
Invertible Quadratic Non-Linear Layers for
MPC-/FHE-/ZK-Friendly Schemes over Fnp

Application to Poseidon

Lorenzo Grassi1, Silvia Onofri2, Marco Pedicini3, Luca Sozzi4

1 Radboud University, Nijmegen, the Netherlands
2 Scuola Normale Superiore di Pisa, Pisa, Italy

3 Università Roma Tre, Roma, Italy
4 Università degli Studi di Milano, Milano, Italy

lgrassi@science.ru.nl,silvia.onofri@sns.it,
marco.pedicini@uniroma3.it,luca.sozzi2@studenti.unimi.it

Abstract. Motivated by new applications such as secure Multi-Party Computation
(MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK),
many MPC-, FHE- and ZK-friendly symmetric-key primitives that minimize the
number of multiplications over Fp for a large prime p have been recently proposed
in the literature. This goal is often achieved by instantiating the non-linear layer
via power maps x 7→ xd. In this paper, we start an analysis of new non-linear
permutation functions over Fnp that can be used as building blocks in such symmetric-
key primitives. Given a local map F : Fmp → Fp, we limit ourselves to focus on
S-Boxes over Fnp for n ≥ m defined as S(x0, x1, . . . , xn−1) = y0‖y1‖ . . . ‖yn−1 where
yi := F (xi, xi+1, . . . , xi+m−1). As main results, we prove that

• given any quadratic function F : F2
p → Fp, the corresponding S-Box S over Fnp

for n ≥ 3 is never invertible;

• similarly, given any quadratic function F : F3
p → Fp, the corresponding S-Box S

over Fnp for n ≥ 5 is never invertible.

Moreover, for each p ≥ 3, we present (1st) generalizations of the Lai-Massey con-
struction over Fnp defined as before via functions F : Fmp → Fp for each n = m ≥ 2
and (2nd) (non-trivial) quadratic functions F : F3

p → Fp such that S over Fnp for
n ∈ {3, 4} is invertible. As an open problem for future work, we conjecture that
for each m ≥ 1 there exists a finite integer nmax(m) such that S over Fnp defined as
before via a quadratic function F : Fmp → Fp is not invertible for each n ≥ nmax(m).
Finally, as a concrete application, we propose Neptune, a variant of the sponge
hash function Poseidon, whose non-linear layer is designed by taking into account
the results presented in this paper. We show that this variant leads to a concrete
multiplication reduction with respect to Poseidon.
Keywords: Multiplicative Complexity · Non-Linear Layer · MPC/FHE/ZK-Friendly
Schemes · Poseidon

Contents
1 Introduction 3

1.1 The Round Function and the Non-Linear Layer 3
1.2 Our Contributions . 4

mailto:lgrassi@science.ru.nl, silvia.onofri@sns.it,
mailto:marco.pedicini@uniroma3.it, luca.sozzi2@studenti.unimi.it

2 Preliminary 6
2.1 Class of Equivalence . 6
2.2 A Necessary Condition for Inverbility . 7

3 Related Works 8
3.1 Hermite’s Criterion and Known Permutation Polynomials (PPs) over Fp . 8
3.2 Permutation Polynomials via the Legendre Symbol 8
3.3 (Generalized) Lai-Massey Functions S : Fnp → Fnp 9

4 Function SF over Fnp via Quadratic Functions F : F2
p → Fp 10

4.1 Analysis of the Case n = 2 . 11
4.2 Analysis of the Case n ≥ 3 . 12

5 Function SF over Fnp via Quadratic Functions F : F3
p → Fp 13

5.1 Analysis of the Case n = 3 . 14
5.1.1 Case: p = 2 mod 3 . 14
5.1.2 Case: p = 1 mod 3 . 15

5.2 An Example for the Case n = 4 . 16
5.3 Analysis of the Case n ≥ 5 . 17

5.3.1 The Roadmap for the Proof of Theorem 4 17
5.3.2 Practical Verification . 18

6 Proof of Theorem 4 19
6.1 Proof of Lemma 1 . 19

6.1.1 Case: α0,0,2, α2,0,0 6= 0 . 19
6.1.2 Case: α0,0,2 = 0 (analogous for α2,0,0 = 0) 20

6.2 Proof of Lemma 2 . 21
6.2.1 Case: α0,0,2 = α0,2,0 6= 0 . 21
6.2.2 Case: n odd and α0,0,2 6= α0,2,0 . 22
6.2.3 Case: n even and α0,0,2 6= α0,2,0 . 23

6.3 Proof of Lemma 3 . 25
6.3.1 Initial Considerations . 25
6.3.2 Case: α1,0,1 6= 0 . 26
6.3.3 Case: α1,0,1 = 0 . 27

7 Neptune: a Concrete Application 30
7.1 Poseidon and the Hades Design Strategy 30
7.2 Neptune . 30
7.3 Design Rationale . 32
7.4 Security Analysis . 34

7.4.1 (Invariant) Subspace Trails for the Internal Rounds 35
7.4.2 Statistical Attacks . 35
7.4.3 Algebraic Attacks . 37

7.5 Multiplicative Complexity: Poseidon versus Neptune 38

A Proof of Proposition 2 43

B Practical Verification for Quadratic Functions 43
B.1 Brute Force Research . 44
B.2 Practical Results . 45

2

C Details about the Security Analysis of Neptune 46
C.1 Maximum Differential Probability of S ′ 46
C.2 Gröbner Basis Attacks on Neptune . 47

C.2.1 Working on the Input and the Output 48
C.2.2 Working at Round Level . 49

1 Introduction
Due to the development of new applications such as Secure Multi-Party Computation
(MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), several
symmetric cryptographic schemes have been recently proposed in the literature to minimize
the number of field multiplications in their natural algorithmic description, often referred
to as the multiplicative complexity. Today, many of the mentioned applications operate on
Fp ≡ GF(p) for a large prime p ≥ 3 (usually, p is of order 264, 2128 or even bigger), hence
having cryptographic schemes that have a natural description over Fp is desirable. MPC-,
FHE- and ZK-friendly symmetric-key primitives defined over Fp include MiMC [AGR+16],
GMiMC [AGP+19], HadesMiMC [GLR+20], Rescue [AAB+20], Poseidon [GKR+21],
Masta [HKC+20], Ciminion [DGGK21], Pasta [DGH+21] and Grendel [Sze21]. As designing
symmetric-key primitives in this domain is relatively new and not well-understood, many
of these schemes share some common features. In particular, the non-linear function used
in almost all of them is a simple power map, that is x 7→ xd.1 The only exceptions are
Ciminion (whose permutation is based on a Feistel construction, whose non-linear function
is defined as (x, y) ∈ F2 7→ x · y ∈ F) and Masta, whose non-linear layer resembles the
chi-function introduced in [Wol85], which constitutes a prototype for the construction of
the new non-linear functions we study in this paper. We start a research of new non-linear
permutation functions over Fnp that can be used as building blocks in MPC-, FHE- and
ZK-friendly symmetric-key primitives.

1.1 The Round Function and the Non-Linear Layer
Symmetric cryptographic schemes including ciphers, permutations and hash functions are
typically designed by iterating an efficiently implementable round function a sufficient
number of times in order to guarantee the desired security level. Focusing on Substitution-
Permutation Network (SPN) schemes, this round function is usually composed of two
layers, a non-linear one and a linear one. In more details, consider a SPN scheme over Ftp
for a prime p ≥ 3 and t ≥ 1. The round function is usually defined as

x 7→ c+M× S-Box(x) (1)

for each x ∈ Ftp, where

• S-Box : Ftp → Ftp is the non-linear layer (or substitution layer);

• M∈ Ft×tp is an invertible matrix;

• c ∈ Ftp is a round constant or a secret key.

Focusing on the non-linear layer, it is usually composed of parallel independent non-linear
functions. Let 1 ≤ n ≤ t be a divisor of t, and let S : Fnp → Fnp be an invertible non-linear
function. Given x = (x0, x1, . . . , xt−1) ∈ Ftp, the substitution layer is usually defined as

S-Box(x) := S(x0, . . . , xn−1) ‖ S(xn, . . . , x2n−1) ‖ . . . ‖ S(xt−n, . . . , xt−1), (2)
1We recall that Grendel uses x 7→ x · Lp(x) as its S-Box, where Lp(·) : Fp → {−1, 0, 1} is the Legendre

symbol. However, by definition, Lp(x) = x(p−1)/2 is a power map.

3

where · ‖ · denotes concatenation.
For each z ∈ Fnp , the S-Box S(z) = y0‖y1‖ . . . ‖yn−1 ∈ Fnp is defined as

S(z) := F0(z)‖F1(z)‖ . . . ‖Fn−1(z)

where F0, F1, . . . , Fn−1 : Fnp → Fp are potentially distinct functions. In this paper, we limit
ourselves to consider the case in which each value yi ∈ Fp is specified according to a single
local map F : Fmp → Fp for a certain m ≤ n. More formally:

Definition 1. Let p ≥ 3 be a prime integer. Let 1 ≤ m ≤ n, and let F : Fmp → Fp be a
non-linear function. The function S over Fnp is defined as

S(x0, x1, . . . , xn−1) := y0‖y1‖ . . . ‖yn−1 (3)

where
yi = F (xi, xi+1, . . . , xi+m−1) (4)

for each i ∈ {0, 1, . . . , n− 1}, where the sub-indexes are taken modulo n.

In the following, we sometimes use the notation SF to highlight the local function F
that defines S.

One of the most well known examples of this kind of non-linear layer is the chi-function
over Fn2 defined via the local map χ : F3

2 → F2

χ(x0, x1, x2) := x0 + (x1 + 1) · x2 mod 2, (5)

first introduced byWolfram [Wol85] and then re-considered and analyzed by Daemen [Dae95].
It is used as a building component in many designs, including Keccak [BPVA+11,BDPA13],
Rasta [DEG+18], Subterranean [DMMR20], among many others. Other examples of local
maps F : Fm2 → F2 for which the corresponding S over Fn2 defined as in Def. 1 is invertible
are listed in [Dae95, App. A.3].

In this paper, we only focus on quadratic functions F : Fmp → Fp for a prime p ≥ 3,
studying the properties and the multiplicative cost of the corresponding function S over
Fnp defined as in Def. 1.

1.2 Our Contributions
Related Works: Invertible Functions over Fn

p . Well known examples of invertible
functions over Fnp are recalled in Sect. 3, and include – among others – the power maps
x 7→ xd (whose invertibility is proved using Hermite’s criterion) and their generalizations,
the Dickson polynomials.

The Legendre symbol Lp : Fp → {−1, 0, 1} defined as Lp(x) := x(p−1)/2 (recalled in
Def. 5) is a particular example of power maps that can be exploited in order to construct
invertible functions over Fp for p ≥ 3. Examples of invertible functions over Fnp based
on the Legendre symbol include x 7→ x · (α + Lp(x)) where Lp(α2 − 1) = 1 introduced
by Shallue [Sha12], x 7→ xd · Lp(x) where gcd(d + (p − 1)/2, p − 1) = 1 introduced by
Szepieniec [Sze21], and their generalization.

Probably, the most well known example of a function F : Fmp → Fp for which
the corresponding function S over Fnp for n = m is a permutation is the Lai-Massey
construction [LM90]. In the case n = m = 2, the function F is e.g. of the form
F (x0, x1) = x0 + (x0 − x1)2. In Prop. 5, we present generalizations of such function
over Fmp for even m = n, that is, F (x0, x1, . . . , xn−1) =

∑n−1
i=0 γi · xi + (

∑n−1
i=0 (−1)i · xi)2

and F (x0, x1, . . . , xn−1) =
∑n−1
i=0 γi ·xi+

∑n−1
i=0 (xi−xi−1)2, which we prove to be invertible

if the matrix circ(γ0, γ1, . . . , γn−1) ∈ Fn×np is invertible.

4

Invertible Quadratic Functions. Even if the Lai-Massey constructions just presented
can be efficiently computed (from the point of view of the multiplicative complexity), a
cryptographic scheme based only on such non-linear functions can be potentially broken
using e.g. an invariant subspace attack [Vau99] if e.g. the linear layer is not chosen
appropriately. For this reason, we look for other quadratic functions as possible building
block of a MPC-/ FHE-/ZK-friendly symmetric-key primitive, and we find the following:

• F (x0, x1, x2) =
∑2
i=0 ψi ·xi + (x0 +x1 +x2) · (α ·x0 +β ·x1 + γ ·x2) for which S over

F3
p defined as in Def. 1 is invertible if p = 2 mod 3 by carefully choosing ψi, α, β, γ

as given in Prop. 9;

• F (x0, x1, x2) = α · (x0−x1)2 +β · (x1−x2)2 +γ · (x2−x0)2 +ε ·x0 +ε′ · (x0 +x1 +x2)
for which S over F3

p defined as in Def. 1 is invertible if p = 1 mod 3 by carefully
choosing α, β, γ, ε, ε′ as given in Prop. 10.

These two functions cover all possible values of p ≥ 3, and they can be computed via only
three Fp-multiplications, that is, t Fp-multiplications per round. For comparison, a non-
linear layer instantiated via the power map x 7→ xd – where d ≥ 3 so that gcd(d, p− 1) = 1
– requires t · (blog2(d)c+ hw(d)− 1) ≥ 2 · t Fp-multiplications,2 which is at least a double
the cost required for functions in the two families just proposed.

Non-Existence Results. As main results of this paper:

• in Theorem 3, we prove that there is no quadratic function F : F2
p → Fp such that

the corresponding function S over Fnp for n ≥ 3 defined as in Def. 1 is a permutation;

• in Theorem 4, we prove that there is no quadratic function F : F3
p → Fp such that

the corresponding function S over Fnp for n ≥ 5 defined as in Def. 1 is a permutation.

Both results are also supported by our practical experiments, as given in Sect. 5.3.2.
Regarding the case m = n = 2, in Prop. 8 we prove that the only quadratic function
F : F2

p → Fp for which S over F2
p defined as in Def. 1 is invertible is a Lai-Massey function

of the form F (x0, x1) = α · x0 + β · x1 + γ · (x0 − x1)2 for α 6= ±β.
Focusing on the case m = 3, it is some-way surprising when comparing the binary

case and the prime case. Indeed, while e.g. the function S over Fn2 defined as in Def. 1
instantiated via the local map χ defined as in (5) is known to be a permutation for each
odd n ≥ 3, here we prove that there is no equivalent of the chi-function when working
with a quadratic function F : F3

p → Fp for a prime integer p ≥ 3.
As an open problem for future work, we conjecture that for each m ≥ 1 there exists a

finite integer nmax(m) such that S over Fnp defined as in Def. 1 via a quadratic function
F : Fmp → Fp is not invertible for each n ≥ nmax(m) (see Conjecture 1 for details). Our
results and observations suggest that if such conjecture is true, then nmax(m) growths
linearly with m (more specifically, nmax(m) = 2 ·m− 1).

Neptune as a Concrete Application. Estimating the impact of quadratic non-linear
layers in the design of a generic MPC-/FHE-/ZK-friendly iterative symmetric scheme is in
general very hard, since many factors play a crucial role in determining the performance of
the scheme in the target applications (e.g., the number of rounds required for its security
– and so the overall multiplicative complexity – does not depend only on the details of
the non-linear layer, but also on the details of the linear layer, on the possible attack
scenarios, on the security level, and so on). For this reason, we focus on Poseidon – a

2Given d =
∑blog2(d)c

i=0 di · 2i for di ∈ {0, 1}, evaluating x 7→ xd can require computing x2j for each
j ∈ {0, 1, . . . , blog2(d)c} for a cost of blog2(d)c multiplications, plus other hw(d)− 1 multiplications to get
x 7→ xd (where hw(·) is the Hamming weight).

5

sponge hash function [BDPV07,BDPA08] recently proposed for ZK applications – and we
show a possible way to modify it based on the non-linear layers presented in this paper in
order to reduce its multiplicative complexity.

Poseidon is a sponge hash function, whose internal permutation is based on the Hades
design strategy [GLR+20], proposed at Eurocrypt 2020. Its main feature and novelty
regards the use of both rounds with full S-Box layer and rounds with partial S-Box layer
in order to achieve both security and good performance. Here, we take this concept to its
extremes. Instead of limiting ourselves to consider an uneven distribution of the S-Boxes,
we propose to use two different round functions, one for the internal part and one for the
external one. In Sect. 7, we propose a new sponge hash function called Neptune over Ftp,
a variant of the hash function Poseidon in which

• the power maps x 7→ xd in the external full rounds are replaced by a concatenation
of independent S-Boxes defined over F2

p via the Lai-Massey construction;

• the power map x 7→ xd in the internal partial rounds remains unchanged, but the
matrix that instantiates the linear layer of the internal partial rounds is different
from the one proposed for the external full rounds.

As we show in there, these changes have the effect of (largely) reducing the multiplicative
complexity of Poseidon in the case of large t� 1.

2 Preliminary
Notation. Let p be a prime number (unless specified otherwise, we always assume p ≥ 3).
Let Fp denote the field of integer numbers modulo p. We use small letters to denote
either parameters/indexes or variables and greek letters to denote fixed elements in Fp.
Given x ∈ Fnp , we denote by xi its i-th component for each i ∈ {0, 1, . . . , n− 1}, that is,
x = (x0, x1, . . . , xn−1) or x = x0‖x1‖ . . . ‖xn−1, where ·‖· denotes concatenation. We use
capital letters to denote functions from Fmp to Fp for m ≥ 1, e.g., F : Fmp → Fp and the
calligraphic font to denote functions over Fnp for n > 1, e.g., S : Fnp → Fnp . We use the
fraktur font (e.g., X) to denote sets of elements, where |X| denotes the cardinality of the set
X. We denote by ei ∈ Fnp the vector with 1 in the i-th component (for i ∈ {0, 1, . . . , n−1}),
and 0 in all others. We denote by circ(µ0, µ1, . . . , µn−1) ∈ Fn×np a circulant matrix

circ(µ0, µ1, . . . , µn−1) :=


µ0 µ1 . . . µn−2 µn−1
µn−1 µ0 . . . µn−3 µn−2
...

...
µ1 µ2 . . . µn−1 µ0

 .

2.1 Class of Equivalence
First, we introduce a relation for classifying functions with similar properties.

Definition 2 (Class of Equivalence). Let q = pr where p ≥ 2 is a prime and r ≥ 1. Let
F, F ′ : Fmq → Fq be two functions. F and F ′ are similar – denoted as F ∼ F ′ – if and only
if F ′(x) = ω · F (M× x+ ν) + ψ for each x ∈ Fmp , where

• M = µ · diag(1, 1, . . . , 1) ∈ Fm×mq with µ ∈ Fq \ {0} is an invertible matrix ;

• ν = ν′‖ν′‖ . . . ‖ν′ ∈ Fmq for ν′ ∈ Fq;

• ω ∈ Fq \ {0} and ψ ∈ Fq.

6

Proposition 1. Let F, F ′ : Fmq → Fq be two similar functions. Let SF ,SF ′ : Fnq → Fnq be
two functions defined as in Def. 1 induced respectively by F and F ′. Then, SF is invertible
if and only if SF ′ is invertible.

