐𝑖 to one-dimensional vector in R𝑛𝑡 to perform convolu-
tions on the HE scheme, where 𝑛𝑡 is the number of full slots of
ciphertext, and 𝐴 can be the original tensor or (parallelly) multi-
plexed tensor defined in Section 3. The following is the definition
of Vec function that is used to map tensor 𝐴 to a vector in R𝑛𝑡 ,

Vec(𝐴) = y = (𝑦0, · · · , 𝑦𝑛𝑡−1) ∈ R𝑛𝑡 such that

𝑦𝑖 =

{
𝐴 ⌊ (𝑖 mod ℎ𝑖𝑤𝑖)/𝑤𝑖 ⌋,𝑖 mod 𝑤𝑖 , ⌊𝑖/ℎ𝑖𝑤𝑖 ⌋ , 0 ≤ 𝑖 < ℎ𝑖𝑤𝑖𝑐𝑖

0, otherwise.

Figure 1 describes this Vec function.

Figure 1: Vec function that maps a given tensor in Rℎ𝑖×𝑤𝑖×𝑐𝑖

to a vector in R𝑛𝑡 .

In this paper, we use 𝑛𝑡 = 215, and this allows that all tensors to
be encrypted can be packed into one ciphertext, that is, ℎ𝑖𝑤𝑖𝑐𝑖 ≤ 𝑛𝑡

for each tensor 𝐴 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖 . In several figures in this paper,
a three-dimensional tensor 𝐴 is often identified as Vec(𝐴) or the
corresponding ciphertext Enc(Vec(𝐴)). In addition, for a three-
dimensional tensor 𝐴, we refer to rotation of ciphertext of Vec(𝐴),
that is, Rot(Enc(Vec(𝐴)); 𝑟) for some nonnegative integer 𝑟 as ro-
tation of tensor 𝐴. When a tensor is rotated, each element moves
to the left, but it goes up when it reaches the leftmost point, and
it moves to the front page when it reaches the top leftmost point.
Furthermore, for two tensors 𝐴 and 𝐵, homomorphic addition, sub-
traction, and multiplication of Enc(Vec(𝐴)) and Enc(Vec(𝐵)) are
referred to as those of 𝐴 and 𝐵, respectively.

In order to perform convolution on HE, the convolution should
be performed using addition, multiplication, and rotation of tensors.
In particular, since rotation is the heaviest operation among these
operations, it is desirable to reduce the number of rotations as much
as possible. Gazelle [12] proposed a method to perform convolution
using these operations of tensors. In this method, each shifted
input tensor is multiplied by some vector that has appropriate filter
coefficients as components, and 𝑓ℎ 𝑓𝑤 many multiplication results
are added. Then, the added results for all 𝑐𝑖 input channels are
added to obtain output tensor using diagonal grouping technique
[12]. Unlike that in [12], this paper that uses FHE requires large
number of full slots 𝑛𝑡 = 215, and thus, all values of a tensor can
be packed into one ciphertext. Considering this, each convolution
of stride one can be performed using diagonal grouping technique
with 𝑓ℎ 𝑓𝑤 + 𝑐𝑖 − 2 rotations.

A method to perform strided convolution on HE was also pro-
posed in [12]. The strided convolution is first decomposed into a
sum of simple convolutions of stride one, and each convolution of
stride one can be performed on HE using the above method.

4

2.5 Batch Normalization on the Fully
Homomorphic Encryption

Batch normalization [9] should be performed for the output tensor
of convolution. As in convolution, ℎ𝑖 ,𝑤𝑖 , and 𝑐𝑖 are parameters
representing the size of the input tensor, and ℎ𝑜 ,𝑤𝑜 , and 𝑐𝑜 are
parameters representing the size of the output tensor in batch
normalization. That is, batch normalization outputs a tensor 𝐴′ ∈
Rℎ𝑜×𝑤𝑜×𝑐𝑜 for some input tensor 𝐴 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖 . We have ℎ𝑖 =

ℎ𝑜 ,𝑤𝑖 = 𝑤𝑜 , and 𝑐𝑖 = 𝑐𝑜 for batch normalization.
We denote the weight, running variance, running mean, and bias

of batch normalization by 𝑇,𝑉 ,𝑀, 𝐼 ∈ R𝑐𝑖 . We consider a constant
vector 𝐶 = (𝐶0,𝐶1, · · · ,𝐶𝑐𝑖−1) ∈ R𝑐𝑖 such that 𝐶 𝑗 =

𝑇𝑗√
𝑉𝑗+𝜖

for

0 ≤ 𝑗 < 𝑐𝑖 , where 𝜖 is an added value for numerical stability.
Then, batch normalization can be seen as evaluating the equation
𝐶 𝑗 · (𝐴𝑖1,𝑖2, 𝑗 −𝑀𝑗) + 𝐼 𝑗 for 0 ≤ 𝑖1 < ℎ𝑖 , 0 ≤ 𝑖2 < 𝑤𝑖 , and 0 ≤ 𝑗 < 𝑐𝑖 .

For the description of batch normalization on HE, it is required
to define 𝐶 , 𝑀 , and 𝐼 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖 first. We define 𝐶 , 𝑀 , and 𝐼 as
𝐶𝑖1,𝑖2, 𝑗 = 𝐶 𝑗 , 𝑀𝑖1,𝑖2, 𝑗 = 𝑀𝑗 , and 𝐼 𝑖1,𝑖2, 𝑗 = 𝐵 𝑗 for 0 ≤ 𝑖1 < ℎ𝑖 , 0 ≤
𝑖2 < 𝑤𝑖 , and 0 ≤ 𝑗 < 𝑐𝑖 , respectively. Then, batch normalization
can be performed using the equation Vec(𝐶) · (Vec(𝐴) −Vec(𝑀)) +
Vec(𝐼) = Vec(𝐶) · Vec(𝐴) + (Vec(𝐼) − Vec(𝐶) · Vec(𝑀)). This can
be implemented on HE by using one homomorphic addition and
scalar multiplication. That is, for the input tensor ciphertext cta,
we just perform Vec(𝐶) ⊙ cta ⊕ (Vec(𝐼) − Vec(𝐶) · Vec(𝑀)).

3 MULTIPLEXED CONVOLUTION ON FULLY
HOMOMORPHIC ENCRYPTION

Although efficient convolution method on HE was proposed in
[12], performing the entire deep neural network on the RNS-CKKS
scheme without MPC technique has several differences from that in
[12] that uses both HE and MPC technique. The biggest difference
is strided convolution. Although it is possible to efficiently perform
a neural network consisting of only simple convolutions (i.e., con-
volution of stride one) on FHE using the convolution method in
[12], the situation becomes complicated in the standard deep neural
network such as ResNet that includes one or more strided convolu-
tion. In [12], they first decompose the input tensor into four tensors
and then perform simple convolution independently for each ten-
sor to perform strided convolution. However, the decomposition
process using only FHE operations such as addition, multiplication,
and rotation is very challenging because it is difficult to convert
data separated by two into continuous data using FHE operations.
In [16], they just perform simple convolution to perform strided
convolution of stride two, and only a quarter of output values are
considered to be valid and used for subsequent layers. That is, the
packing density is reduced to 1/4 whenever it passes through the
strided convolution of stride two with this method, which causes
inefficiency because the slots of FHE ciphertexts are not fully used.

In addition to the strided convolution, there are also other con-
siderations for implementing neural network on FHE. While small
number of full slots were used in [12], we require large number
of full slots for FHE. Thus, two or more tensors can be packed
into one ciphertext, and it is desirable to make most of ciphertext’s
full slots to reduce the numbers of bootstrapping and rotation. On
the other hand, since the sparse slot bootstrapping takes less time

than the full slot bootstrapping, it is desirable to use the sparse slot
bootstrapping.

In Section 3.1, we propose a convolution algorithm MultConv
that allows us to perform the entire deep neural network including
strided convolution on FHE while maintaining high packing den-
sity. Furthermore, in Section 3.2, we propose a faster convolution
algorithm PrlMultConv, an optimized algorithm of MultConv, that
utilizes both operations of full slot and sparse slot bootstrappings.

