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Abstract. The use of data combined with tailored statistical analysis
have presented a unique opportunity to organizations in diverse �elds to
observe users' behaviors and needs, and accordingly adapt and �ne tune
their services. However, in order to o�er utilizable, plausible and per-
sonalized alternatives to users, this process usually also entails a breach
of their privacy. The use of statistical databases for releasing data ana-
lytics is growing exponentially, and while many cryptographic methods
are utilized to protect the con�dentiality of the data � a task that has
been ably carried out by many authors over the years � only a few works
focus on the problem of privatizing the actual databases. Believing that
securing and privatizing databases are two equilateral problems, in this
paper we propose a hybrid approach by combining Functional Encryp-
tion with the principles of Di�erential Privacy. Our main goal is not only
to design a scheme for processing statistical data and releasing statistics
in a privacy-preserving way but also provide a richer, more balanced and
comprehensive approach in which data analytics and cryptography go
hand in hand with a shift towards increased privacy.

Keywords: Di�erential Privacy · Functional Encryption · Multi-Party
Computation

1 Introduction

The continually increasing sophistication of technology is shaping the unceas-
ing evolution of data and analytics. Industries are undergoing persistent digital
transformation resulting in an ever increasing amount of data collected. Today,
every business relies on small or big data and valuable insights derived from it.
Data analytics is highly resourceful when it comes to understanding the target
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audience and their preferences. Using this information, organizations can easily
anticipate customer needs and potentially gain signi�cant competitive advantage
in the market. Telecom and �nancial services industries are the most active early
adopters of big data analytics, with technology and healthcare following in the
third and fourth place.

The agressive penetration of data analytics inevitably raises companies' con-
cerns regarding the usage of users' data and possible breaches of privacy. For
example, a recent study [27] found that 19 out of a sample of 24 general-purpose
mobile health apps shared user data with more than 50 unique companies, most
of which were data analytics companies. This, along with other older reported
privacy attacks [19, 34] are very alarming developments considering that statis-
tical databases are of signi�cant importance for decision making in numerous
�elds ranging from sports and entertainment to national security. A response to
such attacks was presented in [21] with the formalization of di�erential privacy.

Di�erential privacy allows sharing information about a dataset, while simul-
taneously withholding information about individuals. A curator (data owner)
creates the database and then periodically releases statistics upon receiving re-
quest from an analyst. In order to ensure the individuals' privacy, the curator
�lters the statistics through a privacy mechanism and replies to the analyst with
a noisy result. The results must be presented in a form allowing the analyst to de-
duce accurate enough results about the dataset, without breaching individuals'
privacy. While the problem of privatizing datasets has been thoroughly studied,
further securing the datasets through the use of cryptography has not yet drawn
much attention. However, this is an issue of paramount importance when the
database is outsourced to a possibly malicious cloud service provider (CSP). To
the best of our knowledge, the only work that considered this scenario is the one
presented in [5], where authors rely on homomorphic encryption (HE) [35] and
structured encryption (SE) [30] to design a scheme for private histogram queries.
In this paper, we approach a similar problem by using Functional Encryption
(FE) as the starting point.

Functional Encryption (FE) is an emerging cryptographic technique that
allows selective computations over encrypted data. FE schemes provide a key
generation algorithm that outputs decryption keys with remarkable capabili-
ties. More precisely, each decryption key skf is associated with a function f .
In contrast to traditional cryptographic techniques, using skf on a ciphertext
Enc(x) does not recover x but a function f(x) � thus keeping the actual value
x private. While the �rst constructions of FE allowed the computation of a
function over a single ciphertext, more recent works [25] introduced the more
general notion of multi-input FE (MIFE). In a MIFE scheme, given ciphertexts
Enc(x1), . . . ,Enc(xn), a user can use skf to recover f(x1, . . . , xn). The function
f can allow only highly processed forms of data to be learned by the functional
key holder. Unfortunately, while MIFE seems to be a perfect �t for many real-
life applications � especially cloud-based ones where multiple users store large
volumes of data in remote and possibly corrupted entities � most of the works
in the �eld revolve around constructing generic schemes that do not support
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speci�c functions. Hence, while the concept of FE has the potential to unleash
new, creative, useful and emerging applications, from a practical perspective, it
still holds a largely unful�lled promise. Having identi�ed the importance of FE
and believing that it is a family of modern encryption schemes that can push us
into an uncharted technological terrain, we made a �rst attempt at smoothing
out the identi�ed asymmetries betwixt theory and practice.

Contributions We make the following contributions:

1. First, we design a MIFE scheme in the public key setting for the `1 norm
of a vector and then we generalize our construction to further support the
inner product functionality. We also show how our scheme for the `1 norm
can be transformed from the single-client to the multi-client setting. This
transformation requires the users to perform a Multi-Party Computation
(MPC). More precisely, each user generates their own public/private key
pair for the same public-key encryption scheme and then they collaborate to
calculate a functional decryption key skf which is derived from a combination
of all the generated private keys. This result is quite remarkable since users
generate their private keys locally and independently. As a result, the keys
are never exposed to unauthorized parties and thus, no private information
about the content of the underlying ciphertexts is revealed. At the same time,
su�cient information to generate the functional decryption key is provided
without the use of a fully trusted party.

2. Our second contribution derives from the identi�ed need to create a dialogue
between the theoretical concept of FE and real life applications. We tried to
provide a pathway towards new prospects that show the direct and realistic
applicability of this promising encryption technique when applied to concrete
obstacles. To this end, we showed how our MIFE scheme can be used to
provide a solution to the problem of designing encrypted private databases.
In particular, we present three di�erent solutions two of which remain private
under continual observations, while our third solution satis�es the traditional
de�nition of di�erential privacy but in the multi-client setting.

3. In comparison with the seminal work [5], our scheme o�ers more functional-
ities as it allows an analyst to perform di�erent kind of queries, and not only
request the value of a counter. This is beacause our construction is based on
FE which is a better �t for such a scenario, and outperfroms HE in terms
of e�ciency. Moreover, we consider a stronger threat model by allowing the
malicious analyst to collude with the CSP in an attempt to remove the noise
from the results. Finally, in contrast with the purely theoretical work in [5],
we present extensive experiments to prove that enhancing the security of an
encrypted dataset with di�erential privacy does not add signi�cant compu-
tational costs.

2 Motivation and Application Domain

The use of analytics and data processing has been used productively in various
�elds, including the healthcare sector (e.g. medical diagnosis), intelligence anal-
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ysis, �nance, safety, military services and many more. However, the importance
of performing privacy-preserving analytics is an issue that has lately gained mo-
mentum in public's mind. As a result, a signi�cant number of companies are
moving towards implementing services that respect users' privacy.

To facilitate the reader's understanding of the motivation, and the type of
problem we are trying to solve, we considered a speci�c example capable of
showing the immediate application of our research. In layman's terms, the goal
of this work, is to allow authorized users to perform statistical analyses over arbi-
trary datasets in a privacy-preserving way. To achieve this, we built a functional
encryption scheme that can protect users' data and their privacy against both
internal (e.g. malicious servers) and external (e.g malicious analysts) attacks.