Proof. By definition of F ′ and SF ′ , we have that [SF ′(x0, x1, . . . , xn−1)]i = F ′(xi, xi+1,
. . . , xi+m−1), where the sub-indexes are taken modulo n. Since F ′(x) = ω ·F (M×x+ν)+ψ
for each x ∈ Fmp , it follows that

SF ′(x) = diag(ω, ω, . . . , ω)× SF (M× x+ ν) + ψ̄

where diag(ω, ω, . . . , ω) ∈ Fn×nq is an invertible matrix and where ψ̄ = (ψ,ψ, . . . , ψ) ∈ Fnq .
Since the two diagonal matrices are invertible, then SF ′ is equal to SF pre-composed and
post-composed with two invertible affine functions. This implies that SF ′ is invertible if
and only if SF is invertible.

Note that this result is not true if one changes the equivalence class defined in Def. 2
by considering generic matricesM∈ Fm×mq and/or generic ν ∈ Fmq .

2.2 A Necessary Condition for Inverbility
As the next step, we recall a necessary condition that a function F has to satisfy for S to
be invertible.

Definition 3 (Balanced Function). Let q = pr where p ≥ 2 is a prime and r ≥ 1. Let
F : Fmq → Fq. We say that F is balanced if and only if the pre-image of every element in
Fq has the same cardinality, i.e. |{x ∈ Fmq |F (x) = y}| = qn−1 for each y ∈ Fq.

Proposition 2. Let q = pr where p ≥ 2 is a prime and r ≥ 1. Given F : Fmq → Fq, let S
over Fnq defined as in Def. 1. If F is not balanced, then S is not invertible.

The proof of this well known result is given in App. A. A concrete application of it is
given in the following proposition:

Proposition 3. Let p ≥ 2 be a prime number. Let F : F2
p → Fp be defined as in (7). If

α2,0 = α0,2 = 0, then F is not a balanced function.

Proof. Let F (x0, x1) = α2,0 · x2
0 + α1,1 · x0 · x1 + α0,2 · x2

1 + α1,0 · x0 + α0,1 · x1 + α0,0.
W.l.o.g., let’s assume α1,1 = 1 and α0,0 = 0 due to Prop. 1 based on the class of equivalence
defined in Def. 2. In order to prove the result, we analyse separately two cases: (1st)
α1,0 = α0,1 = 0 and (2nd) α0,1 6= 0 (the proof is analogous for α1,0 6= 0):

• If α0,1 = α1,0 = 0, then F (x0, x1) = 0 if x0 = 0 or x1 = 0. It follows that
|F−1(0)| ≥ 2p− 1
 p, hence F is not balanced;

• For the latter, we re-write F (x0, x1) = (x0 +α0,1) ·x1 +α1,0 ·x0. If x0 = −α0,1, then
F (−α0,1, x1) = −α0,1 · α1,0 for all x1 ∈ Fq. Moreover, F (0,−α1,0) = −α0,1 · α1,0.
Since α0,1 6= 0 by assumption, it follows that |F−1(−α0,1 · α1,0)| ≥ p+ 1
 p, which
means that F is not balanced.

Since x2 = x for each x ∈ F2, we have that α2,0 = α0,2 = 0, this means that there is
no quadratic function F : F2

2 → F2 such that S over Fn2 for n ≥ 2 defined as in Def. 1 is
invertible, in accordance with the results given in [Dae95].

Corollary 1. Let F : F2
2 → F2 be a quadratic function. Then, the function S over Fn2 for

n ≥ 2 defined as in Def. 1 is not invertible.

7

3 Related Works
3.1 Hermite’s Criterion and Known Permutation Polynomials (PPs)

over Fp
Given a non-linear function F (x) =

∑d
i=0 αi · xi of degree d ≥ 2, a characterization of

which F is or not a permutation polynomial is given by Hermite’s criterion.
Theorem 1 (Hermite’s Criterion [MP13]). Let q = pr, where p ≥ 2 is a prime and r is a
positive integer. Then a polynomial F ∈ Fq[x] is a Permutation Polynomial (PP) of Fq if
and only if the following two conditions hold:

1. the reduction of (F (x))q−1 mod (xq − x) is monic polynomial of degree q − 1;

2. for each integer t with 1 ≤ t ≤ q − 2 and t 6= 0 mod p, the reduction of (F (x))t
mod (xq − x) has degree ≤ q − 2.

Applying the previous criteria on a generic function over Fq in order to establish if it is
a PP or not is in general computational demanding. However, for certain special classes of
polynomials, including the power maps and the Dickson polynomials, this question is easy
to answer.

Power Maps. As we have already mentioned in the introduction, non-linear functions of
many cryptographic schemes over Fp are power maps x 7→ xd.
Theorem 2 ([MP13, Sect. 8]). Let q = pr, where p ≥ 2 is a prime and r is a positive
integer. The function F (x) = xd where d is a positive integer is a PP if and only if
gcd(d, q − 1) = 1.

As it is well known, this means that the choice of the exponent d depends on the
prime field if one aims to guarantee invertibility. Obviously, this also implies that no
quadratic function over Fp for p ≥ 3 is invertible. Indeed, consider the generic quadratic
function F (x) = α · x2 + β · x+ γ. Via the change of variable y = x− β/(2α), we obtain
F (y) = αy2 + γ, which is not invertible since F (y) = F (−y) for each y ∈ Fp.

Dickson Polynomials. Dickson polynomials generalize power maps. Let q = pr, where
p ≥ 3 is a prime and r is a positive integer. Let α ∈ Fq fixed. The Dickson polynomial
Dd,α(x) of degree d with parameter α over Fq is defined as

Dd,α(x) :=
bd/2c∑
j=0

d

d− j
·
(
d− j
j

)
· (−α)j · xd−2j .

Note that Dickson polynomials reduce to power maps for α = 0. As proved e.g. in [MP13],
the Dickson polynomial Dd,α(x) is a PP of Fq if and only if gcd(d, q2 − 1) = 1.

3.2 Permutation Polynomials via the Legendre Symbol
Here we recall some properties of the Legendre symbol used in the following.
Definition 4. Let p ≥ 3 be a prime number. An integer α is a quadratic residue modulo
p if it is congruent to a perfect square modulo p, and it is a quadratic non-residue modulo
p otherwise.
Definition 5. The Legendre symbol Lp(·) is a function Lp : Fp → {−1, 0, 1} defined as
Lp(x) := x

p−1
2 mod p ∈ {−1, 0, 1}, or equivalently Lp(0) = 0 and

Lp(x) :=
{

1 if x is a non-zero quadratic residue modulo p,
−1 if x is a quadratic non-residue modulo p

.

8

Proposition 4 ([Nag51]). The Legendre symbol has the following properties:

1. if x = y mod p, then Lp(x) = Lp(y);

2. Lp(x · y) = Lp(x) · Lp(y).

Moreover, particular identities include:

• Lp(−1) = 1 if p = 1 mod 4, while Lp(−1) = −1 if p = 3 mod 4;

• Lp(−3) = 1 if p = 1 mod 3, while Lp(−3) = −1 if p = 2 mod 3;

• Lp(2) = 1 if p = 1, 7 mod 8, while Lp(2) = −1 if p = 3, 5 mod 8.

For completeness, we point out that some permutations based on the Legendre symbol
have been proposed in the literature:

• in [Sha12, Theorem 1.20], Shallue proved that the function x 7→ x · (Lp(x) + α) is
invertible if and only if α ∈ Fp \ {±1} such that Lp(α2 − 1) = 1;

• in [Sze21], Szepieniec proved that x 7→ xd · Lp(x) = xd+(p−1)/2 is invertible if and
only if gcd(d+ (p− 1)/2, p− 1) = 1 for a positive integer d;

• other permutations SF over Fnp via a function F : Fmp → Fp that involve the Legendre
symbol have been recently proposed in [GKRS21].

3.3 (Generalized) Lai-Massey Functions S : Fnp → Fnp
Other classes of invertible functions over Fnp include the generalization of the Lai-Massey
construction

(x0, x1) 7→ (y0, y1) = (x0 +H(x0 − x1), x1 +H(x0 − x1))

proposed in [LM90], whose invertibility relies on the fact that y0 − y1 = x0 − x1.

Proposition 5. Let p ≥ 2 be a prime integer. Let n = m ≥ 2 such that either n is a
multiple of p (i.e., n = 0 mod p) or n is even (i.e., n = 2n′), Given

F (x0, x1, . . . , xn−1) =
n−1∑
i=0

µi · xi +H
(
ω0 · x0 + ω1 · x1 + . . .+ ωn−1 · xn−1

)
(6)

where

1. ωi = 1 for each i ∈ {0, 1, . . . , n − 1} if n = 0 mod p, and ωi = (−1)i for each
i ∈ {0, 1, . . . , n− 1} if n = 0 mod 2;

2. if n = 0 mod 2: H : Fp → Fp is an even function (that is, H(x) = H(−x));

3. the circulant matrixM = circ(µ0, . . . , µn−1) ∈ Fn×np is invertible;

then the function S : Fnp → Fnp defined as in Def. 1 is invertible.

Proof. Let y = S(x). By definition of S and since H is an even function for n = 0 mod 2:


y0
y1
...

yn−1

 =M×


x0
x1
...

xn−1

+


H
(∑n−1

i=0 ωi · xi
)

H
(∑n−1

i=0 ωi · xi
)

...
H
(∑n−1

i=0 ωi · xi
)

 =M×


x0 + 1

µ′ ·H
(∑n−1

i=0 ωi · xi
)

x1 + 1
µ′ ·H

(∑n−1
i=0 ωi · xi

)
...

xn−1 + 1
µ′ ·H

(∑n−1
i=0 ωi · xi

)


9

where µ′ :=
∑
i µi 6= 0 sinceM is invertible by assumption.

Let z :=M−1 × y ∈ Fnp . The overall costruction is invertible since

n−1∑
i=0

ωi · zi =
n−1∑
i=0

ωi · xi

where
n−1∑
i=0

(
ωi
µ′
·H

(
n−1∑
i=0

ωi · xi

))
= 1
µ′
·H

(
n−1∑
i=0

ωi · xi

)
·
n−1∑
i=0

ωi︸ ︷︷ ︸
=0

= 0 .

The simplest example of a function that satisfies the previous assumptions is obtained
by choosing H(x) = β · x2 + γ for β, γ ∈ Fp andM =circ(1, 0, . . . , 0) ∈ Fnp . In such a case,
computing S over Fnp requires just one Fp-multiplication.

Proposition 6. Let p ≥ 2 be a prime integer. Let

F (x0, x1, . . . , xn−1) =
n−1∑
i=0

µi · xi + γ ·
n−1∑
i=0

H
(
xi − xi+1

)
where H : Fp → Fp is an even function, where M = circ(µ0, . . . , µn−1) ∈ Fn×np is an
invertible matrix and where γ ∈ Fp \ {0}. Then, the function S : Fnp → Fnp defined as in
Def. 1 is invertible.

Proof. Let y = S(x). Working as before, note that
y0
y1
...

yn−1

 =M×


x0 + γ

µ′ ·
∑n−1
i=0 H

(
xi − xi+1

)
x1 + γ

µ′ ·
∑n−1
i=0 H

(
xi − xi+1

)
...

xn−1 + γ
µ′ ·

∑n−1
i=0 H

(
xi − xi+1

)


since H is an even function, where µ′ :=

∑
i µi 6= 0 since M is invertible. The overall

construction is invertible by noting that xi − xi+1 = zi − zi+1, where z :=M−1 × y.

If n ≥ 3, then evaluating S costs n Fp-multiplications (and just one multiplication for
the case n = 2).

4 Function SF over Fnp via Quadratic Functions F : F2
p →

Fp
In this section, we study functions S over Fnp defined as in Def. 1 instantiated via a
quadratic polynomial function F : F2

p → Fp.

A Necessary Condition for the Invertibility. We start by providing a necessary condition
that a quadratic function F : Fmp → Fp defined as

F (x0, x1, . . . , xm−1) :=
∑

0≤i0,...,im−1≤2 s.t.
i0+...+im−1≤d

αi0,...,im−1 · x
i0
0 · · · · · x

im−1
m−1 . (7)

must satisfy in order to guarantee that S can be a permutation.

10

Proposition 7. Let p ≥ 3 be a prime integer. Let F : Fmp → Fp be defined as in (7). Let
α(2), α(1) ∈ Fp be the sum of the coefficients of the monomials of degree l, that is

α(l) :=
∑

0≤i0,...,im−1≤l s.t.
i0+...+im−1=l

αi0,...,im−1 . (8)

for each l ∈ {1, 2}. If α(2) = α(1) = 0 or α(2) 6= 0, the function S over Fnp defined as in
Def. 1 is not a permutation for each n ≥ m.

Proof. In order to prove that S is not a permutation, we look for collisions, that is, we
look for two different elements y, z ∈ Fnp such that S(y) = S(z) and y 6= z. In order to do
this, we work with elements of the form w = (ŵ, ŵ, . . . , ŵ) ∈ Fnp , that is wi = wj for each
i, j ∈ {0, 1, . . . , n}. Note that

F (x, x, . . . , x) = α(2) · x2 + α(1) · x+ α0,0,...,0.

If α(2) = α(1) = 0, then F (x, x, . . . , x) = α0,0,...,0 for each x ∈ Fp. It follows that
S(z ≡ (x, x, . . . , x)) = (α0,0,...,0, . . . , α0,0,...,0) for each x ∈ Fp. If α(2) 6= 0:

• if α(2) 6= 0 and α(1) 6= 0, then F (x, x, . . . , x) = x · (α(2) ·x+α(1))+α0,0,...,0 = α0,0,...,0
admits two different solutions, which are x = 0 and x = −α(1)/α(2);

• if α(2) 6= 0 and α(1) = 0, then F (x, x, . . . , x) = α(2) ·x2 +α0,0,...,0 = α(2) ·β2 +α0,0,...,0
for β ∈ Fp \ {0} has two different solutions, which are x = ±β.

As a result, S can be a permutation only in the case in which α(2) = 0 and α(1) 6= 0.
In the following, we study this case depending on the value of m ≥ 2.

4.1 Analysis of the Case n = 2
Here we prove that the only quadratic function F : F2

p → Fp for which S is invertible over
F2
p is F (x0, x1) = γ0 · x0 + γ1 · x1 + γ2 · (x0 − x1)2 where γ0 6= ±γ1.

Proposition 8. Let p ≥ 3 be a prime integer, and let F : F2
p → Fp be a quadratic function.

The non-linear function S defined as in Def. 1 is invertible over F2
p if and only if

F (x0, x1) = γ0 · x0 + γ1 · x1 + γ2 · (x0 − x1)2

where γ0 6= ±γ1.

Proof. Consider a generic function G(x0, x1) = α1,0 · x0 + α0,1 · x1 + α2,0 · x2
0 + α0,2 · x2

1 +
α1,1 · x0 · x1. First of all, if α2,0 + α0,2 + α1,1 6= 0, then the function is not invertible (see
Prop. 7). Hence, we assume α1,1 = −α2,0 − α0,2, which means

G(x0, x1) = α1,0 · x0 + α0,1 · x1 + (α2,0 · x0 − α0,2 · x1) · (x0 − x1)

If α2,0 = α0,2 and α1,0 6= α0,1, then this corresponds to a generalization of the Lai-
Massey construction, which is invertible by observing the following. Given (y0, y1) =
(G(x0, x1), G(x1, x0)), then y0 − y1 = (α1,0 − α0,1) · (x0 − x1), which implies that[

α1,0 α0,1
α0,1 α1,0

]
×
[
x0
x1

]
=
[
y0 − α2,0

(α1,0−α0,1)2 · (y0 − y1)2

y1 − α2,0
(α1,0−α0,1)2 · (y0 − y1)2

]

admits a solution if α1,0 6= ±α0,1.
Let’s now consider the case α2,0 6= α0,2. We show that the function SG is never

invertible by looking for a collision G(x0, x1) = G(y0, y1) and G(x1, x0) = G(y1, y0). Via

11

the change of variables di = xi − yi and si = xi + yi for i ∈ {0, 1}, the system to solve
becomes[

α2,0 · d0 − α2,0+α0,2
2 · d1 α0,2 · d1 − α2,0+β0,2

2 · d0
α0,2 · d0 − α2,0+α0,2

2 · d1 α2,0 · d1 − α2,0+β0,2
2 · d0

]
×
[
s0
s1

]
= −

[
α1,0 · d0 + α0,1 · d1
α1,0 · d1 + α0,1 · d0

]

The determinant of the matrix is equal to

(α2,0 − β0,2) · (α2,0 + α0,2) · (d0 − d1)2.

If α2,0 6= ±α0,2, it is sufficient to choose d0 6= d1 in order to find a collision. The only
remaining case to analyze is α0,2 = −α2,0, for which the system of equation reduces to

α2,0 · (d0 · s0 − d1 · s1) = α1,0 · d0 + α0,1 · d1,

d0 · (β1,0 − β0,1) = d1 · (β1,0 − β0,1).

By choosing d0 = d1 6= 0 and s0, s1 such that α2,0 · (s0 − s1) = α1,0 + α0,1 (note that
α2,0 6= 0, otherwise G is linear), it is possible to find a collision. This concludes the
proof.

4.2 Analysis of the Case n ≥ 3

As one of the main results of this paper, we prove that given any quadratic function
F : F2

p → Fp, then the function S over Fnp defined as in Def. 1 is never invertible for each
n ≥ 3.

Theorem 3. Let p ≥ 3 be a prime integer. Let F : F2
p → Fp be a function of degree 2.

The function S over Fnp defined as in Def. 1 is never a permutation for each n ≥ 3.

Proof. Due to the results given in Prop. 7, here we limit ourselves to consider the case

α2,0 + α1,1 + α0,2 = 0. (9)

We first prove the result for the case n = 3. Our goal is to prove that for each function
F : F2

p → Fp of degree 2 defined as in (7), it is possible to find a collision, that is, two
different inputs x, y ∈ F3

p such that S(x) = S(y):

F (x0, x1) = F (y0, y1), F (x1, x2) = F (y1, y2), F (x2, x0) = F (y2, y0).

In order to generalize this result for n ≥ 4, we assume x0 = y0 = ẑ. Note that one such
collision is found for n = 3, a collision for n ≥ 4 can be easily set up by working with
x, y ∈ Fnp where xi = yi = ẑ for each i ≥ 3. Indeed, this implies that F (xi, xi+1) =
F (yi, yi+1) = 0 for each i ∈ {3, . . . , n− 1}. Just for simplicity, we fix ẑ = 0.

Condition F (0, x1) = F (0, y1) and F (x2, 0) = F (y2, 0). The condition F (0, x1) =
F (0, y1) implies

(x1 − y1) · (α0,2 · (x1 + y1) + α0,1) = 0 ,

which is satisfied by (1st) x1 = y1 or by (2nd) x1 = −y1 − α0,1/α0,2 (assuming α0,2 6= 0).
Working in the same way on F (x2, 0) = F (y2, 0), we get the conditions (1st) x2 = y2 or
(2nd) x2 = −y2 − α1,0/α2,0 (assuming α2,0 6= 0).