3.1 MultConv: Convolution Using Multiplexed
Packing

In [12], while performing the entire deep neural network, each
tensor is packed to one-dimensional vector in a raster scan fash-
ion using Vec function. In this paper, we propose a new multi-
plexed packing method called MultPack that makes tensors for
multiple channels to be multiplexed into one tensor for some
gap 𝑘𝑖 . For 𝑡𝑖 = ⌈ 𝑐𝑖

𝑘2
𝑖

⌉, MultPack is the function that maps a ten-

sor 𝐴 = (𝐴𝑖1,𝑖2,𝑖3)0≤𝑖1<ℎ𝑖 ,0≤𝑖2<𝑤𝑖 ,0≤𝑖3<𝑐𝑖 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖 to a vector
Vec(𝐴′) ∈ R𝑛𝑡 , where 𝐴′ = (𝐴′

𝑖3,𝑖4,𝑖5
)0≤𝑖3<𝑘𝑖ℎ𝑖 ,0≤𝑖4<𝑘𝑖𝑤𝑖 ,0≤𝑖5<𝑡𝑖 ∈

R𝑘𝑖ℎ𝑖×𝑘𝑖𝑤𝑖×𝑡𝑖 is a multiplexed tensor such that

𝐴′𝑖3,𝑖4,𝑖5 =


𝐴 ⌊𝑖3/𝑘𝑖 ⌋, ⌊𝑖4/𝑘𝑖 ⌋,𝑘2

𝑖
𝑖5+𝑘𝑖 (𝑖3 mod 𝑘𝑖)+𝑖4 mod 𝑘𝑖

,

if 𝑘2
𝑖
𝑖5 + 𝑘𝑖 (𝑖3 mod 𝑘𝑖) + 𝑖4 mod 𝑘𝑖 < 𝑐𝑖

0, otherwise,

for 0 ≤ 𝑖3 < 𝑘𝑖ℎ𝑖 , 0 ≤ 𝑖4 < 𝑘𝑖𝑤𝑖 , and 0 ≤ 𝑖5 < 𝑡𝑖 . Figure 2 describes
how to perform multiplexed packing when ℎ𝑖 = 𝑤𝑖 = 3 and 𝑘𝑖 = 2.
If 𝑘2

𝑖
𝑡𝑖 > 𝑐𝑖 , then we fill the remaining space with zero.

gap

Figure 2: Multiplexed packing MultPack when ℎ𝑖 = 𝑤𝑖 = 3
and 𝑘𝑖 = 2.

This multiplexed packing method is a generalized version of
raster scan packingmethod, and it is the same as raster scan packing
method using Vecwhen 𝑘𝑖 = 1. We require each tensor to be packed
into the ciphertext slots using the multiplexed packing method
throughout the entire deep neural network, where the value of gap
𝑘𝑖 can be changed.

Now, we propose a multiplexed convolution algorithm MultConv
using the addition, multiplication, and rotation of multiplexed ten-
sors for the given input multiplexed tensor. MultConv takes a mul-
tiplexed tensor for gap 𝑘𝑖 as an input and outputs a multiplexed
tensor for output gap 𝑘𝑜 , where 𝑘𝑜 = 𝑠𝑘𝑖 .

5

To perform the proposed multiplexed convolution, we first mul-
tiply input and weight tensors that are shifted by input gap 𝑘𝑖 . Next,
we add the multiplied tensors for 𝑐𝑖 input channels using addition
and rotation. If the input gap 𝑘𝑖 is greater than one, leftward and
upward rotations of tensors as well as forward rotation are required.
Then, we obtain 𝑐𝑜 multiplexed tensors, where each multiplexed
tensor has only ℎ𝑖𝑤𝑖 valid values in the front page, and all other
values are invalid garbage values. Finally, we select only valid val-
ues in each multiplexed tensor and place all the valid values in one
ciphertext. Figure 3 shows the convolution with stride 𝑠 = 2 using
MultConv algorithm for input multiplexed tensor for 𝑘𝑖 = 2 and
ℎ𝑖 = 𝑤𝑖 = 4.

The greatest advantage of the proposed MultConv algorithm is
that even if we perform convolution with stride 𝑠 larger than one,
we can perform subsequent layers without reduction of packing
density. For example, for convolution with stride 𝑠 = 2, we simply
perform multiplexed convolution algorithm MultConv for 𝑘𝑜 = 2𝑘𝑖
to obtain output multiplexed tensor with gap 𝑘𝑜 . In this case, the
packing density is not reduced after the convolution with stride two,
which is different from that in [16]. Now, we describe the MultConv
algorithm in detail. For description of MultConv algorithm, we
require some definitions and a subroutine algorithm.

First, we define MultWgtPack(𝑈 ; 𝑖1, 𝑖2, 𝑖) function that maps
a weight tensor 𝑈 ∈ R𝑓ℎ×𝑓𝑤×𝑐𝑖×𝑐𝑜 to an element of
R𝑛𝑡 . Before the definition of MultWgtPack, we define three-
dimensional multiplexed shifted weight tensor 𝑈

′(𝑖1,𝑖2,𝑖)
=

(𝑈 ′(𝑖1,𝑖2,𝑖)𝑖3,𝑖4,𝑖5)0≤𝑖3<𝑘𝑖ℎ𝑖 ,0≤𝑖4<𝑘𝑖𝑤𝑖 ,0≤𝑖5<𝑡𝑖 ∈ R𝑘𝑖ℎ𝑖×𝑘𝑖𝑤𝑖×𝑡𝑖 for given
𝑖1, 𝑖2, and 𝑖 , where 0 ≤ 𝑖1 < 𝑓ℎ, 0 ≤ 𝑖2 < 𝑓𝑤 , and 0 ≤ 𝑖 < 𝑐𝑜
as follows:

𝑈
′(𝑖1,𝑖2,𝑖)
𝑖3,𝑖4,𝑖5 =


0, if 𝑘2

𝑖
𝑖5 + 𝑘𝑖 (𝑖3 mod 𝑘𝑖) + 𝑖4 mod 𝑘𝑖 ≥ 𝑐𝑖

or ⌊𝑖3/𝑘𝑖 ⌋ − (𝑓ℎ − 1)/2 + 𝑖1 ∉ [0, ℎ𝑖 − 1]
or ⌊𝑖4/𝑘𝑖 ⌋ − (𝑓𝑤 − 1)/2 + 𝑖2 ∉ [0,𝑤𝑖 − 1],

𝑈𝑖1,𝑖2,𝑘
2
𝑖
𝑖5+𝑘𝑖 (𝑖3 mod 𝑘𝑖)+𝑖4 mod 𝑘𝑖 ,𝑖

, otherwise,

for 0 ≤ 𝑖3 < 𝑘𝑖ℎ𝑖 , 0 ≤ 𝑖4 < 𝑘𝑖𝑤𝑖 , and 0 ≤ 𝑖5 < 𝑡𝑖 . Then,
MultWgtPack function is defined as MultWgtPack(𝑈 ; 𝑖1, 𝑖2, 𝑖) =
Vec(𝑈 ′(𝑖1,𝑖2,𝑖)).

In addition to the weight tensor, it is also re-
quired to define multiplexed selecting tensor 𝑆 ′(𝑖) =

(𝑆 ′(𝑖)
𝑖3,𝑖4,𝑖5

)0≤𝑖3<𝑘𝑜ℎ𝑜 ,0≤𝑖4<𝑘𝑜𝑤𝑜 ,0≤𝑖5<𝑡𝑜 ∈ R𝑘𝑜ℎ𝑜×𝑘𝑜𝑤𝑜×𝑡𝑜 , which
is used to select valid values in MultConv algorithm, where
𝑡𝑜 = ⌊ 𝑐𝑜

𝑘2
𝑜
⌋. Multiplexed selecting tensor 𝑆 ′(𝑖) is defined as follows:

𝑆
′(𝑖)
𝑖3,𝑖4,𝑖5

=

{
1, if 𝑘2

𝑜𝑖5 + 𝑘𝑜 (𝑖3 mod 𝑘𝑜) + 𝑖4 mod 𝑘𝑜 = 𝑖

0, otherwise,

for 0 ≤ 𝑖3 < 𝑘𝑜ℎ𝑜 , 0 ≤ 𝑖4 < 𝑘𝑜𝑤𝑜 , and 0 ≤ 𝑖5 < 𝑡𝑜 .
SumSlots is a useful subroutine algorithm that adds𝑚 slot values

spaced apart by 𝑝 . Algorithm 1 shows the SumSlots algorithm.
Then, Algorithm 2 describes the proposed multiplexed convolution
algorithm, MultConv using MultWgtPack function, multiplexed
selecting tensor 𝑆 ′(𝑖) , and SumSlots algorithm. Here, ctzero is a
ciphertext of all-zero vector 0 ∈ R𝑛𝑡 .