Our solution utilizes a binary range tree, similar to the one descibed in [16].
The binary range tree is a complete binary tree in which each node represents a
numerical range. Moreover, in each node we store the sum of the values stored in
its children nodes. In other words, each node contains a partial sum correspond-
ing to a speci�c range. To release statistics in a privacy-preserving way, this
binary mechanism outputs noisy sums. To make things clearer let us consider
the following example:

We consider a scenario in which 40 students have enrolled in a university
course. After the �nal exam, the professor grades students. Grades are assigned
as numbers in the range (1-8) where 8 corresponds to the highest possible mark.
The professor creates a complete binary tree in which all grades are stored.
Finally, the tree is outsourced to the university's cloud server. Without loss of
generality, we can assume that the binary tree looks like the one in �gure 1,
where the content of each node refers to the number of students whose grades
were in a speci�c range and each cx denotes the ciphertext corresponding to a
plaintext x. Furthermore, we assume that there exists a service in the university
through which authorized users (e.g. an analyst) can evaluate any course based
on students' grades. The analyst should be able to execute any query on the
server. A query could be of the form �How many students got a grade between 1
and 7?". To answer this query, the server should release the sum of the nodes
that correspond to the speci�ed range. In our example, this would be the nodes
representing the ranges (1-4), (5-6) and (7). Our goal is to design an encryption
scheme that will allow an analyst to perform a set of computations on stored
data without learning anything about the individual values. In addition to that,
our scheme will have to be secure against both internal (compromised university
service) and external attacks (corrupted analyst). We consider for example that
Alice, another enrolled student, missed the �rst exam and participated in a new
exam after the tree was already published. Now, an analyst by issuing a query
for an average upgrade, could easily deduce Alice's grade just by observing how
the average was in�uenced by Alice's grade. To ensure Alice's privacy, we rely on
the di�erential privacy under continual observations model that was formalized
independently in [22] and [16]. Di�erential privacy under continual observations
ensures that even if the data is constantly modi�ed and updated, the privacy
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of the individuals will not be compromised. Our solution focuses on combining
Di�erential privacy under continual observations with FE.

Fig. 1: Complete Binary Tree for 40 students graded in the scale [1-8]

Given that the ciphertexts are produced using an FE scheme, the professor
can issue functional decryption keys to any party (i.e. an analyst) that wishes to
perform statistics based on the grades of the students. Given such a functional
key, the server will be able to output results identical to those where the con-
tents of the nodes were in plaintext. To make the data private apart from just
encrypting the individual records we embed a randomized error in the plaintext
prior to the encryption.

3 Related Work

Functional Encryption Functional encryption was formalized as a generaliza-
tion of public-key encryption in [14]. Since then, numerous studies with general
de�nitions and generic constructions of FE have been proposed [7,25,26,38,40].
Despite the promising works that have been published, there is a clear lack of
works proposing FE schemes supporting speci�c functions � a necessary step
that would allow FE to transcend its limitations and provide the foundations for
reaching its full potential. To the best of our knowledge, currently the number of
supported functionalities is limited to inner products [2�4, 8, 11] and quadratic
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polynomials [39]. In this work, we propose a MIFE scheme for the `1 norm of a
vector. We �rst present a generic construction and then show how to instantiate
our scheme from well-studied public-key schemes.

Di�erential Privacy.Di�erential privacy is a notion �rst formalized in [21],
where authors focused on ensuring the privacy of individuals. More precicely, it
was proved that by adding well-calibrated noise to the data, the presence or
absence of an individual's information is irrelevant to the output of a database
query. Since then, di�erential privacy has drawn the attention of both researchers [13,
33] and key industrial players such as Google [23,24], Uber [28] and organizations
like the US Census Bureau [32]. Another interesting application of di�erential
privacy was deployed by Apple with the recent release of iOS 14 [1]. In iOS 14
Apple o�ers its users the ability to enable a feature called �approximated loca-
tion". More speci�cally, for apps that require location access, a user can choose
to share an Approximate Location, which is close to the real location but not
precisely spot on, making it harder for apps to keep track of where the user is
going and better protecting location privacy.

Continual Observations. Modern applications require data to be con-
stantly modi�ed and updated. Having identi�ed this need as well as its possible
di�culties and implications, authors in [22] proposed a new model of di�erential
privacy having in mind scenarios such as real-time tra�c analysis, social trends
observations and disease outbreaks discovery. In [15], authors proved that con-
tinual release of statistics, tend to leak more information. This problem was
addressed independently in [22] and [16] and since then, the continual obser-
vations model is considered to be the new standard in the �eld of di�erential
privacy [31,41]

Crypto-assisted Approaches. Over the past few years researchers have
started exploring the possibilities of combining di�erential privacy with crypto-
graphic primitives in an attempt to provide stronger security guarantees [5, 36,
37]. In particular, in [37] authors proposed a framework for combining di�erential
privacy with cryptography in the centralized di�erential privacy (CDP) model.
In the CDP model, data are collected and stored in plaintext in a fully trusted
entity. In [37], authors relied on traditional cryptographic techniques to obviate
the need of a trusted entity. However, they only managed to replace the trusted
entity with two semi-honest servers. Another interesting approach is presented
in [36], where authors combine di�erential privacy with searchable encryption
to construct a volume-hiding scheme. Such schemes always return the maximum
number of data among all possible queries in an attempt to hide the access pat-
tern. Unfortunately, volume-hiding schemes are designed with single-keyword
search in mind, and hence, can not be used for range queries.

Most Relevant Related Work. In [5], authors designed the �rst private
encrypted database, and they proved that their construction is ε-di�erential pri-
vate in the continual observation model. More speci�cally, their scheme consists
of an encrypted counter that is homomorphically encrypted using the Paillier
cryptosystem. A data owner periodically updates the value of the counter and
can also release its current noisy value. Moreover, they combine their encrypted
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counter with techniques from structured encryption [6, 17, 29, 30] (a generaliza-
tion of Symmetric Searchable Encryption [9,10,20])to design a scheme for private
histogram queries. Inspired by their work, we sought to explore the new but al-
ready emerging �eld of private encrypted databases in an attempt to build up a
feel for what might be an interesting research direction in which to head in the
future. With [5] as a starting point of our research, this work is di�erentiated as
follows:

� Instead of using structured and homomorphic encryption, we base our work on
FE 3. We �rmly believe that FE is a cryptographic primitive that squarely �ts
applications where statistics need to be periodically released. As such, to the
best of our knowledge, we construct the �rst scheme for functionally-encrypted
private databases.

� Using FE instead of structured encryption as a basis, allow us to release a
number of di�erent statistics and not only the current value of a counter. This
is a signi�cant result as it is more applicable to a plethora of applications.
Our scheme enables the privacy-preserving publication of statistics that can be
computed using a sum. Such statistics may involve, but not limited to, averages,
range queries, top-k/bot-k queries etc.

� We consider a stronger threat model. More precisely, in [5], the authors suggest
that the noise is added to the data by the cloud service provider. Hence, in their
model the cloud must be a trusted entity. Otherwise, an attack in which the
server colludes with a malicious analyst can be launched and the actual noise
used to mask users data can be easily removed. While this is a simple attack, it
cancels out the property of di�erential privacy and, as a result, any malicious
analyst can breach the privacy of individuals. To address this problem, in our
approach the error is added to the initial data by the actual data owner prior
to outsourcing them to the cloud. Hence, the only information that is leaked
to the CSP is the �nal noisy result.

4 Preliminaries

In this section, we present the necessary notation and de�nitions needed to follow
this paper. The section is divided into �ve parts: We start by describing the basic
notations, then we give de�nitions about Public-Key Encryption, Functional
Encryption, Homomorphic Encryption and di�erential privacy.

Notation If Y is a set, we use y
$←− Y if y is chosen uniformly at random from Y.

The cardinality of a set Y is denoted by |Y|. For a positive integerm, [m] denotes
the set {1, . . . ,m}. Vectors are denoted in bold as x = [x1, . . . , xn]. A PPT
adversary ADV is a randomized algorithm for which there exists a polynomial
p(z) such that for all input z, the running time of ADV(z) is bounded by p(|z|).
3 We �rst present PLMH � a scheme that uses homomorphic encryption and then, we
move on to present PLM � a variation where homomorphic encryption is not taken
into account.
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A function negl(·) is called negligible if ∀ c ∈ N,∃ ε0 ∈ N such that ∀ ε ≥ ε0 :
negl(ε) < ε−c.