12

Condition F (x1, x2) = F (y1, y2). Regarding the condition F (x1, x2) = F (y1, y2), that
is,

(x1−y1) ·(α2,0 · (x1 + y1) + α1,0)+(x2−y2) ·(α0,2 · (x2 + y2) + α0,1)+α1,1 ·(x1 ·x2−y1 ·y2) = 0 ,

we consider the following cases separately:

1. if α0,2, α2,0, α1,1 6= 0, we present a collision by working with x1 = y1;

2. if α0,2 = 0, we present a collision by working with x1 = y1;

3. if α2,0 = 0, we present a collision by working with x2 = y2;

4. finally, if α1,1 = 0, we present a collision by working with

x1 = −y1 −
α0,1

α0,2
and x2 = −y2 −

α1,0

α2,0
,

where α1,1 = 0 and Eq. (9) implies α0,2 = −α2,0 6= 0.

Case: α0,2, α2,0, α1,1 6= 0. By choosing x1 = y1, we have x2 = −(α1,1 ·x1 +α0,1)/α0,2−
y2 that implies F (x1, x2) = F (y1 = x1, y2). The condition F (x2, 0) = F (y2, 0) always
holds true if x1 = α0,2·α1,0

α1,1·α2,0
− α0,1

α1,1
. Hence:

∀x2 ∈ Fp : S
(

0, α0,2 · α1,0

α1,1 · α2,0
− α0,1

α1,1
, x2

)
= S

(
0, α0,2 · α1,0

α1,1 · α2,0
− α0,1

α1,1
,−x2 −

α1,0

α2,0

)
.

Case: α0,2 = 0. Observe that α0,2 = 0 implies α1,1 = −α2,0 6= 0 due to Eq. (9). Under
the assumption x1 = y1, the condition F (x1, x2) = F (y1, y2) implies that (x2 − y2) ·
(α1,1 · x1 + α0,1) = 0 always holds true if x1 = −α0,1/α1,1. Hence:

∀x2 ∈ Fp : S
(

0,−α0,1

α1,1
, x2

)
= S

(
0,−α0,1

α1,1
,−x2 −

α1,0

α2,0

)
.

Case: α2,0 = 0. Observe that α2,0 = 0 implies that α1,1 = −α0,2 6= 0 due to Eq. (9).
Under the assumption x2 = y2, the condition F (x1, x2) = F (y1, y2) implies that (x1− y1) ·
(α1,1 · x2 + α1,0) = 0 always holds true if x2 = −α1,0/α1,1. Hence:

∀x1 ∈ Fp : S
(

0, x1,−
α1,0

α1,1

)
= S

(
0,−x1 −

α0,1

α0,2
,−α1,0

α1,1

)
.

Case: α1,1 = 0. Observe that α1,1 = 0 implies that α2,0 = −α0,2 6= 0 due to Eq. (9).
Choosing y1 = −x1 − α0,1/α0,2 and y2 = −x2 − α1,0/α2,0, the condition F (x1, x2) =
F (y1, y2) implies x1 + x2 = α1,0−α0,1

2·α0,2
. Hence ∀x2 ∈ Fp:

S
(

0,−x2 + α1,0 − α0,1

2 · α0,2
, x2

)
= S

(
0, x2 −

α1,0 + α0,1

2 · α0,2
,−x2 −

α1,0

α2,0

)
.

5 Function SF over Fnp via Quadratic Functions F : F3
p →

Fp
In this section, we set up permutations S over Fnp defined as in Def. 1 via quadratic
polynomial functions F : F3

p → Fp.

13

5.1 Analysis of the Case n = 3
Here we present two non-trivial quadratic functions F : F3

p → Fp (one for p = 2 mod 3 and
one for p = 1 mod 3) for which the corresponding function S over F3

p is a permutation.

5.1.1 Case: p = 2 mod 3

First, we present a family of functions F : F3
p → Fp for which the corresponding function

S over F3
p is a permutation if p = 2 mod 3. Three Fp-multiplications are sufficient for

computing S.
Proposition 9. Let p ≥ 5 be a prime integer such that p = 2 mod 3. Let α, β ∈ Fp and
ψ0, ψ1, ψ2 ∈ Fp such that (1st)

∑
i ψi 6= 0 and (2nd) one of the following conditions is

satisfied
• ψ1 = ψ2 and ψ0 6= ψ1 and 2 · α+ β 6= 0;

• ψ0 = ψ2 and ψ0 6= ψ1 and 2 · β + α 6= 0;

• ψ0 = ψ1 and ψ0 6= ψ2 and α− β 6= 0.
Let F : F3

p → Fp be defined as

F (x0, x1, x2) =
2∑
i=0

ψi · xi + (x0 + x1 + x2) · (α · x0 + β · x1 − (α+ β) · x2).

The function S defined as in Def. 1 over F3
p is invertible.

Proof. Note that α = β = 0 is never possible. Given yi = F (xi, xi+1, xi+2) for each
i ∈ {0, 1, 2} (where the sub-indexes are taken modulo 3), note that

y0 + y1 + y2 = (ψ0 + ψ1 + ψ2) · (x0 + x1 + x2).

Let ŷ := (y0+y1+y2)/(ψ0+ψ1+ψ2), where ŷ = 0 if and only if x0+x1+x2 = y0+y1+y2 = 0.
The system of equations for S(x) = y becomes α · ŷ + ψ0 β · ŷ + ψ1 −(α+ β) · ŷ + ψ2

−(α+ β) · ŷ + ψ2 α · ŷ + ψ0 β · ŷ + ψ1
β · ŷ + ψ1 −(α+ β) · ŷ + ψ2 α · ŷ + ψ0

×
x0
x1
x2

 =

y0
y1
y2

 .
By simple computation, the matrix is invertible if

(ψ0 + ψ1 + ψ2) ·
(

3 · (α2 + α · β + β2) · ŷ2 + 3 · (α · (ψ0 − ψ2) + β · (ψ1 − ψ2)) · ŷ+

+ (ψ2
0 + ψ2

1 + ψ2
2 − ψ0 · ψ1 − ψ1 · ψ2 − ψ0 · ψ2)

)
6= 0,

where ψ0 + ψ1 + ψ2 6= 0. If ŷ = 0, then the matrix is invertible, since ψ2
0 + ψ2

1 + ψ2
2 − ψ0 ·

ψ1 − ψ1 · ψ2 − ψ0 · ψ2 is different from zero by assumption on ψ0, ψ1, ψ2.
If ŷ 6= 0, first note that the coefficient α2 + α · β + β2 of ŷ2 is always different from

zero for each α, β since −3 is not a square modulo p due to the assumption p = 2 mod 3
(see Prop. 4). Indeed, α2 + α · β + β2 = 0 for β 6= 0 is equivalent to z2 + z + 1 = 0 for
z = α/β, which admits as solutions (−2±

√
−3)/2. Since −3 is a quadratic non-residue

modulo p, then no solution exists. Hence, assuming ψ1 = ψ2 (analogous for the others),
the determinant is equal to zero if and only if

ŷ = −3 · α · (ψ0 − ψ2)±
√
−3 · (ψ0 − ψ2)2 · (α+ 2 · β)2

6 · (α2 + α · β + β2) ,

which does not admit any solution since −3 is a quadratic non-residue modulo p (note
that ψ0 6= ψ2 and α 6= −2β). It follows that S(x) = y is invertible.

14

5.1.2 Case: p = 1 mod 3

Next, we present a family of functions F : F3
p → Fp for which the corresponding function

S over F3
p is a permutation if p = 1 mod 3. Again, three Fp-multiplications are sufficient

for computing S.

Proposition 10. Let p ≥ 7 be a prime integer such that p = 1 mod 3. Let α, β, γ, ε, ε′ ∈
Fp such that

1. ε 6= 0, ε+ 3 · ε′ 6= 0

2. α 6= γ, α · β 6= γ2, and β ∈ {β+, β−} where

β± = α · (1±
√
−3)− γ · (−1±

√
−3)

2 . (10)

Let F : F3
p → Fp be defined as

F (x0, x1, x2) = α · (x0 − x1)2 + β · (x1 − x2)2 + γ · (x2 − x0)2 + ε · x0 + ε′ · (x0 + x1 + x2).

The function S defined as in Def. 1 over F3
p is invertible.

Note that the case α = β = γ has been already analyzed in Prop. 6.

Proof. Let’s define ω := α · β − γ2, ψ := β · γ − α2, τ := α · γ − β2. First of all, note that
ω, τ, ψ 6= 0 and that the following equations

ω · α+ ψ · β + τ · γ = 0
ω · β + ψ · γ + τ · α = 0
ω · γ + ψ · α+ τ · β = 0

are always satisfied. In particular, focusing on the last one, we have that

ω · γ + ψ · α+ τ · β = (α+ β + γ) · (α2 + β2 + γ2 − α · β − β · γ − α · γ) = 0,

where α2 + β2 + γ2 − α · β − β · γ − α · γ = ω + τ + ψ = 0 due to the assumption on β.
Indeed, the solutions of this last equality are {β+, β−} as defined in (10), recalling that
−3 is a quadratic residue modulo p for p = 1 mod 3 (see Prop. 4).

In order to prove the result, we show how to invert S(x) = y. Given yi = F (xi, xi+1, xi+2)
for each i ∈ {0, 1, 2} (where the sub-indexes are taken modulo 3), note that ω · y0 + τ · y1 +
ψ · y2 = ε · (ω · x0 + τ · x1 + ψ · x2), which is satisfied by

x0 = ŷ − τ · x1 − ψ · x2

ω
, where ŷ := ω · y0 + τ · y1 + ψ · y2

ε

and where ω, ε 6= 0 by assumption.
By taking the difference between y1 and y2 and by substituting x0, we obtain:(

ω2 · (α− γ) + τ2 · (β − α) + ψ2 · (γ − β)
)︸ ︷︷ ︸

=0

·(x1 − x2)2+

+ ω2 · ε · (x1 − x2) + (γ − α) · ŷ2 − ω2 · (y1 − y2) = 0

where the coefficient of (x1 − x2)2 is equal to zero due to assumption on β = β±.
As a result, we have a linear equation in x1 with ω2 · ε 6= 0 as coefficient, hence we have

x1 = x2 + (γ − α) · ŷ2 − ω2 · (y1 − y2)
ω2 · ε

.

15

By substituing x0, x1 in e.g. the third equation y2 = ε · x2 + ε′ · (x0 + x1 + x2) + α · (x2 −
x0)2 + β · (x0 − x1)2 + γ · (x1 − x2)2, we get a linear equation in x2 of the form:

(ε+ 3ε′) · x2 +G(y0, y1, y2) = 0

where

G(y0, y1, y2) =
(
α+ β

ω2 + γ

)
·
(

(γ − α) · ŷ2 − ω2 · (y1 − y2)
ω2 · ε

)2

− y2 + ε′

ω
· ŷ

+ ŷ2 · α+ β

ω2 +
(
ε′

ω
· (ω − τ) + 2ŷ

ω2 · (ψ − τ)
)
· (γ − α) · ŷ2 − ω2 · (y1 − y2)

ω2 · ε
.

Since the coefficient ε + 3 · ε′ of x2 is different from zero by assumption, the system of
equations has a unique solution for any given y1, y2, y3 and S is invertible.

5.2 An Example for the Case n = 4
Here we limit ourselves to present an example of a quadratic function F : F3

p → Fp for
which S over F4

p is invertible. Such function is constructed based on the following result.
Proposition 11. Let q = pr where p ≥ 2 is a prime and r is a positive integer. Given
2 ≤ g ≤ h, let G : Fgq → Fq be a function for which SG defined over Fhq as in Def. 1 (that
is, SG(x0, . . . , xh−1) = G(x0, . . . , xg−1)‖G(x1, . . . , xg−1, xg)‖ . . . ‖G(xh−1, x0, . . . , xg−2),
where the sub-indexes are taken modulo h) is invertible.

Let m := (g−1) · (z+1) +1 and n := h · (z+1) for any integer z ≥ 0. Let F : Fmq → Fq
be defined as

F (x0, . . . , xm−1) := G(x0, xz+1, x2·(z+1), . . . , x(g−1)·(z+1)) .

(Note that F depends only on the variables xi for which the sub-index i is a multiple of
z + 1.) The function SF defined over Fnq as in Def. 1 is invertible.
Proof. The result is obviously true for z = 0 (for which m = g and n = h). So, let’s
assume z ≥ 1. Let y = SF (x). The system of n equations yi = F (xi, xi+1, . . . , xi+m−1 for
each i ∈ {0, 1, . . . , n− 1} can be split into z + 1 independent systems, each one consisting
of h equations of the form

yi = G(xi, xi+(z+1), xi+2·(z+1), . . . , xi+(g−1)·(z+1))
yi+(z+1) = G(xi+(z+1), xi+2·(z+1), . . . , xi+(g−1)·(z+1), xi+g·(z+1))
yi+2·(z+1) = G(xi+2·(z+1), xi+3·(z+1), . . . , xi+g·(z+1), xi+(g+1)·(z+1))
...
yi+(h−1)·(z+1) = G(xi+(h−1)·(z+1), xi, xi+(z+1), . . . , xi+(g−2)·(z+1))

for each i ∈ {0, 1, . . . , z}, that is,

∀i ∈ {0, 1, . . . , z} : (yi, yi+(z+1), . . . , yi+(h−1)·(z+1)) = SG(xi, xi+(z+1), . . . , xi+(h−1)·(z+1)) .

The invertibility of each one of these sub-systems follows from the fact that SG is invertible
by assumption.

The following corollary follows immediately.
Corollary 2. Let p ≥ 3 be a prime integer, and let m ≥ 2. Let G : F2

p → Fp be a function
for which SG over F2

p defined as in Def. 1 is invertible. Let F : Fmp → Fp be defined as
F (x0, . . . , xm−1) := G(x0, xm−1). Then SF over F2·(m−1)

p defined as in Def. 1 is invertible.
Based on these results, given F (x0, x1, x2) = γ0 · x0 + γ2 · x2 + (x0 − x2)2 defined over

F3
p such that γ0 6= ±γ2, then SF defined over F4

q as in Def. 1 is invertible.

16

5.3 Analysis of the Case n ≥ 5
As a main result of this work, we prove that given any quadratic function F : F3

p → Fp,
then S over Fnp defined as in Def. 1 is never invertible for n ≥ 5.

Theorem 4. Let p ≥ 3 be a prime integer. Let F : F3
p → Fp be a function of degree 2.

The function S over Fnp defined as in Def. 1 is never a permutation for each n ≥ 5.

As highlighted in the introduction, this result is quite surprising if compared to the F2
case, for which it is well known that the function S over Fn2 instantiated via the local map
χ defined as in (5) is a permutation for each odd n ≥ 3.

5.3.1 The Roadmap for the Proof of Theorem 4

The detailed proof of Theorem 4 is given in Sect. 6. Here we limit ourselves to present the
roadmap of such proof.

In order to prove Theorem 4, we consider separately the following cases:

1. the function F : F3
p → Fp depends on at most two input variables (equivalently, it

is independent of at least one variable): due to the result given in Theorem 3, we
know that the corresponding S is never invertible (note that the case F (x0, x1, x2) =
G(x0, x2) reduces to the one studied in Theorem 3);

2. the function F : F3
p → Fp only contains monomials that depend on a single variable,

that is α1,1,0 = α1,0,1 = α0,1,1 = 0;

3. the function F : F3
p → Fp is linear in one variable, e.g., F (x0, x1, x2) = x0 +G(x1, x2)

where G : F2
p → Fp is a function of degree 2;

4. for each variable xi, there is at least one monomial of degree two that depends on it.

The second case is studied in Lemma 1, the third case is studied in Lemma 2, while the last
case is studied in Lemma 3. Since the proofs of these Lemmas are similar to the one given
for Theorem 3, here we present a sketch of the proofs for each one of the cited Lemmas,
and we refer to Sect. 6 for all the details.

Lemma 1. Let p ≥ 3 be a prime integer. Let F : F3
p → Fp be a function of degree 2

defined as

F (x0, x1, x2) = α2,0,0 · x2
0 + α0,2,0 · x2

1 + α0,0,2 · x2
2 + α1,0,0 · x0 + α0,1,0 · x1 + α0,0,1 · x2,

that is, α1,1,0 = α1,0,1 = α0,1,1 = 0. The function S over Fnp defined as in Def. 1 is never
a permutation for each n ≥ 5.

We refer to Sect. 6.1 for the proof. The idea of the proof is the following. In order to
find a collision, we study separately the cases (1st) α0,0,2, α2,0,0 6= 0 and (2nd) α0,0,2 = 0
or α2,0,0 = 0 (note that at least two terms among α0,0,2, α0,2,0, α2,0,0 are different from
zero, since α(2) = 0):

• in the first case, we show that the result is true for n = 5 by finding two different
inputs x, y ∈ F5

p such that x0 = y0 = x1 = y1 = ẑ ∈ Fp and S(x) = S(y) ∈ F5
p and

x 6= y. This is done by solving a system of (linear) equations. The collision over Fnp
for n ≥ 6 is obtained by working with x′ = x‖ẑ‖ẑ‖ . . . ‖ẑ and y′ = y‖ẑ‖ẑ‖ . . . ‖ẑ ∈ Fnp ;

• in the second case, we construct a collision directly over Fnp . The condition for the
collision corresponds on a system of linear equation in (xi + yi). By choosing in an
appropriate way the differences (xi − yi), it is possible to find a non-trivial collision
for such system of equations.

17

Lemma 2. Let p ≥ 3 be a prime integer. Let G : F2
p → Fp be a function of degree 2, and

let F : F3
p → Fp be a function of degree 2 defined as

1. F (x0, x1, x2) = α1,0,0 · x0 +G(x1, x2), or

2. F (x0, x1, x2) = α0,0,1 · x2 +G(x0, x1).

The function S over Fnp defined as in Def. 1 is never a permutation for each n ≥ 5.

We refer to Sect. 6.2 for the proof. The idea of the proof is the following. First of all, the
case F (x0, x1, x2) = α0,1,0 · x1 +G(x0, x2) is included in Lemma 3.3 In the other cases, in
order to find a collision, we study separately the cases (1st) n = 2n′ + 1 ≥ 5 odd and (2nd)
n = 2n′′ + 2 ≥ 6 even:

• in the first case, we consider two inputs x, y ∈ Fnp such that xi = yi for each i odd
and xj 6= yj for each j even. The collision is found by solving a system of (linear)
equations in xi for i odd and in (xj + yj) for j even;

• the strategy for the second case is similar. The only difference regards the choice of
the input x, y ∈ Fnp which are defined as xi = yi for each i 6= n− 1 odd and xj 6= yj
for each j even and j = n− 1.

Lemma 3. Let p ≥ 3 be a prime integer. Let F : F3
p → Fp be a function of degree 2

defined as in (7), such that

(α2,0,0, α1,0,1, α1,1,0), (α0,2,0, α0,1,1, α1,1,0) 6= (0, 0, 0),

that is, either F (x0, x1, x2) = α0,1,0 · x1 + G(x0, x2) where G : F2
p → Fp is a quadratic

function or for each variable x0 and x2 there is at least one monomial of degree two that
depends on it. The function SF over Fnp defined as in Def. 1 is never a permutation for
each n ≥ 5.