Algorithm 1: SumSlots(cta;𝑚, 𝑝)
Input: Tensor ciphertext cta, number of added slots𝑚, and

gap 𝑝
Output: Tensor ciphertext ctc

1 ct(0)b ← cta
2 for 𝑗 ← 1 to ⌊log2𝑚⌋ do
3 ct(𝑗)b ← ct(𝑗−1)

b ⊕ Rot(ct(𝑗−1)
b ; 2𝑗−1 · 𝑝)

4 end

5 ctc ← ct(⌊log2 𝑚⌋)
b

6 for 𝑗 ← 0 to ⌊log2𝑚⌋ − 1 do
7 if ⌊𝑚/2𝑗 ⌋ mod 2 = 1 then
8 ctc ← ctc ⊕ Rot(ct(𝑗)b ; ⌊𝑚/2𝑗+1⌋ · 2𝑗+1𝑝)
9 end

10 end
11 return ctc

Algorithm 2: MultConv(ct′a,𝑈)
Input: Multiplexed tensor ciphertext ct′a and weight tensor

𝑈

Output:Multiplexed tensor ciphertext ct′d
1 ct′d ← ctzero
2 for 𝑖1 ← 0 to 𝑓ℎ − 1 do
3 for 𝑖2 ← 0 to 𝑓𝑤 − 1 do
4 ct′(𝑖1,𝑖2) ←

Rot(ct′a;𝑘2
𝑖
𝑤𝑖 (𝑖1 − (𝑓ℎ − 1)/2) +𝑘𝑖 (𝑖2 − (𝑓𝑤 − 1)/2))

5 end
6 end
7 for 𝑖 ← 0 to 𝑐𝑜 − 1 do
8 ct′b ← ctzero
9 for 𝑖1 ← 0 to 𝑓ℎ − 1 do

10 for 𝑖2 ← 0 to 𝑓𝑤 − 1 do
11 ct′b ← ct′b ⊕ ct

′(𝑖1,𝑖2) ⊙MultWgtPack(𝑈 ; 𝑖1, 𝑖2, 𝑖)
12 end
13 end
14 ct′c ← SumSlots(ct′b;𝑘𝑖 , 1)
15 ct′c ← SumSlots(ct′c;𝑘𝑖 , 𝑘𝑤𝑖)
16 ct′c ← SumSlots(ct′c; 𝑡𝑖 , 𝑘2ℎ𝑖𝑤𝑖)
17 ct′d ← ct′d ⊕ Rot(ct′c;−⌊𝑖/𝑘2

𝑜 ⌋𝑘2
𝑜ℎ𝑜𝑤𝑜 −

⌊(𝑖 mod 𝑘2
𝑜)/𝑘𝑜 ⌋𝑘𝑜𝑤𝑜 − (𝑖 mod 𝑘𝑜)) ⊙ Vec(𝑆 ′(𝑖))

18 end
19 return ct′d

3.2 PrlMultConv: Parallel Convolution Using
Multiplexed Packing

During the classification using ResNet models, there are many
cases when the total size of tensor is far less than the capacity of
the ciphertext, 𝑛𝑡 = 215. The sparse packing technique [3] is an
appropriate choice for this case in that the running time of the
bootstrapping can be reduced when the sparsely packed ciphertext
is used. However, if we fully use all slots of the ciphertext, we can

6

(a) Multiplication by filter coefficients

(b) Summation for all input channels

(c) Collecting valid values into one ciphertext

Figure 3: Strided convolution with stride 𝑠 = 2 using MultConv algorithm for input multiplexed tensor for 𝑘𝑖 = 2 and ℎ𝑖 = 𝑤𝑖 = 4.

additionally reduce the number of rotation operations in the convo-
lution process. Thus, we propose more faster convolution method
that can utilize both operations of full slot and the bootstrapping
with reduced running time for sparsely packed ciphertext. When
the convolution is performed, we regard the sparsely packed ci-
phertext as the fully packed ciphertext by repetition so that several
convolution operations can be performed parallelly. On the other
hand, when the bootstrapping is performed, we consider the re-
peatedly packed input ciphertext as the sparsely packed ciphertext
and use sparse slot bootstrapping.

Specifically, we propose a parallelly multiplexed packing method
PrlMultPack that packs 𝑝𝑖 identical multiplexed tensors into one-

dimensional vector for 𝑝𝑖 = 2
⌊log2 (

𝑛𝑡

𝑘2
𝑖
ℎ𝑖𝑤𝑖𝑡𝑖

) ⌋
. Figure 4 describes

how to perform parallelly multiplexed packing of 3 × 3 × 𝑐𝑖 input
tensor for given gap 𝑘𝑖 = 2 and number of copies 𝑝𝑖 . For the input
tensor 𝐴 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖 , this function first obtains a multiplexed
tensor 𝐴′ ∈ R𝑘𝑖ℎ𝑖×𝑘𝑖𝑤𝑖×𝑡𝑖 such that MultPack(𝐴) = Vec(𝐴′) and
simply places 𝑝𝑖 copies of 𝐴′ in sequence. Then, this extended
tensor should be mapped to a vector in R𝑛𝑡 using Vec function.

If 𝑘2
𝑖
ℎ𝑖𝑤𝑖𝑡𝑖 ∤ 𝑛𝑡 , we fill some zeros between 𝑝𝑖 copies of 𝐴′. The

definition of PrlMultPack function is given as:

PrlMultPack(𝐴) =
𝑝𝑖−1∑
𝑗=0
⟨MultPack(𝐴)⟩𝑗 (𝑛𝑡 /𝑝𝑖) .

We require each tensor to be packed into the ciphertext slots
using the parallelly multiplexed packing method during the entire
deep neural network. We propose a parallel multiplexed convolu-
tion algorithm, PrlMultConv, which is an improved algorithm of
MultConv. PrlMultConv takes a parallelly multiplexed tensor for
gap 𝑘𝑖 as an input and outputs a parallelly multiplexed tensor for
output gap 𝑘𝑜 . Let 𝑞 = ⌈𝑐𝑜𝑝𝑖 ⌉. Then, while the previous multiplexed
convolution algorithm MultConv performsmultiplication byweight
and summing up 𝑐𝑜 times, parallel multiplexed convolution algo-
rithm PrlMultConv performs only 𝑞 times, reducing the required
number of rotations to about 1/𝑝𝑖 .

Before description of PrlMultConv in detail, it is required to
define PrlMultWgtPack(𝑈 ; 𝑖1, 𝑖2, 𝑖3) that maps weight tensor 𝑈 ∈
Rℎ𝑖×𝑤𝑖×𝑐𝑖×𝑐𝑜 to an element of R𝑛𝑡 . To define PrlMultWgtPack,

7

gap

copies

Figure 4: Parallelly multiplexed packing method
PrlMultPack when 𝑘2

𝑖
ℎ𝑖𝑤𝑖𝑡𝑖 | 𝑛𝑡 .

parallelly multiplexed shifted weight tensor 𝑈
′′(𝑖1,𝑖2,𝑖3)

=

(𝑈 ′′(𝑖1,𝑖2,𝑖3)𝑖5,𝑖6,𝑖7)0≤𝑖5<𝑘𝑖ℎ𝑖 ,0≤𝑖6<𝑘𝑖𝑤𝑖 ,0≤𝑖7<𝑡𝑖𝑝𝑖 ∈ R𝑘𝑖ℎ𝑖×𝑘𝑖𝑤𝑖×𝑡𝑖𝑝𝑖 should
be defined first for 0 ≤ 𝑖1 < 𝑓ℎ, 0 ≤ 𝑖2 < 𝑓𝑤 , and 0 ≤ 𝑖3 < 𝑞 as
follows:

𝑈
′′(𝑖1,𝑖2,𝑖3)
𝑖5,𝑖6,𝑖7 =

0, if 𝑘2
𝑖 (𝑖7 mod 𝑡𝑖) + 𝑘𝑖 (𝑖5 mod 𝑘𝑖) + 𝑖6 mod 𝑘𝑖 ≥ 𝑐𝑖

or ⌊𝑖7/𝑡𝑖 ⌋ + 𝑝𝑖𝑖3 ≥ 𝑐𝑜

or ⌊𝑖5/𝑘𝑖 ⌋ − (𝑓ℎ − 1)/2 + 𝑖1 ∉ [0, ℎ𝑖 − 1]
or ⌊𝑖6/𝑘𝑖 ⌋ − (𝑓𝑤 − 1)/2 + 𝑖2 ∉ [0,𝑤𝑖 − 1],