De�nition 1 (Inner Product). The inner product (or dot product) of Zn, for
two vectors x,y ∈ Zn is a function 〈·, ·〉 de�ned by:

f(x,y) = 〈x,y〉 = x1y1 + · · ·+ xnyn

De�nition 2 (`1 norm). The `1 norm of Rn for a vector x ∈ Rn is a function
‖·‖1 de�ned by:

f(x) = ‖x‖1 =

i=n∑
i=1

|xi|= |x1|+ · · ·+ |xn|,

Starting from this traditional de�nition of the `1 norm over the reals, we
examine what happens when calculating the `1 norm of a vector x ∈ Znp . Since
we want to work with any arbitrary vector x = (x1, . . . , xn) ∈ Rn, we �rst

express each xi component in Zp, and then compute
∑i=n
i=1 xi ∈ Znp . For example,

assuming that we are working with the vector x = (−1, 12 , 3) ∈ R3 and we want
to compute its `1 norm in Z3

5, we �rst express x in Z3
5 as x = (4, 3, 3) and then

sum all the components to get ‖x‖`1= 10 mod 5 = 0. This approach, obviates
the need for the absolute values in the traditional de�nition of the `1 norm, and
it reduces the problem of computing the `1 norm to a summation problem.

De�nition 3 (`2 norm). The `2 norm of Zn for a vector x ∈ Zn is a function
‖·‖2 de�ned by:

f(x) = ‖x‖2 =

√√√√i=n∑
i=1

x2i

4.1 Public-Key Encryption

De�nition 4 (Public-Key Encryption scheme). A public-key encryption
scheme PKE for a message spaceM, consists of three algorithms PKE = (Gen,Enc,Dec).
A PKE scheme is said to be correct if:

Pr[Dec(sk, c) 6=m | [(pk, sk)← Setip(1λ)]∧ [m ∈M]∧ [c← Enc(pk,m)]] = negl(λ)

To formalize the security of a PKE scheme, we follow the IND-CPA paradigm.

De�nition 5 (Indistinguishability-Based Security). Let PKE = (Gen,Enc,Dec)
be a public-key encryption scheme. We de�ne the following experiments:

Exps−IND−CPA−β(ADV)

Initialize(λ, x0, x1)

(pk, sk)
$←− Gen(1λ)

Return pk
Challenge()

cβ
$←− Enc(pk,mβ)

Finalize(β′)
β′ = β
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The advantage ε of ADV is de�ned as:

ε =

∣∣∣∣Pr[Exps−ind−CPA−0(ADV) = 1

−Pr[Exps−ind−CPA−1(ADV) = 1]

∣∣∣∣
We say that PKE is s-IND-CPA-β secure if

ε = negl(λ)

De�nition 6 (Linear Ciphertext Homomorphism (LCH)). We say that
a PKE scheme has linear ciphertext homomorphism if:

n∏
i =1

Enc(pki, xi) = Enc

(
n∏
i=1

pki,
n∑
i=1

xi

)

De�nition 7 (Linear Key Homomorphism (LKH)). Let (pk1, sk1) and
(pk2, sk2) be two public/private key pairs that have been generated using PKE.Gen.
We say that PKE has linear key homomorphism if sk1 + sk2 is a private key to
a public key computed as pk1 · pk2.

A direct result of de�nitions 6 and 7 is that if a PKE scheme is linear ci-
phertext and key homomorphic, then the public keys of PKE live in multi-
plicative group Gpub = (G, ·, 1Gpub) and the private keys in an additive group
Hpriv = (H,+, 0Hpriv ).

4.2 Multi-Input Functional Encryption

De�nition 8 (Multi-Input Functional Encryption).
A Multi-Input Functional Encryption scheme MIFE for a message spaceM

is a tuple MIFE = (Setup,Enc,KeyGen,Dec) such that:

� Setup(1λ): The Setup algorithm is a probabilistic algorithm that on input the
security parameter λ, outputs a master public/private key pair (mpk,msk).

� Enc(mpk, x): The encryption algorithm Enc is a probabilistic algorithm that
on input the master public key mpk and a message x = {x1, . . . , xn} ∈ M,
outputs a ciphertext c = {c1, . . . , cn}.

� KeyGen(msk, f): The key generation algorithm KeyGen is a deterministic al-
gorithm that on input the master secret key msk and a function f , outputs
a functional key skf .

� Dec(skf , c): The decryption algorithm Dec is a deterministic algorithm that
on input a functional key skf and a ciphertext c, outputs f(x1, . . . , xn).

A MIFE scheme is said to be correct if:

Pr[Dec(skf , c) 6= f(x) | [(mpk,msk)← Setup(1λ)]

∧ [c← Enc(mpk,x)] ∧ [skf ← KeyGen(msk, f)]] = negl(λ)
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Just like in the case of PKE we base our security de�nition on the selective-
IND-CPA formalization:

De�nition 9 (MIFE Indistinguishanility-Based Security).
For a MIFE scheme MIFE = (Setup,Enc,KeyGen,Dec) we de�ne the follow-

ing experiments:

Exps−IND−FE−CPA−β(ADV)

Initialize(λ, x0, x1)

mpk,msk
$←− Setup(1λ)

L← ∅
Output mpk
Key Generation(f)
L← L ∪ {f}
skf

$←− KeyGen(msk, f)
Output skf

Challenge()

cβ
$←− Enc(mpk,xβ)

Finalize(β′)
If ∃ f ∈ L :
yoyo f(x0) 6= f(x1)
yoyo Output ⊥
Else
β′ = β

The advantage ε of ADV is de�ned as:

ε =

∣∣∣∣Pr[Exps−ind−FE−CPA−0(ADV) = 1

−Pr[Exps−ind−FE−CPA−1(ADV) = 1]

∣∣∣∣
We say that PKE is s-IND-FE-CPA-β secure if

ε = negl(λ)

4.3 Homomorphic Encryption

A homomorphism is a structure-preserving map between two algebraic struc-
tures. Homomorphic Encryption is simply an encryption scheme that retains
the homomorphic property. Let us consider the function Enc : (G,⊕)→ (H,⊗),
for some groups G, H and some operators ⊕,⊗. Then, the function Enc is a
homomorphism if and only if for any x, y ∈ G:

(1)Enc(x⊕ y) = Enc(x)⊗ Enc(y)

4.4 Di�erential Privacy

We proceed by providing the main de�nitions of ε-di�erential privacy and the
main properties of the Laplace mechanism. For the rest of the paper, two databases
DB and DB′ are called neighbouring if they di�er at most in one entry.

De�nition 10 (ε-Di�erential Privacy). A privacy mechanismM : N|DB| →
Im(M) is ε-Di�erentially private if ∀S ⊂ Im(M) and ∀ neighboring databases
DB,DB′ ∈ N|D| :

Pr[M(DB) ∈ S] ≤ eεPr[M(DB′) ∈ S]
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It needs to be noted, that the above de�nition assumes a static database
and a curator who must reply to queries non-interactively. In our approach, the
database is dynamic and a mechanism must update the published statistics as
new data arrived. To this end, we rely on the continual observations model of
di�erential privacy. However, to work on the continual observations model, we
�rst need to formalize the curator operations. To do so, we use a similar formal-
ization to the one presented in [16]. More precisely, we assume that curator's
operations are given by an input stream σ ∈ {0, 1}N. The bit σ(t), denotes the
occurrence of an event at time t. We consider two cases of update: we assume
that the only update possible, is to increase or decrease the value of a database
entry.

De�nition 11 (ε-Di�erential privacy under Continual Observations).
A privacy mechanism M : N|DB| → Im(M) is ε-Di�erentially private under
continual observations if ∀S ⊂ Im(M), ∀ neighboring databases DB,DB′ and
for all neighbouring sequences of curator operations σ = (σ1, . . . , σn) and σ

′ =
(σ′1, . . . , σ

′
n):

Pr[M(DB1), . . .M(DBn) ∈ S]
≤ eεPr[M(DB′1), . . .M(DB′n) ∈ S]

In this work we only consider two cases of update. In particular, we assume
that the only update possible, is to increase or decrease the value of a database
entry.

Apart from being private, we would also like the private mechanism to be
useful. In other words, we would like M to return well approximated results
after any update.

De�nition 12. A mechanismM is said to be (a, δ)-useful at time t, if for any
string σ with probability at leat 1− δ, we have |

∑t
1 σ(t)−M(σ(t))|≤ a.