The idea of the proof – given in details in Sect. 6.3 – is the following. First of all, we
show that the result is true for n = 5 by finding two different inputs x, y ∈ F5

p such that
x0 = y0 = x1 = y1 = ẑ ∈ Fp and S(x) = S(y) ∈ F5

p and x 6= y. In particular:

• if α1,0,1 6= 0, then it is sufficient that x and y are different by a single component in
order to find a collision. In this case, the condition for the collision corresponds to a
system of linear equation in ẑ and the two variables that are equal in x and y;

• if α1,0,1 = 0, then at least two components of x and y should be different in order to
find a collision. Again, the collision is found by solving a system of linear equations.

The collision over Fnp for n ≥ 6 is obtained by working with x′ = x‖ẑ‖ẑ‖ . . . ‖ẑ and
y′ = y‖ẑ‖ẑ‖ . . . ‖ẑ ∈ Fnp .

5.3.2 Practical Verification

The theoretical results just given are supported by our practical verification, for which no
quadratic function F that induces an invertible S is found. For our practical tests, we limit
ourselves to consider balanced functions F : Fmp → Fp under the class of equivalence defined
in Def. 2. The practical results are reported in App. B – Table 3 for the case of quadratic
functions F : Fmp → Fp for m = 2, 3. Those include the number and the percentage of
balanced functions, the maximum value of n ≥ 3 tested and the total runtime.

3Besides that, note that e.g. a function F (x0, x1, x2) = x0 +α ·x1 +G(x2) that is linear in two variables
cannot generate a permutation S due to Prop. 7 (α(2) 6= 0).

18

6 Proof of Theorem 4
As we already mentioned, we prove that the function S over Fnp is not a permutation for
any quadratic function F : F3

p → Fp and n ≥ 5 by constructing collisions, which means we
find two distinct n-uples x, y ∈ Fnp such that S(x) = S(y) and x 6= y or equivalently:

∀i ∈ {0, 1, 2, . . . , n− 1} : F (xi, xi+1, xi+2) = F (yi, yi+1, yi+2),

where the sub-indexes are taken modulo n. For reaching this goal, we introduce new
variables s, d ∈ Fnp , respectively the sum and the difference:

s := x+ y and d := x− y.

Clearly a pair (si, di) is equivalent to a pair xi, yi, since x = (s+ d)/2 and y = (s− d)/2.
For the follow-up, note that the equality 2 · (xi · xj − yi · yj) = si · dj + sj · di always holds.

6.1 Proof of Lemma 1
Due to the results given in Prop. 7, here we limit ourselves to consider the case α(2) = 0
and α(1) 6= 0. We study separately the cases

1. α0,0,2, α2,0,0 6= 0;

2. α0,0,2 = 0 or α2,0,0 = 0.

Note that at least two terms among α0,0,2, α0,2,0, α2,0,0 are different from zero (since
α(2) = 0).

6.1.1 Case: α0,0,2, α2,0,0 6= 0

First of all, we show that the result is true for n = 5 by finding two different inputs
x, y ∈ F5

p such that S(x) = S(y) ∈ F5
p and x 6= y. These inputs satisfy an additional

condition, namely x0 = y0 = x1 = y1 = ẑ ∈ Fp. This allows us to generalize the found
collision for each n ≥ 6. Indeed, exactly as in the case of Theorem 3, given x, y ∈ F5

p as
before, note that

x′ = x‖ẑ‖ẑ‖ . . . ‖ẑ, y′ = y‖ẑ‖ẑ‖ . . . ‖ẑ ∈ Fnp
implies a collision S(x) = S(y) ∈ Fnp , since F is defined over F3

p and since x0 = y0 = x1 =
y1 = ẑ. W.l.o.g., we fix ẑ = 0 in the following.

The condition S(x) = S(y) over F5
p is equivalent to:

d2 · (α0,0,2 · s2 + α0,0,1) = 0
d4 · (α2,0,0 · s4 + α1,0,0) = 0
d2 · (α0,2,0 · s2 + α0,1,0) + d3 · (α0,0,2 · s3 + α0,0,1) = 0
d3 · (α2,0,0 · s3 + α1,0,0) + d4 · (α0,2,0 · s4 + α0,1,0) = 0
d2 · (α2,0,0 · s2 + α1,0,0) + d3 · (α0,2,0 · s3 + α0,1,0) + d4 · (α0,0,2 · s4 + α0,0,1) = 0

.

Since α0,0,2 and α2,0,0 are different from zero, then s2 = −α0,0,1
α0,0,2

and s4 = −α1,0,0
α2,0,0

from the
first two equations. The sum of the last three equations gives d3 = −d2 − d4 since

d2 · (s2 · (α0,2,0 + α2,0,0) + α1,0,0 + α0,1,0) · d3 · (α(2)︸︷︷︸
=0

·s3 + α(1))

+ d4 · (s4 · (α0,2,0 + α0,0,2) + α0,0,1 + α0,1,0) = 0

where

s2 · (α0,2,0 + α2,0,0) + α1,0,0 + α0,1,0 = −α0,0,2 · s2 + α1,0,0 + α0,1,0 = α(1)

19

(analogous for the coefficient of d4). Since d3 6= 0, the third equation becomes

s3 = 1
α0,0,2

·
(
d2 · (α0,2,0 · s2 + α0,1,0)

d2 + d4
− α0,0,1

)
and substituting this value in the fourth equation, we get

(d4 − d2) · (α2
2,0,0 · α0,0,1 + α2,0,0 · α0,0,2 · α0,1,0 + α2

0,0,2 · α1,0,0) = 0

which is always satisfied if d2 = d4 6= 0 and d3 = −2 · d2. Now taking di and si as stated,
the solution of the system corresponds to a collision for S.

6.1.2 Case: α0,0,2 = 0 (analogous for α2,0,0 = 0)

If α0,0,1 = 0, then F depends only on x0 and x1 and the result follows from Theorem 3. If
α0,0,1 6= 0, we highlight that it is not possible to find any collision under the condition
x0 = y0 = x1 = y1 (using the previous strategy, we would have d3 = d4 = d5 = 0). Here
we construct a collision directly over Fnp .

First of all, note that since α(2) = 0 and α0,0,2 = 0, it follows that α0,2,0 = −α2,0,0.
Working under the class of equivalence defined in Def. 2, we assume α2,0,0 = −α0,2,0 = 1,
hence

F (x0, x1, x2) = x2
0 − x2

1 +A(x0, x1, x2)
where A(x0, x1, x2) = α1,0,0 · x0 + α0,1,0 · x1 + α0,0,1 · x2.

Note

F (xi, xi+1, xi+2)− F (yi, yi+1, yi+2) = si · di − si+1 · di+1 +A(di, di+1, di+2)

where the sub-indices are taken modulo n. Since F (xi, xi+1, xi+2) = F (yi, yi+1, yi+2), note
that
n−1∑
i=0

(F (xi, xi+1, xi+2)− F (yi, yi+1, yi+2)) = 0 implies
n−1∑
i=0

A(di, di+1, di+2) = 0

since
n−1∑
i=0

(F (xi, xi+1, xi+2)− F (yi, yi+1, yi+2))

=
n−1∑
i=0

(si · di − si+1 · di+1 +A(di, di+1, di+2))

=
n−1∑
i=0

si · di −
n−1∑
i=0

si+1 · di+1︸ ︷︷ ︸
=0

+
n−1∑
i=0

A(di, di+1, di+2)

=
n−1∑
i=0

A(di, di+1, di+2).

Moreover:
n−1∑
i=0

A(di, di+1, di+2) implies
n−1∑
i=0

di = 0,

that is, dn−1 = −
∑n−2
i=0 di. Indeed:

n−1∑
i=0

A(di, di+1, di+2) =
n−1∑
i=0

(α1,0,0 · di + α0,1,0 · di+1 + α0,0,1 · di+2) = α(1) ·
n−1∑
i=0

di

20

where α(1) 6= 0.
The condition S(x) = S(y) is equivalent to

d0 −d1 0 0 0 . . . 0
0 d1 −d2 0 0 . . . 0
0 0 d2 −d3 0 . . . 0
...
0 0 . . . 0 dn−3 −dn−2 0
0 0 . . . 0 0 dn−2 −dn−1
−d0 0 . . . 0 0 0 dn−1


×



s0
s1
s2
...

sn−3
sn−2
sn−1


=



A(d0, d1, d2)
A(d1, d2, d3)
A(d2, d3, d4)

...
A(dn−3, dn−2, dn−1)
A(dn−2, dn−1, d0)
A(dn−1, d0, d1)


.

Note that the determinant of the l.h.s. matrix is zero, since the sum of all the rows
is equal to zero. At the same time, the determinant of the first (n − 1) × (n − 1) sub-

matrix is
n−2∏
i=0

di. Hence, let’s fix di 6= 0 for each i ∈ {0, 1, . . . , n − 2} (e.g., di = 1),

and also fix dn−1 = −
∑n−2
i=0 di (due to the previous consideration). Working on the

first n − 1 equations in the first n − 1 variables, it is possible to find s0, s1, . . . , sn−2
that solve the first n − 1 equations for the given di 6= 0. Finally, sn−1 is given by
dn−2 · sn−2− dn−1 · sn−1 = A(dn−2, dn−1, d0) (the last equation is obviously satisfied).

6.2 Proof of Lemma 2
Due to the results given in Prop. 7, here we limit ourselves to consider the case α(2) = 0
and α(1) 6= 0. Furthermore, due to the equivalence class defined in Def. 2 in Sect. 2.1 we
can assume w.l.o.g. that α1,0,0 = 1 in the case F (x0, x1, x2) = α1,0,0 · x0 +G(x1, x2), and
α0,0,1 = 1 in the case F (x0, x1, x2) = α0,0,1 · x2 +G(x0, x1).

Observe that proving the Lemma for the first function F (x0, x1, x2) = α1,0,0 · x0 +
G(x1, x2) implies the proof for the second case F (x0, x1, x2) = α0,0,1 · x2 + G(x0, x1) as
well. Indeed, if x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) generate a collision for the
function SF defined via F (x0, x1, x2) = x0 +G(x1, x2), then x′ = (xn−1, xn−2, . . . , x1, x0)
and y′ = (yn−1, yn−2, . . . , y1, y0) generate a collision for the function SF ′ defined via
F ′(x0, x1, x2) = x2 + G(x0, x1). Hence, from now on we assume F (x0, x1, x2) = x0 +
G(x1, x2).

We study separately the cases

1. α0,0,2 = α0,2,0 6= 0;

2. n odd and α0,0,2 6= α0,2,0;

3. n even and α0,0,2 6= α0,2,0.

6.2.1 Case: α0,0,2 = α0,2,0 6= 0

The following proof holds for every n ≥ 5. Observe that α(2) = 0 implies α0,1,1 = −2α0,2,0.
Working under the class of equivalence defined in Def. 2, we also assume α0,2,0 = 1.

The condition for the collision is given by

F (xi, xi+1, xi+2)− F (yi, yi+1, yi+2)
=(di+1 − di+2) · si+1 + (di+2 − di+1) · si+2 +A(di, di+1, di+2) = 0,

where A(z0, z1, z2) : F3
p → Fp is the linear function A(z0, z1, z2) = z0 +α0,1,0 ·z1 +α0,0,1 ·z2.

The first condition F (x0, x1, x2) = F (y0, y1, y2) is always satisfied if d1 = d2 and
d0 + (α0,1,0 + α0,0,1) · d2 = 0, that is, d0 = −(α0,1,0 + α0,0,1) · d2. Note that d0 6= d2 if
α0,1,0 +α0,0,1 6= −1, which is always the case since α(1) = 1 +α0,1,0 +α0,0,1 6= 0 (remember

21

that we are assuming α1,0,0 = 1). In such a case and by fixing s0 = 0, the condition
S(x) = S(y) becomes

0 d2 − d3 d3 − d2 0 . . . 0
0 0 d3 − d4 d4 − d3 . . . 0
...
0 0 . . . 0 dn−2 − dn−1 dn−1 − dn−2
0 0 . . . 0 0 dn−1 − d0

d1 − d0 0 . . . 0 0 0


×



s1
s2
...

sn−3
sn−2
sn−1


=

−
[
A(d1, d2, d3), A(d2, d3, d4), . . . , A(dn−2, dn−1, d0), A(dn−1, d0, d1)

]T
,

where ·T denotes the transpose matrix. By simple computation, the determinant of the
l.h.s. matrix is

(−1)n · (d0 − d1) ·
n−1∏
i=2

(di − di+1),

which is always different from zero by choosing di 6= di+1 for each i = 3, . . . , n− 2 (where
d1 = d2 and d0 = (1 − α(1)) · d1). As a result, given di as just defined and s0 = 0, the
solution of the previous system corresponds to two distinct x, y ∈ Fnp such that S(x) = S(y).

6.2.2 Case: n odd and α0,0,2 6= α0,2,0

Let n = 2n′ + 1. Our strategy for finding a collision is to work with two inputs x, y ∈ Fnp
defined as

• xi = yi for each i ∈ {1, 3, . . . , 2i′ + 1, . . . , n− 2} odd (equivalently, di = 0 for each i
odd);

• xi 6= yi for each i ∈ {0, 2, . . . , 2i′, . . . , n− 1} even.

The condition S(x) = S(y) implies:

• if the first sub-index is even and if j ∈ {0, 1, . . . , (n− 3)/2} (equivalently, 2j + 2 ≤
n− 1):

F (x2j , x2j+1, x2j+2)− F (y2j , y2j+1, y2j+2)
=α0,0,2 · s2j+2 · d2j+2 + α0,1,1 · s2j+1 · d2j+2 + d2j + α0,0,1 · d2j+2 = 0;

• if the first sub-index is odd and if j ∈ {0, 1, . . . , (n−5)/2} (equivalently, 2j+3 ≤ n−1):

F (x2j+1, x2j+2, x2j+3)− F (y2j+1, y2j+2, y2j+3)
=α0,2,0 · s2j+2 · d2j+2 + α0,1,1 · s2j+3 · d2j+2 + α0,1,0 · d2j+2 = 0;

• finally, since n− 1 is even:

F (xn−1, x0, x1)− F (yn−1, x0, x1)
=α0,2,0 · s0 · d0 + α0,1,1 · s1 · d0 + dn−1 + α0,1,0 · d0 = 0;

and

F (xn−2, xn−1, x0)− F (yn−2, xn−1, x0) = α0,2,0 · sn−1 · dn−1 + α0,0,2 · s0 · d0

+ α0,1,1 ·
s0 · dn−1 + sn−1 · d0

2 + α0,1,0 · dn−1 + α0,0,1 · d0 = 0;

22

It follows that S(x) = S(y) corresponds to

0 M0,1 M0,2 0 0 . . . 0 0 0
0 0 M1,2 M1,3 0 . . . 0 0 0
0 0 0 M2,3 M2,4 . . . 0 0 0
...

. . .
. . .

...
0 0 0 0 0 . . . 0 Mn−3,n−2 Mn−3,n−1

Mn−2,0 0 0 0 0 . . . 0 0 Mn−2,n−1
Mn−1,0 Mn−1,1 0 0 0 . . . 0 0 0

×


s0
x1
s2
x3
s4
...

sn−3
xn−2
sn−1


=

−
[
A(d0, 0, d2), A(0, d2, 0), A(d2, 0, d4), . . . , A(dn−3, 0, dn−1), A(0, dn−1, d0), A(dn−1, d0, 0)

]T
,

where A(z0, z1, z2) : F3
p → Fp is the linear function A(z0, z1, z2) = z0 +α0,1,0 ·z1 +α0,0,1 ·z2

and where the coefficients ofM are defined as following:

(Mj,j+1;Mj,j+2) :=


(α0,1,1 · dj+2;α0,0,2 · dj+2) if j ∈ {0, 2, 4, . . . , n− 3}
(α0,2,0 · dj+1;α0,1,1 · dj+1) if j ∈ {1, 3, 5, . . . , n− 4}(
α0,0,2 · d0 + α0,1,1·dn−1

2 ;α0,2,0 · dn−1 + α0,1,1·d0
2

)
if j = n− 2

(α0,2,0 · d0;α0,1,1 · d0) if j = n− 1

.

Let’s analyze the determinant of the r.h.s matrixM:
• if α0,2,0 = 0 (hence, α0,0,2 = −α0,1,1 6= 0): the determinant of the matrix is

det(M) = (α0,0,2 · α0,1,1)n
′
·
(
α0,0,2 · d0 + α0,1,1 · dn−1

2

)
·
n′∏
i=0

d2
2i ,

which is different from zero by choosing α0,0,2 · d0 6= −α0,1,1·dn−1
2 . Analogous if

α0,0,2 = 0;

• if α0,2,0, α0,0,2 6= 0 and α0,0,2 6= α0,2,0: by choosing dn−1
d0

= − α0,1,1
2α0,2,0

, the determinant
becomes

det(M) = (α0,2,0 · α0,1,1)n
′
·
(
α0,0,2 · d0 + α0,1,1 · dn−1

2

)
·
n′∏
i=0

d2
2i ,

which is different from zero if α0,0,2 6= α0,2,0. Indeed:

α0,0,2 + α0,1,1 · dn−1

2 · d0
=

4α0,0,2 · α0,2,0 − α2
0,1,1

4α0,2,0
= − (α0,0,2 − α0,2,0)2

4α0,2,0
6= 0 .

6.2.3 Case: n even and α0,0,2 6= α0,2,0

Let n = 2n′′ + 2. The proof is similar to the one for n odd. Our strategy for finding a
collision is to work with two inputs x, y ∈ Fnp defined as

• xi = yi for each i ∈ {1, 3, . . . , 2i′+1, . . . , n−3} odd, but not for i = n−1 (equivalently,
di = 0 for each i odd 6= n− 1);

• xi 6= yi for each i ∈ {0, 2, . . . , 2i′, . . . , n− 2} even and i = n− 1.
The condition S(x) = S(y) implies:

• if the first sub-index is even and if j ∈ {0, 1, . . . , (n− 4)/2} (equivalently, 2j + 2 ≤
n− 2):

F (x2j , x2j+1, x2j+2)− F (y2j , y2j+1, y2j+2)
=α0,0,2 · s2j+2 · d2j+2 + α0,1,1 · x2j+1 · d2j+2 + α1,0,0 · d2j + α0,0,1 · d2j+2 = 0 ;

23

• if the first sub-index is odd and if j ∈ {0, 1, . . . , (n−6)/2} (equivalently, 2j+3 ≤ n−2):

F (x2j+1, x2j+2, x2j+3)− F (y2j+1, y2j+2, y2j+3)
=α0,2,0 · s2j+2 · d2j+2 + α0,1,1 · x2j+3 · d2j+2 + α0,1,0 · d2j+2 = 0 ;

• finally, since n− 2 is even:

F (xn−3, xn−2, xn−1)− F (yn−3, xn−2, xn−1) = α0,2,0 · sn−2 · dn−2 + α0,0,2 · sn−1 · dn−1

+ α0,1,1 ·
sn−2 · dn−1 + sn−1 · dn−2

2 + α0,1,0 · dn−2 + α0,0,1 · dn−1 = 0 ;

and

F (xn−2, xn−1, x0)− F (yn−2, xn−1, x0) = α0,2,0 · sn−1 · dn−1 + α0,0,2 · s0 · d0

+ α0,1,1 ·
s0 · dn−1 + sn−1 · d0

2 + α1,0,0 · dn−2 + α0,1,0 · dn−1 + α0,0,1 · d0 = 0 ;

and

F (xn−1, x0, x1)− F (yn−1, x0, x1)
=α0,2,0 · s0 · d0 + α0,1,1 · x1 · d0 + α1,0,0 · dn−1 + α0,1,0 · d0 = 0 ;

By working as in the case n odd, the determinant of the matrixM of the obtained linear
system is given by

det(M) = (α0,1,1)n
′′
·
[

(α0,0,2)n
′′
·
(
α0,0,2 · d0 + α0,1,1 · dn−1

2

)
·
(
α0,0,2 · dn−1 + α0,1,1 · dn−2

2

)
− (α0,2,0)n

′′
·
(
α0,1,1 · dn−1

2 + α0,2,0 · dn−2

)
·
(
α0,1,1 · d0

2 + α0,2,0 · dn−1

)]
·
n′′∏
i=0

d2
2i .