𝑈𝑖1,𝑖2,𝑘
2
𝑖
(𝑖7 mod 𝑡𝑖)+𝑘𝑖 (𝑖5 mod 𝑘𝑖)+𝑖6 mod 𝑘𝑖 , ⌊𝑖7/𝑡𝑖 ⌋+𝑝𝑖𝑖3 ,

otherwise,

for 0 ≤ 𝑖5 < 𝑘𝑖ℎ𝑖 , 0 ≤ 𝑖6 < 𝑘𝑖𝑤𝑖 , and 0 ≤ 𝑖7 < 𝑡𝑖𝑝𝑖 . Then,
PrlMultWgtPack is defined as PrlMultWgtPack(𝑈 ; 𝑖1, 𝑖2, 𝑖3) =

Vec(𝑈 ′′(𝑖1,𝑖2,𝑖3)). The multiplexed selecting tensor 𝑆 ′(𝑖) defined in
Section 3.1 is also used in PrlMultConv.

Then, Algorithm 3 shows the proposed parallel multiplexed
convolution algorithm PrlMultConv, where 𝑡𝑜 = ⌊ 𝑐𝑜

𝑘2
𝑜
⌋ and 𝑝𝑜 =

2
⌊log2 (

𝑛𝑡

𝑘2
𝑜ℎ𝑜𝑤𝑜𝑡𝑜

) ⌋
.

4 PARALLEL BATCH NORMALIZATION,
DOWNSAMPLING, AND AVERAGE
POOLING USING MULTIPLEXED PACKING

In Section 3.2, we proposed parallel multiplexed convolution al-
gorithm, PrlMultConv that works for an input parallelly multi-
plexed tensor. Besides convolution, the ResNet model has also batch
normalization and average pooling. For the CIFAR-10 dataset, the
ResNet model also has downsampling. Batch normalization, aver-
age pooling, and downsampling should be implemented to be also
compatible with the parallelly multiplexed packing method. Thus,
new batch normalization, downsampling, and average pooling algo-
rithms that work for a parallelly multiplexed tensor packed using
the PrlMultPack are proposed in this section.

4.1 Parallel Multiplexed Batch Normalization
We propose an algorithm PrlMultBN that performs batch normal-
ization for a given input parallelly multiplexed tensor. To this end,
it is required to define new packing function PrlBNPack that packs

Algorithm 3: PrlMultConv(ct′′a ,𝑈)
Input: Parallelly multiplexed tensor ciphertext ct′′a and

weight tensor𝑈
Output: Parallelly multiplexed tensor ciphertext ct′′d

1 ct′′d ← ctzero
2 for 𝑖1 ← 0 to 𝑓ℎ − 1 do
3 for 𝑖2 ← 0 to 𝑓𝑤 − 1 do
4 ct′′(𝑖1,𝑖2) ←

Rot(ct′′a ;𝑘2
𝑖
𝑤𝑖 (𝑖1− (𝑓ℎ −1)/2) +𝑘𝑖 (𝑖2− (𝑓𝑤 −1)/2))

5 end
6 end
7 for 𝑖3 ← 0 to 𝑞 − 1 do
8 ct′′b ← ctzero
9 for 𝑖1 ← 0 to 𝑓ℎ − 1 do

10 for 𝑖2 ← 0 to 𝑓𝑤 − 1 do
11 ct′′b ←

ct′′b ⊕ ct′′(𝑖1,𝑖2) ⊙ PrlMultWgtPack(𝑈 ; 𝑖1, 𝑖2, 𝑖3)
12 end
13 end
14 ct′′c ← SumSlots(ct′′b ;𝑘𝑖 , 1)
15 ct′′c ← SumSlots(ct′′c ;𝑘𝑖 , 𝑘𝑖𝑤𝑖)
16 ct′′c ← SumSlots(ct′′c ; 𝑡𝑖 , 𝑘2

𝑖
ℎ𝑖𝑤𝑖)

17 for 𝑖4 ← 0 to min(𝑝𝑖 − 1, 𝑐𝑜 − 1 − 𝑝𝑖𝑖3) do
18 𝑖 ← 𝑝𝑖𝑖3 + 𝑖4
19 ct′′d ←

ct′′d ⊕Rot(ct
′′
c ;−⌊𝑖/𝑘2

𝑜 ⌋𝑘2
𝑜ℎ𝑜𝑤𝑜+⌊𝑛𝑡/𝑝𝑖 ⌋ (𝑖 mod 𝑝𝑖)−

⌊(𝑖 mod 𝑘2
𝑜)/𝑘𝑜 ⌋𝑘𝑜𝑤𝑜 − 𝑖 mod 𝑘𝑜) ⊙ Vec(𝑆 ′(𝑖))

20 end
21 end
22 for 𝑗 ← 0 to log2 𝑝𝑜 − 1 do
23 ct′′d ← ct′′d ⊕ Rot(ct′′d ;−2𝑗 (𝑛𝑡/𝑝𝑜))
24 end
25 return ct′′d

batch normalization constant vectors 𝐶,𝑀, 𝐼 ∈ R𝑐𝑖 (explained in
Section 2.4) properly. For a given input constant vector 𝐻 ∈ R𝑐𝑖 ,
PrlBNPack outputs a vector h′′ = (ℎ′′0 , ℎ

′′
1 , · · · , ℎ

′′
𝑛𝑡−1) ∈ R

𝑛𝑡 satis-
fying

ℎ′′𝑗 =


0, if 𝑗 mod (𝑛𝑡/𝑝𝑖) ≥ 𝑘2

𝑖
ℎ𝑖𝑤𝑖𝑡𝑖

or 𝑘2
𝑖
𝑖3 + 𝑘𝑖 (𝑖1 mod 𝑘𝑖) + 𝑖2 mod 𝑘𝑖 ≥ 𝑐𝑖

𝐻𝑘2
𝑖
𝑖3+𝑘𝑖 (𝑖1 mod 𝑘𝑖)+𝑖2 mod 𝑘𝑖

, otherwise,

for 0 ≤ 𝑗 < 𝑛𝑡 , where 𝑖1 = ⌊((𝑗 mod (𝑛𝑡/𝑝𝑖)) mod 𝑘2
𝑖
ℎ𝑖𝑤𝑖)/𝑘𝑖𝑤𝑖 ⌋,

𝑖2 = (𝑗 mod (𝑛𝑡/𝑝𝑖))mod𝑘𝑖𝑤𝑖 , and 𝑖3 = ⌊(𝑗 mod (𝑛𝑡/𝑝𝑖))/𝑘2
𝑖
ℎ𝑖𝑤𝑖 ⌋.

We propose PrlMultBN that performs batch normalization using
this PrlBNPack packing method, and Algorithm 4 describes the
proposed PrlMultBN.

4.2 Parallel Multiplexed Downsampling
ResNet models for the CIFAR-10 dataset require two downsam-
pling processes. We propose DownSamp algorithm that performs

8

Algorithm 4: PrlMultBN(ct′′a ,𝐶,𝑀, 𝐼)
Input: Parallelly multiplexed tensor ciphertext ct′′a and

batch normalization constant vectors 𝐶,𝑀, 𝐼 ∈ R𝑐
𝑖

Output: Parallelly multiplexed tensor ciphertext ct′′b
1 c′′ ← PrlBNPack(𝐶), m′′ ← PrlBNPack(𝑀),

i′′ ← PrlBNPack(𝐼)
2 ct′′b ← c′′ ⊙ ct′′a ⊕ (i′′ − c′′ ·m′′)
3 return ct′′b

downsampling for a given input parallelly multiplexed tensor. This
prevents the density of valid values from decreasing after down-
sampling. To specifically describe the proposed downsampling al-
gorithm, it is required to define downsampling selecting tensor
𝑆 ′′(𝑖1,𝑖2) = (𝑆 ′′(𝑖1,𝑖2)