One of the most used privacy mechanisms in literature is the Laplace mech-
anism, in which the noise is drawn form the Laplace distribution. We use Lap(b)
to denote the Laplace distribution with mean 0 and variance 2b2. Its probability

density function is given by x← 1
2bexp(−

|x|
b ).

We are now ready to proceed with the de�nition of the Laplace Mecha-
nism [21].

De�nition 13 (Laplace Mechanism). Given a query q : N|DB| → R, the Laplace
Mechanism is:

ML(DB, q, ε) = q(DB) + Yi,

where Yi ∼ Lap(b)

A proof showing that the Laplace Mechanism is ε-di�erentially private can
be found in [21]. In particular in [21], the authors proved the following:
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Lemma 1 (The Laplace mechanism maintains ε-di�erential privacy).
Let α, β ∈ R such that |α−β|≤ 1. Moreover, let e ∼ Lap( 1ε ). Then ∀ measurable
subsets S ⊆ R:

Pr[α+ e ∈ S] ≤ exp(ε) · Pr[β + e ∈ S]

A private mechanismM is said to be B-bounded if it only accepts strings σ
of length B.

We will now present two important results from [16] that are crucial for our
work:

Lemma 2 (Sum of Independent Laplace Distributions). Suppose ei's are
independent random variables, where each ei has Laplace distribution Lap(bi).

Suppose Y =
∑
i ei, and bm = max(bi). Let v ≥

√∑
i b

2
i and 0 < λ < 2

√
2v2

bm
.

Then Pr[Y > λ] ≤ exp
(
− λ2

8v2

)
Corollary 1 (Measure Concentration). Let Y, v, bi, bm be de�ned as in Lemma 2.

Then if we set v =
√∑

i b
2
i ·
√
ln 2
δ we get that Y is at most O

(√∑
i b

2
i log

(
1
δ

))
The proofs for both Lemma 2 and Corollary 1 can be found in [16].

5 Multi-Input Functional Encryption for the ‖`‖1 norm

In this Section, we present MIFE`1 � a functional encryption scheme for the `1
norm of a vector x = {x1, . . . , xn}.

Construction Let PKE = (Gen,Enc,Dec) be an IND-CPA secure cryptosystem,
that also ful�ls the LCH and LKE properties. Then we de�ne our MIFE`1 as
MIFE = (Setup,Enc,KeyGen,Dec) where:

1. Setup(1λ, n): The setup algorithm invokes the PKE's key generation algo-
rithm Gen and generates n public/private key pairs as (pk1, sk1), (pk2, sk2) . . . , (pkn, skn).
The public keys are then used to create and output a master public/private
key pair (mpk,msk), wherempk = (params, pk1, . . . , pkn) andmsk = (sk1, . . . , skn)

4.
2. Enc(mpk,x): The encryption algorithm Enc, takes as input the master public

keympk and a vector x and outputs c = {c1, . . . , cn}, where ci = Enc(pki, xi).
3. KeyGen(msk): The key generation algorithm, takes as input the master secret

key msk and outputs a functional key sk`1 as sk`1 =
∑n

1 ski
5.

4. Dec(sk`1 , c): The decryption algorithm takes as input the functional key sk`1

and an encrypted vector c and outputs PKE.Dec(sk`1 ,
n∏
i=1

c).

4 The public parameters params depend on the choice of the PKE scheme.
5 We omit the description of the function since in this case we are only focusing on
the `1 norm.
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Correctness The correctness of our construction follows directly since:

MIFE`1 .Dec (sk`1 , c) = PKE.Dec

(
sk`1 ,

n∏
i=1

PKE.Enc(pki, xi)

)

= PKE.Dec

(
sk`1 ,PKE.Enc(

n∏
i=1

pki,
n∑
i=1

xi)

)
=

n∑
i=1

xi

where we used the LCH property. Since the LKE property holds, we know

that sk`1 is a valid secret key that decrypts

n∏
i=1

c.

In Section 6, we describe an instantiation of our construction from DDH.
that also o�ers the crucial property of veri�able decryption. This is extremely
important as it allows a user that does not know the functional decryption key
to verify that the result was computed honestly in a zero-knowledge fashion.
As a result, we prove that our MIFE construction remains secure even under a
stronger threat model.

Theorem 1 (Selective Indistinguishability). Let PKE be an IND-CPA se-
cure public key cryptosystem that is linear-key and linear-ciphertext homomor-
phic. Moreover, let MIFE`1 be our Multi-Input Functional Encryption scheme
for the `1 norm of a vector which is obtained through PKE. Then MIFE`1 is
s-IND-FE-CPA secure.

Proof. To prove the security of our construction, we will show that the s-IND-
FE-CPA security game is indistinguishable from a game in which a challenger
C encrypts a random linear combination of the challenge messages whose coef-
�cients sum up to one. Let ADVMIFE be an adversary that breaks the IND-
FE-CPA security of MIFE. Then, we will show that there exists an adversary
ADVPKE that breaks the IND-CPA security of PKE. We assume that two dif-
ferent games run independently but simultaneously. The �rst game is the one
described in de�nition 5, in which ADVPKE plays against a challenger C. The
second game is the s-IND-FE-CPA game (de�nition 9), in which ADVPKE acts
as the challenger against ADVMIFE . We show that ADVPKE can perfectly
simulate the environment for ADVMIFE , and at the same time infer enough in-
formation to break the IND-CPA security of PKE. In particular, if εMIFE is the
advantage of ADVMIFE and εPKE the advantage of ADVPKE , we will prove
that εMIFE ≤ εPKE .
ADVPKE initiates the game by sending (0, µ) to the challenger C where µ

is a random element in the message space of PKE. Upon reception, C generates
a (pkC , skC) key pair, encrypts one of them at random using pkC and replies
to ADVPKE with (cb, pkC). Upon reception, ADVPKE invokes ADVMIFE and
receives two messages x0 and x1. Recall that ADVMIFE can only ask for func-
tional decryption keys for vectors x0 and x1 such that ‖x0‖1= ‖x1‖1. Hence,
ADVMIFE is allowed to issue queries to a vector space V ⊂ M such that
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∀ xi ∈ V : ‖xi‖1= 0 and is not able to decrypt vectors in other vector spaces.
An overview of our proof if given in �gure 2.

Proof Overview

1. ADVPKE sends (0, µ) to the challenger C.
2. C �ips a random coin, and sends (cb, pkC), back to ADVPKE , where b ∈
{0, µ}.

3. ADVPKE invokes ADVMIFE on mpk and receives two messages x0, x1.
4. ADVMIFE ADVPKE for functional keys for vectors x1, . . . ,xn, such that
‖xi‖1= ‖xj‖1, ∀ i, j ∈ [1, n].

5. ADVPKE �ips a random coin, and sends cβ back to ADVMIFE .
6. ADVMIFE outputs a bit a1.
7. ADVPKE outputs a bit a2.

Fig. 2: Sketch of our Security Proof for MIFE

Public Key Generation To generate mpk, ADVPKE �rst selects n − 1 ran-
dom vectors z1, . . . , zn−1 such that ‖zi‖1= 0,∀ i ∈ [1, n− 1], and then produces
a basis of V as (x1 − x0, z1, . . . zn−1). Finally, ADVPKE writes the canonical
vectors of the basis as:

(2)e = αi(x1 − x0) +

n−1∑
1

zj

where αi =
x1,i−x0,i

‖x1,i−x0,i‖22
.

As a next step, ADVPKE runs (pkzj , skzj)← PKE.Gen,∀j ∈ [n−1] and �nally
sets:

(3)pki = pkC
αi

n−1∏
j=1

pkzj ,

where pkC is the public key received from C. The master public key is then:

(4)mpk = (pki)i∈[n]

Moreover, to ensure that ‖x1 − x0‖22 6= 0 mod q in the message spaceM =
{0, . . . N − 1} ⊆ Zq, we need to set q to be a prime larger than N2. Finally,
due to the LKH property of the public-key encryption scheme, ADVPKE is
unknowingly setting

(5)ski = αiskC +
n−1∑
1

skzj

where skC is not known to ADVPKE .
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Challenge ciphertext Upon receiving x0 and x1, from ADVMIFE , ADVPKE
is expected to pick a β ∈ {0, 1} and reply with cβ . However, instead of encrypting
xβ using the corresponding public key, ADVPKE sets the challenge ciphertext
c to be:

(6)c = cαb · PKE.Enc

(
n−1∏
i=1

pkzj , 0

)
· PKE.Enc(1Gpub ,xβ)

where 1Gpub is the identity element of the group Gpub. Finally ADVPKE
replies to ADVMIFE with c.