Let’s analyze the determinant ofM:

• if α0,2,0 = 0 (hence, α0,0,2 = −α0,1,1 6= 0): the determinant of the matrix is

(α0,1,1·α0,0,2)n
′′
·
(
α0,0,2 · d0 + α0,1,1 · dn−1

2

)
·
(
α0,0,2 · dn−1 + α0,1,1 · dn−2

2

)
·
n′′∏
i=0

d2
2i ,

which is different from zero by choosing α0,0,2 · d0 6= −α0,1,1·dn−1
2 and α0,0,2 · dn−1 6=

−α0,1,1·dn−2
2 . Analogous if α0,0,2 = 0;

• if α0,2,0, α0,0,2 6= 0 and α0,0,2 6= α0,2,0: by choosing dn−2
dn−1

= − α0,1,1
2α0,2,0

, the determinant
becomes

(α0,1,1·α0,0,2)n
′′
·
(
α0,0,2 · d0 + α0,1,1 · dn−1

2

)
·
(
α0,0,2 · dn−1 + α0,1,1 · dn−2

2

)
·
n′′∏
i=0

d2
2i ,

which is different from zero by choosing α0,0,2 · d0 6= −α0,1,1·dn−1
2 since α0,0,2 6= α0,2,0.

Indeed:

α0,0,2 + α0,1,1 · dn−2

2 · dn−1
=

4α0,0,2 · α0,2,0 − α2
0,1,1

4α0,2,0
= − (α0,0,2 − α0,2,0)2

4α0,2,0
6= 0 .

24

6.3 Proof of Lemma 3
We first prove the result for the case n = 5. Our goal is to prove that for each function
F : F3

p → Fp of degree 2 defined as in (7), it is possible to find two different inputs x, y ∈ F5
p

such that S(x) = S(y), or equivalently:

∀i ∈ {0, 1, 2, 3, 4} : F (xi, xi+1, xi+2) = F (yi, yi+1, yi+2),

where the sub-indexes are taken modulo n. As before, we assume x0 = y0 = x1 = y1 =
ẑ ∈ Fp.

Once such a collision is found, a collision for n ≥ 6 is trivially set up by working with
x, y ∈ Fnp where

∀i ≥ 5 : xi = yi = ẑ ,

which implies that F (xi, xi+1, xi+2) = F (yi, yi+1, xi+2) = 0 for each i ∈ {5, . . . , n− 1}.

6.3.1 Initial Considerations

The condition F (ẑ, ẑ, x2) = F (ẑ, ẑ, y2) implies

(x2 − y2) · (α0,0,2 · (x2 + y2) + (α1,0,1 + α0,1,1) · ẑ + α0,0,1) = 0,

which is satisfied either by d2 = 0 or by

α0,0,2 · (x2 + y2) + (α1,0,1 + α0,1,1) · ẑ + α0,0,1 = 0.

In a similar way, the condition F (x4, ẑ, ẑ) = F (y4, ẑ, ẑ) is satisfied by

α2,0,0 · (x4 + y4) + (α1,1,0 + α1,0,1) · ẑ + α1,0,0 = 0.

The equality F (ẑ, x2, x3) = F (ẑ, y2, y3)

(x3 − y3) · (α0,0,2 · (x3 + y3) + α1,0,1 · ẑ + α0,1,1 · y2 + α0,0,1)
=− (x2 − y2) · (α0,2,0 · (x2 + y2) + α1,1,0 · ẑ + α0,1,1 · x3 + α0,1,0)

admits as possible solutions:

• x2 = y2 and x3 = y3;

• x2 = y2 and α0,0,2 · (x3 + y3) + α1,0,1 · ẑ + α0,1,1 · x2 + α0,0,1 = 0;

• x3 = y3 and α0,2,0 · (x2 + y2) + α1,1,0 · ẑ + α0,1,1 · x3 + α0,1,0 = 0;

and so on. Similar considerations hold for the equality F (x3, x4, ẑ) = F (y3, y4, ẑ), that is

(x3 − y3) · (α2,0,0 · (x3 + y3) + α1,0,1 · ẑ + α1,1,0 · y4 + α1,0,0)
=− (x4 − y4) · (α0,2,0 · (x4 + y4) + α0,1,1 · ẑ + α1,1,0 · x3 + α0,1,0).

In order to find a collision, let’s start by fixing d2 = d4 = 0 and d3 6= 0. The conditions
for the collision are:α1,0,1 α0,1,1 0

0 α1,1,0 α0,1,1
α1,0,1 0 α1,1,0

×
 ẑx2
x4

 = −

α0,0,2 · s3 + α0,0,1
α0,2,0 · s3 + α0,1,0
α2,0,0 · s3 + α1,0,0

 ,
which clearly admits a non-trivial solution (hence, a collision) if α1,0,1 6= 0 and α2

1,1,0 +
α2

0,1,1 6= 0.

25

Similarly, by fixing d2 = d3 = 0 and d4 6= 0, the conditions for the collision are:α1,1,0 + α1,0,1 0 0
α0,1,1 0 α1,1,0

0 α1,0,1 α0,1,1

×
 ẑx2
x3

 = −

α2,0,0 · s4 + α1,0,0
α0,2,0 · s4 + α0,1,0
α0,0,2 · s4 + α0,0,1

 ,
which has a non-trivial solution (hence, a collision) if α1,1,0 6= −α1,0,1 and α1,1,0, α1,0,1 6= 0.

Working in the same way and by fixing d3 = d4 = 0 and d2 6= 0, the conditions for the
collision are:α1,0,1 + α0,1,1 0 0

α1,1,0 α0,1,1 0
0 α1,1,0 α1,0,1

×
 ẑx3
x4

 = −

α0,0,2 · s2 + α0,0,1
α0,2,0 · s2 + α0,1,0
α2,0,0 · s2 + α1,0,0

 ,
which always admits a non-trivial solution (hence, a collision) if α0,1,1 6= −α1,0,1 and
α0,1,1, α1,0,1 6= 0.

In summary, if only a single difference di is non-zero, the cases in which it is not
possible to find a collisions by using the strategy just proposed are

1. α1,0,1 = 0;

2. α1,0,1 6= 0 and 
α2

1,1,0 + α2
0,1,1 = 0;

α1,0,1 = −α1,1,0 or α1,1,0 = 0;
α1,0,1 = −α0,1,1 or α0,1,1 = 0.

Indeed, if α1,0,1 6= 0, it is sufficient that one of three conditions given in the system
is not fulfilled in order to find a collision using the previous results.

Let’s analyze them in details.

6.3.2 Case: α1,0,1 6= 0

Case: α1,0,1 6= 0 and α1,1,0 = 0. Note that in this case, α1,0,1 = −α1,1,0 cannot occur
since α1,0,1 6= 0. Due to α2

1,1,0 + α2
0,1,1 = 0, we have α0,1,1 = 0. Let’s consider separately

the cases α0,2,0 6= 0 and α0,2,0 = 0:

• if α0,2,0 6= 0, then working with d2 = d3 = 0 and d4 6= 0, we get new conditions of
the form: α1,0,1 0 α2,0,0

0 0 α0,2,0
0 α1,0,1 α0,0,2

×
 ẑx2
s4

 = −

α1,0,0
α0,1,0
α0,0,1

 ,
which admits a solution (namely, a collision), since the determinant of the l.h.s.
matrix is non-zero.

• If α0,2,0 = 0, then if α0,1,0 = 0 the result follows from Theorem 3. If α0,2,0 = 0 and
α0,1,0 6= 0, then we can assume α0,1,0 = 1 due to the equivalence class defined in
Def. 2 in Sect. 2.1, that is,

F (x0, x1, x2) = α2,0,0 · x2
0 + α0,0,2 · x2

2 + α1,0,1 · x0 · x2 + α1,0,0 · x0 + x1 + α0,0,1 · x2 .

Observe that the condition α(2) = 0 implies that at least one between α2,0,0 and
α0,0,2 is different from zero. Suppose α2,0,0 6= 0 and choose d2 = 0, note that if

26

α2,0,0 = 0 then α0,0,2 6= 0 and the result is analogous choosing d4 = 0. The condition
S(x) = S(y) becomes:

α0,0,2 · s3 + α1,0,1 · ẑ + α0,0,1 = 0
α2,0,0 · s4 + α1,0,1 · ẑ + α1,0,0 = 0
α0,0,2 · s4 · d4 + α1,0,1 · x2 · d4 + d3 + α0,0,1 · d4 = 0
α2,0,0 · s3 · d3 + α1,0,1 · ẑ · d3 + α1,0,0 · d3 + d4 = 0

.

By isolating ẑ in the first equation and s4 in the second, and by substituting ẑ in
the last equation, we get

(α2,0,0 − α0,0,2) · s3 · d3 + (α1,0,0 − α0,0,1) · d3 + d4 = 0 .

If α2,0,0 6= α0,0,2 or α1,0,0 6= α0,0,1 there exist a pair (s3, d4) such that this equality
holds and d4 6= 0. In this case choose x2 such that the third equation always holds
true, and these conditions correspond to a collision.
It remains to find a collision if α2,0,0 = α0,0,2 and α1,0,0 = α0,0,1. In this case choose
ẑ = 0, d2, d3, d4 6= 0 and the system becomes:

α2,0,0 · s2 + α1,0,0 = 0
α2,0,0 · s4 + α1,0,0 = 0
α2,0,0 · s3 · d3 + d2 + α1,0,0 · d3 = 0
α2,0,0 · s3 · d3 + α1,0,0 · d3 + d4 = 0
α2,0,0(s2 · d2 + s4 · d4) + α1,0,1

2 (s2 · d4 + s4 · d2) + α1,0,0 · (d2 + d4) + d3 = 0

.

The first two equations hold if s2 = s4 = −α1,0,0
α2,0,0

. From the difference between the
third and fourth d2 = d4 and choosing s3 = −d2+α1,0,0·d3

α2,0,0·d3
both equations always hold

true. Now rewrite the last equation as

(2α2,0,0 + α1,0,1) · s2 · d2 + 2α1,0,0 · d2 + d3 = 0 .

Furthermore 2α2,0,0 + α1,0,1 = α(2) = 0, hence the last equation holds true if
d3 = −2α1,0,0 · d2 and choosing d2 6= 0 all the conditions for the collision are verified.

Case: α1,0,1 6= 0 and α1,1,0 6= 0. This case cannot occur. Indeed, due to the
second condition, we have α1,0,1 = −α1,1,0, and due to the third condition, we have
α1,0,1 = −α0,1,1 (note that α0,1,1 = 0 cannot occur, since this would imply α1,1,0 = 0
due to the first condition). Hence, −α1,0,1 = α1,1,0 = α0,1,1. The first equation becomes
2 · α2

1,1,0 = 0, that is, α1,1,0 = 0, which is not possible.

6.3.3 Case: α1,0,1 = 0

Case: α1,0,1 = 0 and “α0,1,1 = 0 or/and α1,1,0 = 0”. If α1,1,0, α0,1,1 = 0, then the
result follows immediately from Lemma 1. Hence, let’s suppose that at least one term
among α1,1,0 and α0,1,1 is different from zero. In such a case, let’s re-write the conditions
for d2 = d4 = 0 and d3 6= 0 as:α0,0,2 α0,1,1 0

α0,2,0 α1,1,0 α0,1,1
α2,0,0 0 α1,1,0

×
s3
x2
x4

 = −

α0,0,1
α0,1,0
α1,0,0

 .
We study separately the two cases:

27

• α0,1,1 = 0 or α1,1,0 = 0;

• α0,1,1, α1,1,0 6= 0.

If α0,1,1 = 0 and if α0,0,2 6= 0 the determinant is non-zero and the system has solution,
hence there is a collision. Otherwise if α0,0,2 = 0 the result follows from Lemma 2, because
all the monomials of degree two with x2 as a factor have coefficients equal to zero in F .
Analogous for α1,1,0 = 0.

Case: α1,0,1 = 0 and α0,1,1, α1,1,0 6= 0 This is the last remaining case to analyze;
here we need at least two terms di to be non-zero. Let’s start with d2 = 0, d3, d4 6= 0 and
define A(x0, x1, x2) = α1,0,0 · x0 + α0,1,0 · x1 + α0,0,1 · x2 as before. The condition for a
collision is: α0,0,2 0 α0,1,1 0

0 α2,0,0 0 α1,1,0

α0,2,0 · d3 + α0,1,1·d4
2 α0,0,2 · d4 + α0,1,1·d3

2 α1,1,0 · d3 0
α2,0,0 · d3 + α1,1,0·d4

2 α0,2,0 · d4 + α1,1,0·d3
2 0 α0,1,1 · d4

×
s3
s4
x2
ẑ

 = −

 A(0, 0, 1)
A(1, 0, 0)
A(0, d3, d4)
A(d3, d4, 0)

 .

The determinant of the matrix is equal to(
α1,1,0 · α0,1,1 · α0,2,0 − α2

1,1,0 · α0,0,2 − α2
0,1,1 · α2,0,0

)
· (α1,1,0 · d2

3 + α0,1,1 · d2
4)

+
(
α1,1,0 · α0,1,1 · α2,0,0 · α0,0,2 − α2

0,1,1 · α2,0,0 · α0,2,0 − α2
1,1,0 · α0,0,2 · α0,2,0

)
· d3 · d4.

Note that

• if α2
1,1,0 ·α0,0,2 +α2

0,1,1 ·α2,0,0−α1,1,0 ·α0,1,1 ·α0,2,0 6= 0 (namely, the coefficient that
multiplies α1,1,0 · d2

3 + α0,1,1 · d2
4), then it is possible to choose (d3, d4) 6= (0, 0) such

that the determinant is non-zero (e.g., d3 = 0 and d4 6= 0);

• if α2
1,1,0 · α0,0,2 + α2

0,1,1 · α2,0,0 − α1,1,0 · α0,1,1 · α0,2,0 = 0 and if α1,1,0 · α0,1,1 · α2,0,0 ·
α0,0,2 − α2

0,1,1 · α2,0,0 · α0,2,0 − α2
1,1,0 · α0,0,2 · α0,2,0 6= 0 (namely, the coefficient

that multiplies d3 · d4), then it is possible to choose (d3, d4) 6= (0, 0) such that the
determinant is non-zero (e.g., d3 6= 0 and d4 6= 0).

Similarly, considering now the case d3 = 0 and d2, d4 6= 0, there is a collision if α0,0,2 ·
α2,0,0 · (α2

1,1,0 − α2
0,1,1) + α1,1,0 · α0,1,1 · α0,2,0 · (α0,0,2 − α2,0,0) 6= 0. Hence, the only case

that remains to analyze is
α1,1,0 · α0,1,1 · α0,2,0 − α2

1,1,0 · α0,0,2 − α2
0,1,1 · α2,0,0 = 0

α1,1,0 · α0,1,1 · α2,0,0 · α0,0,2 − α2
0,1,1 · α2,0,0 · α0,2,0 − α2

1,1,0 · α0,0,2 · α0,2,0 = 0
α0,0,2 · α2,0,0 · (α2

1,1,0 − α2
0,1,1) + α1,1,0 · α0,1,1 · α0,2,0 · (α0,0,2 − α2,0,0) = 0

.

By taking the sum between the first equation and the second one multiplied by α0,2,0, it
follows that α2

0,2,0 = α0,0,2 · α2,0,0. By replacing α1,1,0 · α0,1,1 · α0,2,0 in the last equation
via the first one, we get (α0,0,2 · α1,1,0)2 = (α2,0,0 · α0,1,1)2, which implies that the previous
conditions become: {

α0,0,2 · α1,1,0 = ±α2,0,0 · α0,1,1

α2
0,2,0 = α0,0,2 · α2,0,0

.

This system is satisfied if and only if one of the two following events happens:

1. α2,0,0 = α0,2,0 = α0,0,2 = 0;

2. β2 = ±α0,1,1
α1,1,0

is a quadratic residue and α0,0,2 = α2,0,0 · β2, α0,2,0 = ±α2,0,0 · β.

28

SubCase: α2,0,0 = α0,2,0 = α0,0,2 = 0. We have that α0,1,1 = −α1,1,0 due to α(2) = 0.
Fix d4 = 0 and d2, d3 6= 0, the conditions for the collision are:

(α0,1,1 · ẑ + α0,0,1) · d2 = 0
(−α0,1,1 · x4 + α1,0,0) · d3 = 0
−α0,1,1 · ẑ · d2 + α0,1,1

2 · (d2 · s3 + d3 · s2) + α0,1,0 · d2 + α0,0,1 · d3 = 0
−α0,1,1

2 · (d2 · s3 + d3 · s2) + α0,1,1 · x4 · d3 + α1,0,0 · d2 + α0,1,0 · d3 = 0

.

Since the sum of the four equations is α(1) · (d2 + d3) = 0, it follows that d2 = −d3. By
substituting this in the third equation, we get s2 = s3 + 2α0,1,0

α0,1,1
. By choosing d3 6= 0 and a

proper s3, the system admits solution, which corresponds to a collision.

SubCase: ±α0,1,1
α1,1,0

is a quadratic residue and α0,0,2 = α2,0,0 · β2, α0,2,0 = ±α2,0,0 · β.
We assume α2,0,0 6= 0 (since α2,0,0 = 0 would reduce this case to the previous one). Let’s
choose ẑ = 0, d2 = d4 = 0 and d3 6= 0. In such a case, the condition for having a collision
becomes: ±β2 · α1,1,0 β2 · α2,0,0 0

α1,1,0 ±β2 · α2,0,0 ±β2 · α1,1,0
0 α2,0,0 α1,1,0

×
x2
s3
x4

 = −

α0,0,1
α0,1,0
α1,0,0

 .
The determinant of the matrix is −α2

1,1,0 · α2,0,0 · (1 ± β + β2). If 1 ± β + β2 6= 0, then
the determinant is different from zero and a collision can be found (remember that we are
working in the case α1,1,0, α2,0,0 6= 0).

Let’s focus on the case 1± β + β2 = 0. Note that

α(2) = α2,0,0 · (1± β + β2) + α1,1,0 + α0,1,1.

Since α(2) = 0, we have that α1,1,0 = −α0,1,1, which implies β2 = ±1. Hence:

• if β2 = −1, then 0 = 1± β + β2 = ±β, which is never satisfied (0 6= ±1);

• if β2 = 1, then 0 = 1 ± β + β2 = ±β + 2 hence β = ±2, where β2 = 4 = 1 if and
only if p = 3.