𝑖3,𝑖4,𝑖5
)0≤𝑖3<𝑘𝑖ℎ𝑖 ,0≤𝑖4<𝑘𝑖𝑤𝑖 ,0≤𝑖5<𝑡𝑖 ∈ R𝑘𝑖ℎ𝑖×𝑘𝑖𝑤𝑖×𝑡𝑖 ,

which is used to select 4𝑘𝑖 valid values. Downsampling selecting ten-
sor 𝑆 ′′(𝑖1,𝑖2) = (𝑆 ′′(𝑖1,𝑖2)

𝑖3,𝑖4,𝑖5
)0≤𝑖3<𝑘𝑖ℎ𝑖 ,0≤𝑖4<𝑘𝑖𝑤𝑖 ,0≤𝑖5<𝑡𝑖 for 0 ≤ 𝑖1 < 𝑘𝑖

and 0 ≤ 𝑖2 < 𝑡𝑖 is defined as follows:

𝑆
′′(𝑖1,𝑖2)
𝑖3,𝑖4,𝑖5

=



1, if (⌊𝑖3/𝑘𝑖 ⌋) mod 2 = 0
and (⌊𝑖4/𝑘𝑖 ⌋) mod 2 = 0
and 𝑖3 mod 𝑘𝑖 = 𝑖1
and 𝑖5 = 𝑖2

0, otherwise,
for 0 ≤ 𝑖3 < 𝑘𝑖ℎ𝑖 , 0 ≤ 𝑖4 < 𝑘𝑖𝑤𝑖 , and 0 ≤ 𝑖5 < 𝑡𝑖 . Algorithm 5
describes the proposed downsampling algorithm DownSamp.

Algorithm 5: Downsamp(ct′′a)
Input: Parallelly multiplexed tensor ciphertext ct′′a
Output: Parallelly multiplexed tensor ciphertext ct′′c

1 ct′′c ← ctzero
2 for 𝑖1 ← 0 to 𝑘𝑖 − 1 do
3 for 𝑖2 ← 0 to 𝑡𝑖 − 1 do
4 𝑖3 ← ⌊((𝑘𝑖𝑖2 + 𝑖1) mod 2𝑘𝑜)/2⌋
5 𝑖4 ← (𝑘𝑖𝑖2 + 𝑖1) mod 2
6 𝑖5 ← ⌊(𝑘𝑖𝑖2 + 𝑖1)/2𝑘𝑜 ⌋
7 ct′′b ← ct′′a ⊙ Vec(𝑆 ′′(𝑖1,𝑖2))
8 ct′′c ←

ct′′b ⊕Rot(ct
′′
b ;𝑘2

𝑖
ℎ𝑖𝑤𝑖 (𝑖2− 𝑖5) +𝑘𝑖𝑤𝑖 (𝑖1− 𝑖3) −𝑘𝑖𝑖4)

9 end
10 end
11 ct′′c ← Rot(ct′′c ;−𝑘2

𝑜ℎ𝑜𝑤𝑜𝑡𝑖/8)
12 for 𝑗 ← 0 to log2 𝑝𝑜 − 1 do
13 ct′′c ← ct′′c ⊕ Rot(ct′′c ;−2𝑗𝑘2

𝑜ℎ𝑜𝑤𝑜𝑡𝑜)
14 end
15 return ct′′c

4.3 Average Pooling
When we reach the average pooling after performing all convolu-
tions, batch normalizations, and ReLU functions in the ResNet
model, we have a ciphertext that contains data packed using

PrlMultPack packing method. The data packed by this multiplexed
packing method is arranged in a complex order in one dimension,
which limits execution of fully connected layer. Thus, we propose an
average pooling algorithm AvgPool that not only performs average
pooling but also rearranges indices.

Average pooling is the process that obtains a vector of R𝑐𝑖 by
computing the average value for ℎ𝑖𝑤𝑖 values for an input tensor of
Rℎ𝑖×𝑤𝑖×𝑐𝑖 . To this end, we can add ℎ𝑖𝑤𝑖 values using rotations and
additions of tensors. Dividing by ℎ𝑖𝑤𝑖 can be performed instead
in the process of multiplying selecting vector. Then, in each page,
only 𝑘2

𝑖
values are valid out of the 𝑘2

𝑖
ℎ𝑖𝑤𝑖 values, and the rest are

the invalid garbage values. We place only 𝑘2
𝑖
𝑡𝑖 valid values sequen-

tially in one-dimensional vector. For this rearranging process, it
is required to define selecting vector s̄′(𝑖3) = (s̄′(𝑖3)

𝑗
)0≤ 𝑗<𝑛𝑡 ∈ R𝑛 ,

which is defined as follows:

s̄′(𝑖3)
𝑗

=

{
1

ℎ𝑖𝑤𝑖
, if 𝑗 − 𝑘𝑖𝑖3 ∈ [0, 𝑘𝑖 − 1]

0, otherwise,
for 0 ≤ 𝑗 < 𝑛𝑡 and 0 ≤ 𝑖3 < 𝑘𝑖𝑡𝑖 . Algorithm 6 shows the proposed
average pooling algorithm that uses this selecting vector. Figure 6
describes the rearranging process that selects and places 𝑘2

𝑖
𝑡𝑖 valid

values sequentially in Algorithm 6.

Algorithm 6: AvgPool(ct′′a)
Input: Parallelly multiplexed tensor ciphertext ct′′a
Output: One-dimensional array ciphertext ctb

1 ctb ← ctzero
2 for 𝑗 ← 0 to log2𝑤𝑖 − 1 do
3 ct′′a ← Rot(ct′′a ; 2𝑗 · 𝑘𝑖)
4 end
5 for 𝑗 ← 0 to log2 ℎ𝑖 − 1 do
6 ct′′a ← Rot(ct′′a ; 2𝑗 · 𝑘2

𝑖
𝑤𝑖)

7 end
8 for 𝑖1 ← 0 to 𝑘𝑖 − 1 do
9 for 𝑖2 ← 0 to 𝑡𝑖 − 1 do

10 ctb ← ctb ⊕ Rot(ct′′a ;𝑘2
𝑖
ℎ𝑖𝑤𝑖𝑖2 + 𝑘𝑖𝑤𝑖𝑖1 − 𝑘𝑖 (𝑘𝑖𝑖2 +

𝑖1)) ⊙ s̄′(𝑘𝑖𝑖2+𝑖1)
11 end
12 end
13 return ctb

5 OPTIMIZATION OF LEVEL CONSUMPTION
In this paper, we use bootstrapping and approximate ReLU function
that work for input values in [−1, 1]. However, there are many
values with an absolute value greater than one in the deep learning
process. Thus, it is required to do scaling before and after the boot-
strapping/approximate ReLU function. We set sufficiently large 𝐵
so that all real values used in the execution of ResNet model fall
within [−𝐵, 𝐵]. We set 𝐵 = 40 and 𝐵 = 65 for the CIFAR-10 and
CIFAR-100 datasets, respectively, and each value of 𝐵 is obtained
by adding some margin to the maximum value of all used values.

In this paper, convolution, batch normalization, bootstrapping,
and approximate ReLU function are repeatedly performed in this

9

Figure 5: Rearranging process that selects and places 𝑘2
𝑖
𝑡𝑖

valid values sequentially in AvgPool algorithm.

order. Since bootstrapping and approximate ReLU deal with values
scaled by 1/𝐵, it is required to multiply them by 𝐵 before con-
volution and by 1/𝐵 after batch normalization. In addition, batch
normalization requires multiplication by a constant vector c′′. Thus,
scaling process and batch normalization require a total of three
level consumption. However, it is important to reduce level con-
sumption as much as possible because the security level decreases
as the level consumption increases. Thus, we propose an algorithm
PrlMultConvBN that integrates convolution and batch normaliza-
tion while removing the need for three level consumptions by
scaling process and batch normalization.

For a given input ciphertext ctx, we can perform scaling pro-
cesses, convolution, and batch normalization by evaluating ctx⊙(𝐵 ·
1), PrlMultConv(ctx,𝑈), c′′⊙ ctx ⊕ (i′′−c′′ ·m′′), and ctx ⊙ (1

𝐵
·1)

functions sequentially, where 1 is all-one vector in R𝑛 . Considering
PrlMultConv is a linear function, these operations are equivalent
to evaluating

(c′′ ⊙ PrlMultConv(ctx, 𝐵𝑈) ⊕ (i′′ − c′′ ·m′′)) ⊙ (
1
𝐵
· 1)

= c′′ ⊙ PrlMultConv(ctx,𝑈) ⊕
1
𝐵
(i′′ − c′′ ·m′′) .