Functional Keys To generate a functional key for a vector x ∈ V , ADVPKE
simply sets:

(7)sk`1 =

n−1∑
1

skzi

The game concludes as follows: ADVMIFE correctly guesses β which implies
that ADVPKE guesses that C encrypted 0 or ADVMIFE fails to guess β and
ADVPKE guesses that C encrypted µ. What remains to be done is show that
ADVPKE simulated correctly the environment for ADVMIFE . We distinguish
two cases based on C's choice:

1. C encrypted 0. In this case, the challenge ciphertext from equation 6 becomes:

c = PKE.Enc(pkC , 0)
α · PKE.Enc

(
n−1∏
i=1

pkzi , 0

)
· PKE.Enc(1Gpub ,xβ)

= PKE.Enc

(
pkC

α ·
n−1∏
i=1

pkz · 1Gpub , 0 + 0 + xβ

)
= PKE.Enc(pki,xβ)

(8)

Hence, it can be seen that in this case ADVPKE perfectly simulates the
environment for ADVMIFE . As a result, if ADVMIFE can correctly guess β
with advantage ε, then ADVPKE will guess that C encrypted 0, with exactly
the same ε.

2. C encrypted µ. In this case, the challenge ciphertext from equation 6 becomes:

c = PKE.Enc(pkC , µ)
α · PKE.Enc

(
n−1∏
i=1

pkzi , 0

)
· PKE.Enc(1Gpub ,xβ)

= PKE.Enc

(
pkC

α ·
n−1∏
i=1

pkz · 1Gpub , αµ+ 0 + xβ

)
= PKE.Enc(pki, αµ+ xβ) = PKE.Enc(pki, x

′)

(9)
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where x′ is a vector de�ned as:

x′ = xβ + αµ

=
µ

‖x1 − x0‖22
(x1 − x0) + xβ

=
µ

‖x1 − x0‖22
(x1 − x0) + x0 + β(x1 − x0)

(10)

Setting u = µ
‖x1−x0‖22

+ β, yields x′ = ux1 + (1− u)x0, which is the message

that corresponds to the challenge ciphertext. Note that x′ ∈ V , since µ ∈ V ,
and hence x′ is a linear combination of elements that live in V . Hence,
we conclude that the challenge ciphertext is a valid ciphertext for x′ =
ux1 + (1− u)x0, which is a random linear combination of x0 and x1 whose
coe�cients sum up to one. Finally, β is information theoretically hidden
as the distribution of u is independent of β. As a result, the advantage of
ADVPKE is 0 when a non-zero vector is encrypted by C.

To calculate the overall advantage of ADVPKE , we simply need to sum its
advantage for each case. Hence, we have that ADVPKE 's advantage is ε+0 = ε.
However, recall that ε is de�ned to be the advantage ofADVMIFE against MIFE.
Thus, the best advantage one can get against the CPA security of MIFE`1 is
bounded by the best advantage one can get against IND-CPA PKE.

Functional Keys for Vectors in Di�erent Vector Spaces: As already
mentioned, ADVMIFE is only allowed to request functional keys for vectors liv-
ing in a vector space V ⊂M , where ∀xi ∈ V : ‖xi‖1= 0. Notice that by allowing
ADVMIFE to obtain functional decryption keys for vectors x /∈ V , our scheme
can be trivially broken. However, this would imply that ADVPKE can generate
such functional decryption keys, which is impossible since ADVPKE does not
know skC . Hence, the generated functional keys can only decrypt ciphertexts
whose plaintexts are elements of V . This is a valid assumption since otherwise,
we would demand security in a scenario where the master secret key is known
to the adversary.

5.1 From the `1 Norm to Inner Products

We will now show how our construction for the `1 norm can be generalized
to further support the inner-product functionality. More precisely, given two
vectors x,y ∈ Zn, we allow the computation of their inner product 〈x,y〉 =
x1y1 + · · ·+ xnyn.

Construction for Inner Products Let PKE = (Gen,Enc,Dec) be an IND-
CPA secure cryptosystem, that also ful�ls the LCH and LKE properties. Then we
de�ne our MIFE scheme for inner products,MIFEIP, asMIFEIP = (Setup,Enc,KeyGen,Dec)
where:
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1. Setup(1λ, n): The setup algorithm invokes the PKE's Gen algorithm and gen-
erates n public and private key pairs as (pk1, sk1), (pk2, sk2), . . . , (pkn, skn).
The generated public keys are then used to create and output a master
public/private key pair (mpk,msk), where mpk = (params, pk1, . . . , pkn) and
msk = (sk1, . . . , skn)

6.
2. Enc(mpk,x,y): The encryption algorithm Enc, takes as input the master

public key mpk and two vectors x,y and outputs c = {c1, . . . , cn}, where
ci = Enc(pki, xi)

yi .
3. KeyGen(msk,y): The key generation algorithm, takes as input the master

secret key msk and the vector y and outputs a functional key sky as sky =
〈yi, ski〉7.

4. Dec(sk`1 , c): The decryption algorithm takes as input the functional key sky

and an encrypted vector c and outputs PKE.Dec

(
sky,

n∏
i=1

c

)
.

The correctness and the IND-CPA security of MIFEIP, are derived directly
from the corresponding properties of MIFE`1 . However, in the security proof, we
now require that the adversary asks for functional decryption keys, for vectors y
such that 〈x0,y〉 = 〈x1,y〉. This implies that the adversary can ask decryption
keys for vectors y that live in the vector space spanned by (x1 − x0)

⊥ (i.e. they
are orhtogonal to (x1 − x0)). Hence, the adversary will not be able to decrypt
any inner product for a vector y such that y /∈ (x1 − x0)⊥.

6 Instantiation from DDH

We will now show how to instantiate our construction from Section 5 using the
Additively Homomorphic El Gamal cryptosystem as PKE. For the needs of the
proof, we rely on the fact that El Gamal remains secure under randomness reuse,
as proven in [12].

Theorem 2. Let MIFE`1 be our construction from Section 5. Then our con-
struction can be instantiated from El Gamal's cryptosystem.

Proof. We will show that El Gamal satis�es the LCH and LKH properties de�ned
in de�nitions 6 and 7 respectively.

Let q be a prime and G a group of order q where the DHH assumption is
hard. Moreover, let g be a generator of G. Then we have that the private key
space is the group (Zq,+, 0Z) while the public key space is the group (G,×, 1G).
Then, an El Gamal ciphertext for a message x is:

c = (gr, pkr · gx)

where r is a random value used to ensure that the encryption algorithm is
probabilistic.

6 The public parameters params depend on the choice of the PKE scheme.
7 In this case, the description of the function f , is the vector y.
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� LCH: If Enc is the Encryption algorithm of El Gamal, then we have:

Enc(pk1, x1) · Enc(pk2, x2) = grsk1gx1 · grsk2gx2

= gr(sk1+sk2) · gx1+x2

= Enc(pk1pk2, x1 + x2).

� LKH In the El Gamal cryptosystem we have that for a public/private key
pair (pk, sk) the following condition holds:

pk = gsk

Let (pk1, sk1), (pk2, sk2) be two public/private key pairs for an El Gamal
instantiation such that pk1, pk2 ∈ (G, ·, 0G) and sk1, sk2 ∈ (Z,+, 0Z). Then
we have:

pk1 · pk2 = gsk1 · gsk2g(sk1+sk2)

Moreover, since the groups (G, ·, 0G) and (Z,+, 0Z) are closed with respect
to multiplication and addition operations respectively, we conclude that
(pk1pk2, sk1 + sk2) is a valid public/private key pair.