The only remaining case to analyze for concluding the proof is p = 3 and β = ±1, that
is

F (x0, x1, x2) = x2
0 + x2

1 + x2
2 ± x0 · x1 ∓ x1 · x2 + α1,0,0 · x0 + α0,1,0 · x1 + α0,0,1 · x2 .

Let’s focus on the case α1,1,0 = 1 and α0,1,1 = −1 (analogous for the other case). By fixing
d4 = 0 and d2, d3 6= 0, the collision occurs if

(s2 − ẑ + α0,0,1) · d2 = 0
(s3 + x4 + α1,0,0) · d3 = 0
s2 · d2 + s3 · d3 + ẑ · d2 + s2 · d3 + s3 · d2 + α0,1,0 · d2 + α0,0,1 · d3

s2 · d2 + s3 · d3 − s2 · d3 − s3 · d2 + x4 · d3 + α1,0,0 · d2 + α0,1,0 · d3

.

Similar to before, the sum of all the equations is α(1) · (d2 + d3) = 0, hence d3 = −d2. By
substituting d3 in the third equation and ẑ with the value given by the first equation, the
system of equations has a solution if s2 = −α0,1,0. This corresponds to a collision for S.

29

7 Neptune: a Concrete Application
As final step, we present Neptune, a sponge hash function [BDPV07, BDPA08] in-
stantiated with the Neptuneπ permutation. Neptuneπ resembles the permutation
Poseidonπ [GKR+21], and takes into account the results proposed in this paper. In the
following, after recalling Poseidon and presenting Neptune as its variant, we discuss
its design rationale and its security. Next, we compare the multiplicative complexity of
Neptune with the one of Poseidon.

7.1 Poseidon and the Hades Design Strategy
Poseidon is a sponge hash function over Ftp. Its internal permutation is based on the
Hades design strategy [GLR+20], recently proposed at Eurocrypt 2020. The main feature
of Hades schemes is the use of two different non-linear layers, namely a full one (composed
of t power maps x 7→ xd for odd d ≥ 3) in the external rounds, and a partial one (composed
of a single power map x 7→ xd and t− 1 identity functions) in the internal rounds. This
particular structure allows to provide security against both statistical and algebraic attacks,
and at the same time to achieve a low multiplicative complexity. In particular, the external
rounds aim to prevent statistical attacks as the classical and truncated differential attacks,
linear attacks, rebound attacks and so on. The main goal of the partial rounds is to
increase the overall degree of the permutation. Together with the external rounds, they
provide security against Gröbner basis attacks.

Let p > 263 be a prime number and let κ ∈ [80, 256] be the security level. Let t ≥ 2 be
such that pt ≥ 23·κ.4 Let d ≥ 3 be the smallest integer such that gcd(d, p− 1) = 1. The
Poseidon permutation P̂ : Ftp → Ftp is defined as

P̂(·) = F (7) ◦ · · · ◦ F (4)︸ ︷︷ ︸
=4 rounds

◦P(RP−1) ◦ · · · ◦ P(0)︸ ︷︷ ︸
=RP rounds

◦F (3) ◦ · · · ◦ F (0)︸ ︷︷ ︸
=4 rounds

(·),

where

F (j) = c(F,j) +M × S(F)(·) and P(j) = c(P,j) +M × S(P)(·)

and where c(F,j), c(P,j) are (random) round constants, M ∈ Ft×tp is a MDS matrix and
S(F),S(P) : Ftp → Ftp are defined as

S(F)(x0, . . . , xt−1) = xd0‖xd1‖ . . . ‖xdt−1, S(P)(x0, . . . , xt−1) = xd0‖x1‖ . . . ‖xt−1.

The number of full rounds is RF = 8 and the number of partial rounds is RP =
d1.125 · dlogd(2) · (min{κ, log2(p)} − 8) + logd(t)ee

In [BCD+20], distinguishers for this reduced-round permutation were presented, which
lead to collision attacks on the sponge hash function instantiated with the reduced-round
permutation P̂ . Moreover, in the same paper, authors were able to set up preimage attacks
on the sponge hash function instantiated with the full-round permutation P̂ in the case of
a weak MDS matrix M such that M2 is a multiple of the identity, and so, for which an
invariant subspace trail that covers all the internal rounds with probability 1 exists (see
also [KR21]). In [GRS21], Grassi et al. showed how to properly choose the MDS matrix
M in order to prevent this (and similar) attack(s).

7.2 Neptune
Let κ ∈ [80, 256] be the security level, and let p > 263 be a prime number. Let t = 2t′ ∈
{2, 4, . . . , 24} be an even integer. Since Neptune is intended to be used as the internal

4Given t = c+ r, the capacity c and the rate r satisfy respectively pc ≥ 22·κ and pr ≥ 2κ for κ bits of
security.

30

Figure 1: A sponge hash function instantiated with a permutation P.

permutation of a sponge hash function, the parameters p, κ and t have to satisfy (1st)
pc ≥ 22·κ and (2nd) pr ≥ 2κ, where r and c are respectively the rate and the capacity such
that t = c+ r. A sponge hash function instantiated by a generic permutation P is shown
in Fig. 1. About the padding, we suggest to use the same one proposed e.g. in Poseidon.
That is, (1st) the message m is padded with 0∗ until the size of m‖0∗ is a multiple of r and
(2nd) the inner part is initially instantiated as IV = |m|‖IV′ ∈ Fcp, where |m| is the size of
the input message m as an element of Fp and where IV′ ∈ Fc−1

p is a fixed initial value.
The Neptune permutation N̂ : Ftp → Ftp is defined as5

N̂ (·) = E(5) ◦ E(4)︸ ︷︷ ︸
=2 rounds

◦ I(RI−1) ◦ · · · ◦ I(0)︸ ︷︷ ︸
=RI rounds

◦ E(3) ◦ · · · ◦ E(0)︸ ︷︷ ︸
=4 rounds

(M (E) × ·),

where

E(j) = c(E,j) +M (E) × S(E)(·) and I(j) = c(I,j) +M (I) × S(I)(·)

and where c(E,j), c(I,i) ∈ Ftp are (random) round constants.

About the External Rounds E. The non-linear S(E) : Ftp → Ftp is defined as

S(E) = S ′(x0, x1)‖S ′(x2, x3)‖ . . . ‖S ′(xt−2, xt−1)

where S ′ : F2
p → F2

p is defined as S ′(x2i, x2i+1) = y2i‖y2i+1 for i ∈ {0, 1, . . . , t′ − 1} where

y2i = α2 · (2x2i + x2i+1) + 3α · (x2i − x2i+1)2 +
(
γ + α · (x2i − 2x2i+1)− (x2i − x2i+1)2)2

y2i+1 = α2 · (x2i + 3x2i+1) + 4α · (x2i − x2i+1)2 +
(
γ + α · (x2i − 2x2i+1)− (x2i − x2i+1)2)2

for fixed α, γ ∈ Fp \ {0} (e.g., α = 1 and γ 6= 0).
Let M ′,M ′′ ∈ Ft′×t′p be two MDS matrices such that

1. M ′ 6= µ ·M ′′ for each µ ∈ Fp;

2. for each i, j ∈ {0, 1, . . . , t′ − 1}: M ′i,j 6= M
′′

i,j .

The matrix M (E) ∈ Ft×tp is defined as

M
(E)
i,j =


M ′i′,j′ if (i, j) = (2i′, 2j′)
M
′′

i′′ ,j′′
if (i, j) = (2i′′ + 1, 2j′′ + 1)

0 otherwise
,

5In [GLR+20, GKR+21], authors use the nomenclature “Full” and “Partial” rounds for referring
respectively to the “External” and the “Internal” rounds.

31

that is,

M (E) =



M ′0,0 0 M ′0,1 0 . . . M ′0,t′−1 0
0 M

′′
0,0 0 M

′′
0,1 . . . 0 M

′′

0,t′−1
M ′1,0 0 M ′1,1 0 . . . M ′1,t′−1 0

0 M
′′
1,0 0 M

′′
1,1 . . . 0 M

′′

1,t′−1
...

. . .
...

M ′t′−1,0 0 M ′t′−1,1 0 . . . M ′t′−1,t′−1 0
0 M

′′

t′−1,0 0 M
′′

t′−1,1 . . . 0 M
′′

t′−1,t′−1


.

About the Internal Round I. The internal round I is defined via a Partial-SPN scheme
as in Poseidon, where

S(I)(x0, x1, . . . , xt−2, xt−1) = xd0‖x1‖ . . . ‖xt−2‖xt−1

where d ≥ 3 is the smallest integer such that gcd(d, p− 1) = 1, and where M (I) ∈ Ft×tp is
an invertible matrix that

1. must prevent arbitrary-long subspace trails for the Partial-SPN scheme I(RI−1) ◦
· · · ◦ I(0), as explained in [GRS21];

2. can be computed via O(t) affine operations.

A possible example of a matrix M (I) that satisfies such conditions is

M (I) =



M
(I)
0,0 1 1 . . . 1 1
1 M

(I)
1,1 1 . . . 1 1

1 1 M
(I)
2,2 . . . 1 1

...
1 1 1 . . . M

(I)
t−2,t−2 1

1 1 1 . . . 1 M
(I)
t−1,t−1


where M (I)

i,i ∈ Fp \ {0} are chosen in order to guarantee the previous requirements, for a
cost of t multiplications with constants.

Number of Rounds. The number of rounds are RF = 6 for the external ones (that is, 4
for at the beginning and 2 at the end) and

RI = d1.125 · dlogd(2) · (min{κ, log2(p)} − 6) + 3 + t+ logd(t)ee

for the internal ones (where we add 12.5% of security margin, as in Poseidon).

7.3 Design Rationale
By a simple computation, the number of Fp-multiplications required to evaluate Poseidon
is

(blog2(d)c+ hw(d)− 1) · (8 · t+RP) ,
that is O(16 · t) for d = 3 and O(24 · t) for d = 5 (where d = 3, 5 are the two most common
values used in ZK protocols). In order to design Neptune, we decided to focus only on the
external full rounds, since we noticed that the number of internal partial rounds is almost
constant with respect to t. For this reason, we decided not to modify them. Regarding the
external rounds and in order to make use of the results proposed in this paper, the goals
we tried to achieve were:

32

1. having a full round that does not cost more than t Fp-multiplications;

2. be able to guarantee security against statistical attacks via a small number of full
external rounds.

As a result, instead of limiting ourselves to consider an uneven distribution of the S-Boxes,
we propose two different round functions, one for the internal part and one for the external
one.

Open Conjectures for Future Work. As we have already seen, given any quadratic
function F : Fmp → Fp for m = 2, 3, the corresponding function S defined over Fnp as in
Def. 1 is not invertible for n ≥ 3 and n ≥ 5 respectively. We conjecture that the same
occurs for bigger values of m. More formally:

Conjecture 1. Let p ≥ 3 be a prime integer, and let 1 ≤ m ≤ n. For each m, there
exists a finite integer nmax(m) such that given any quadratic function F : Fmp → Fp, the
corresponding function S over Fnp defined as in Def. 1 is not invertible for any n ≥ nmax(m).

E.g., if m = 1, then nmax = 1; if m = 2, then nmax = 3; if m = 3, then nmax = 5.
Moreover, based on the result proposed in Sect. 3.3, nmax(m) ≥ m + 1 for each m ≥ 2.
Indeed, given a quadratic function F : Fmp → Fp, the Lai-Massey functions defined over
Fmp as in Sect. 3.3 are invertible.

If the conjecture is true, it would be interesting to analyze how fast nmax(m) grows.
The current results for m ∈ {1, 2, 3} suggest that

nmax(m) = 2 ·m− 1 .

By applying Corollary 2 on a generic m, we can construct an invertible function SF over
F2·(m−1)
p via a quadratic function F : Fmp → Fp (e.g., F (x0, x1, . . . , xm−1) = x0 + (x0 −
xm−1)2). Such a result is not in conflict with nmax(m) = 2 ·m− 1 just given. The same
happens when applying Prop. 11 to the results proposed in this paper. E.g., in the case
g = h ≥ 2 (which include both the Lai-Massey constructions proposed in Sect. 3.3, as well
as the functions proposed in Prop. 10 and in Prop. 9 for g = h = 3), we getm = g+(g−1)·z
and n = g · (z+ 1) for any z ≥ 0, where 2 · (m− 1) = 2 · (z+ 1) · (g− 1) ≥ n for each g ≥ 2,
which is again not in conflict with nmax(m) = 2 ·m− 1 just given.

Conjecture 2. Let nmax(m) be defined as in Conjecture 1. Then, nmax(m) = 2 ·m− 1.

If the conjecture “nmax(m) = 2 ·m− 1” is true, this implies that given a local quadratic
function F : Fmp → Fp, it is not possible to set up an invertible function S over Fnp defined
as in Def. 1 for n� m.

Concatenation of Independent S-Boxes. At the current state, we do not know any
(non-trivial) quadratic function F : Fmp → Fp for which it is possible to set up an invertible
function S over Fnp as in Def. 1 for n � m. For this reason, we are “forced” to set up
the non-linear layer of the external rounds as a concatenation of independent quadratic
S-Boxes defined either over F2

p or over F3
p.

Based on our results, possible options for F : Fmp → Fp include:

• Lai-Massey constructions, as F (x0, x1) = x0 + (x0 − x1)2 or F (x0, x1, x2) = x0 +∑2
j=0(xj − xj+1)2;

• if p = 1 mod 3: F (x0, x1, x2) = x0 + α · (x0 − x1)2 + β · (x1 − x2)2 + γ · (x2 − x0)2

as in Prop. 10; otherwise, if p = 2 mod 3: F (x0, x1, x2) = x0 + (x0 + x1 + x2) · (α ·
x0 + β · x1 − (α+ β) · x2) as in Prop. 9.

33

We decided to discard the last two functions, since they would force us to consider separately
the case p = 1 mod 3 from the case p = 2 mod 3. Regarding the first option, the two
Lai-Massey functions admit invariant subspaces, that is, there exists a subspace X ⊂ Fmp
which is invariant through the non-linear function. E.g., 〈[1, 1]T 〉 is invariant for the case
m = 2, while 〈[1, 1, 0]T 〉, 〈[1, 0, 1]T 〉, 〈[0, 1, 1]T 〉 (and their linear combinations) are invariant
for the case m = 3. We opted for the smallest m, since it also allows to cover a larger range
of values of t, besides the fact that it admits a smaller number of invariant subspaces.

Let F (x0, x1) = α · x0 + (x0 − x1)2 for α ∈ Fp \ {0}, and let SF over F2
p be defined

as in Def. 1. Due to the presence of the invariant subspace 〈[1, 1]T 〉, we do not use SF
directly, but we consider S ′(xi, xi+1) defined as

S ′(xi, xi+1) =
[
−α · γ

0

]
+ SF ◦

([
γ
0

]
+
[
2 1
1 3

]
× SF (xi, xi+1)

)
. (11)

The invertible matrix [2, 1; 1, 3] and the vector [γ; 0] (for γ 6= 0) have been chosen in order
to destroy the invariant subspace 〈[1, 1]T 〉. Note that S ′ over F2

p costs 2 Fp-multiplications,
which implies that S(E) over Ftp costs t Fp-multiplications.

The Linear Layer M (E). The S-Box S ′ over F2
p mixes two Fp-words in a non-linear way.

Hence, it is not necessary to instantiate the linear layer with e.g. a t × t MDS matrix
in order to achieve both full diffusion and a high number of active S-Boxes over two
consecutive rounds. Indeed, it is not hard to check that such goal can be achieved by
mixing only the first output components of the S-Boxes among them via a MDS matrix
M ′, and independently only the second output components of the S-Boxes among them via
a different MDS matrix M ′′ . This is exactly the definition of M (E), for which half of the
components are equal to zero. Moreover, it is not hard to check that M (E) is invertible.

Low-Degree Inverse. By considering only the external rounds, a concrete drawback
of the quadratic Lai-Massey function regards the fact that its degree is low both in the
forward and in the backward direction. For this reason, the partial rounds instantiated
with an invertible power map – which has low degree in e.g. the forward direction and
high degree in the backward one – play a crucial role in order to stop Meet-in-the-Middle
(MitM) attacks. Indeed, we recall that the inverse x 7→ xd

′ of x 7→ xd satisfies (d · d′ − 1)
mod (p − 1) = 0 (due to Fermat’s little theorem xp = x mod p for each x ∈ Fp \ {0}),
which implies that d′ is of approximately the same order of p (for small values of d).

Initial Matrix Multiplication. With respect to Poseidon, we emphasize that the input
of Neptuneπ is multiplied by M (E) before the first S-Box layer is applied. This could
make a difference in the case of algebraic attacks. Indeed, remember that the invertible
S-Box layer is defined via the concatenation of independent non-linear functions. If no
initial diffusion/matrix multiplication takes place, one can ignore the first S-Box layer (by
replacing the initial value IV with the corresponding output via the S-Box layer), with
the result of making the attack independent of the first S-Box layer, and so of its degree.
Once a solution is found at the output of the first S-Box layer, it is possible to invert it in
order to find the corresponding solution at the input of the permutation and so of the hash
function. A similar scenario could occur at the end of the permutation if no full diffusion
takes place.

7.4 Security Analysis
Due to the similarities between Poseidon and Neptune, we emphasize that (almost) all
the attacks work in the same way for the two schemes. This means that we are going to
adapt the security analysis of Poseidon to Neptune.

34

7.4.1 (Invariant) Subspace Trails for the Internal Rounds

As already pointed out in [BCD+20,KR21], there exist several subspaces of Ftp that are
invariant through the internal rounds of Poseidon and so of Neptune. The matrix M (I)

plays a crucial role in order to destroy them.

Definition 6 ((Invariant) Subspace Trail [LAAZ11,LMR15,GRR16]). Let (U0, . . . ,Ul)
denote a set of l + 1 subspaces of Ftp with dim(Ui) ≤ dim(Ui+1). (U0, . . . ,Ul) is a subspace
trail of length l with respect to the function R defined over Ftp if for each i ∈ {0, . . . , l}
and for each αi ∈ Ftp there exists αi+1 ∈ Ftp such that

R(Ui + αi) := {R(x) | x ∈ Ui + αi} ⊆ Ui+1 + αi+1 .

If Ui = Uj for each i, j = 0, . . . , l (that is, the subspace is invariant), the trail is called an
invariant subspace trail.

Following Poseidon, for each i ≥ 0, let’s define the subspace Xi ⊆ Ftp as

Xi :=
{
x ∈ Ftp | ∀j ≤ i :

(
(M (I))j × x

)
0
∈ Fp

}
.

As shown in [GRS21,GSW+21], the matrix M (I) must be chosen in order to guarantee
that no subspace Xi is invariant for an arbitrary number of internal rounds, and more
generally, that no subspace trail can cover any arbitrary number of internal rounds. We
suggest to use the tool presented in [GRS21] in order to properly choose the matrix M (I)

for this goal. This implies that e.g. no more than t − 1 internal rounds can be covered
without activating any S-Box x 7→ xd.