Here, if we perform PrlMultConv(ctx,𝑈) while replacing the
original selecting tensor Vec(𝑆 ′(𝑖)) by PrlBNPack(𝐶) · Vec(𝑆 ′(𝑖)),
we can perform c′′ ⊙ PrlMultConv(ctx,𝑈) without additional level
consumption. In addition, computation of 1

𝐵
(i′′− c′′ ·m′′) requires

no additional level consumption since it simply requires opera-
tions for plaintext vectors. Thus, we can perform scaling processes,
convolution, and batch normalization with only two level con-
sumptions. Algorithm 7 describes the proposed convolution/batch
normalization integration algorithm that uses level optimization
technique.

6 RESNET ON THE RNS-CKKS SCHEME
6.1 Parameter Setting
We set polynomial degree 𝑁 to 216. Then, the number of full slots
is 𝑛𝑡 = 215. We optimize some parameters used in [16] to achieve
higher security level. First, we set the Hammingweight of secret key
to 192, which is larger than 64 used in [16] because larger Hamming
weight of secret key increases available modulus bits. In addition,
we set base modulus, special modulus, and bootstrapping modulus
to 51-bit prime instead of 60-bit prime, and we set default modulus

Algorithm 7: PrlMultConvBN(ct′′a ,𝑈 ,𝐶,𝑀, 𝐼)
Input: Parallelly multiplexed tensor ciphertext ct′′a , weight

tensor𝑈 , and batch normalization constant vectors
𝐶,𝑀, 𝐼

Output: Parallelly multiplexed tensor ciphertext ct′′d
1 ct′′d ← ctzero
2 for 𝑖1 ← 0 to 𝑓ℎ − 1 do
3 for 𝑖2 ← 0 to 𝑓𝑤 − 1 do
4 ct′′(𝑖1,𝑖2) ←

Rot(ct′′a ;𝑘2
𝑖
𝑤𝑖 (𝑖1− (𝑓ℎ −1)/2) +𝑘𝑖 (𝑖2− (𝑓𝑤 −1)/2))

5 end
6 end
7 for 𝑖3 ← 0 to 𝑞 − 1 do
8 ct′′b ← ctzero
9 for 𝑖1 ← 0 to 𝑓ℎ − 1 do

10 for 𝑖2 ← 0 to 𝑓𝑤 − 1 do
11 ct′′b ←

ct′′b ⊕ ct′′(𝑖1,𝑖2) ⊙ PrlMultWgtPack(𝑈 ; 𝑖1, 𝑖2, 𝑖3)
12 end
13 end
14 ct′′c ← SumSlots(ct′′b ;𝑘𝑖 , 1)
15 ct′′c ← SumSlots(ct′′c ;𝑘𝑖 , 𝑘𝑖𝑤𝑖)
16 ct′′c ← SumSlots(ct′′c ; 𝑡𝑖 , 𝑘2

𝑖
ℎ𝑖𝑤𝑖)

17 for 𝑖4 ← 0 to min(𝑝𝑖 − 1, 𝑐𝑜 − 1 − 𝑝𝑖𝑖3) do
18 𝑖 ← 𝑝𝑖𝑖3 + 𝑖4
19 ct′′d ← ct′′d ⊕ Rot(ct′′c ;−⌊𝑖/𝑘2

𝑜 ⌋𝑘2
𝑜ℎ𝑜𝑤𝑜 +

⌊𝑛𝑡/𝑝𝑖 ⌋ (𝑖 mod 𝑝𝑖) − ⌊(𝑖 mod 𝑘2
𝑜)/𝑘𝑜 ⌋𝑘𝑜𝑤𝑜 −

𝑖 mod 𝑘𝑜) ⊙ (PrlBNPack(𝐶) · Vec(𝑆 ′(𝑖)))
20 end
21 end
22 for 𝑗 ← 0 to log2 𝑝𝑜 − 1 do
23 ct′′d ← ct′′d ⊕ Rot(ct′′d ;−2𝑗 (𝑛𝑡/𝑝𝑜))
24 end
25 ct′′d ← ct′′d ⊖

1
𝐵
(c′′ ·m′′ − i′′)

26 return ct′′d

to 46-bit prime instead of 50-bit prime. Even if the length of the
modulus bits is reduced, high accuracy of bootstrapping or approx-
imate ReLU function can be achieved, which will be explained in
detail in Section 6.2. Based on the hybrid dual attack for the LWE
with the sparse secret key [4], the total modulus bit length that can
be used with 128-bit security is 1553-bit.

6.2 Bootstrapping
We use the bootstrapping for sparsely packed ciphertext with
𝑛 = 214, 213, and 212 since data in each input ciphertext for the boot-
strapping is less than 𝑛𝑡 = 215. CoeffToSlot and SlotToCoeff
procedures are performed with level collapsing technique with
three levels. The degrees of the approximate polynomials for the
cosine function and the inverse sine function are 59, 1, respectively,
and the number of double-angle formula is two. The total level
consumption is 14 in the bootstrapping, and the total modulus

10

consumption is 644. We refer to the sparse slot bootstrapping for
𝑛 = 214, 213, and 212 as Boot14, Boot13, Boot12, respectively.

6.3 Approximate Homomorphic ReLU
Algorithm

We use the approximate homomorphic ReLU algorithm that uses
approximate polynomial for the ReLU function using composition
of minimax approximate polynomial as in [14, 15]. We use precision
parameter 𝛼 = 13, margin 𝜂 = 2−15, max function factor 𝜁 = 16,
set of degrees {15, 15, 27}, and set of scaling values {1, 2, 1.7}. The
approximate homomorphic ReLU algorithm takes a ciphertext ctx
of x ∈ R𝑛 as input and outputs another ciphertext cty of y ∈ R𝑛 .
We refer to this algorithm for the parameters that we chose as
AppReLU(ctx). AppReLU(ctx) satisfies |y − ReLU(x) | ≤ 2−𝛼 for x =

(𝑥0, 𝑥1, · · · , 𝑥𝑛−1) ∈ R𝑛 such that 𝑥𝑖 ∈ [−1, 1], 0 ≤ 𝑖 < 𝑛. All inputs
of AppReLU should be scaled by 1/𝐵 so that all components of input
vectors of AppReLU are within [−1, 1].

Since AppReLU is quite precise, we can use pre-trained parame-
ters for standard ResNet network. That is, there is no need to retrain
for a specialized network that has approximate ReLU functions in-
stead of exact ReLU functions.

6.4 Structure of the Proposed ResNet Models
on the RNS-CKKS Scheme

We classify 32 × 32 CIFAR-10 or CIFAR-100 images. We imple-
ment ResNet-20/32/44/56/110 models on the RNS-CKKS scheme us-
ing PrlMultConvBN, AppReLU, Boot, AvgPool, and fully connected
layer. For classification of CIFAR-10 dataset, we also uses Downsamp.
From now on, we simply refer to the proposed convolution/batch
normalization integration algorithm PrlMultConvBN as ConvBN.
We implement fully connected layer using the diagonal method in
[12]. Figure 6 shows the proposed ResNet structure on the RNS-
CKKS scheme, and Table 2 presents the parameters that are used
in each ConvBN or Downsamp process.

While two bootstrappings are required to perform approximate
ReLU function, convolution, and batch normalization once in [16],
only single use of bootstrapping is required in this paper because
we reduce the required level consumption for convolution, batch
normalization, and bootstrapping a lot compared to [16].

7 SIMULATION RESULTS
In this section, numerical results of the proposed ResNet on the RNS-
CKKS scheme are presented. The numerical analyses are conducted
on the representative RNS-CKKS scheme library SEAL [26] on
AMD Ryzen Threadripper PRO 3995WX at 2.096 GHz (64 cores)
with 512 GB RAM, running the Ubuntu 20.04 operating system.
We employ the CIFAR-10 and CIFAR-100 datasets for evaluation,
which are both composed of 50,000 images for training and 10,000
images for testing [13]. We use pre-trained parameters for standard
ResNet-20/32/44/56/110 networks.