6.1 Veri�able Decryption

As already mentioned, instantiating our MIFE construction from Section 5 using
DDH, allows users to verify the decryption result in an zero-knowledge manner.
This is extremely important for PLM as it allows us to consider a stronger threat
model. In particular, assuming a malicious curator that colludes with the CSP,
could result to publishing modi�ed statistics in an attempt to mislead the ana-
lysts. Hence, we show that an analyst that only possess a function f(x) along
with the public parameters of the encryption scheme, can verify that f(x) is
indeed the decryption of Enc(mpk, (x = x1, . . . , xn)) under the function f , with-
out having access neither to the master secret key, nor the functional decryption
key for the underlying function. This is done by simply calculating and verifying
the equality of two discrete logarithms. More precisely, and given that the �nal
ElGamal ciphertext is given by:

(11)(u, v) = (gr, pkr · gf(x)),

the analyst needs to verify that:

(12)logpk

[(
gf(x)

)−1
· pkr · gf(x)

]
= logg(g

r)

Indeed, it can be seen that if a malicious party tampers with the result f(x)

and replaces it with f(x)′, then the term
(
gf(x)

′
)−1

will not cancel out along

with gf(x) and hence, the equality will not hold.
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7 Functionally-Encrypted and Di�erentially Private

Dynamic Databases

We are now ready to present PLMH and PLM; two schemes for functionally-
encrypted private databases. To do so, we will use our MIFE`1 construction
from Section 5 and the binary mechanism presented in [16]. In the �rst part of
the section, we discuss PLMH, our �rst approach to the problem that relies on
the homomorphic property of the public-key encryption scheme PKE. Then, we
present PLM � a modi�ed version of PLMH that does not require homomorphic
encryption. Both versions share the same architecture, presented below:

Architecture We assume the existence of the following entities:

� Curator (C):C is responsible for creating an encrypted and private database.
C outsources the database to a CSP where it will be stored. Moreover, C
can issue update queries to the CSP update speci�c entries of the database.
To do so, C keeps locally the latest version of the database.

� Analyst (A): A is an analyst that can perform statistics on the data stored
in the CSP.

� CSP: A cloud service provider that stores an encrypted database. The CSP
releases statistics upon request of the analyst.

Both of our constructions are proven to be di�erentially private in the contin-
ual observations model. In other words, by assuming two neighbouring sequence
operations σ = (σ1, . . . , σn) and σ

′ = (σ′1, . . . , σ
′
n), applied on two neighbouring

databases DB and DB′, we ensure that after n updates, the presence or absence
of an individual does not a�ect the result of a query.

7.1 PLM using Homomorphic Encryption

Overview At a high-level, our construction works as follows: A curator C gen-
erates a binary tree similar to the one described in Section 2 in which each node
contains a noisy value where the noise is sampled from the Laplace distribution.
Then, C encrypts each noisy value using MIFE`1 with an additive homomorphic
public-key encryption scheme PKE. The result, is an encrypted binary tree which
is then outsourced and stored in the CSP. To update the values stored in the
tree, C uses the homomorphic property of PKE. At any given time, and after the
tree has been stored in the CSP, an analyst C can use the values stored in the
tree to generate statistics in a privacy-preserving way. To do so, A �rst contacts
the curator and requests a functional decryption key. Upon reception of the key,
the analyst forwards it to the CSP who will reply with a sum corresponding
to the analyst's query. In our construction, errors are sampled as e ∼ Lap( 1

ε′ ),
where ε′ = ε

logN and N is the total number of nodes in the tree. The reason for
this, is that these parameters help us achieve ε-di�erential privacy as we will see
in the proof of theorem 3.
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Formal Construction PLMH makes use of the MIFE`1 and a public-key en-
cryption scheme PKE = (Gen,Enc,Dec) that satis�es the LCH and LKH proper-
ties. Moreover, the encryption function of PKE must be additively homomorphic.
PLMH is then de�ned as PLMH = (Setup,Update,Read). Our construction is il-
lustrated in �gure 3 and works as follows:

Setup : Setup is a two party protocol between C and the CSP. C outputs a
complete binary tree T with n nodes and adds Laplacian noise to the content of
each node. As a next step, C runs MIFE`1 .Setup and generates n public/private
key pairs (pki, ski) . Finally, C encrypts each node i using a public key pki and
T is outsourced to the CSP.

Update : Update is a two party protocol between C and the CSP. To update the
content of a node, C makes use of the homomorphic property of PKE.Enc. More
precisely, assuming that C wishes to add a value κ to the content of a leaf node
i, she �rst �nds the path from the root of the tree to the leaf i. For every node
j in the path, C samples a distinct ej ∼ Lap( 1

ε′ ) and computes κ′j = κj + ej . As
a next step, C encrypts each κ′j using pkj . Apart from that, C samples a fresh
noise em for every other node m of the tree and encrypts it using pkm. Finally,
for each node of the tree, C sends a pair (n, cn) to the CSP. Upon reception, the
CSP updates each node i using ci by computing c′n = cnold · cn, where cnold the
current content of the node n.

Read : Read is a three party protocol between C, A and the CSP. This protocol
is initiated by A who wishes to perform statistics on the data stored in the
CSP. As a �rst step, A contacts C and requests a functional decryption key for
a function f . This function can be the sum of all nodes, a top-k/bot-k query,
or any function that can be computed using a sum. Upon receiving the query,
C generates the functional decryption key skf by summing up the appropriate
secret keys that were generated during MIFE`1 .Setup. C forwards skf to the CSP
and receives back a noisy result.

7.2 PLM without Homomorphic Encryption

We will now present PLM; a modi�ed version of PLMH in which we show that
homomorphic encryption can be dropped entirely. This is a signi�cant improve-
ment in terms of complexity and e�ciency as homomorphic operations are par-
ticularly computationally expensive. Just like in PLMH , errors are sampled as
e ∼ Lap( 1

ε′ ). PLM is illustrated in �gure 4 and works as follows:

Setup : PLM.Setup is identical to PLMH.Setup

Update : When C wishes to update the content of a node in the tree T , she
proceeds as in the case of PLMH.Update. However, instead of sending the list L to
the CSP, C now sends directly the updated tree T ′ to the CSP. Upon reception,
the CSP deletes T and stores T ′. This is possible, because, as already discussed,
C always keeps a version of the current tree locally.

Read : PLM.Read is identical to PLMH.Read
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PLMH

Let MIFE`1 be our construction from Section 5 instantiated with a public
key encryption scheme PKE that satis�es the LCH, LKH properties and is
additively homomorphic. Moreover, assume that the total number of nodes in
the tree is N and let ε′ ← ε/logN .

PLMH.Setup
C generates a binary tree T
For each node i ∈ T :
yoyo C runs MIFE`1 .Setup
yoyo C samples ei ← Lap( 1

ε′ )
yoyo C calculates a′i = ai + ε, where ai is the content of the node i
yoyo C computes ca′i ← PKE.Enc(pki, a

′
i)

yoyo C replaces the content of node i with ca′i
CSP receives T

PLMH.Update
L = {}
C wishes to update the content of a leaf k by either adding or subtracting to it
a κ ∈ R
For every node j in the path from the root of T to the leaf i:
yoyo C samples ej ← Lap( 1

ε′ ) and computes κ′ = κ+ ej
yoyoC computes cκ′ = PKE.Enc(pkj , κ

′)
yoyoL = L ∪ {j, cκ′}
For every other node m ∈ T :
yoyo C samples an error em ← Lap( 1

ε′ )
yoyo C computes cem ← PKE.Enc(pkm, em)
yoyo L = L ∪ {m, cm}
C sends L to the CSP
For each ciphertext cn ∈ L
yoyo CSP computes c′n = cnold · cn
yoyo CSP replaces the content of node n with c′n

PLMH.Read
A request a functional key skf from C for a function f
C constructs skf =

∑
ski where each i is picked based on the description of f

C sends skf to A
A sends a query to CSP including a range [a, b] and skf
CSP �nds the appropriate nodes n1, . . . , nj and runsMIFE`1 .Dec(skf , n1, . . . , nj)
A receives a noisy result

Fig. 3: PLM based on Homomorphic Encryption
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PLM

Let MIFE`1 be instantiated with a public key encryption scheme PKE that
satis�es the LCH and LKH properties. Moreover, assume that the total number
of nodes in the tree is N and let ε′ ← ε/logN .