7.4.2 Statistical Attacks

The external rounds aim to provide security against statistical attacks. Working as in
HadesMiMC or as in Poseidon (see [GLR+20, Sect. 4.2] for details), the idea is that
the permutation composed of the external rounds only (that is, with the internal rounds
replaced by an invertible linear layer) resists statistical attacks. Here we focus on (truncated)
differential and rebound attacks. As in Poseidon, the security against these attacks
implies the security against other statistical attacks, as the linear one [Mat93], impossible
differential [Knu98,BBS99], integral one [DKR97], zero-correlation linear one [BR11,BR14],
multiple-of-n/mixture differential [GRR17,Gra18], and so on.

Differential Attacks. Given pairs of inputs with some fixed input differences, differential
cryptanalysis [BS93] considers the probability distribution of the corresponding output
differences produced by the cryptographic primitive. Let δ,∆ ∈ Fnp be respectively the
input and the output differences through a permutation P over Fnp . The differential
probability (DP) of having a certain output difference ∆ given a particular input difference
δ is equal to

ProbP(δ → ∆) =
|{x ∈ Fnp | P(x+ δ)− P(x) = ∆}|

pn
.

In the case of iterated schemes, a cryptanalyst searches for ordered sequences of differences
over any number of rounds that are called differential characteristics/trails. Assuming the
independence of the rounds, the DP of a differential trail is the product of the DPs of its
one-round differences.

Definition 7. Let P be a permutation over Fpn ≡ Fnp . Its maximum differential probability
is defined as DPmax = maxδ,∆∈Fn

p\{0} ProbP(δ → ∆).

35

As it is well known, the maximum differential probability of the function x 7→ xd is
(d− 1)/p. Regarding the function S ′, we prove the following result.

Lemma 4. Let p ≥ 3, and let S ′ : F2
p → F2

p be defined as in Def. 11. Let δ ≡ (δ0, δ1) ∈
F2
p \ {(0, 0)} and ∆ ≡ (∆0,∆1) ∈ F2

p \ {(0, 0)} be respectively the input and the output
differences. Then:

|{x ∈ F2
p | S ′(x+ δ)− S ′(x) = ∆}|

p2 =


p−2 if δ0 6= δ1 and ∆0 6= ∆1

p−1 if δ0 = δ1 or ∆0 = ∆1

0 if δ0 = δ1 and ∆0 = ∆1

.

In other words, its maximum differential probability is p−1. The proof is given in
App. C.1.

Working over two consecutive rounds, the minimum number of active S-Boxes is t′ + 1,
due to the fact that (1st) both M ′ and M ′′ are MDS matrices (with branch number equal
to t′ + 1 = t/2 + 1) and (2nd) they are “independent”, in the sense that they work over
independent t′ Fp-words. This means that the overall probability of each differential trail
over two consecutive rounds per three times is at most

p−3(t′+1) = p−3t/2−3 ≤ p−3 · 2−9κ/2 � 2−4·κ.

since t = 2t′ and pt = pc · pr ≥ 23κ. As a result, when targeting a security level of κ bits,
two consecutive rounds per three times are sufficient for preventing classical differential
attacks.

By considering the internal rounds as well (as suggested in e.g. [KR21]), we point out
that the probability of every differential trail is even smaller, more precisely it is at most

p−3(t′+1) ·
(
d− 1
p

)⌊RI
t

⌋

(where
⌊
RI

t

⌋
≥ 1) due the fact that at least one S-Box x 7→ xd is active every t internal

rounds.

Truncated Differential and Rebound Attacks. Truncated differential [Knu94] is a variant
of classical differential attack in which the attacker can specify only part of the difference
between pairs of texts. In the particular case of an hash function, truncated differentials
can be exploited in order to set up rebound attacks [MRST09]. The goal of this attack is to
find two (input, output) pairs such that the two inputs satisfy a certain (truncated) input
difference and the corresponding outputs satisfy a certain (truncated) output difference.

Due to the choice of the matrix M (E) and working as in Poseidon (see [GKR+21,
Sect. 5.5.1] for details), no truncated differential (equivalently, subspace trail) with proba-
bility 1 can cover more than a single round. In particular, while the S-Box S ′ is defined over
Fp2 ≡ F2

p, we point out that the matrix M (E) does not admit an equivalent representation
over Ft

′×t′
p2 . Indeed, consider the field Fp2 = GF(p)[x]/P (x), where P is an irreducible

polynomial of the form P (x) = x2 − η where Lp(η) = −1. The product of two elements
a · x+ b and c · x+ d is given by

(a · x+ b) · (c · x+ d) = ac · x2 + (ad+ bc) · x+ bd ≡ (ad+ bc) · x+ (bd+ η · ac),

that is [
ad+ bc
bd+ η · ac

]
=
[
b a

η · a b

]
×
[
c
d

]
. (12)

36

It is simple to observe that each 2× 2 sub-matrix of M (E)[
M ′i,j 0

0 M
′′

i,j

]
is of the form Eq. (12) if and only M ′i,j = M

′′

i,j , which can never hold due to the definition
of M ′,M ′′ .6

Due to these facts and working as in Poseidon (for which both the S-Boxes and the
matrix multiplications are defined over the same field Fp), we conjecture that six external
rounds are sufficient for preventing rebound attacks.

7.4.3 Algebraic Attacks

Interpolation Attacks. The interpolation attack [JK97] aims to construct an interpolation
polynomial that describes the function. Such polynomial can be used in order to set up a
distinguisher and/or an attack on the symmetric scheme. The attack does not work if the
number of unknown monomials is sufficiently large (e.g., larger than the data available
for the attack). In the MitM scenario, the attacker construct two polynomials, that is,
one that involves the input(s) and one that involve the output(s), that must match in the
middle.

Due to the presence of the map x 7→ xd in the internal rounds, the final two full rounds
combined with three internal rounds ensure maximum degree in the backward direction
(remember that 1/d ≡ d′ such that (d′ · d− 1) mod (p− 1) = 0, so d′ is of the same order
of p). Working as in Poseidon (see [GKR+21, Sect. 5.5.2] for details) and in order to
guarantee security against the interpolation attack, the number of internal rounds RI must
satisfy

43 · dRI−3 ≥ min{p, 2κ} → RI ≥ 3 + logd(2) · (min{κ, log2(p)} − 6),

where (1st) the two final rounds and 3 internal rounds are necessary for reaching maximum
degree in the backward direction and (2nd) the first round is not taken into account, since
no full diffusion is achieved. Finally, we add t internal rounds due to the possibility to
cover them with an invariant subspace trails (which would imply no degree growth), and
logd(t) additional internal rounds in order to ensure that the polynomial is dense.

Before going on, we recall that the security against interpolation attack implies secu-
rity against higher-order differential attack [Lai94,Knu94], due to the results presented
in [BCD+20, Prop. 1].

Factorization and Gröbner Basis Attacks. Polynomial factorization can be used to
solve a single univariate equation F (x) = 0 for a polynomial F over Fp. E.g., in the
case r ≥ 1, factorization can be used to find a pre-image of h ∈ Fp, by solving F (x) =[
N̂ (x‖v̂‖IV)

]
0−h = 0 for a fixed v̂ ∈ Fr−1

p , where IV ∈ Fcp is the initial value that
instantiates the inner part. In such a case, it is actually not necessary to find the full
factorization of the polynomial, since one root is sufficient for setting up the attack. The
cost of finding a root is proportional to the degree ∆ of the polynomial F , more precisely

∆ · (log2(∆))2 · (log2(∆) + log2(p)) · (1 + 64 · log2(log2(∆)))

as shown in [vzGG13]. It is easy to check that security against interpolation attack implies
security against this attack as well.

Gröbner basis [Buc76] generalizes factorization, and it allows to solve a system of
non-linear equations that describe the function. As we explain in App. C.2, the cost of

6For completeness, we mention that also the matrix [2, 1; 1, 3] that defines the S-Boxes does not admit
an equivalent representation in Fp2 .

37

Table 1: Comparison between Poseidon and Neptune – both instantiated with d = 3 –
for the case p ≈ 2256, κ = 128 and several values of t.

t RF RP & RI Multiplicative Complexity
Poseidon (d = 3) 4 8 87 238 (+ 10.2 %)
Neptune (d = 3) 4 6 96 216
Poseidon (d = 3) 8 8 88 304 (+ 21.6 %)
Neptune (d = 3) 8 6 101 250
Poseidon (d = 3) 12 8 88 368 (+ 29.6 %)
Neptune (d = 3) 12 6 106 284
Poseidon (d = 3) 16 8 89 434 (+ 36.5 %)
Neptune (d = 3) 16 6 111 318
Poseidon (d = 3) 20 8 89 498 (+ 42.3 %)
Neptune (d = 3) 20 6 115 350
Poseidon (d = 3) 24 8 89 562 (+ 46.4 %)
Neptune (d = 3) 24 6 120 384

Table 2: Comparison between Poseidon and Neptune – both instantiated with d = 5 –
for the case p ≈ 2256, κ = 128 and several values of t.

t RF RP & RI Multiplicative Complexity
Poseidon (d = 5) 4 8 60 276 (+ 21.0 %)
Neptune (d = 5) 4 6 68 228
Poseidon (d = 5) 8 8 60 372 (+ 40.1 %)
Neptune (d = 5) 8 6 72 264
Poseidon (d = 5) 12 8 61 471 (+ 53.9 %)
Neptune (d = 5) 12 6 78 306
Poseidon (d = 5) 16 8 61 567 (+ 64.3 %)
Neptune (d = 5) 16 6 83 345
Poseidon (d = 5) 20 8 61 663 (+ 74.0 %)
Neptune (d = 5) 20 6 87 381
Poseidon (d = 5) 24 8 61 759 (+ 80.7 %)
Neptune (d = 5) 24 6 92 420

such an attack depends both on the number and on the degree of the equations, on the
number of variables, but also on the fact that the equations to solve are dense or not.
In [GKR+21, Sect. 5.5.2], authors showed that the security of Poseidon against the
interpolation attack implies the security against Gröbner basis attacks. As one may expect,
in App. C.2, we show that the same conclusion holds for Neptune as well, due to the
similarity between the internal rounds of Neptune and the ones of Poseidon.

7.5 Multiplicative Complexity: Poseidon versus Neptune
With these results in mind, we finally compare the multiplicative complexity between
Poseidon and Neptune. By simple computation:

• Neptune requires

(6 + (blog2(d)c+ hw(d)− 1)) · t+ (blog2(d)c+ hw(d)− 1) · (RI − t)

Fp-multiplications, where (RI − t) is almost constant with respect to t;

38

• Poseidon requires

(blog2(d)c+ hw(d)− 1) · (8 · t+RP)

Fp-multiplications, where again RP is almost constant with respect to t.

Note that RP ≈ RI − t. In the case of large t� 1 and for d = 3, Neptune requires O(8 · t)
Fp-multiplications versus O(16 · t) Fp-multiplications required by Poseidon. Similarly,
in the case of large t � 1 and for d = 5, Neptune requires O(9 · t) Fp-multiplications
versus O(24 · t) Fp-multiplications required by Poseidon. More concretely, a comparison
between the two schemes for small values of t is proposed in Table 2 for the case p ≈ 2256.
As it is possible to observe, Neptune has always a smaller multiplicative complexity with
respect to Poseidon.7

Besides that, we point out that

• the matrix multiplication of each external round of Neptune costs t2/2 multi-
plications with constants8 versus t2 multiplications with constants in the case of
Poseidon (besides the fact that Neptune has two external/full rounds less than
Poseidon);

• in Poseidon, the same matrix M is used for the full/external rounds and for the
partial/internal ones. Since such matrix must prevent arbitrary-long subspace trails
with probability 1 for the partial/internal rounds, it cannot be instantiated with
e.g. a circulant matrix. Vice-versa, the MDS matrices M ′,M ′′ in the external rounds
of Neptune do not have to satisfy such requirement. Hence, they can be instantiated
with e.g. circ(2, 1, 1) or circ(3, 2, 1, 1) for t′ ∈ {3, 4} respectively;

• both Neptune and Poseidon admit an equivalent representation in which the
matrix multiplication of each internal/partial round costs 2 · t multiplications with
constants (for more details, we refer to [GLR+19,GLR+20, App. C]). However, in
such representation, the matrix of the internal/partial round is not fixed, that is,
changes at every round. Without using such equivalent representation, the matrix
multiplication of each internal round of Neptune can cost only t multiplications
with constants, besides being fixed.

These facts could represent an advantage of Neptune with respect to Poseidon for the
plain performance point.

Acknowledgments. Lorenzo Grassi is supported by the European Research Council under
the ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980 ESCADA.

References
[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. Design of Symmetric-Key Primitives for Advanced Cryptographic
Protocols. IACR Transactions on Symmetric Cryptology, 2020(3):1–45, 2020.

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Chris-
tian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel
Structures for MPC, and More. In ESORICS 2019, volume 11736 of LNCS,
pages 151–171, 2019.

7We point out that a similar result holds even in the case in which Neptune is instantiated with 8
external rounds.

8Note that
[
x
y

]
7→
[

2 1
1 3

]
×
[
x
y

]
can be computed via five additions only.

39

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity. In ASIACRYPT 2016, volume 10031 of
LNCS, pages 191–219, 2016.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced
to 31 Rounds Using Impossible Differentials. In EUROCRYPT 1999, volume
1592 of LNCS, pages 12–23, 1999.

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander,
Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo,
and Friedrich Wiemer. Out of Oddity - New Cryptanalytic Techniques Against
Symmetric Primitives Optimized for Integrity Proof Systems. In CRYPTO
2020, volume 12172 of LNCS, pages 299–328, 2020.

[BDPA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the Indifferentiability of the Sponge Construction. In EUROCRYPT 2008,
volume 4965 of LNCS, pages 181–197, 2008.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In EUROCRYPT 2013, volume 7881 of LNCS, pages 313–314, 2013.

[BDPV07] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions,
2007. In: Ecrypt Hash Workshop 2007, http://www.csrc.nist.gov/pki/
HashWorkshop/PublicComments/2007_May.html.

[BPVA+11] Guido Bertoni, Michaël Peeters, Gilles Van Assche, et al. The Keccak reference,
2011. https://keccak.team/files/Keccak-reference-3.0.pdf.

[BR11] Andrey Bogdanov and Vincent Rijmen. Linear Hulls with Correlation Zero
and Linear Cryptanalysis of Block Ciphers. Cryptology ePrint Archive, Report
2011/123, 2011. https://ia.cr/2011/123.

[BR14] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and
linear cryptanalysis of block ciphers. Des. Codes Cryptogr., 70(3):369–383,
2014.

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer, 1993.

[Buc76] Bruno Buchberger. A theoretical basis for the reduction of polynomials to
canonical forms. SIGSAM Bull., 10(3):19–29, 1976.

[Dae95] Joan Daemen. Cipher and hash function design, strategies based on linear
and differential cryptanalysis, PhD Thesis. K.U.Leuven, 1995. https://cs.
ru.nl/~joan/.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta:
A Cipher with Low ANDdepth and Few ANDs per Bit. In CRYPTO 2018,
volume 10991 of LNCS, pages 662–692, 2018.

[DGGK21] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël Kuijsters.
Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite
Fields. In EUROCRYPT 2021, volume 12697 of LNCS, pages 3–34, 2021.

40

http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
https://keccak.team/files/Keccak-reference-3.0.pdf
https://ia.cr/2011/123
https://cs.ru.nl/~joan/
https://cs.ru.nl/~joan/

[DGH+21] Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger,
Markus Schofnegger, and Roman Walch. Pasta: A Case for Hybrid Homo-
morphic Encryption. Cryptology ePrint Archive, Report 2021/731, 2021.
https://ia.cr/2021/731.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher
Square. In FSE 1997, volume 1267 of LNCS, pages 149–165, 1997.

[DMMR20] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and Yann
Rotella. The Subterranean 2.0 Cipher Suite. IACR Trans. Symmetric Cryptol.,
2020(S1):262–294, 2020.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A New Hash Function for Zero-Knowledge
Proof Systems. In USENIX Security 2021. USENIX Association, 2021.

[GKRS21] Lorenzo Grassi, Dmitry Khovratovich, Sondre Rønjom, and Markus Schofneg-
ger. The Legendre Symbol and the Modulo-2 Operator in Symmetric
Schemes over (Fp)n. Cryptology ePrint Archive, Report 2021/1533, 2021.
https://ia.cr/2021/1533.

[GLR+19] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru,
and Markus Schofnegger. On a Generalization of Substitution-Permutation
Networks: The HADES Design Strategy. Cryptology ePrint Archive, Report
2019/1107, 2019. https://ia.cr/2019/1107.

[GLR+20] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru,
and Markus Schofnegger. On a Generalization of Substitution-Permutation
Networks: The HADES Design Strategy. In EUROCRYPT 2020, volume
12106 of LNCS, pages 674–704, 2020.

[Gra18] Lorenzo Grassi. Mixture Differential Cryptanalysis: a New Approach to
Distinguishers and Attacks on round-reduced AES. IACR Trans. Symmetric
Cryptol., 2018(2):133–160, 2018.

[GRR16] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace Trail
Cryptanalysis and its Applications to AES. IACR Trans. Symmetric Cryptol.,
2016(2):192–225, 2016.

[GRR17] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A New Structural-
Differential Property of 5-Round AES. In EUROCRYPT 2017, volume 10211
of LNCS, pages 289–317, 2017.

[GRS21] Lorenzo Grassi, Christian Rechberger, and Markus Schofnegger. Proving
Resistance Against Infinitely Long Subspace Trails: How to Choose the Linear
Layer. IACR Trans. Symmetric Cryptol., 2021(2):314–352, 2021.

[GSW+21] Chun Guo, François-Xavier Standaert, Weijia Wang, Xiao Wang, and Yu Yu.
Provable Security of SP Networks with Partial Non-Linear Layers. IACR
Transactions on Symmetric Cryptology, 2021(2):353–388, 2021.

[HKC+20] Jincheol Ha, Seongkwang Kim, Wonseok Choi, Jooyoung Lee, Dukjae Moon,
Hyojin Yoon, and Jihoon Cho. Masta: An HE-Friendly Cipher Using Modular
Arithmetic. IEEE Access, 8:194741–194751, 2020.

[JK97] Thomas Jakobsen and Lars R. Knudsen. The Interpolation Attack on Block
Ciphers. In FSE 1997, volume 1267 of LNCS, pages 28–40, 1997.

41

https://ia.cr/2021/731
https://ia.cr/2021/1533
https://ia.cr/2019/1107

[Knu94] Lars R. Knudsen. Truncated and Higher Order Differentials. In FSE 1994,
volume 1008 of LNCS, pages 196–211, 1994.

[Knu98] Lars R. Knudsen. DEAL - A 128-bit Block Cipher. Technical Report, Depart-
ment of Informatics, Bergen, Norway, 1998.

[KR21] Nathan Keller and Asaf Rosemarin. Mind the Middle Layer: The HADES
Design Strategy Revisited. In EUROCRYPT 2021, volume 12697 of LNCS,
pages 35–63, 2021.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack. In
CRYPTO 2011, volume 6841 of LNCS, pages 206–221, 2011.

[Lai94] X. Lai. Higher order derivatives and differential cryptanalysis. Communica-
tions and Cryptography: Two Sides of One Tapestry, 1994.