7.1 ResNet for the CIFAR-10 dataset
We perform ResNet-20/32/44/56/110 using the proposed parallelly
multiplexed packing method on the RNS-CKKS scheme. We have

Figure 6: Structure of the proposed ResNet-20/32/44/56/110
on the RNS-CKKS scheme.

component 𝑓ℎ 𝑓𝑤 𝑠 ℎ𝑖 ℎ𝑜 𝑤𝑖 𝑤𝑜 𝑐𝑖 𝑐𝑜 𝑘𝑖 𝑘𝑜 𝑡𝑖 𝑡𝑜 𝑝𝑖 𝑝𝑜 𝑞

ConvBN1 3 3 1 32 32 32 32 3 16 1 1 3 16 8 2 2
ConvBN2_xa 3 3 1 32 32 32 32 16 16 1 1 16 16 2 2 8
ConvBN2_xb 3 3 1 32 32 32 32 16 16 1 1 16 16 2 2 8

ConvBN3_xa
x = 1 3 3 2 32 16 32 16 16 32 1 2 16 8 2 4 16

otherwise 3 3 1 16 16 16 16 32 32 2 2 8 8 4 4 8
ConvBN3_xb 3 3 1 16 16 16 16 32 32 2 2 8 8 4 4 8

ConvBN4_xa
x = 1 3 3 2 16 8 16 8 32 64 2 4 8 4 4 8 16

otherwise 3 3 1 8 8 8 8 64 64 4 4 4 4 8 8 8
ConvBN4_xb 3 3 1 8 8 8 8 64 64 4 4 4 4 8 8 8
ConvBN_s1 1 1 2 32 16 32 16 16 32 1 2 16 8 2 4 16
ConvBN_s2 1 1 2 16 8 16 8 32 64 2 4 8 4 4 8 16
Downsamp1 - - - 32 16 32 16 16 32 1 2 16 8 2 4 -
Downsamp2 - - - 16 8 16 8 32 64 2 4 8 4 4 8 -

Table 2: Parameters that are used in each ConvBN or Downsamp
process

Lee et al.[16] proposed ratio
number of key-switchings 375,920 3,489 107.7

sum of squared level 5.66 × 107 1.10 × 106 51.68
Table 3: Comparison of the number of key-switching opera-
tions and the sum of level squared for key-switching opera-
tion

significantly reduced the number of key-switching operations com-
pared to that in [16], where the key-switching operation is by far
the heaviest operation in FHE. Table 3 shows the total number of
the key-switching operations of the previous work and our pro-
posed work. We reduce the number of key-switching operations to
1/107.7 compared to Lee et al.’s algorithm. Lee et al. [16] suggested

11

component
Lee et al. [16] (64 threads) proposed method (single thread)

ResNet-20 ResNet-20 ResNet-32 ResNet-44 ResNet-56 ResNet-110
runtime percent runtime percent runtime percent runtime percent runtime percent runtime percent

ConvBN - - 346s 15.2% 547s 14.7% 751s 14.3% 960s 14% 1,855s 14%
AppReLU - - 257s 11.3% 406s 10.9% 583s 11.2% 762s 11.1% 1,475s 11.1%
Boot - - 1,651s 72.6% 2,760s 74.0% 3,874s 74.1% 5,113s 74.6% 9,936s 74.8%
Downsamp - - 5s 0.2% 5s 0.1% 5s 0.09% 5s 0.07% 5s 0.04%
AvgPool - - 2s 0.1% 2s 0.06% 2s 0.05% 2s 0.04% 2s 0.02%
FC layer - - 10s 0.4% 10s 0.3% 10s 0.2% 10s 0.1% 10s 0.08%
total 10,602s 100% 2,271s 100% 3,730s 100% 5,224s 100% 6,852s 100% 13,282s 100%

Table 4: Classification runtime for one CIFAR-10 image using ResNet models on the RNS-CKKS scheme

model runtime amortized runtime
Lee et al. [16] ResNet-20 10,602s 10,602s(one image, 128 threads)

ResNet-20 3,973s 79s
proposed ResNet-32 6,130s 122s
method ResNet-44 8,983s 179s

(50 images, 50 threads) ResNet-56 11,303s 226s
ResNet-110 22,778s 455s

Table 5: Classification (amortized) runtime for multiple
CIFAR-10 images using ResNet models on the RNS-CKKS
scheme

that the sum of squared level of the input ciphertext for each key-
switching operations can represent the total amount of operations
more exactly. If we use this criterion, this value is reduced to 1/51.68
compared to Lee et al.’s algorithm.

Table 4 shows the classification runtime for one CIFAR-10 image
using ResNet models on the RNS-CKKS scheme. Due to the large
reduction in the number of key switchings, while the previous
implementation in [16] takes 10,602s with maximum 64 threads
to perform ResNet-20 on the RNS-CKKS scheme, the proposed
implementation takes 2,271s to perform ResNet-20 even with single
thread, which is about five times faster. Furthermore, we succeed
in implementing ResNet-32/44/56/110 on FHE for the first time. It
can be seen from Table 4 that the runtime increases almost linearly
according to the number of layers.

Since servers should perform classification of multiple images of
clients in many cases, not only the runtime of classification for one
image, but also the amortized runtime for multiple images, i.e., run-
time per image, is important. Since the proposed implementation
requires only single thread, multiple threads allow us to classify
multiple images simultaneously. This is impossible in [16] because
they used all 64 threads to classify one image. Table 5 shows the
runtime and amortized runtime of classification for multiple CIFAR-
10 images using ResNet models on the RNS-CKKS scheme. The
proposed implementation of ResNet-20 takes 3973s to classify 50
images using 50 threads, which corresponds to amortized runtime
79s. This is 134 times faster than the amortized runtime 10,602s in
[16].

model number of number of backbone obtained
test images success accuracy accuracy

ResNet-20 10,000 9,132 91.52% 91.32%
ResNet-32 10,000 9,240 92.49% 92.4%
ResNet-44 2,000 1,852 92.76% 92.6%
ResNet-56 2,000 1,856 93.27% 92.8%
ResNet-110 2,000 1,858 93.5% 92.9%

Table 6: Classification accuracy for CIFAR-10 images using
ResNet models on the RNS-CKKS scheme

Table 6 presents the classification accuracy for CIFAR-10 im-
ages using ResNet models on the RNS-CKKS scheme. Due to our
significantly reduced amortized runtime, we succeed to perform
classification for all 10,000 test images for ResNet-20 while only
383 images were tested in [16]. We have 9,132 success out of 10,000
test images, that is, 91.32% accuracy, which is very close to the
accuracy of backbone network 91.52%. We also obtain accuracies
for ResNet-32/44/56/110, deeper neural networks than ResNet-20,
on the RNS-CKKS for the first time. It can be seen from Table 6
that classification accuracies on the RNS-CKKS scheme for deeper
neural networks than ResNet-20 are also close to the accuracies of
backbone networks.

7.2 ResNet for the CIFAR-100 Dataset
We classify the CIFAR-100 images with ResNet-32 on the RNS-
CKKS scheme using the proposed parallelly multiplexed packing
method. Table 7 shows the classification runtime for ResNet-32.
Table 8 presents the classification accuracy for CIFAR-100 images.
We have 6,943 success out of 10,000 test images, that is, 69.43%. This
is very close to the accuracy of backbone network 69.5%.

7.3 Discussion
7.3.1 Runtime. First, we reduced the runtime for classification

of one image to 1/4.67 compared to that in [16] using the proposed
parallelly multiplexed packing method. It should be noted that the
runtime of the proposed implementation can be much more im-
proved using GPU or hardware accelerators because we used only
single thread unlike that in [16]. For example, according to [11], op-
erations of RNS-CKKS scheme on GPU can be more than 100 times

12

component

one image 50 images
single thread 50 threads

runtime percent runtime amortized
runtime

ConvBN 542s 13.7% - -
AppReLU 510s 12.9% - -
Boot 2,864s 72.7% - -
AvgPool 2s 0.05% - -
FC layer 24s 0.6% - -
total 3,942s 100% 6,351s 127s

Table 7: Classification runtime for CIFAR-100 images using
ResNet models on the RNS-CKKS scheme

model number of number of backbone obtained
test images success accuracy accuracy

ResNet-32 10,000 6,943 69.5% 69.43%
Table 8: Classification accuracy for CIFAR-100 images using
ResNet-32 on the RNS-CKKS scheme

faster than those on CPU single thread. Thus, the implementation
of ResNet using the proposed method is expected to reduce the
runtime to more than 1/100 on GPU, leading to practical runtimes.

In addition, our amortized runtime for ResNet-20 is 134 times
faster than that in [16], which allows the server to classify multiple
images from multiple clients much faster.