PLM.Setup
Identical to PLMH.Setup

PLMH.Update
L = {}
C wishes to update the content of a leaf k by either adding or subtracting to it
a κ ∈ R
C runs PLM.Setup where the content of the leaf k and every node in the path
from the root to the leaf k is updated by either adding or subtracting κ. C
outputs a tree T ′

CSP receives T ′, deletes T and stores T ′

PLM.Read
Identical to PLMH.Read

Fig. 4: PLM without Homomorphic Encryption

7.3 Privacy and Utility

We will now prove that both PLMH and PLM satisfy ε-di�erential privacy. More-
over, we prove the usefulness of our two schemes.

Theorem 3. The Read algorithm in both PLMH and PLM is ε-di�erentially pri-
vate as per de�nition 11.

Proof. Suppose a privacy mechanismM adds Lap(1/ε) noise to every sum before
releasing it. Since in each update operation, we add freshly sampled noise to
every node of the tree, and since each node contains a sum, we conclude that
N sums are a�ected by a factor of 1/ε during every update. Hence, if the tree
has a total of N nodes, thenM achieves N · ε-di�erential privacy. To achieve ε-
di�erential privacy, we can scale appropriately to ε′ = ε

N . Observe, that each sum
maintains ε

log T since Laplace mechanism maintains di�erential privacy. Now, if

the mechanismM adds Lap( 1
ε′ ) noise to each released sum, we get: Lap

(
1
ε′

)
=

Lap
(

1
ε
N

)
Since, as we said before, adding Lap (1/ε) results to N · ε-di�erential privacy,

by adding Lap (1/ε′) results to:

N · ε
N

= ε-di�erential privacy

Theorem 4. For each update σ(t) at time t, both PLMH and PLM are (O( 1ε ) ·√
N ·
√
logN · log 1

δ , δ)-useful at time t.
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Proof. Let εi be independent random variables, where each ei has Laplace distri-
bution Lap( logNε ). Note that |

∑t
1 σ(t)−M(σ(t))|=

∑t
1 ei. Hence, using Corol-

lary 1, with bi =
logN
ε we get that:

∑
i

ei ≤ O

√√√√∑
i

(
logN

ε

)2

log

(
1

δ

)
From which we conclude that both PLMH and PLM are

(13)

(
O

(
1

ε

)
·N ·

√
logN · log 1

δ
, δ

)
− useful.

7.4 Comparison between PLMH and PLM

Since, PLMH requires the CSP to perform a homomorphic encryption on every
node of the tree, we conclude that, PLMH requires to perform O(2log2N ) = O(N)
homomorphic encryptions. As a result, we see that PLM outperforms PLMH by
a factor of N . It is important to note that despite its ine�ciencies, PLMH is a
very good candidate for a multi-client model, in which each node of the tree is
encrypted by a di�erent user. However, dealing with the updates in a multi-client
scenario is not trivial as it would require the cooperation of every user to embed
a freshly sampled noise to each node of the tree. As such, we leave it for future
work. However, in the next section, we present a scheme that o�ers ε-di�erential
privacy, in the multi-client model when the database is static.

8 A Static Private Database in the Multi-Client Model

In this section, we are addressing the multi-client model and design a scheme
for a functionally encrypted private database. Both in PLM and PLMH, the
Setup function is executed by a single curator who has total control over all
ciphertexts. However, if we consider that each ciphertext in the database is
generated by a di�erent user, then generating a functional decryption key is not
a trivial problem. To address this problem, we design PLMM in which we show
how several users can cooperate to generate such a key. Our solution is based on
an MPC similar to the one presented in [18].

Probelm Statement 1 (MIFE`1 with Multi-Client Support) Let U = {u1, . . . , un}
be a set of users. Each user uj ∈ U generates a public/private key pair (pkj , skj)
for a public-key encryption scheme satisfying the properties de�ned in de�ni-
tions 6 and 7, and uses pkj to encrypt a message xj. Additionally, assume that
all generated ciphertexts are outsourced and stored in a remote location operated
by an untrusted (i.e. possible malicious) CSP. Furthermore, we assume that an
analyst (e.g. a user from U) wishes to perform statistics on the data stored on
the CSP. Our multi-client construction shows how a legitimate analyst can do
this without learning any valuable information about the individual values xj.
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MPC Upon request of A, each user ui ∈ U generates a random number ri
and breaks it into n shares as ri = ri,1 + · · · + ri,n. Each share will be sent to
a di�erent user from the set U = {u1, . . . , un}. Upon receiving n − 1 di�erent
shares, each user ui mask her private key ski as bi = ski + ri −

∑n
j=1 rj,i, and

sends the masked key to A. When A has gathered all the masked keys, she
computes sk`1 as sk`1 =

∑n
1 bi. The MPC is illustrated in algorithm 1.

Algorithm 1 MPC

1: A generates ri
2: A writes ri as ri = ri,1 + · · ·+ ri,n
3: for j ∈ [n− 1] do
4: A sends ri,j to uj
5: for all uj ∈ U/{A} do
6: uj generates rj
7: uj writes rj as rj = rj,1 + · · ·+ rj,n
8: uj computes the masked values of the key as sj = skj + rj −

∑n
k=1 rk,i

9: uj sends sj to ui
10: A computes

∑n
1 sj =

∑n
1 skj = sk`1

It is important to highlight that splitting and distributing the random num-
bers to the di�erent users, allows the users to work in parallel for the MPC and
hence, we overcome the limitations that would emerge by using a ring topology.

We are now ready to describe PLMM. Our construction consists of two al-
gorithms such that PLMM = (Setup,Read). PLMM is illustrated in �gure 5 and
works as follows:
Setup : During the Setup, each ui generates a public/private key pair (pki, ski)
for a linear ciphertext and key homomorphic public key encryption scheme PKE.
Apart from that, ui picks a xi that wishes to encrypt. Before the encryption,
ui samples ei ∼ Lap(1/ε) and calculates x′i = xi + ei. Finally, ui runs ci ←
PKE.Enc(pki, x

′
i) and sends ci to the CSP. When all users are done, the CSP has

received n distinct ciphertexts.
Read : The analyst A �rst needs to generate the functional key sk`1 . To do
so, A initiates the MPC described in algorithm 1. As soon as A retrieves the
functional key sk`1 , she simply forwards it to the CSP. Upon reception, the CSP
runs Dec(sk`1 , c1, . . . , cn) =

∑n
1 x
′
i and sends the result to A.

Showing that the PLMM.Read maintains e-di�erential privacy is trivial as it
is a direct result of the fact that the Laplace mechanism maintains di�erential
privacy. In other words, to prove that PLMM is ε-di�erentially private one needs
to prove that the Laplace mechanism is ε-di�erential private.

Theorem 5. The Read protocol de�ned in PLMM.Read is ε-di�erential private.

What remains to be done is prove the security of our construction in the
presence of an adversary. In particular, we prove the following theorem:
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PLMM

Let MIFE`1 be our construction from Section 5 instantiated with a public key
encryption scheme PKE that satis�es the LCH and LKH properties. Moreover,
let ei ∼ Lap (1/ε).
PLMM.Setup
For i ∈ [n]
yoyo ui runs (pki, ski)← (PKE.Gen)
yoyo ui samples ei ∼ Lap

(
1
ε

)
yoyo ui computes x′i = xi + ei
yoyo ui runs ci ← PKE.Enc(pki, x

′
i)

yoyo ui sends ci to the CSP

PLMM.Read
A initiates the MPC protocol form algorithm 1 and receives sk`1
A forwards sk`1 to the CSP
CSP runs MIFE`1 .Dec(sk`1 , c1, . . . , cn)→

∑n
1 x

′
i

CSP sends
∑n

1 x
′
i to A

Fig. 5: Multi-Client PLM

Theorem 6. Let ADV be an adversary that corrupts at most n − 2 users out
of those in U . Then, ADV cannot infer any information about the secret keys of
the legitimate users.