[LM90] Xuejia Lai and James L. Massey. A Proposal for a New Block Encryption
Standard. In EUROCRYPT 1990,, volume 473 of LNCS, pages 389–404, 1990.

[LMR15] Gregor Leander, Brice Minaud, and Sondre Rønjom. A Generic Approach to
Invariant Subspace Attacks: Cryptanalysis of Robin, iSCREAM and Zorro.
In EUROCRYPT 2015, volume 9056 of LNCS, pages 254–283, 2015.

[Mat93] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In EURO-
CRYPT 1993, volume 765 of LNCS, pages 386–397, 1993.

[MP13] Gary L. Mullen and Daniel Panario. Handbook of Finite Fields. Chapman &
Hall/CRC, 1st edition, 2013.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In
FSE 2009, volume 5665 of LNCS, pages 260–276, 2009.

[Nag51] T. Nagell. Euler’s Criterion and Legendre’s Symbol. Introduction to Number
Theory, 1951.

[Sha12] Christopher J. Shallue. Permutation Polynomials of Finite Fields. arXiv,
ePrint: 1211.6044, 2012.

[Sze21] Alan Szepieniec. On the Use of the Legendre Symbol in Symmetric Cipher
Design. Cryptology ePrint Archive, Report 2021/984, 2021. https://ia.cr/
2021/984.

[Vau99] Serge Vaudenay. On the Lai-Massey Scheme. In ASIACRYPT 1999, volume
1716 of LNCS, pages 8–19, 1999.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3.
ed.). Cambridge University Press, 2013.

[Wol85] Stephen Wolfram. Cryptography with Cellular Automata. In CRYPTO 1985,
volume 218 of LNCS, pages 429–432, 1985.

42

https://ia.cr/2021/984
https://ia.cr/2021/984

A Proof of Proposition 2
Given F : Fmq → Fq and y ∈ Fq, here we use the notation F−1(y) to denote F−1(y) := {x ∈
Fmq |F (x) = y}. Without loss of generality (W.l.o.g.), let’s assume that

∣∣F−1(0)
∣∣
 qm−1

(analogous for the other cases). Let’s define the sets A,B ⊆ Fnq as:

A := {(x0, x1, . . . , xn−1) ∈ Fnq | x0 = 0}
B := {(x0, x1, . . . , xn−1) ∈ Fnq | (x0, x1, . . . xm−1) ∈ F−1(0)}.

In particular:

B =
⋃

(xm,...,xn−1)∈Fn−m
q

B(xm,...,xn−1), where

B(xm,...,xn−1) := {(x0, . . . , xm−1, xm, . . . , xn−1) ∈ Fnq | (x0, . . . , xm−1) ∈ F−1(0)}.

Note that:

• |A| = qn−1

• S|B ⊆ A (otherwise, F (x0, x1, . . . , xm−1) 6= 0 ∈ Fq);

•
∣∣B(xm,...,xn−1)

∣∣
 qm−1 for each (xm, . . . , xn−1) ∈ Fn−mq (by the hypothesis of F
being not balanced and

∣∣F−1(0)
∣∣
 qm−1), which implies that

|B| =
∑

(xm,...,xn−1)∈Fn−m
q

|B(xm,...,xn−1)|
 qm−1 · qn−m = qn−1 = |A| .

By meanings of cardinality of S restricted on B cannot be injective, hence S is not injective,
which implies that S is not invertible.

B Practical Verification for Quadratic Functions
In this section, we describe the practical experiments we performed in order to support
our theoretical results. Supplemental material including the source code in C++ can be
found in a zip-file at

https://drive.google.com/file/d/1tYn3OaAxQVY0IRIPxIS3TAXeHM_fmr-j/view?
usp=sharing

containing the following files:

• source code main.cpp,

• Makefile to compile and run the code,

• a readme.md file containing instructions,

• a description of practical experiments (experiments.pdf),

• directories with log files of our practical tests.

Compiling with make and running by setting in the makefile the variables for the case to
run. A standard C++ compiler should work (we have used g++ with gcc version 7.5.0 and
the GNU multiprecision library libgmp version 6.2.0). The code is not optimised although
offers a rudimentary form of parallelization, which becomes necessary to run some cases
we report on.

43

https://drive.google.com/file/d/1tYn3OaAxQVY0IRIPxIS3TAXeHM_fmr-j/view?usp=sharing
https://drive.google.com/file/d/1tYn3OaAxQVY0IRIPxIS3TAXeHM_fmr-j/view?usp=sharing

Algorithm 1: Pseudo-code for finding functions F : Fmp → Fp for which the
corresponding function S over Fnp is invertible.
Data: Input: p ≥ 3,m ≥ 2, n ≥ m
Result: Output: F : Fmp → Fp such that S over Fnp is invertible

1 let X = ∅ be the set of functions Fmp → Fp;
2 for each function F defined as in (7) do

// 1st Step: check if F is balanced
3 let a = 0 ∈ Np and b = 0 ∈ {0, 1}pn ;
4 for all x ∈ Fmp do
5 aF (x) ← aF (x) + 1;
6 if aF (x) > pm−1 then
7 Break: F is not balanced, hence discard it;

// 2nd Step: given F balanced, check if SF is invertible
8 for all x ∈ Fnp do
9 if bS(x) = 0 then

10 bS(x) ← 1;
11 else
12 Break: S is not a permutation, hence discard F ;
13 X← X ∪ {F};
14 return X

B.1 Brute Force Research
Here we propose a pseudo-code of the algorithm that we used for our tests for the case of
polynomial functions F : Fmp → Fp of degree d ≥ 2, defined as (7).

Given p ≥ 3 and n ≥ m ≥ 2, Algorithm 1 consists of two steps:

1. checking if a function F : Fmp → Fp is balanced or not;

2. if a function is balanced, checking if S over Fnp is invertible or not.

The check is done making use of hash tables.

Reducing the Search Space. As first step, we show how to use the necessary conditions
given in Sect. 2 in order to reduce the cost:

• first of all, the coefficient of the monomial of degree zero can be fixed equal to zero
(that is, α0,...,0 = 0); indeed, just choose ψ = −α0,...,0 · ω;

• the coefficient of one monomial of degree one and one of degree two can be chosen
in {0, 1} (e.g., α1,0,...,0, α2,0,...,0 ∈ {0, 1}); indeed, if they are both equal to zero the
result is obvious, if only one of them is different from zero just choose ω as the
inverse of the non-zero one. If both α1,0,...,0 6= 0 and α2,0,...,0 6= 0, take µ = α1,0,...,0

α2,0,...,0
,

ω = α2,0,...,0
(α1,0,...,0)2 and ν = 0.

In this way, the number of quadratic functions F : Fmp → Fp reduces as following

p1+2m+(m
2) = p

m2+3m+2
2 → 22 · p

m2+3m−4
2 .

Memory and Computational Costs. Let’s analyze the cost of the algorithm. First of
all, the memory cost is given by O(max{p · dlog2(pm−1)e, pn}) = O(pn) bits. Indeed, since

44

Table 3: Summary of our practical results for d = 2 and m ∈ {2, 3}. For each p ≥ 3, we
report the maximum value of n tested, the number of balanced quadratic functions with
respect to the total number of functions F (with α0,0,0 = 0, α2,0,0, α0,0,1 ∈ {0, 1}) and the
total runtime in hours/days.

Case: m = 2 and n ≥ 3
p # balanced F percentage max n runtime
3 19 17.5% 31 1.5 hours
5 69 13.8% 10 3.6 hours
7 151 11.0% 7 0.9 hours
11 411 7.7% 7 9.6 hours
13 589 6.7% 5 1.0 hours
17 1 041 5.2% 5 3.7 hours
19 1 315 4.8% 5 6.3 hours
23 1 959 4.0% 5 16.0 hours

Case: m = 3 and n ≥ 5
p # balanced F percentage max n runtime
3 2 175 24.9% 13 9.8 hours
5 53 725 17.2% 7 5.3 hours
7 426 139 12.9% 7 6.0 days
11 2 464 657 3.2% 5 46.8 days

the first step stops when one entry of a ∈ Np is bigger than pm−1, we need dlog2(pm−1)e
bits for each entry of such array.

Regarding the computational cost, for each function F : Fmp → Fp:

• we have to test pm different inputs in order to check if F is balanced;

• if the function F is balanced, we have to test pn different inputs in order to check if
S is invertible.

This requires O(pm · 22 · p(m2+3m−4)/2 · pn) steps (namely, memory access, evaluation of
the function F , etc.). Note that these are just rough estimations, since several functions F
are e.g. discarded in the first step if they are not balanced.

B.2 Practical Results
In order to carry out the practical experiments, we implemented the brute-force collision-
search algorithm described in Algorithm 1: for each quadratic function F : Fmp → Fp we
look for a collision in the domain of the corresponding function SF (as defined in Def. 1)
over Fnp for n ≥ m. We aim to practically verify that no invertible function SF exists for
the cases (1st) m = 2 and n ≥ 3 (as proved in Theorem 3) and (2nd) m = 3 and n ≥ 5 (as
proved in Theorem 4). We verify it practically just for small values of p and n, while the
theoretical proofs confirm that the behavior that occurs for small values is also valid for
all p ≥ 3.

The tests have been done on a Intel 40-cores Xeon E5-2698 v4 @ 2.20GHz. The results
of the practical experiments are given in Table 3, describing for each p ≥ 3:

• the number of balanced quadratic functions with respect to the total number of
functions F ;

• the maximum value of n tested (denoted as “max n”);

• the total runtime in hours/days.

45

We restrict the domain of functions F by using the equivalent classes introduced in Sect. B.1
(that is, α0,0,0 = 0, α2,0,0, α0,0,1 ∈ {0, 1}).

As described in Algorithm 1, tests are divided into two main phases: (1st) the balanced
testing and (2nd) the collision search. The time each step requires depends on the case
considered:

• d = 2 and m = 2: the balanced testing takes just the 0.1% of the total runtime,
while the collision search takes most of the time spent on the tests.

• d = 2 and m = 3: runtimes for balanced testing and collision search depend on p,
e.g. for p = 3 the balanced testing takes the 0.1% of the total runtime, while for
p = 11 it takes the 88%.

Anyway, the balanced testing and collisions search runtimes depend strongly on the number
of iterations that the program requires in order to establish if a function is balanced or,
respectively, invertible (i.e., to find the first collision), since the program works iteratively,
testing for each value whether its image has already been evaluated as the image of another
value.

C Details about the Security Analysis of Neptune

C.1 Maximum Differential Probability of S ′

Let p ≥ 3 be a prime integer, and let S ′ : F2
p → F2

p be defined as in (11). Here we prove
that its maximum differential probability is p−1.

In order to do this, we proceed in two steps:

• first, we compute the maximum differential probability of SF ′ over F2
p defined as in

Def. 1 via F ′(x0, x1) = α · x0 + β · (x0 − x1)2;

• based on this result, we compute the maximum differential probability of S ′.

Maximum Differential Probability of SF ′ . Given input/output differences (δ0, δ1), (∆0,∆1) ∈
F2
p \ {(0, 0)}, we first analyze the number of solutions (x0, x1) of the following system

α · δ0 + β · (δ0 − δ1)2 + 2β · (δ0 − δ1) · (x0 − x1) = ∆0

α · δ1 + β · (δ0 − δ1)2 + 2β · (δ0 − δ1) · (x0 − x1) = ∆1 ,

which corresponds to
α · (δ0 − δ1) = ∆0 −∆1 (13)

and

(δ0 − δ1) · (x0 − x1) = ∆0 − α · δ0 − β · (δ0 − δ1)2

2β .

It follows that:

• if δ0 6= δ1, such system of equations admits exactly p solutions;

• if δ0 = δ1 (hence, ∆0 = ∆1), then the equations are always satisfied if ∆0 = α · δ0.

46

Maximum Differential Probability of S′. Given (δ0, δ1), (∆0,∆1) ∈ F2
p \ {(0, 0)}, the

maximum differential probability of S ′ is given by∑
(ε0,ε1)∈F2

p

Prob
([
δ0
δ1

]
→
[
ε0
ε1

])
× Prob

(([
2 1
1 3

]
×
[
ε0
ε1

])
→
[
∆0
∆1

])
. (14)

In our case, condition (13) becomes:

α · (δ0 − δ1) = ε0 − ε1 and α · (ε0 − 2 · ε1) = ∆0 −∆1,

that is

ε0 = 2 · α · (δ0 − δ1)− ∆0 −∆1

α
and ε1 = α · (δ0 − δ1)− ∆0 −∆1

α
.

Hence, the probability given in (14) reduces to

Prob
([

δ0
δ1

]
→
[

2 · α · (δ0 − δ1)− ∆0−∆1
α

α · (δ0 − δ1)− ∆0−∆1
α

])
× Prob

([
5 · α · (δ0 − δ1)− 3 · ∆0−∆1

α

5 · α · (δ0 − δ1)− 4 · ∆0−∆1
α

]
→
[

∆0
∆1

])
.

Such probability is never bigger than p−1, since:

• if δ0 = δ1, then

2 · α · (δ0 − δ1)− ∆0 −∆1

α
= α · (δ0 − δ1)− ∆0 −∆1

α
.

This implies that the first probability is equal to 1. If δ0 6= δ1, then the first
probability is 1/p;

• if ∆0 = ∆1, then

5 · α · (δ0 − δ1)− 3 · ∆0 −∆1

α
= 5 · α · (δ0 − δ1)− 4 · ∆0 −∆1

α
.

This implies that the second probability is equal to 1. If ∆0 6= ∆1, then the first
probability is 1/p;

• if δ0 = δ1 and ∆0 = ∆1, then

2 · α · (δ0 − δ1)− ∆0 −∆1

α
= α · (δ0 − δ1)− ∆0 −∆1

α

=5 · α · (δ0 − δ1)− 3 · ∆0 −∆1

α
= 5 · α · (δ0 − δ1)− 4 · ∆0 −∆1

α
= 0.

In such a case, the overall probability is equal to zero, since we cannot have a zero
difference in the middle when the input/output differences are non-zero (remember
that the construction is invertible).

It follows that the probability is maximum when either δ0 = δ1 or ∆0 = ∆1, and in such a
case it is equal to 1/p.

C.2 Gröbner Basis Attacks on Neptune
The cost of the Gröbner basis attack depends on the system of equations that describes
Neptune. As usually done in the literature, instead of considering (collision or/and
preimage) attacks on the sponge hash function, we focus on the CICO problem on the
permutation that instantiates Neptune.

47

Definition 8. The invertible function G : Ftp → Ftp is κ-secure against the CICO (t1, t2)-
problem (where t1, t2 < t) if there is no algorithm with expected complexity smaller than
2κ that for given i1 ∈ Ft1p and o1 ∈ Ft2p finds i2, o2 such that G(i1‖i2) = o1‖o2.

We consider two approaches:

• working on the relation between the input and the output of the entire permutation;

• working at round level.

Preliminary. Gröbner basis attack consists of three steps:

1. first, the attacker needs to set up the equation system and compute a Gröbner basis
for it;

2. secondly, they perform a change of term ordering for the basis, usually going to a
term order which makes it easier to eliminate variables and find the solutions;

3. finally, the attacker uses the system obtained in the second step in order to start
solving for the variables.

As is usually done in the literature, here we focus on the complexity of the first step (i.e.,
computing a Gröbner basis), which can be estimated by

CGB = O
((

Dreg + nv
nv

)ω)
operations, where Dreg is the degree of regularity, nv is the number of variables, and
2 ≤ ω < 3 is a constant representing the complexity of a matrix multiplication. Let ne
denotes the number of equations in the polynomial system and di is the degree of the i-th
equation. Directly computing Dreg is hard in general, but an estimate for regular sequences
(namely, in the case ne = nv) is given by

Dreg = 1 +
ne∑
i=1

(di − 1).

C.2.1 Working on the Input and the Output

Let’s first consider the input and the output of the permutation, focusing on the case in
which the number of unknown input variables x is equal to the number of known output
variables. In such a case, we get x equations of degree 46 · dRI = 212+RI ·log2(d) (we assume
that RF = 6 is fixed) in x variables. Hence, we have that

Dreg = 1 + x · (212+RI ·log2(d) − 1)

which implies a cost of approximately

O

((
x · 212+RI ·log2(d)

x

)ω)
assuming a semi-regular system (as done for Poseidon). Since ω ≥ 2 (the best scenario
for the attacker), we have that(

x · 212+RI ·log2(d)

x

)ω
≥

((
1 + x · (212+RI ·log2(d) − 1)

)x
x!

)2

≥
(

1 + x · (212+RI ·log2(d) − 1)
x

)2x

≈ (212+RI ·log2(d))2x,

48

where x! ≤ xx for each x ≥ 1. In order to guarantee κ bits of security:

(212+RI ·log2(d))2x ≥ min{2κ, px}.

The maximum is obtained for x = 1, which implies

RI ≥ logd(2) ·
(

min{κ, log2(p)}
2 − 12

)
,

which is always satisfied by the number of rounds required to prevent the interpolation
attack.

C.2.2 Working at Round Level

Another possibility for setting up the Gröbner basis attack consists of working at round
level. In such a case:

• every internal round can be described as a single equation of degree d;

• every external round can be described via t equations of degree 2. Indeed, assuming
for simplicity α = β = 1, note that given (y0, y1) = S ′(x0, x1), we have[

y0 + (y0 − y1)2

y1 + (y0 − y1)2

]
=
[
γ
0

]
+
[
2 1
1 3

]
×
[
x0 + (x0 − x1)2

x1 + (x0 − x1)2

]
.

It follows that we have

• RI equations of degree d;

• RF · t− c equations of degree 2 (note that the final c Fp-elements are truncated)

in RF · t− c+ RI variables (note that the inner part is instantiated with a fixed initial
value). Assuming a semi-regular system and RF = 6, we have that

Dreg = 1 + 6 · t− c+RI · (d− 1) .

As in the case of Poseidon, the number of rounds necessary for preventing the interpolation
attack satisfies the inequality(

1 + 12 · t− 2 · c+R′I · d
6 · t− c+R′I

)2
≥ min{2κ, px},

where R′I = RI − t in order to take into account the fact that (up to) t internal rounds
can be skipped via an invariant subspace.

49

	Introduction
	The Round Function and the Non-Linear Layer
	Our Contributions

	Preliminary
	Class of Equivalence
	A Necessary Condition for Inverbility

	Related Works
	Hermite's Criterion and Known Permutation Polynomials (PPs) over Fp
	Permutation Polynomials via the Legendre Symbol
	(Generalized) Lai-Massey Functions S: Fpn Fpn

	Function SF over Fpn via Quadratic Functions F: Fp2 Fp
	Analysis of the Case n=2
	Analysis of the Case n3

	Function SF over Fpn via Quadratic Functions F: Fp3 Fp
	Analysis of the Case n = 3
	An Example for the Case n = 4
	Analysis of the Case n 5

	Proof of Theorem 4
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Neptune: a Concrete Application
	Poseidon and the Hades Design Strategy
	Neptune
	Design Rationale
	Security Analysis
	Multiplicative Complexity: Poseidon versus Neptune

	Proof of Proposition 2
	Practical Verification for Quadratic Functions
	Brute Force Research
	Practical Results

	Details about the Security Analysis of Neptune
	Maximum Differential Probability of S
	Gröbner Basis Attacks on Neptune