7.3.2 Deeper Neural Network. For the first time, we showed
results of deeper neural networks than ResNet-20 on FHE. The pro-
posed implementation showed that the runtime increases linearly
in the number of layers, which is generally difficult to be expected
in leveled HE.

7.3.3 Classification Accuracy. Although the accuracy for
ResNet-20 on the RNS-CKKS scheme was successfully obtained
on [16], 383 test images are not sufficiently large enough to guaran-
tee that ResNet on the RNS-CKKS scheme has also good accuracy
for all 10,000 test images. Since we reduced amortized runtime
much compared to that in [16], we were able to perform ResNet-20
for all 10,000 test images, showing that ResNet-20 on the RNS-
CKKS scheme has very close accuracy to the accuracy of the back-
bone network. In addition, we also showed that the accuracy on
the RNS-CKKS scheme is similar to that of backbone network for
ResNet-32/44/56/110, which is deeper than ResNet-20.

It is noteworthy that our obtained accuracy is not hard limit.
There is a tradeoff between the runtime and precisions of bootstrap-
ping/approximate ReLU, and increasing the precisions of bootstrap-
ping/approximate ReLU is expected tomake the obtained accuracies
on the RNS-CKKS scheme more closer to those of backbone net-
works. Further, since we succeeded in implementing the standard
deep neural network rather than HE-friendly network, we can also
expect to achieve much higher classification accuracy using the
state-of-the-art deep neural networks.

7.3.4 Security. While the work in [16] satisfied only 111 bit
security due to many level consumptions, the proposed implemen-
tation achieved the standard 128 bit security because we reduced
required level consumption a lot.

8 CONCLUSIONS
In this paper, we studied an efficient implementation method of
deep neural network on the RNS-CKKS FHE scheme. First, we pro-
posed amultiplexed packingmethod thatmakes tensors formultiple
channels to be multiplexed into one tensor. Then, we proposed a
multiplexed convolution method using this packing method, which
significantly reduced the number of key-switching operations in the
implementation of ResNet network on the RNS-CKKS scheme. In
addition, we proposed a parallelly multiplexed convolution, which
is faster than multiplexed convolution by utilizing operation of full
slots. Further, we fine tuned the parameters to reach the standard
128-bit security level and to further reduce the number of the boot-
strapping operations. Our implementation of ResNet-20 model with
the proposed techniques took about 37 minutes (2,271s) with only
one thread. As for the total amount of the operations, the number
of the key-switching operations, which is the heaviest operation
in the RNS-CKKS scheme, was reduced to 1/107 compared to the
previous implementation. Further, we even implemented ResNet-
32/44/56/110 models on RNS-CKKS FHE scheme with the linear
time of the number of layers, which is the first implementation
result for these standard deep neural networks. Finally, we suc-
cessfully classified the CIFAR-100 images on RNS-CKKS scheme
using standard ResNet-32 model, and we obtained a running time of
3,942s and an accuracy of 69.4% close to the accuracy of backbone
network 69.5%.

ACKNOWLEDGMENTS
This work was supported by the BK21 FOUR program of the Educa-
tion and Research Program for Future ICT Pioneers, Seoul National
University in 2021.

REFERENCES
[1] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-

Pierre Hubaux. 2021. Efficient bootstrapping for approximate homomorphic
encryption with non-sparse keys. In International Conference on the Theory and
Applications of Cryptographic Techniques.

[2] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song, and
Sameer Wagh. 2020. Maliciously secure matrix multiplication with applications
to private deep learning. In International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 31–59.

[3] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2018. Bootstrapping for approximate homomorphic encryption. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 360–384.

[4] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. 2019. A hybrid
of dual and meet-in-the-middle attack on sparse and ternary secret LWE. IEEE
Access 7 (2019), 89497–89506.

[5] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: fast fully homomorphic encryption over the torus. Journal of Cryptology
33, 1 (2020), 34–91.

[6] Ilaria Chillotti, Marc Joye, and Pascal Paillier. 2021. Programmable bootstrapping
enables efficient homomorphic inference of deep neural networks. In Cyber
Security Cryptography and Machine Learning - 5th International Symposium,
CSCML 2021, Be’er Sheva, Israel, July 8-9, 2021, Proceedings (Lecture Notes in
Computer Science), Shlomi Dolev, Oded Margalit, Benny Pinkas, and Alexander A.
Schwarzmann (Eds.), Vol. 12716. Springer, 1–19.

[7] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: An optimizing

13

compiler for fully-homomorphic neural-network inferencing. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 142–156.

[8] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In Proceedings of International Confer-
ence on Machine Learning. PMLR, 201–210.

[9] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[10] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. 2018. Secure out-
sourced matrix computation and application to neural networks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1209–1222.

[11] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho
Lee. 2021. Over 100x faster bootstrapping in fully homomorphic encryption
through memory-centric optimization with GPUs. Cryptol. ePrint Arch., Tech.
Rep. 2021/508 (2021).

[12] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A low latency framework for secure neural network inference. In
Proceedings of 27th USENIX Security Symposium. 1651–1669.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features
from tiny images. CiteSeerX Technical Report, University of Toronto (2009).

[14] Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. 2021. Minimax
approximation of sign function by composite polynomial for homomorphic
comparison. IEEE Transactions on Dependable and Secure Computing, accepted
for publication (2021).

[15] Junghyun Lee, Eunsang Lee, Joon-Woo Lee, Yongjune Kim, Young-Sik Kim, and
Jong-Seon No. 2021. Precise approximation of convolutional neural networks
for homomorphically encrypted data. arXiv preprint arXiv:2105.10879 (2021).

[16] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim
Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al.
2021. Privacy-preserving machine learning with fully homomorphic encryption
for deep neural network. arXiv preprint arXiv:2106.07229 (2021).

[17] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. 619–631.

[18] Qian Lou and Lei Jiang. 2019. SHE: A fast and accurate deep neural network for
encrypted data. Advances in Neural Information Processing Systems 32 (2019),
10035–10043.

[19] Qian Lou and Lei Jiang. 2021. HEMET: A homomorphic-encryption-friendly
privacy-preserving mobile neural network architecture. In Proceedings of the
38th International Conference on Machine Learning, Vol. 139. PMLR, 7102–7110.

[20] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. Delphi: A cryptographic inference service for neural
networks. In 29th {USENIX} Security Symposium ({USENIX} Security 20). 2505–
2522.

[21] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P. Wellman.
2018. Sok: Security and privacy in machine learning. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 399–414.

[22] Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T Lee, Hsien-Hsin S
Lee, Gu-Yeon Wei, and David Brooks. 2021. Cheetah: Optimizing and accelerat-
ing homomorphic encryption for private inference. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 26–39.

[23] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. Heax: An archi-
tecture for computing on encrypted data. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 1295–1309.

[24] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter,
and Farinaz Koushanfar. 2019. {XONN}: Xnor-based oblivious deep neural
network inference. In 28th {USENIX} Security Symposium ({USENIX} Security
19). 1501–1518.

[25] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:
Scalable provably-secure deep learning. In Proceedings of the 55th Annual Design
Automation Conference. 1–6.

[26] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.
(Nov. 2020). Microsoft Research, Redmond, WA.

14

https://github.com/Microsoft/SEAL

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Description of Parameters
	2.3 RNS-CKKS Fully Homomorphic Encryption
	2.4 Convolution on Homomorphic Encryption
	2.5 Batch Normalization on the Fully Homomorphic Encryption

	3 Multiplexed Convolution on Fully Homomorphic Encryption
	3.1 MultConv: Convolution Using Multiplexed Packing
	3.2 PrlMultConv: Parallel Convolution Using Multiplexed Packing

	4 Parallel Batch Normalization, Downsampling, and Average Pooling Using Multiplexed Packing
	4.1 Parallel Multiplexed Batch Normalization
	4.2 Parallel Multiplexed Downsampling
	4.3 Average Pooling

	5 Optimization of Level Consumption
	6 ResNet on the RNS-CKKS Scheme
	6.1 Parameter Setting
	6.2 Bootstrapping
	6.3 Approximate Homomorphic ReLU Algorithm
	6.4 Structure of the Proposed ResNet Models on the RNS-CKKS Scheme

	7 Simulation Results
	7.1 ResNet for the CIFAR-10 dataset
	7.2 ResNet for the CIFAR-100 Dataset
	7.3 Discussion

	8 Conclusions
	Acknowledgments
	References