Proof. Recall that each user receives n − 1 shares from the remaining users.
Assuming that ADV has colluded with n− 2 users, we conclude that ADV will
know the n · (n− 2) shares of the compromised users. Moreover, ADV will also
know the n−4 shares sent from the legitimate users ul and u` to the compromised
ones. In other words, ADV knows all the exchanged shares except from the ones
that ul and u` keep for themselves as well as the ones exchanged between ul and
u`. More speci�cally, the shares rl,l and r`,` are kept with ul and u` respectively,
while the shares r`,l and rl,` are exchanged between ul and u`. We notice that:

(14)sl = skl + rl − (r1,l + · · ·+ rl,l + · · ·+ r`,l + · · ·+ rn,l)

and

(15)s` = sk` + r` − (r1,` + · · ·+ rl,` + · · ·+ r`,` + · · ·+ rn,`)

Where the circled terms are the ones that ADV does not know. Equations 14
and 15 can also be written as:

(16)sl = skl +

n∑
j 6=l,`

(rl,j − rj,l) + rl,` − rl,`
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and

(17)s` = sk` +

n∑
j 6=`,l

(r`,j − rj,`) + r`,l − r`,l

We see that for ADV to �nd the the secret keys skl and sk`, she needs to
solve a system of two equations with four unknown terms. Hence, we conclude
that even in the extreme scenario where n− 2 users are corrupted, ADV cannot
infer any information about the keys of the legitimate users.

9 Experimental Evaluation

Below, we present the measured processing time of the experiments in our con-
struction. For the implementation of our MIFE scheme, we used ElGamal as
the public-key encryption scheme. All experiments were executed on a Lenovo
T470p with 2.81 GHz Intel Core i7 and 32GB RAM running Windows 10, 64-bit.
The construction was implemented in Python 3.9.4 using the PyCryptoDome and
numpy libraries. For the experiments we mainly focused on (1) The Setup time
and (2) The generation of functional decryption keys. The results presented are
the average processing time computed after 50 runs of each experiment. Our
results support our claim that using di�erential privacy on top of encryption,
does not add a noticeable increase to the total processing time.

Setup phase This phase consists of (1) Generating and populating a binary
tree with plaintext values and (2) Embed noise and encrypt each node of the
tree. We used randomly generated datasets of di�erent size consisting of real
numbers (100, 500, 1000 and 10000).

� Tree generation: The tree was implemented as a list, where each element on the
list corresponded to a leaf on the tree. To make our construction compatible with
continuous variables, each leaf represented a subinterval in the interval de�ned by
subtracting the min value of the dataset from the max. Hence, the value of each
leaf represents the number of values in a speci�c interval. We measured the time
to generate the tree for di�erent datasets and number of nodes. The total number
of nodes can be calculated by the number of leaves, since a complete binary tree
with 2n leaves, consists of a total 2n+1−1 nodes. Our experiments were conducted
for n = 5, 6, 7, 8, 9, 10, resulting in binary trees of sizes 63, 127, 255, 511, 1023 and
2047 respectively. This procedure did not add any noticeable burden to the overall
processing time, as in the worst case scenario, the tree generation took less than
a second. Table 1 gives a more detailed overview.
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Dataset Size Number of Leaves Time
100 32 0.61ms
100 64 1.21ms
100 128 2.42ms
100 256 4.38ms
100 512 10.9ms
100 1024 20ms

500 32 1.8ms
500 64 3.4s
500 128 6.8ms
500 256 14.4ms
500 512 30.3ms
500 1024 9.14s

1000 32 3ms
1000 64 6.5ms
1000 128 14.7ms
1000 256 28ms
1000 512 51ms
1000 1024 102ms

10000 32 31ms
10000 64 60.6ms
10000 128 137.8ms
10000 256 247.8ms
10000 512 483.9ms
10000 1024 942.9ms

Table 1: Time Required to Generate and Populate a tree with di�erent number
of leaves from various Dataset sizes
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Fig. 6: Total Setup Time

� Encryption and Noise: After the tree generation, we had to (1) Add noise to the
value of each node, (2) Generate an ElGamal key pair for each node and (3)
Encrypt all noised contents. This part of the experiments depended only on the
number of nodes and not on the size of the dataset. Embedding Laplacian noise
to the tree's nodes was much faster than key generation and encryption. The time
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for adding noise varied from 0.16ms for 63 nodes tree to 5.7ms for a 2,047 nodes
tree. In contrast, generating 63 and 2,047 ElGamal key pairs of size 1,024bits
took 0.28s and 9.14s respectively. Similarly, encrypting 63 and 2,047 nodes was
measured at 0.377s and 9.4574s respectively. It is important to note that the
key generation times were signi�cantly accelerated since all keys were sampled
from the same group G, using the same generator g. Despite this acceleration,
as shown in table 2, the key generation and tree node encryption time comprised
more than 99% of the total processing time. This is an important result, as it
proves that further securing an encrypted dataset with di�erential privacy does
not add signi�cant computational burden. In Figure 6, we see that the overall
setup time is O(n).

Time Required for each Function

Total Number of Tree
Nodes

Laplacian Noise Key Generation Encryption Tree Generation
(Dataset size =
10000)

Total Setup Time

63 0.16ms 0.28s 0.37s 31ms 0.6811s
127 0.35ms 0.56s 0.75s 60.6ms 1.3709s
255 0.67ms 1.41s 1.43s 137.8ms 2.7087s
511 1.4ms 2.27s 2.36s 247.8ms 4.8792s
1021 2.8ms 4.57s 4.73 483.9ms 9.3511s
2047 5.7ms 9.14s 9.45s 942.9ms 19.5386s

Table 2: Processing time for all Setup functions for the most demanding dataset.

Functional Decryption Key Generation. In this phase of our experiments,
we assumed that the analyst performs queries of the form "How many values
lie in the interval I = [a, b]". To reply to such a query, we must: (1) Find
all the subintervals Ii such that

∑
i Ii = I and retrieve the ciphertext that

lies in each interval and (2) Retrieve the private key that corresponds to each
interval and compute the functional decryption key. To prove the e�ciency of
our construction, we assumed the analyst makes a complex query of the form
"How many values lie in the �rst interval and how many values lie in the second
interval and . . . and how many values lie in the last interval". To answer such
a query, all we have to do is retrieve the value from the root of the tree and
decrypt it. To capture a, fully unrealistic/worst-case scenario, we measured the
time required to answer such a query sequentially, that is we only retrieved values
from tree's sibling leaves, and for each pair of siblings, generated a functional
decryption key. The time required to retrieve all the leaf values from a 1,024
leaves tree, was 0.9777s. When we exploited the tree structure to reply to such
a query, the required time was imperceptible. Similarly, the required time for
generating functional keys was also negligible. For reference, the average time to
create a functional decryption key as the sum of 1,000 private keys, was 0.119ms.
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10 Conclusion

Achieving competitive advantage in today's market is largely a function of de-
ploying better and more advanced analytics. Analytics' expansion is driven by
systematic, fully automated data collection and capture of behavioural data from
multiple touch points. Companies use this data not only to see the current con-
sumer choices and behaviours but to shape the future ones. However the systems
using statistical models to analyze users' behaviours are incorporating proxies
which are often inexact and unfair. As big data is here to stay, and statisti-
cal models increasingly will be the tools to rely on, bringing transparency into
the game is crucial. A possible solution is to protect users' personal data from
potentially unfair analytics algorithms. Creating schemes capable of performing
high accuracy predictions, whilst being unable to learn anything about processed
data, would inevitably ensure improved fairness.
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